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Abstract. The purpose of this article is to give an overview
of the forward problem of cardiac electrophysiology. The
relevant models are derived and the mathematical problem
formulated. Different solution strategies are discussed. In par-
ticular, the error introduced by solving the equations decou-
pled is demonstrated. Some novel techniques to deal with this
problem are presented.

1 Introduction

The forward problem of cardiac electrophysiology can be
summarized as the study of the electrical activity of the heart,
from cellular level activity to the non-invasive recording of
this activity at the body surface. The article focuses on this
problem from a modeling point of view, and justification for
the modeling approach to this problem is given below. An
overview of different solution techniques is subsequently pre-
sented, with particular emphasis on two recently developed
approaches [15, 111]. Despite the conceptual simplicity of the
problem, the task is far from trivial, and to date we still cannot
consider this problem to be solved in any true meaning of the
word.

1.1 The electrocardiogram

The electrical activity of the heart can be measured on the
body surface and gives a non-invasive representation of car-
diac electrical function. This was first demonstrated by Waller
more than 100 years ago [123]. His famous demonstrations
involved his dog Jimmie standing in buckets of salt solu-
tion (the electrodes) which were connected to a recording
device involving a column of mercury that was seen to pulsate
in time with Jimmie’s heartbeat [125]. Such a demonstra-
tion was witnessed by Einthoven, who went on to extend
and refine the procedure, eventually being awarded a Noble
prize for his work in 1924. Einthoven developed an improved
device to record the body surface potentials, (the string gal-
vanometer) and defined the concept of P, QRS and T waves,

as well as the concept of a heart vector. His first record-
ing machine was large and cumbersome, weighing around
600 pounds and requiring 5 operators [23]. Both Waller and
Einthoven put forward evidence to support the idea that the
potentials measured on the body surface were the result of
cardiac activity and Waller was the first to call such record-
ings electrocardiograms or ECGs.

The subsequent years saw the development of the first
commercial ECG recording machines. As the usefulness of
this non-invasive measurement of cardiac electrical activ-
ity became widely known and accepted, standards were de-
veloped to allow the consistent recording and display of the
body surface ECGs. This firstly began with the development
of the limb leads (using Einthoven’s original notation I, II
and III). Wilson [128] introduced the concept of an indepen-
dent reference (the Wilson central terminal) and his group de-
fined the six precordial leads (V1 to V6) that are included in
the standard lead set [56]. Three further leads were developed
by Goldberger [33] through modifications to the Wilson cen-
tral terminal resulting in the augmented limb leads aVR, aVL
and aVF. This set of leads which was finally standardized in
1943 comprises the so-called 12 lead ECG which is still the
most used procedure in electrocardiography. Originally the
ECG was interpreted manually by the measurement of am-
plitudes and time intervals. The measurements were related
to known clinical conditions such as myocardial ischemia,
infarction and hypertrophy, and complex sets of diagnostic
criteria were developed. During the last 20 years these criteria
have been refined and implemented in off-the-shelf computer-
ized ECG recording and interpretation systems.

Waller and Einthoven suggested that the electrical activity
of the heart could be represented by a dipole and that the lead
recordings were projections of this dipole onto the lead axis.
Einthoven’s equilateral triangle of leads I, II and III provided
a theoretical basis for reconstructing two-dimensional cardiac
activity in the frontal plane, see Fig. 1. However, already in
1946 this theory was disputed and several investigators set out
to improve the lead system and provide methods for a true
spatial reconstruction of the cardiac vector. This concept of
an orthogonal or orthonormal lead system is closely linked to
that of vectorcardiography, the depiction of the cardiac vec-
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Fig. 1. Illustration of an early method of recording the standard limb leads
using buckets filled with saline as electrodes. Einthoven’s triangle with the
lead axis are drawn on the torso. (Lewis [63], copyright Shaw & Sons,
London. Reproduced with permission)

tor rotation during the cardiac cycle. The research reached its
peak during the 1950s. Tank experiments with artificial tor-
sos and animal experiments were performed to develop the
improved lead systems, of which Frank and McFee are best
known [26, 68]. However, these lead systems never succeeded
in replacing the well established 12 lead system.

Ten years later the notion of a single, rotating cardiac
dipole was recognized as inadequate. The attractive idea of
summing all electrical activity into a single measure was left
and body surface potential mapping, sometimes using hun-
dreds of simultaneous ECG recordings, emerged as a tech-
nique to study cardiac activity. Despite demonstrating the
clinical utility of some of the information obtained from
this large number of recordings [104], body surface potential
mapping largely remains in the research environment. Some
of the reasons for this probably relate to the difficulty in in-
terpreting such densely sampled ECG data, and the lack of
a standard lead set.

