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Abstract. We analyze here the bidimensional boundary value
problems, for both Stokes and Navier–Stokes equations, in
the case where non standard boundary conditions are im-
posed. A well-posed vorticity–velocity–pressure formulation
for the Stokes problem is introduced and its finite element dis-
cretization, which needs some stabilization, is then studied.
We consider next the approximation of the Navier–Stokes
equations, based on the previous approximation of the Stokes
equations. For both problems, the convergence of the numer-
ical approximation and optimal error estimates are obtained.
Some numerical tests are also presented.

1 Introduction

We are interested in this paper in the stationary Navier–
Stokes problem satisfying physical boundary conditions in
a bounded domain Ω ⊂ R2, simply connected with a polyg-
onal boundary Γ = ∂Ω such that Ω is on one side only of its
boundary.

We begin by studying the linear Stokes equations with
the same non-standard boundary conditions, for which we
propose a three-fields variational formulation. After show-
ing that this new vorticity–velocity–pressure formulation is
well-posed, we discretize it by means of conforming low-
order finite elements. The discrete inf-sup condition is then
obvious, while the discrete coercivity is obtained by adding
a stabilization term. The stabilization form is given by the
jumps of the discrete vorticity and pressure on the internal
edges of the triangulation. Optimal error bounds are deduced
in a technical way. We thus obtain that the method is uncondi-
tionally convergent, i.e. without any particular hypothesis of
regularity.

Next, we consider the Navier–Stokes equations and our
goal is to propose a well-posed numerical approximation for
this problem and to prove convergence as well as optimal
error estimates. To do that, we first write the nonlinear term
in an equivalent way, by means of a modified pressure. Thus,
we can write the Navier–Stokes operator in terms of the previ-
ously introduced Stokes operator. To deal with the nonlinear
aspects of the problem, we apply a variant of the implicit

function theorem, which can be found for instance in Brezzi
et al. 1980 or in Pousin and Rappaz 1994. The discretiza-
tion is based on the approximation of the Stokes equations.
Numerical tests illustrating the theoretical results are next
presented, for both the Stokes and the Navier–Stokes cases.

For the sake of simplicity, we consider here homogeneous
boundary conditions, but the method also applies to the non-
homogeneous case.

The paper is organized as follows. In the next section we
introduce the functional framework and the variational for-
mulation corresponding to the Stokes problem. In Sect. 3 we
describe the discretization method and we establish the error
estimates. Section 4 deals with the continuous Navier–Stokes
problem, while in Sect. 5 we present its approximation and
we prove the well-posedness and the convergence results for
the discrete nonlinear problem. Finally, in the last section
some numerical tests are presented.

2 The Stokes problem

We begin by introducing some notations. For any 2D vector
field v = (v1, v2)

t , we denote v⊥ = (v2,−v1)
t and also :

div v = ∂1v1 + ∂2v2, curl v = ∂1v2 − ∂2v1

and, for any scalar field φ, curl φ = (∂2φ,−∂1φ)t . We sup-
pose that Γ is composed of three open and disjoint subsets
Γ1, Γ2, Γ3 such that Γ = Γ 1 ∪Γ 2 ∪Γ 3 and Γ2 �= ∅; we de-
note, as usually, by n the outward normal vector and by t the
tangent vector to the boundary Γ .

We consider the incompressible Stokes equations

−ν∆u+∇ p = f in Ω

div u = 0 in Ω

and impose the following physical boundary conditions:


u ·n = 0 , u · t = 0 on Γ1

u · t = 0 , p = 0 on Γ2

u ·n = 0 , ω = 0 on Γ3 ,

(1)

where ω = curl u represents the scalar vorticity. The data
f ∈ L2(Ω) is given, as well as the kinematic viscosity ν > 0.
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Our approach also applies to non-homogeneous boundary
conditions, see Amara et al. 2001.

Hence, we want to find a 2D velocity field u and two
scalar fields ω and p satisfying


ν curl ω+∇ p = f in Ω

ω = curl u in Ω

div u = 0 in Ω ,

(2)

together with the boundary conditions (1).
In order to write a variational formulation of this problem,

let us introduce the Hilbert spaces:

M =
{
v ∈ H(div, curl; Ω) ; v ·n

∣∣
Γ1∪Γ3 = v · t

∣∣
Γ1∪Γ2

= 0
}

X = L2(Ω) .

