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Abstract The purpose of the paper is to apply monotone
multigrid methods to static and dynamic biomechanical
contact problems. In space, a finite element method invol-
ving a mortar discretization of the contact conditions is used.
In time, a new contact-stabilized Newmark scheme is pre-
sented. Numerical experiments for a two body Hertzian
contact problem and a biomechanical application are
reported.

1 Introduction

Mechanical loading in human joints plays a crucial role in
medical treatment. Non-invasive approaches for in vivo mea-
surements do not exist so that predictions of joint pressures
are only accessible via numerical simulation. A detailed mo-
delling of joints like the human knee leads to heterogeneous
dynamic contact problems in three space dimensions with
strongly varying behavior and complex 3D geometry of the
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interacting components such as bones, cartilage, tendons,
ligaments, and soft tissue. The full complexity of the patient-
specific problem is certainly intimidating. The present
paper restricts its attention to a simplified core problem, the
dynamic two body contact problem for two linear elastic,
homogeneous bones with realistic 3D geometry.

A main feature of this problem is its intrinsic non-smooth
nonlinearity as emerging even from linearized contact condi-
tions. Popular approaches like multibody dynamics or
mass-spring systems [4,20,36] have not yet reached a level
of sophistication that permits reliable predictions for indi-
vidual patients in clinical applications. In a finite element
framework, the nonlinearity can be circumvented by expli-
cit time discretization [29,34]. However, the associated CFL
condition might be quite restrictive so that extremely small
time steps might be necessary in biomechanical applica-
tions. In contrast to that, implicit time discretizations are
unconditionally stable, but require the solution of a static
two body contact problem in each time step. As for the static
problem, the typical approach in the engineering commu-
nity is to apply Newton–Raphson solvers after regulariza-
tion, see, e.g., [21,29,43]. Such a penalty approach aims
at a problem-dependent compromise between regularization
error and convergence speed. A systematic determination of
suitable penalty parameters via dual methods like augmented
Lagrangians [14] leads to indefinite saddle-point problems
with additional unknowns.

Recently active set strategies [15,19] attracted new inter-
est, partly because of their reinterpretation as non-smooth
Newton methods [28,37]. Convergence is guaranteed, if the
resulting local problems are solved exactly. However, suffi-
cient accuracy criteria for inexact versions still seem to be an
open problem. In addition, there are counterexamples sho-
wing that straightforward multigrid methods as applied to
the linearized problems might fail to converge [25] and that
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4 R. Kornhuber et al.

special variants [24] adapted to current guesses of the free
boundary should be used.

Such variants are similar to monotone multigrid methods
(MMG) which can be regarded as multilevel versions of well-
known projected block Gauß–Seidel relaxations [22,23,40].
Exploiting convexity rather than smoothness, monotone mul-
tigrid converges globally and does not involve any additional
parameters. Asymptotic multigrid convergence rates were
shown in the scalar case [22]. For simple model problems
the convergence speed was observed to be comparable to
usual linear multigrid as applied to related unconstrained
problems [23,40]. It is not all evident a-priori, whether this
desirable feature carries over to the more complex biome-
chanical contact problems.

The purpose of the present paper is to shed some light into
this question. In Sect. 2 we consider the static case. We use a
finite element discretization in space involving a mortar dis-
cretization of the contact conditions [5,11,40]. Well-known
instabilities and suboptimal convergence of straightforward
node-to-surface representations are avoided in this way. In
order to clarify the ideas behind MMG and its implemen-
tation, we present algorithms for the Laplacian, Signorini’s
problem and two body contact in the common framework
of successive minimization and prove convergence. In our
numerical computations, we consider the two body contact
of the human tibia and femur. The highly resolved exact geo-
metry is taken from the Visible Human Data Set [2]. It is
clear that the individual geometry of the contact boundary
has a strong influence on contact stresses. Hence, starting
from a coarse approximation, we successively approximate
the geometry by shifting new nodes to the exact boundary
in the course of local refinement. A parametrization of the
exact boundary is created automatically during the coarse-
ning process [27]. We found that MMG performed like a
linear multigrid algorithm. The simultaneous detection of
the contact points is hardly visible in the convergence be-
havior. As for linear multigrid methods, the actual conver-
gence speed was slightly decelerated by the shifting process
and the reduced shape regularity of the mesh. Section 3 is
devoted to time dependent problems. For time discretization,
we present a new contact-stabilized variant from the New-
mark family of variational integrators [12,29,33,34]. Nume-
rical comparisons with existing methods [34] of second order
display significantly reduced oscillations at the contact
boundary together with similar stability and conservation
properties. A theoretical justification will be the subject of a
forthcoming paper [9]. Using the implicit second-order ver-
sion of our contact-stabilized time discretization, we finally
compute the dynamic contact of tibia and femur illustrating
the reliability and efficiency of our approach. Extensions
to heterogeneous models involving cortical and trabecular
bone [17] as well as tendons and ligaments are the subject of
ongoing research.

2 Monotone multigrid methods

2.1 Successive minimization and multigrid

We consider the constrained minimization problem

u ∈ K : J (u) ≤ J (v) ∀v ∈ K (1)

where K ⊂ S is a non-empty, closed, convex subset of the
finite-dimensional linear spaceS and the quadratic functional

J (v) = 1
2 a(v, v)− �(v) (2)

is generated by a self-adjoint, positive definite bilinear form
a(·, ·) and a linear functional � on S, respectively. With these
assumptions, (1) admits a unique solution. Now let K allow
for a decomposition

K = K1 + · · · + Kn, Kl ⊂ Ul , (3)

with local linear subspaces Ul ⊂ S that generate an associa-
ted splitting of the global space S,

S = U1 + · · · + Un . (4)

Then the corresponding projected block Gauß–Seidel relaxa-
tion for the iterative solution of (1) reads as follows. For
a given iterate w0 = uν , we subsequently solve the local
minimization problems

J (wl) = min
v∈Ul

wl−1+v∈K

J (wl−1 + v), l = 1, . . . , n, (5)

and the next iterate is uν+1 = wn . It is well-known [13,
Chap. 5.4] that, for any initial iterate u0 ∈ K, the block
Gauß–Seidel relaxation (5) converges to the solution u of (1).