Electrocardiographic diagnosis largely relies on morpho-
logical descriptions and relatively simple measurements, ob-
tainable by hand. The diagnosis is usually qualitative. As
an example, the present criterium for a myocardial infarct
is “Any Q wave in leads V1 through V3, Q wave ≥ 30 ms
in leads I, II, aVL, V4, V5 or V6. The Q wave changes
must be present in any two contiguous leads, and be ≥ 1 mm
in depth.” [54]. The amplitude measurements are frequently
given in mm, not in mV, because of the firmly established pa-
per recorder settings of 1 cm = 1 mV. Relatively few attempts
have been made at more complex processing of the body
surface ECG. In 1934 Wilson introduced the idea that the in-
tegral or net area under the QRST complex, which ideally
should be zero, reflected the total excitation of the ventricles
and could be used to study local variations in the excitatory

process [129]. This measure was termed the ventricular gra-
dient. Despite later refinements, it never gained any practical
use. Recent examples of more advanced information pro-
cessing include the use of spatial QRS- and ST-integrals for
quantitative assessment of myocardial ischemia and infarc-
tion [99]. However, none of the attempts at more sophisticated
signal processing have been able to challenge the traditional
way of interpreting the ECG.

With the advent of molecular medicine the causal rela-
tionship between changes in cellular processes and manifest
disease has become much clearer. Both diagnosis and treat-
ment increasingly focus on the subcellular level. But for a few
coarse relationships, e.g. with hyper- and hypokalemia, the
possibility of studying subcellular processes through the body
surface ECG has so far not been properly exploited.

There are only a few examples where new technology has
provided previously unaccessible information from the body
surface ECG, e.g. the use of signal averaging to detect and
analyze microvolt-level late potentials [103].

The ECG, now close to 60 years old in its present 12-lead
form, is the most widely used cardiac diagnostic tool and the
most common method of monitoring a person’s cardiac ac-
tivity. There are an estimated 106 ECGs performed per day,
and the procedure is easily done and inexpensive. For some
cardiac conditions the ECG has been replaced by other non-
invasive methods, e.g. echocardiography is now the favored
method for examining the mechanical function of the heart.
However, for assessing myocardial ischemia and infarction,
diseases responsible for approximately 20% of the deaths in
the Western world, the ECG still remains the primary method.
Yet, it is far from perfect, the sensitivity for acute inferior
myocardial infarction is barely 60% [71].

Why has a technical system developed with inferior tech-
nology remained virtually unchanged during so many years
of technical advancement? It is possible that the biological
system it is intended to describe is so complicated that the
theoretical, experimental and modeling approaches to im-
prove the existing systems and develop new applications have
not yet reached sufficient complexity to move the field no-
tably forward. The vast, accumulated empirical knowledge in
the form of amplitude and duration criteria related to the old
system has maintained its position. A prudent conservatism in
the medical profession may also contribute to preserving the
present methods.

This introduction does, however, indicate the need both
for improvement of present tools and the development of new
tools to meet the requirements of modern medicine. The body
surface ECG which provides non-invasive, cheap, easily ac-
quired and repeatable information about the heart would in
this respect be an ideal tool. With the aid of modern informa-
tion technology, applications may be tailored to specific needs
both in terms of lead systems and signal processing, instead
of relying on a common tool for every purpose.

1.2 Why model?

Both Waller and Einthoven used the conceptual model of
a dipole to explain the ECG. Later, three-dimensional phys-
ical models were employed by Burger [16], Frank [25] and
McFee [68] to study the forward problem, i.e. the relation-
ship between cardiac activity and the body surface ECG.
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Wilson and Bayley in 1950 made the first very simplified
three-dimensional mathematical model of the forward prob-
lem which could be handled analytically [130], and in 1964
the first numerically solved model was presented by Gelernter
and Swihart [29]. Mathematical modeling in this field is thus
not a new phenomenon. However, during the last 20 years
the extensive development of numerical methods and com-
puter hardware have made the study of very complex models
possible.

Modeling provides a framework within which the build-
ing blocks coming from experiments can be placed. This is
a common approach in the traditional areas of engineering
and physics where many researchers routinely design and
analyze complex structures through computer models. This
is somewhat due to the solid base of information on material
properties and interactions that is available for many tradi-
tional building materials. Biological materials and systems
are far more complex than human engineered systems and the
complex interactions of these systems are correspondingly
harder to predict. The physiological process of a heart beat
is extremely complicated. It involves many sub-systems and
they span several orders of magnitude in the relevant spatial
and temporal scales. Spatial scales range from the 1 nm pore
diameter of a membrane protein to the 1 m scale of the hu-
man body, a range of 9 orders of magnitude. Temporal scales
range from 1 µs for Brownian motion to 109 s for a human life
span, a range of 15 orders of magnitude [52]. It is challenging
in itself to understand these sub-systems. To understand how
these systems interact to produce the observed large scale be-
havior is significantly more difficult.