The spaces H(div, curl; Ω) and M are both normed by

‖v‖M = (‖v‖2
0,Ω +‖div v‖2

0,Ω +‖curl v‖2
0,Ω

)1/2

and we also introduce the seminorm

|v|M = (‖div v‖2
0,Ω +‖curl v‖2

0,Ω

)1/2
.

The following result will be used:

Lemma 1. M is continuously embedded in Hs(Ω), for some
s ∈ ]1/2, 1].

We assume in all this paper that one of the following sit-
uations hold : |Γ1| > 0, or |Γ1| = |Γ3| = 0, or |Γ1| = 0 and
|Γ3| > 0 with Γ3 simply connected, where |·| denotes the
Lebesgue measure.

Lemma 2. Under the previous assumption, the seminorm |·|M
is equivalent to the norm ‖·‖M in M.

We will denote by (·, ·) the scalar product in L2(Ω).
A variational formulation for the Stokes problem is given

by:


Find (σ, u) ∈ X × M such that
a(σ, τ)+b(τ, u) = 0 ∀τ ∈ X ,

b(σ, v) = −l(v) ∀v ∈ M ,

(3)

where, for all σ = (ω, p) ∈ X, τ = (θ, q) ∈ X and v ∈ M,

a(σ, τ) = ν(ω, θ)

b(τ, v) = −ν(θ, curl v)+ (q, divv)

l(v) = ( f , v) .

Then we can prove the next result:

Theorem 1. The saddle point problem (3) has a unique so-
lution σ = (ω, p) ∈ X and u ∈ M, satisfying in D′(Ω) the
equations (2) together with the boundary conditions (1).

The proof is classical, based on the Babuska–Brezzi theo-
rem for mixed formulations (see for instance Brezzi and
Fortin 1991). One easily checks the inf-sup condition, as well
as the coercivity of a(·, ·) on the kernel of b(·, ·).

From Lemma 1 and from the Sobolev theorem, it comes
that M is also continuously embedded in L4(Ω).

Then one immediately gets that (3) is well-posed even
for a less regular function f ∈ M′; in this case, l(v) = 〈 f , v〉
where 〈·, ·〉 denotes the duality product between M′ and M.
In particular, one can take f ∈ L4/3(Ω) = (L4(Ω))′ ⊂ M′ and
obtain a unique solution (σ, u) ∈ X × L4(Ω).

Let us denote by S the previous Stokes operator

S : L4/3(Ω) −→ X × L4(Ω) , S( f ) = (σ, u) ,

which is clearly linear and continuous.

3 Finite element approximation

We are interested in the discretization of (3). Let (Th)h be
a regular family of triangulations of Ω, consisiting of trian-
gles. We denote by hK the diameter of the triangle K , by
h = maxK∈Th hK , by Eh the set of internal edges and by he the
length of the edge e.

We consider the following finite dimensional spaces

Lh = {
qh ∈ L2(Ω) ; qh|K ∈ P0(K) ∀K ∈ Th

}
,

Xh = Lh × Lh ,

Mh =
{
vh ∈ (

C0(Ω)
)2 ; vh|K ∈ P1(K) ∀K ∈ Th

}
∩ M

= {
vh ∈ M ; vh|K ∈ P1(K) ∀K ∈ Th

}
(4)

and we write the discrete problem as follows:


Find (σh, uh) ∈ Xh × Mh such that
a(σh, τh)+b(τh, uh) = 0 ∀τh ∈ Xh ,

b(σh, vh) = −l(vh) ∀vh ∈ Mh .

(5)

Then the inf-sup condition, which represents the main dif-
ficulty in the velocity-pressure formulation for Stokes prob-
lem, is satisfied. However, we lose the coercivity of a(·, ·) on
the discrete kernel

Vh = {τh ∈ Xh ; b(τh, vh) = 0 , ∀vh ∈ Mh} .