In order to increase the convergence speed, one might
select a nested sequence of subspaces

X0 ⊂ X1 ⊂ · · · ⊂ XJ−1 ⊂ XJ = S

and realize a similar relaxation process on each subspace
Xk , k = 0, . . . , J − 1. To this end, we decompose Xk into
subspaces

Xk = U (k)
1 + · · · + U (k)

nk
(6)

with U (J )
l = Ul . Then an associated block multilevel relaxa-

tion is obtained as follows. From a given iterate uν , we first
compute the so-called smoothed iterate uν by block Gauß–
Seidel relaxation (5) on S. Then, starting with w(J )n J = uν ,

we compute intermediate iterates w(k)nk for k = J − 1, . . . , 0
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A monotone multigrid solver for two body contact problems in biomechanics 5

by successive restriction and constrained minimization

J (w(k)l ) = min
v∈D(k)

l

J (w(k)l−1 + v), l = 1, . . . , nk, (7)

with w(k)0 = w
(k+1)
nk+1 . Finally, the next iterate is uν+1 = w

(0)
n0 .

The condition

w
(k)
l−1 + D(k)

l ⊂ K (8)

on the closed, convex subsets D(k)
l ⊂ U (k)

l preserves the
convergence of the block Gauß–Seidel relaxation (5).

Theorem 2.1 Assume that condition (3) on K and condition
(8) are satisfied. Then, for any initial iterate u0 ∈ K, the block
multilevel relaxation (7) converges to the solution u of (1).

The proof is omitted here since it is essentially the same as
for Theorem 3.1 in [30] or Theorem 2.1 in [22].

It turns out that a proper selection of the subspaces Xk is
crucial for the fast convergence of the multilevel relaxation.
This will be illustrated by two examples.

2.1.1 Classical multigrid for the discretized Laplacian

LetΩ ⊂ R
d be a polyhedral domain and let ΓD ⊂ ∂Ω have

positive measure. Then

S = {
v ∈ C(Ω) | v|T is linear ∀T ∈ T , v|ΓD = 0

}

stands for the space of linear finite elements with Dirichlet
boundary conditions with respect to some triangulation T of
Ω . The standard nodal basis functions are denoted by λp,
p ∈ N , where N is the subset of the vertices of T lying in
Ω \ ΓD . We define K = S and

a(v,w) = (∇v,∇w)L2(Ω), �(v) = ( f, v)L2(Ω),

for all v,w ∈ S and a given f ∈ L2(Ω). Then (1)
becomes the discretization of a Poisson equation with homo-
geneous Dirichlet conditions onΓD and Neumann conditions
on ∂Ω\ΓD .

Selecting the subspaces

Up = span{λp}, p ∈ N ,

we recover the classical Gauß–Seidel relaxation. Now we
assume that a hierarchy

S0 ⊂ · · · ⊂ SJ = S

of finite element spaces Sk associated with a sequence of
nested triangulations Tk with vertices Nk is available, e.g.
from some adaptive refinement process. Let λ(k)p , p ∈ Nk ,

denote the standard nodal basis of Sk . Then the choice

Xk = Sk, U (k)
p = span{λ(k)p }, p ∈ Nk,

provides a V -cycle of the classical multigrid method with
one Gauß–Seidel presmoothing step.

The weights rpq = λ
(k)
p (q) of the canonical Galerkin res-

triction and prolongation can be read from the nodal repre-
sentation

λ(k)p =
∑

q∈Nk+1

λ(k)p (q)λ
(k+1)
q . (9)

Additional smoothing steps, postsmoothing, or W -cycles can
be formulated in a similar way (cf. [41,42]).

2.1.2 Truncated monotone multigrid for obstacle problems

We consider the same situation as above with the only diffe-
rence that K now takes the form

K = {v ∈ S | v(p) ≤ ϕ(p), p ∈ N }
with some prescribed obstacle function ϕ ∈ S.

From the previous Example 2.1.1, we keep the choice
Up = span{λp} which now leads to the projected Gauß–
Seidel relaxation on the fine grid. In order to construct sui-
table coarse grid spacesXk , we first introduce the coincidence
set

N •(uν) = {p ∈ N | uν(p) = ϕ(p)}
of some smoothed iterate uν . As, in general, approximate or
exact coincidence sets cannot be represented on coarse grids,
the spaces Xk are constructed in such a way that no correction
takes place at p ∈ N •(uν). Starting with

µ(J )p =
{

0, if p ∈ N •(uν)
λp, else

, p ∈ N ,

we recursively define truncated nodal basis functions µ(k)p

by

µ(k)p =
∑

q∈Nk+1

λ(k)p (q)µ
(k+1)
q (10)

with p ∈ Nk and k = J − 1, . . . , 0. Note that (10) can be
directly translated into a Galerkin restriction with the modi-
fied weights rpq = 0 for q ∈ Nk+1 ∩ N •(uν). We finally
set

Xk =
∑

p∈Nk

U (k)
p , U (k)

p = span{µ(k)p },

to recover a truncated monotone multigrid method [22]
(Fig. 1). Note that Xk �⊂ Sk in general and that Xk may
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Fig. 2 Signorini’s problem

vary in each iteration step. The local coarse grid constraints
appearing in (7) take the form

D(k)
p = {v = vpµ

(k)
p | vp ≤ ψ(k)(p)} ⊂ U (k)

p (11)

where the defect obstacles ψ(k) ∈ Sk are recursively defined
by

ψ(k) = rk

(
ψ(k+1) − v(k+1)

)
, ψ(J ) = ϕ − uν, (12)

with v(k) = w
(k)
nk − w

(k)
0 ∈ Xk denoting the current correc-

tion on level k. Condition (8) is then a consequence of the
monotonicity

0 ≤ rkv ≤ v, ∀v ∈ Sk+1 , 0 ≤ v.