One can only prove the following inequality, for all τh =
(θh, qh) ∈ Vh :

c ‖τh‖2
X ≤ a(τh, τh)+‖ν curl θh +∇qh‖2

−1,Ω . (6)

In order to retrieve the coercivity, we change the bilinear
form a(·, ·) in a consistent way, without changing the spaces.
For that, let us first define the jump of τ = (θ, q) ∈ Xh across
the edge e ∈ Eh ∪Γ by:

[τ]e =



ν[θ]te +[q]ne if e ∈ Eh

νθte if e ∈ Γ3

qne if e ∈ Γ2

.

Then we can establish:

Lemma3. For τh = (θh, qh) ∈ Vh there exists a positive con-
stant C, independent of h, such that:

‖ν curl θh +∇qh‖−1,Ω ≤ C


 ∑

e∈Eh∪Γ

h2
e[τ]2

e




1/2

.
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We consider now the bilinear form Ah : Xh × Xh → R

given by

Ah(δh, τh) =
∑

e∈Eh∪Γ

he
(
[δh]e , [τh]e

)
e

and we define

ah,β(·, ·) = a(·, ·)+β Ah(·, ·) ,

where β > 0 is a stabilization parameter, which can be chosen
eventually independently of the discretization parameter h.

Then ah(·, ·) is clearly Vh-coercive, thanks to (6) and to
Lemma 3, while its continuity on Xh × Xh comes from the
estimate:
 ∑

e∈Eh∪Γ

h2
e[τ]2

e




1/2

≤ C′ ‖τh‖X

with a positive constant C′ independent of h.
Therefore, we consider in the sequel the discrete prob-

lem (5) where the bilinear form a(·, ·) was replaced by
ah,β(·, ·). This new problem clearly fulfills the hypotheses of
the Babuska–Brezzi theorem, uniformly with respect to h,
so it is well-posed. Moreover, for any f ∈ L4/3(Ω) one has,
since M ⊂ L4(Ω), that

|l(v)| =
∣∣∣∣∣∣
∫
Ω

f ·v
∣∣∣∣∣∣ ≤ c ‖ f‖L4/3(Ω) |v|M .

Let us denote by Sh : L4/3(Ω) → X × L4(Ω) the discrete
Stokes operator, defined by Sh( f ) = (σh, uh) ∈ Xh × Mh , the
unique solution of the previous mixed problem. Then it comes
from the Babuska–Brezzi theorem that Sh satisfies

∀ f ∈ L4/3(Ω) , ‖Sh( f )‖X×L4(Ω) ≤ c ‖ f‖L4/3(Ω) (7)

with c a positive constant independent of h but depending
on β.

The next technical estimate was established in Amara
et al. 2001:

Theorem 2. Let f ∈ L2(Ω) and let σ̄h denote the L2(Ω)-
projection of σ on Xh. Then one has:

‖(S − Sh)( f )‖X×M ≤ C

{
Ec +‖σ −σh‖X

+ inf
vh∈Mh

|u−vh |M

}
,

where C is a constant independent of h (but depending on β)
and Ec represents the consistency error:

Ec = ‖σ −σh‖X +h ‖ f‖0,Ω .

Therefore, with no regularity assumption, the method
is unconditionally convergent. Supposing moreover that
the exact solution (σ, u) belongs to H1(Ω)× H2(Ω), one
gets:

‖(S − Sh)( f )‖X×M ≤ ch ‖ f‖0,Ω ,

i.e. the method has an optimal convergence rate O(h).

4 The Navier–Stokes problem

We want to study now the stationary incompressible Navier–
Stokes equations

u∇u− ν∆u+∇ p = f in Ω

div u = 0 in Ω

with the same boundary conditions (1) as in the Stokes prob-
lem.

For the analysis of this problem, it is useful to write it in
a different form. By introducing the kinematic pressure p̃ =
p + 1

2 u ·u, one has the relation

u∇u+∇ p = ωu⊥ +∇ p̃ .

Therefore we obtain the equivalent equations:


ν curl ω+∇ p̃+ωu⊥ = f in Ω

ω = curl u in Ω

div u = 0 in Ω .

(8)

By introducing the nonlinear operator

G : X × L4(Ω) −→ L4/3(Ω) , G(σ, u) = ωu⊥ ,

the Navier–Stokes equations (8) can be put in the general set-
ting of a nonlinear problem as follows:

F(σ, u) = (0, 0) (9)

where the mapping F is defined by:

F : X × L4(Ω) −→ X × L4(Ω) ,

F(τ, v) = (τ, v)− S( f − G(τ, v)) .

S represents the previous Stokes operator and f belongs
a priori to L4/3(Ω).

In order to simplify the writing, we agree to put Y =
X × L4(Ω). It is obvious that Y is a Banach space and that we
have X × M ⊂ Y.

We assume in the sequel that there exists a solution (σ, u)
such that F(σ, u) = (0, 0) and DF(σ, u) is an isomorphism on
X× L4(Ω) and we are interested in the numerical approxima-
tion of (9).

5 Discrete Navier–Stokes problem

We consider the discrete version of (9):

Fh(σh , uh) = 0 , (10)

for which we want to prove existence and uniqueness of the
solution, convergence of the numerical approximation as well
as optimal error estimates.

We define the mapping Fh : Y → Y by putting

Fh(τ, v) = (τ, v)− Sh( f − G(τ, v))

where Sh : L4/3(Ω) → Y is the discrete Stokes operator previ-
ously introduced.



50 M. Amara et al.

Then we can establish the next result:

Lemma 4. For f ∈ L4/3(Ω), the following error bound is
true:

‖(S − Sh)( f )‖Y ≤ C
{√

h ‖ f‖L4/3(Ω) +‖σ −σh‖X

+ inf
vh∈Mh

|u−vh|M

}
,

where the constant C is independent of h.

Proof. The proof is completely similar to the one of the es-
timate given in Theorem 2, which holds in the case where f
belongs to L2(Ω) instead of L4/3(Ω). The only difference ap-
pears when estimating , by means of an inverse inequality (cf.
Ciarlet 1978 for instance), the term:∣∣∣∣∣∣
∫
Ω

f ·φh

∣∣∣∣∣∣ ≤ ‖ f‖L4/3(Ω) ‖φh‖L4(Ω)

≤ c
√

h ‖ f‖L4/3(Ω) |φh |1,Ω ,

where φh belongs to a finite dimensional space. Then we just
use that X × M is continuously embedded in Y.

So, from (7) and Lemma 4 it comes that the discrete oper-
ator Sh : L4/3(Ω) → Y satisfies the following conditions, with
c independent of h:

(A1) ‖Sh( f)‖Y ≤ c ‖ f‖L4/3(Ω)

(A2) limh→0 ‖(S − Sh)( f )‖Y = 0. Moreover, for a regular
data f ∈ L2(Ω) and assuming that the exact solution
(σ, u) belongs to H1(Ω)× H2(Ω), one gets:

‖(S − Sh)( f )‖Y ≤ ch ‖ f‖0,Ω .

These results concern only the Stokes problem and are the
key-point of our next proofs.

Let us now come back to the numerical approxima-
tion (10) of the initial Navier–Stokes problem. For its analysis
we use a result established in Pousin and Rappaz 1994, which
is mainly based on the implicit function theorem. Some vari-
ants can be found in Brezzi et al. 1980 or in Caloz and Rappaz
1994. To apply this general result, we first show:

Theorem 3. The following conditions are fulfilled:

(H1) for all (τ, v) ∈ Y, one has

‖DFh(σ, u)− DFh(τ, v)‖Y ≤ c ‖(σ, u)− (τ, v)‖Y

(H2) limh→0 ‖Fh(σ, u)‖Y = 0 (consistency)
(H3) for h ≤ 1 , DFh(σ, u) is an isomorphism of Y and there

exists a constant M > 0 such that∥∥DFh(σ, u)−1
∥∥

Y ≤ M (stability) .

Proof. One has that: DFh(σ, u) = I + Sh(DG(σ, u)), where
DG(σ, u) : Y → L4/3(Ω) is given, for any δ = (�, r) ∈ X and
w ∈ L4(Ω) by:

DG(σ, u)(δ,w) = (ωw⊥ +�u⊥) .