For example, the restriction operators rk : Sk+1 → Sk

defined by

rkv(p) =
{

min
q∈Nk+1∩int supp µ(k)p

v(q), if µ(k)p �≡ 0

0, else

for p ∈ Nk have this property. The resulting algorithm is
globally convergent by Theorem 2.1 and can be implemented
as a multigrid V -cycle with modified restriction/prolongation
and projected Gauß-Seidel smoothing. Asymptotic multigrid
convergence rates have been established for non-degenerate
problems. We refer to [22] for details.

2.2 Signorini’s problem in linear elasticity

Let Ω ⊂ R
d be a polyhedral domain, representing a linear

elastic body. The boundary ∂Ω is decomposed into three

disjoint parts

∂Ω = ΓD ∪ ΓN ∪ Γ.
Assume that Ω is clamped at ΓD and that deformation of
Ω is caused by the volume force density f and the traction
force density t on ΓN . Signorini’s problem amounts to the
solution of the corresponding equilibrium conditions subject
to the constraint that the normal displacements on Γ must
not exceed the normal gap g ≥ 0 between Ω and a rigid
foundation (see Fig. 2). More precisely, the set of admissible
displacements is given by

K∗ = {v ∈ H | v · n ≤ g a.e. on Γ },
with n denoting the outward normal on ∂Ω and H = {v ∈
H1(Ω)d | v|ΓD = 0}. Then the weak formulation of Signo-
rini’s problem can be written as the constrained minimization
problem

u∗ ∈ K∗ : J (u∗) ≤ J (v) ∀v ∈ K∗. (13)

The quadratic energy J has the form (2) with a(·, ·) and �
defined by

a(v,w) =
∫

Ω

E

2(1 + ν)
ε(v) : ε(w)

+ Eν

2(1 + ν)(1 − 2ν)
divv divw dx, (14)

�(v) =
∫

Ω

f · v dx +
∫

ΓN

t · v dσ,

involving Young’s modulus E , Poisson ratio ν and the linea-
rized strain tensor

εi j (v) = 1

2
(∂iv j + ∂ jvi ), i, j = 1, . . . , d.

For existence and uniqueness results we refer to [21, p. 113].
We now consider a discretized version based on the finite

element space

S = {v ∈ H | vi |T is linear ∀T ∈ T , i = 1, . . . , d} (15)

associated with some given triangulation T of Ω . S is
spanned by the nodal basis

λp Ei , i = 1, . . . , d, p ∈ N ,
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A monotone multigrid solver for two body contact problems in biomechanics 7

with the Cartesian unit vectors Ei ∈ R
d and the subset N

of the vertices of T lying in Ω \ ΓD . The set K ⊂ S of
admissible approximate displacements is defined by

K = {v ∈ S | v(p) · n(p) ≤ g(p) ∀p ∈ Γ ∩ N } .

With these specifications our model problem (1) becomes
a finite element discretization of Signorini’s problem (13).
Optimal error estimates are available for H2-regular pro-
blems. We refer to [18, p. 109] or [21, p. 127] for details.

In order to derive a monotone multigrid method
for the discretized Signorini problem, we have to specify
local subspaces Up and coarse grid spaces Xk , U (k)

p . The
d-dimensional subspaces

Up = span{λp Ei | i = 1, . . . , d}, p ∈ N ,

generate a splitting (4) of S. Note that K can be decomposed
into the subsets

Kp = {
v ∈ Up | v(p) · n(p) ≤ g(p)

}

according to (3). Hence, the associated block Gauß–Seidel
relaxation is convergent.

The definition of Xk is based on an underlying hierarchy
of triangulations T0, . . . , TJ = T with nodes Nk and a cor-
responding nested sequence of scalar finite element spaces
spanned by the nodal basis functions λ(k)p , p ∈ Nk . Assu-
ming that block Gauß–Seidel relaxation is applied to some
iterate uν , the resulting smoothed iterate uν gives rise to the
current approximation approximate coincidence set

N •(uν) = {
p ∈ N ∩ Γ | uν(p) · n(p) = g(p)

}
.

of the exact coincidence set N •(u). As N •(uν) has no
representation on coarse grids the spaces Xk are construc-
ted in such a way that no normal corrections at p ∈ N •(uν)

can occur. Following [23], we first choose a local orthonor-
mal basis ei (p) of R

d with the properties e1(p) = n(p)
∀p ∈ N ∩ Γ and ei (p) = Ei ∀p ∈ N \ Γ . Then, starting
with

(
µ(J )p

)i =
{

0, if i = 1 and p ∈ N •(uν)

λpei (p), else,
(16)

we recursively define truncated basis functions

(
µ(k)p

)i =
∑

q∈Nk+1

λ(k)p (q)
d∑

j=1

ei (p) · e j (q)
(
µ(k+1)

q

) j
.

(17)

We emphasize that (17) can be directly translated into
restriction and prolongation operators. The weighting factors
ei (p) · e j (q) are intended to avoid large energy of the func-
tions

(
µ
(k)
p

)i which in turn would lead to poor convergence
speed of the corresponding iterative scheme. By construc-
tion, we have

(
µ
(k)
p )

i (q) · n(q) = 0, if q ∈ N •(uν). Hence,
N •(uν) is not affected by corrections in the direction of
(
µ
(k)
p )

i . Otherwise,
(
µk

p

)i
behaves like a coarse grid nodal

basis function, i.e.,
(
µ(k)p

)i
(q) · e j (q) = λ(k)p (q) ei (p) · e j (q)

holds for j �= 1 or q �∈ N •(uν). Moreover, we have
(
µ
(k)
p

)i =
λ
(k)
p Ei provided that p is sufficiently far away from Γ or,

more precisely, int supp λ(k)p ∩ N •(uν) = ∅. In the special
case of constant normal directions, (17) reduces to the cano-
nical restriction
(
µ(k)p

)i =
∑

q∈Nk+1

λ(k)p (q)
(
µ(k+1)

q

)i
. (18)

We finally set

Xk =
∑

p∈Nk

U (k)
p , U (k)

p = span
{(

µ(k)p

)1
, . . . ,

(
µ(k)p

)d
}
.

In analogy to (11), the coarse grid constraints D(k)
p take the

form

D(k)
p =

{

v =
d∑

i=1

vi
p

(
µ(k)p

)i
∣
∣
∣vi

p ∈
[(
ψ(k)

p

)i
,
(
ψ
(k)
p

)i
]
}

(19)

which is a subset of U (k)
p . The obstacles

(
ψ(k)

p

)i
,
(
ψ
(k)
p

)i

provide the monotonicity condition (8). Similar to (12), such
obstacles can be obtained by successive update and restric-
tion. We refer to [23] for details.

The resulting monotone multigrid method is convergent
by Theorem 2.1 and can be implemented as a multigrid
V -cycle with projected block Gauß–Seidel smoothing.

2.3 Static two body contact

We consider the polyhedral domainΩ = Ωm ∪Ωs represen-
ting two elastic bodies Ωm , Ωs ⊂ R

d , where the subscripts
m, s stand for master and slave in the mortar discretization
below. We assume that Ωm , Ωs are sufficiently close in the
reference configuration and have empty intersection. Each of
the boundaries is divided into three disjoint subsets

∂Ωi = ΓD,i + ΓN ,i + Γi , i = m, s.

The bodies are clamped at ΓD,i . Deformation is caused by
volume forces and traction forces at ΓN ,i . No penetration
must occur at the possible contact boundary Γ = Γm ∪
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Ωs

Ωm

Γs

Γm

Φg
ns

Fig. 3 Two body contact problem

Γs . For a more precise formulation of this constraint, we
assume thatΓm andΓs can be identified by a smooth, bijective
mapping

Φ : Γs → Γm .

In the numerical experiments to be reported later, we simply
use normal projection. Introducing the jump

[v] = v|Γs − v|Γm ◦Φ
of functions v : Γm ∪ Γs → R

d , the non-penetration condi-
tion can be written as

[v] · ns ≤ g. (20)

Here, ns denotes the outward normal onΓs , and g : Γs → R,
g ≥ 0, is the initial normal gap between Ωm and Ωs (see
Fig. 3). Condition (20) leads to the closed convex subset of
admissible displacements

K∗ = {v ∈ H | [v] · ns ≤ g a.e. on Γs}
of the solution space H ,

H = Hm × Hs, Hi = {v ∈ (
H1(Ω)

)d ∣
∣ v|ΓD,i = 0}.

We consider the two body contact problem

u∗ ∈ K∗ : J (u∗) ≤ J (v) ∀v ∈ K∗ (21)

with a quadratic energy J of the form (2). Denoting v =
(vm, vs), w = (wm,ws) ∈ H the bilinear form a(·, ·) and
the linear functional � are given by

a(v,w) = am(vm,wm)+ as(vs,ws),

�(v) = �m(vm)+ �s(vs),

where ai (·, ·), �i are defined according to (14). For existence,
uniqueness and regularity results, we refer, e.g., to [7,16].

We now describe a finite element discretization of (21).
In analogy to (15), the underlying finite element space S,
based on a triangulation T = Tm ∪ Ts of Ω = Ωm ∪Ωs , is
spanned by the canonical nodal basis functions λp Ei , p ∈
N = Nm ∪ Ns . We assume that Γs is resolved by Ts in the
sense thatΓs can be represented as the union of faces F ∈ FΓs

of elements T ∈ Ts . Following [40], the constraints are then
incorporated in a weak sense. More precisely, the set K∗ is
approximated by

K = {v ∈ S | ([v] · ns, ψq)Γs ≤ (g, ψq)Γs ∀q ∈ NΓs }
denoting (v,w)Γs = ∫

Γs
v(x)w(x) dσ and NΓs = Ns ∩ Γs .

Dual basis functions ψq with the bi-orthogonality property

(λp|Γs , ψq)Γs = δp,q ∀p, q ∈ NΓs

have been introduced and analyzed in [39].
We now concentrate on monotone multigrid methods for

the resulting discrete two body problem of the form (1). The
crucial step towards a nodal splitting (4) is the following
hierarchical decomposition

S = V ⊕ W (22)

into the subspaces

V = {v ∈ S | ([v · Ei ])Γs = 0, ∀i = 1, . . . , d, p ∈ NΓs },
W = {v ∈ S | v(p) = 0, ∀p ∈ N \ NΓs },
as proposed in [40]. The space V is spanned by the nodal
basis

µp Ei , i = 1, . . . , d, p ∈ N \ NΓs ,

with projected hat functions µp,

µp = Πλp, Πv = v −
∑

q∈NΓs

([v], ψq)Γsλq .