So it comes, thanks to (A1) and to Holder’s inequality, that for
any τ = (θ, q) ∈ X and v ∈ L4(Ω),

‖DFh(σ, u)(δ,w)− DFh(τ, v)(δ,w)‖Y

≤ c ‖DG(σ, u)(δ,w)− DG(τ, v)(δ,w)‖L4/3(Ω)

≤ c
(
‖ω− θ‖L2

∥∥w⊥∥∥
L4 +‖�‖L2

∥∥u⊥ −v⊥∥∥
L4

)
≤ c ‖(σ, u)− (τ, v)‖Y ‖(δ,w)‖Y ,

which leads to (H1).
Condition (H2) is satisfied thanks to (A2) and to the fact

that

‖Fh(σ, u)‖Y = ‖F(σ, u)− Fh(σ, u)‖Y

= ‖(S − Sh)( f − G(σ, u))‖Y .

We now want to show that the linear operator DFh(σ, u)
is an isomorphism of Y. To do that, we write it in a different
form:

DFh(σ, u) = DF(σ, u) (I + Bh) ,

where Bh = DF(σ, u)−1(DFh(σ, u)− DF(σ, u)). Since by
hypothesis DF(σ, u) is invertible, one has that DFh(σ, u) is
an isomorphism if ‖Bh‖Y < 1. Let us put

∥∥DF(σ, u)−1
∥∥

Y =
K and estimate:

‖Bh‖Y ≤ K ‖(S − Sh)(DG(σ, u))‖Y .

We already know from (A2) that Sh( f ) converges in Y
towards S( f ), for any f ∈ L4/3(Ω). We show next that
DG(σ, u) is compact from Y to L4/3(Ω). Then

lim
h→0

‖(S − Sh)(DG(σ, u))‖Y = 0

so for h sufficiently small one has ‖Bh‖Y < 1
2 . This finally

gives:

∥∥DFh(σ, u)−1
∥∥

Y ≤
∥∥DF(σ, u)−1

∥∥
Y

1 −‖Bh‖Y
≤ 2K ,

which ends the proof of (H3).

Concerning the compactness of DG(σ, u), we assume
that ω ∈ L2+α(Ω) with α > 0. One deduces that ωw⊥ ∈
Lr (Ω) where r > 4/3 since 1

r = 1
2+α

+ 1
4 . On the other hand,

one has that u ∈ M ⊂ Hs(Ω) with s > 1/2. Since by the Kon-
drasov theorem Hs(Ω) is compactly embedded in Lq(Ω) for
some q > 4, it comes that the term �u⊥ belongs to Lr′

(Ω),
with r ′ > 4/3 too

(
1
r′ = 1

2 + 1
q

)
. Finally, the fact that Lr(Ω) is

compactly embedded in L4/3(Ω) for any r > 4/3 achieves the
proof.

Remark 1. One may propose a more direct proof for (H3),
using the regularity of the exact solution of the associated
Stokes problem with data f ∈ L4/3(Ω). Indeed, if we assume
that (σ, u) ∈ Hs(Ω)× H1+s(Ω) for s > 0 and moreover, that

|u|1+s +|σ |s ≤ c ‖ f‖L4/3(Ω) ,

then using Lemma 4 it comes that:

‖(S − Sh)( f )‖Y ≤ ε1(h) ‖ f‖L4/3(Ω) .
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Fig. 1. Calculated velocity, pressure and vorticity for the cavity test

So, for h small enough one has:

‖Bh‖Y ≤ K ‖(S − Sh)(DG(σ, u))‖Y <
1

2
.

Then the next statement is true, according to Pousin and
Rappaz 1994:

Theorem 4. There exists h0 > 0 such that, for all h < h0,
problem (10) has a unique solution. Moreover, the following
error estimate holds:

‖(σ, u)− (σh, uh)‖Y ≤ 2
∥∥DFh(σ, u)−1

∥∥
Y ‖Fh(σ, u)‖Y

≤ c ‖Fh(σ, u)‖Y .

So, in conclusion, the approximation method for the
Navier–Stokes problem is unconditionally convergent and its
convergence rate is given by an upper bound for ‖Fh(σ, u)‖Y .
If we consider smooth data f ∈ L2(Ω) and we admit that
the exact solution (σ, u) of the initial Navier–Stokes problem
satisfies ω ∈ L4(Ω), then G(σ, u) ∈ L2(Ω) since u ∈ L4(Ω).
Then the second part of (A2) leads to the same convergence
rate O(h) as for the Stokes problem, that is our method is
optimal in terms of finite elements.