Obviously, we have µp = λp for p ∈ N \ Γ . This choice
of basis gives rise to the decomposition of V into the local
subspaces

Up = span{µp Ei | i = 1, . . . , d}, p ∈ N \ NΓs .

Together with (22) and the canonical splitting of W into the
spaces

Up = span{λp Ei | i = 1, . . . , d}, p ∈ NΓs ,

we get the decomposition (4) of the whole space S. Observe
that, by construction, K can be written in the form (3) with

Kp = {v ∈ Up | v · ns(p) ≤ (g, ψp)Γs } p ∈ NΓs ,

and Kp = Up, p ∈ N \ NΓs , see [40].
In order to construct suitable coarse grid spaces Xk , we

assume that a hierarchy of triangulations T0, . . . , TJ = T
and a corresponding nested sequence of scalar finite element
spaces, spanned by the nodal basis functions λ(k)p , p ∈ Nk =
Nk,m ∪Nk,s , is available. It is understood that Γs is the union
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A monotone multigrid solver for two body contact problems in biomechanics 9

of faces F ∈ Fk,Γs . Setting

Xk = Vk ∪ Wk,

we still have to define the spaces Vk , Wk ⊂ S. Let Nk,Γs =
Nk,s ∩ Γs . We introduce the projection operators

Πkv = v −
∑

q∈Nk,Γs

([v], ψ(k)q )Γsλ
(k)
q , k = 0, . . . , J,

(23)

using the coarse grid dual basis functions ψ(k)q . Obviously,

Πkλ
(k)
p = λ(k)p ∀p ∈ Nk \ Γ. (24)

Direct coarse grid analogues of V are generated by the
basis functions Πkλ

(k)
p Ei . Unfortunately, such spaces are

not nested in the case of non-matching triangulations. On
the other hand, the functions Πkλ

(k)
p , p ∈ Nk,m ∩ Γm , have

large support in Ωs , as desired according to common multi-
grid philosophy. This motivates the choice

U (k)
p = span{µ(k)p Ei | i = 1, . . . , d}

and

Vk =
∑

p∈Nk\Nk,Γs

U (k)
p ,

with functions µ(k)p defined by successive projection

µ(k)p = ΠJ ◦ΠJ−1 ◦ · · · ◦Πkλ
(k)
p ,

see [40]. By construction, we have V0 ⊂ · · · VJ−1 ⊂ VJ =
V . Moreover, the projected hat functions µ(k)p are characteri-
zed by the recursion formula

µ(k)p =
∑

q∈Nk+1\Nk+1,Γs

(
Πkλ

(k)
p

)
(q)µ(k+1)

q . (25)

We emphasize that this representation can be directly trans-
lated into restriction and prolongation operators. The spaces
Wk are defined by

Wk =
∑

Nk,Γs

U (k)
p , U (k)

p = span
{(

µ(k)p

)i ∣
∣ i = 1, . . . , d

}
,

where the basis functions
(
µ
(k)
p

)i are obtained recursively
according to (16), (17). Observe that in general Wk �⊂ Wk+1,
because the support of functions in Wk typically becomes
larger with decreasing level k. However, utilizing (24), it is
easily checked that each v ∈ Wk can be represented as the
sum v = vk+1 +wk+1 with vk+1 ∈ Vk+1 and wk+1 ∈ Wk+1.
Hence, we get

X0 ⊂ · · · ⊂ XJ−1 ⊂ XJ = S,

as required.

Coarse grid constraints D(k)
p , p ∈ Nk,Γs , of the form (19)

can be derived by successive update and restriction, exactly
in the same way as for Signorini’s problem [23].

As in the previous examples, the resulting monotone
multigrid method is convergent by Theorem 2.1 and can be
reformulated as a multigrid V -cycle with projected block
Gauß–Seidel smoother. Let us briefly comment on the
implementation of the restriction and prolongation operators.
As usual, functions v ∈ Xk are represented algebraically in
terms of the coefficients of the basis functions µ(k)p Ei , of

Vk and
(
µ
(k)
p

)i of Wk , respectively. Coefficients related to
Xk ⊂ Xk+1 are expressed by coefficients related to Xk+1 by
multiplication with the restriction matrix

Rk = (rpq)p∈Nk , q∈Nk+1, rpq ∈ R
d×d .

The prolongation matrix is Pk = (
Rk

)T . Using (25), we
immediately get

rpq = (
Πkλ

(k)
p

)
(q) Id , p ∈ Nk \ Nk,Γs ,

with Id denoting the unit matrix in R
d . Let Nk,Γm = Nk,m ∩

Γm . For p �∈ Nk,Γm , the identity (24) yields the canonical
weights
(
Πkλ

(k)
p

)
(q) = λ(k)p (q).