6 Numerical results

6.1 Stokes problem

We present first the cavity test: the domain Ω is the unit
square, the righthand side functions are equal to zero and we
impose u = (1, 0) on the upper boundary and u = 0 on the
other three boundaries. We represent in Fig. 1 the calculated
solution. Remark that the method used here can rigorously
take into account boundaries conditions on u which belong
only to L2(∂Ω).

We present now the Bercovier–Engelman test which allow
us to compute the error between the exact solution and its nu-
merical approximation. For this test, we have Ω =]0, 1[2 and
the boundary condition: u = 0 on Γ. The right-hand sides f1
and f2 of equations are given here such that the exact solution
is:

Table 1. Error for the Bercovier–Engelman test

β = 1 β = 0.1 β = 0.05 β = 0.01

‖ω−ωh‖L2(Ω)
0.57 0.2 0.2 0.32

‖p− ph‖L2(Ω)
1.78 0.55 1.07 4.97

|u1 −u1h |1,Ω 1.06 0.24 0.23 0.27
|u2 −u2h |1,Ω 1.06 0.24 0.23 0.28

u1(x, y) = −256y(y−1)(2y−1)x(x −1)2 ,

u2(x, y) = −u1(y, x) , p(x, y) = (x −0.5)(y−0.5)

Besides, in Table 1 we present the absolute error in
L2-norm for the unknowns ω and p and in H1-norm for
(u1, u2). These errors are calculated on a unstructured mesh
for different values of β. The results show that β has to be
chosen correctly, not too big but not too small neither.

6.2 Navier–Stokes problem

We first present an academic test where the solution is given
by the next expressions:

u1 = − sin(πx) cos(πy) ; u2 = cos(πx) sin(πy) ,

p = sin(πx) sin(πy)

Fig. 2. Calculated velocity for the academic test boxes
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Fig. 3. Calculated solutions for the Step Test
boxes

Table 2. Errors for Reynolds number equal to 1

Reynolds = 1 8×8 16×16 32×32 64×64

‖ω−ωh‖L2(Ω)
0.4 0.2 0.09 0.046

‖p− ph‖L2(Ω)
2.2 1.07 0.54 0.26

|u1 −u1h |1,Ω 0.17 0.08 0.04 0.02
|u2 −u2h |1,Ω 0.13 0.06 0.03 0.016

Table 3. Errors for Reynolds number equal to 100

Reynolds = 100 8×8 16×16 32×32 64×64

‖ω−ωh‖L2(Ω)
2.15 1.1 0.59 0.3

‖p− ph‖L2(Ω)
1.82 0.88 0.49 0.26

|u1 −u1h |1,Ω 0.9 0.47 0.24 0.13
|u2 −u2h |1,Ω 0.88 0.44 0.23 0.11

Table 4. Errors for Reynolds number equal to 1000

Reynolds = 1000 16×16 32×32 64×64

‖ω−ωh‖L2(Ω)
3.6 1.9 0.92

‖p− ph‖L2(Ω)
2.04 0.9 0.43

|u1 −u1h |1,Ω 1.12 0.6 0.31
|u2 −u2h |1,Ω 1.01 0.57 0.26

and the domain Ω is the square ]−1, 1[2. We impose the ex-
act value of ω and of the normal component of the velocity on
the left and right boundaries, the pressure and the tangential
component of the velocity on the upper boundary and finally
the velocity on the rest of the boundary. We represent in Fig. 2
the exact velocity:

We give then in Tables 2, 3 and 4 the error on u1, u2, p and
ω for different Reynolds numbers and different meshes.

In order to improve the stability in the case of large
Reynolds numbers, we proceed to an upwinding on the con-
vection term

∫
Ω

ωu⊥ ·vdx.

Finally, we represent in Fig. 3 the velocity obtained in the
case of the step test. Note that in this example, we impose the
pressure on the inlet and oulet boundaries. Assuming that the
domain Ω is the half part of the real domain, we impose the
condition ω = 0 on the upper boundary. The Reynolds num-
ber for this test is taken equal to 1000. Note that, generally, for
this test the two components of the velocity are imposed on
the upperwall boundary. We obtain in this case a vortex closed
to the step and a more laminar flow.
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