In the case p ∈ Nk,Γm , we essentially have to evaluate the
entries

([λ(k)p ], ψ(k)q )Γs = −
∫

Γs

(
λ(k)p ◦Φ)

(x)ψ(k)q (x) dσ (26)

for all q ∈ Nk,Γs . For mortar elements on curvilinear boun-
daries we also refer to [11] and the references therein. We
start out with the fine grid k = J . For an approximation by
suitable quadrature rules, we need an algorithm to evaluate(
λp ◦ Φ)

(x) for arbitrary x ∈ Γs . This is far from trivial, in
particular for d = 3. We refer to [26] where normal projection
is treated in some detail. In order to compute the coarse-grid
entries by successive restriction, we use the embedding

Mk ⊂ M̃k (27)

with

Mk = span{ψ(k)q | q ∈ Nk,Γs }

and

M̃k = {v : Γs → R | v|F linear ∀F ∈ Fk,Γs },

because, in contrast to the larger spaces M̃k , the spaces Mk

are not nested. Selecting suitable basis functions ψ̃(k)q of

M̃k , the auxiliary coefficients ([λ(k)p ], ψ̃(k)q )Γs can be com-
puted from ([λp], ψ̃q)Γs by successive restriction. Finally,
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Fig. 4 A two body Hertzian contact problem: initial triangulation T0
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Fig. 5 Iteration history of MMG on the final triangulation T3
in comparison with two multigrid methods for a corresponding linear
problem

an additional restriction from M̃k to Mk according to the
embedding (27) provides the desired entries (26) on each
level k. For the remaining Signorini-type nodes p ∈ Nk,Γs ,
the evaluation of the corresponding entries rpq is explained
in [23].

2.4 Numerical experiments

In what follows we present two examples. First a rather
simple model problem is used as a test for the algorithm
as such. Second, in view of future medical applications, an
example from biomechanics with complex 3D geometry from
the Visible Human Data Set.

2.4.1 A static two body Hertzian contact problem

We consider the Hertzian contact of a unit ball Ωs and a
cuboid Ωm with side lengths 6 × 6 × 5. We prescribe a
downward displacement of 0.1 at an upper polar cap ΓD,s

of Ωs and zero displacements at the vertical faces ΓD,m of
Ωm . After selecting a lower polar cap Γs of Ωs the corres-
ponding part Γm of ∂Ωm is determined by normal projection
of Γs onto ∂Ωm . The remaining part of the boundary is kept

traction-free. The material parameters are E = 2.5 · 105 and
ν = 0.3. Starting from the coarse grid T0 as depicted in
Fig. 4 with 1,278 vertices, we perform J = 3 local refine-
ment steps to obtain the fine triangulation TJ with 76,765
vertices. To concentrate refinement on the contact boundary
Γ , all tetrahedra which can be connected to Γ by at most
15 edges are refined in the usual way [6,8]. The coarse grid
problems on T0 are solved by the open-source interior point
solver IPOPT [38] which converges much faster than usual
projected block Gauß–Seidel relaxation. Implementation is
realized in the framework of the DUNE library [1] using the
grid manager of UG [3].

Figure 5 illustrates the convergence behavior of the mono-
tone multigrid method (MMG) as described in the preceding
section. The solid curve shows the reduction of the approxi-
mate algebraic error of a V (3, 3) cycle in the course of ite-
ration. The algebraic error is measured in the energy norm.
The initial iterate is obtained by nested iteration. Once the
contact points, i.e., the vertices p ∈ Γs where contact actually
occurs, are detected after some steps, MMG becomes a linear
iteration for the resulting linear Dirichlet-type problem with
vanishing normal displacements at the contact points. For a
comparison, we consider the related Neumann-type problem
where the resulting normal contact pressure is prescribed at
the contact boundary Γ . Observe that both the classical mul-
tigrid method based on the nodal basis and the hierarchical
variant based on the splitting (22) exhibit very similar conver-
gence behavior to MMG. The asymptotic convergence rates
range from 0.45 (linear multigrid, nodal basis) to 0.41 (linear
multigrid, hierarchical splitting) and 0.41 (MMG).

2.4.2 A static two body contact problem from biomechanics

The computational domainΩ = Ωm ∪Ωs is shown in the left
picture of Fig. 6. It represents the left proximal tibiaΩm and
distal femur Ωs from the Visible Human Data Set [2]. The
lower third ΓD,m of the boundary of the tibiaΩm is clamped,
whereas a downward displacement of 4 mm is prescribed at
the upper third ΓD,s of the boundary of the femur Ωs . The
possible contact boundaries Γm and Γs at the upper part of
the tibia and the lower part of the femur are determined in
such a way that both can be identified by normal projection.
Here, we use a straightforward algorithm described in [26].
The remaining parts of the boundaries are kept traction-free.
The bone is assumed to be homogeneous, isotropic and linear
elastic with material parameters E = 17 GPa and ν = 0.3
which are realistic choices for real life.

In order to construct a coarse triangulation T0, the
given, highly resolved representation of the boundary surface
∂Ω is coarsened by successive point removals. The resulting
coarse surface is shown in the right picture of Fig. 6. It is used
to generate T0 by an advancing front tetrahedral mesh gene-
rator [35]. The resulting triangulation T0 has 1,662 vertices.
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Fig. 6 The computational domain Ω and its coarse grid approxima-
tion T0

Fig. 7 Section of the final triangulation T3 and von Mises stress along
a cut through the contact boundary
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Fig. 8 Iteration history of MMG on the final triangulation T3
in comparison with two multigrid methods for a corresponding linear
problem

To focus on the particular difficulties of the problem, local
refinement again concentrates on the possible contact boun-
dary Γ by selecting all tetrahedra which can be connected
to Γ by at most 15 edges. However, in order to improve the
approximation of ∂Ω in the course of refinement, the new
vertices located on the approximate boundary are now shifted
to the exact boundary ∂Ω . A parametrization of ∂Ω is crea-
ted simultaneously to the coarsening process [27]. To avoid

a deterioration of mesh quality, the coarse triangulation T0

should be sufficiently fine, in particular in concave regions.
If the quality of a new tetrahedron would still miss certain
thresholds, then the corresponding vertex is not moved. Due
to the displaced vertices the resulting sequence of triangula-
tions T0, . . . , TJ is no longer nested. Nevertheless, we still
use the weights introduced in the preceding section. For a
theoretical justification in the linear self-adjoint case, we
refer to [32]. Using IPOPT [38] as a coarse-grid solver, we
can deal with the 4,986 unknowns on the coarse grid T0 in a
reasonable way. Implementation is realized in the framework
of the DUNE library [1].

After J = 3 local refinement steps, we obtain the final tri-
angulation TJ with 88,334 vertices. This leads to a discrete
two body contact problem with 265,002 unknowns. The left
picture in Fig. 7 shows the distribution of the approximate
von Mises stress field along a cut through the actual coinci-
dence set. As in the preceding experiment, the right picture
illustrates the convergence behavior of MMG. We always
consider V (3, 3) cycles. First observe that the detection of the
exact coincidence set still plays a minor role in the iteration
history of MMG (solid line). As in the previous experiment,
MMG almost immediately reduces to a linear multigrid me-
thod for the asymptotic linear Dirichlet-type problem with
prescribed normal displacements at the contact points. The
asymptotic convergence rate is 0.56. The curves for the two
linear multigrid methods (nodal basis and hierarchical split-
ting) as applied to the related Neumann problem with pres-
cribed contact pressure at the contact boundary Γ almost
coincide. In both cases we observe the asymptotic conver-
gence rate 0.62. Thus, the two body contact problem is still
solved with linear convergence speed. The slowdown in com-
parison with the model problem above is due to the shifting
process and the reduced shape regularity of the mesh (Fig. 8).

Summarizing, even though this example is much more
challenging than scalar obstacle problems or simple model
problems in elasticity, the behavior of monotone multigrid is
very much the same. This means that the method is robust
even in highly complex situations.

3 Dynamic contact problems

We now turn to the time dependent case. As already mentio-
ned above, implicit time discretization requires the solution
of a static contact problem in each time step.

3.1 A stabilized Newmark scheme

Using the notation of Sect. 2.3 a solution of the dynamic
two body contact problem in the time interval [0, T0] can
be regarded as a stationary point of the action integral (unit
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Fig. 9 Number of contact points. Left: classical predictor (33a). Right:
projected predictor (34)

density normalization)

T0∫

0

L(v(t), v̇(t)) dt, L(v, v̇) = 1
2 |v̇|2 − J (v)− χ(v),

with suitable initial and boundary conditions [31,34]. The
constraints v(t) ∈ K∗ for almost all t ∈ [0, T0] are enforced
by the characteristic functional χ(v),

χ(v) =
{

0, if v ∈ K∗
∞, else

, v ∈ H.

The total energy of a state v is given by

E(v) = 1
2 |v̇|2 + J (v)+ χ(v).

From the unconstrained case, we expect the energy E(u∗) of
the solution u∗ to be preserved throughout the evolution. The
solution u∗ satisfies the hyperbolic variational inequality [29,
p. 81]

u∗(·, t) ∈ K∗ : (ü∗, v − u∗)+ a(u∗, v − u∗)
≥ �(v − u∗), ∀v ∈ K∗. (28)

for each t ∈ [0, T0]. Here and in the following we use the
same notation (·, ·) for the scalar product in

(
L2(Ω)

)d and
for the pairing of H and its dual. It is convenient to represent
the internal and external forces according to

(F(w), v) = a(w, v)− �(v), w, v ∈ H.

Then (28) can be reformulated as the inclusion

0 ∈ ü∗ + F(u∗)+ ∂χ(u∗) (29)

utilizing the subdifferential ∂χ ofχ (see, e.g., [10]). In the un-
constrained case, K∗ = H , this inclusion reduces to
Newton’s equations of motion

ü∗ = −F(u∗). (30)

We start by considering the time discretization of this
differential equation in the dual of H . The classical Newmark
scheme [29, p. 50] for Newton’s equations (30) is based on
Taylor expansions of the displacement u∗ and of the velo-
city u̇∗ with respect to a given time step τ . Neglecting terms
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Fig. 10 Tangential displacements at the south pole ofΩs . Left: classi-
cal predictor (33a). Right: projected predictor (34)

of higher order and introducing the traditional parameters
γ, 2β ∈ [0, 1], this leads to

un+1 = un + τ u̇n + τ 2

2

(
(1 − 2β)ün + 2βün+1),

u̇n+1 = u̇n + τ
(
(1 − γ )ün + γ ün+1)

(31)

with un approximating u∗(·, tn), tn = nτ . Upon inserting (30)
we get

un+1
pred = un + τ u̇n, (32a)

un+1 = un+1
pred − τ 2

2

(
(1 − 2β)F(un)+ 2βF(un+1)

)
, (32b)

u̇n+1 = u̇n − τ
(
(1 − γ )F(un)+ γF(un+1)

)
. (32c)

For the symmetric case γ = 2β = 1
2 , the Newmark scheme

(32) reduces to the trapezoidal rule, which is second order,
stable and energy conserving [12, Chap. 10]. For 2β > 0,
a linear elasticity problem (32b) has to be solved in each
time step. For 2β = 0, the scheme is explicit and unstable. It
can only be applied in a method of lines approach, i.e., after
discretization in space first-observing a CFL-condition.

We are now ready to tackle the time discretization of our
contact problem (29). In this case, the forces F(u∗) have to
be augmented with unknown contact forces Fcon ∈ ∂χ(u∗).
Persistently implicit treatment of the contact forces, as pro-
posed in [34], yields the following Newmark method

un+1
pred = un + τ u̇n, (33a)

0 ∈ un+1 − un+1
pred + τ 2

2

(
(1 − 2β)F(un)

+2βF(un+1)+ ∂χ(un+1)
)
, (33b)

Fn+1
con = 2

τ 2 (u
n+1
pred − un+1)

−(
(1 − 2β)F(un)+ 2βF(un+1)

)
, (33c)

u̇n+1 = u̇n − τ(1 − γ )F(un)

+τ(γF(un+1)+ Fn+1
con

)
. (33d)

The inclusion (33b) can be rewritten as a two body contact
problem of the form (21). The corresponding residual pro-
vides the current approximation of the contact forces Fn+1

con ∈
∂χ(un+1) according to (33c). For what follows we fix the
parameters to the symmetric case γ = 2β = 1

2 which leads
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Fig. 11 Von Mises stresses along a plane cut. Left: at contact with the rigid plane (n = 6). Middle: first contact of tibia and femur (n = 21). Right:
after detachment of tibia and femur (n = 50)
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Fig. 12 Number of required multigrid iterations over time

to a stable and dissipative scheme [9]. Energy is conser-
ved under the condition that the number of contact points
decreases in the course of evolution [9]. However, as confir-
med by the numerical computations below, the above discre-
tization tends to produce oscillations at the contact boundary:
a short calculation shows that un+1 = un implies reversion
of the velocity u̇n+1 = −u̇n so that new contact points are
likely to be detached in the next but one time step.

In order to avoid such a kind of oscillations, we apply
an additional L2-projection in the prediction step. Thus we
arrive at a contact-stabilized Newmark method, wherein (33a)
is replaced by

0 ∈ un+1
pred − (un + τ u̇n)+ ∂χ(un+1

pred), (34)

while the remaining steps (33b)–(33d) are left unchanged.
Under the assumption that un+1 = un+1

pred = un , we here

compute u̇n+1 = u̇n and non-zero velocities are swallo-
wed by the L2-projection (34). Apart from that, (33) and the
modified scheme have quite similar properties. We refer to [9]
for a detailed investigation.

3.2 Numerical experiments

As in the stationary case above (cf. Sect. 2.4) we present
numerical results for a simpler 2D model problem and a bio-
mechanical application.

3.2.1 A dynamic two body Hertzian contact problem

In order to compare the numerical properties of the
symmetric Newmark scheme (33) with the contact-stabilized
variant, we consider a simple model problem in two space
dimensions. At initial time t = 0, two circles Ωs , Ωm with
radii r = 8, midpoints on the y-axis, and distance 1.5 are
moving with vertical speed v0,s = −1, v0,m = +1, res-
pectively. The contact boundaries consist of quarter circles
located at the bottom of Ωs and at the top of Ωm , respecti-
vely. The remaining part of the boundary is traction-free and
no volume forces occur. We choose the material parameters
E = 5 · 102 and ν = 0.3. The computations are carried out
until T0 = 5.

We select uniform time steps τ = 5 · 10−4. As explained
in Sects. 2.2 and 2.3, the spatial discretization is performed
by finite elements utilizing a lumped version of the L2-scalar
product. The underlying triangulation TJ with 1,035 vertices
is resulting from J = 6 refinement steps of a coarse triangula-
tion T0 with 8 vertices. The discretized analogues of the spa-
tial two body contact problems (33b) are solved by monotone
multigrid (cf. Sect.2.3). Figure 9 shows the number of contact
points, i.e., the number of vertices p ∈ Γs where contact
actually occurs, over a typical section of time steps. On the
left, the oscillating behavior of the Newmark scheme (33) is
reflected by the comparative number of contact points. The
right picture clearly displays the contact-stabilizing effect
of our suggested prediction step (34). This observation is
confirmed by Fig. 10 showing the tangential displacements
of the point at the south pole of Ωm . While the Newmark
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14 R. Kornhuber et al.

scheme (33) is generating spurious oscillations, the contact-
stabilized version (34) reproduces the behavior of the exact
solution. Both schemes generated a slight energy loss of less
than 0.2%. Moreover, there is numerical evidence that both
schemes are dissipative and that the energy loss depends on
the variation of the contact points and the time step. A detailed
analysis of the contact-stabilized Newmark scheme is left to
a forthcoming paper [9].

3.2.2 A dynamic two body contact problem from
biomechanics

At the initial time t = 0, the left proximal tibia Ωm and
distal femur Ωs are located according to the left picture in
Fig. 6 with a common downward velocity v0 = −1 m/s and
a distance of 0.5 mm of the tibia to a rigid plane below. We
select realistic material parameters E = 17 GPa, ν = 0.3
(cf. Sect. 2.4.2) and density ρ = 2 g/cm3. The computations
are carried out until T0 = 0.01 s.

The resulting dynamic two body contact problem is dis-
cretized in time by the second-order contact-stabilized New-
mark scheme. We select uniform time steps τ = 10−4 s.
In passing, we mention that the explicit Newmark scheme
(2β = 0) would require time steps of the order of 10−7 s
for stability reasons. The spatial problems (33b) are dis-
cretized by finite elements as explained in 2.4.2 utilizing a
lumped version of the L2-scalar product. We now perform
J = 2 uniform refinement steps to the initial triangulation T0.
Figure 11 illustrates the evolution of the displacements and
the internal stresses on a fixed cutting plane.

The discretized static two body problems are solved by
the monotone multigrid method described in Sect. 2.3 using
a V (3, 3) cycle. In each time step the multigrid iteration is
terminated as soon as the relative algebraic error in the energy
norm is less than 10−7 to avoid that accumulated errors affect
the accuracy of the discretization. Figure 12 shows the requi-
red number of iteration steps over the time steps. Once a first
contact has occurred, the number of iterations mostly ranges
from 20 to 25 steps which translates into averaged conver-
gence rates of about 0.5.
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