Due to the increasing sophistication in experimental tech-
niques we are continuously increasing our knowledge about
the structure and function of the different sub-systems. An
obvious example of this is the genome project. From a se-
quenced gene the structure of the corresponding protein can
be found, a prerequisite for understanding how it functions.
This type of research has led to an explosion in the amount of
information that is available on systems at the smallest scales,
to the point where without computer based tools the informa-
tion would be almost inaccessible.

One argument that is raised against the mathematical
models of the problem we deal with here is that they cannot
be predictive, meaning that they are only capable of repro-
ducing the experimental results that were used to create them.
Presented here are several examples that support the idea that
the integrated modeling approach is the way forward.

Evidence already exists that shows computer based
models allowing insights into underlying mechanisms in
a complex, integrated setting. Rudy [92] presented two exam-
ples of this. When looking at mutations of the cardiac sodium
channel, a Markovian model of the channel with both normal
(wild type) and mutated channels was placed within a car-
diac cellular model. This allowed the mechanism of early
after depolarizations to be elucidated, through the inactivation
and subsequent reactivation of the L-type calcium channel.
This would not have been possible using experiments on
isolated sodium channels and illustrates the importance of
modeling to gain an understanding of the overall picture. The
second example cited looks at integration on a larger spatial
scale, investigating slow conduction in a cardiac fiber con-
structed from a string of cardiac cells. Here the conduction
was slowed by reducing the conductivity of the gap junc-

tions between the cells and not through a loss of cellular
excitability. The use of a mathematical model allowed a quan-
titative measure of the stability of propagation and produced
insights into the mechanisms behind the very slow conduc-
tion that can be observed experimentally. Because of the long
time taken before a neighboring cell depolarizes, it is actually
the L-type calcium channel that provides the charge gradi-
ent for propagation to continue long after the inward sodium
current has ceased. The above evidence shows that a com-
puter based integrated model was used to demonstrate this
mechanism.

The behavior of the whole cannot be understood by sim-
ply understanding the behavior of each component. The pro-
cess is highly nonlinear with very complicated interactions
between each of the components which cannot be understood
without modeling. Only by performing computer simulations
is it possible to aggregate the pieces into a whole and see
what consequences an altered component has on the over-
all system. An example of this is to investigate the effect of
a channel blocking drug. The immediate effect is a reduc-
tion of flow through that particular channel, but the resulting
action potential is not found by simply removing this cur-
rent. The reason being that other currents are affected by the
altered current and the overall result can be counter intu-
itive. As is the case with the sodium channel example above,
a gene defect may result in a malfunctioning channel, and
then give rise to macroscopic phenomena such as long QT
syndrome.

These examples provide strong evidence that already
these models are being used in a predictive manner, not just
to reproduce experimental data. Hunter [52] reinforces this
by pointing out that governing tissue level equations must
obey the physical conservation laws that apply to all materi-
als, such as the conservation of electrical current, mass and
momentum. This is another mechanism through which the
models can be seen to be predictive and modeling therefore
provides additional information that would not be available
otherwise. Bassingthwaighte [8] comments on the fact that
even though our knowledge of these complex biological sys-
tems is very limited, computer based models seem to be the
only conceivable alternative to follow up on animal experi-
mentation. Relating back to the earlier questions, one can see
that not only is an integrated modeling approach to the for-
ward problem of electrocardiology useful, it is likely to be the
only way to deal with the complexity of the problem.

However, the issue still remains that the range of spatial
and temporal scales is too large to provide an exact model
of the physical situation. It is not practical to adopt a tra-
ditional top-down or bottom-up approach to these problems.
Instead the modeling may be undertaken using a middle-out
approach, where the desired spatial and temporal scales are
specified and information is gleaned from the scales that lie
immediately below those of interest. While this approach may
lead to some simplifications, groups of researchers at all lev-
els may then benefit from the advances made at the next level
down [8]. Another approach could be to optimize the model
for a particular medical problem based on knowledge of the
important biological determinants. The fact that under certain
circumstances all models can be proved wrong can put mod-
eling of this nature into a negative light. However, that does
not mean one should not model, but that one should recognize
that all models are to some degree approximations of reality
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and one should be aware of the assumptions and approxima-
tions when one interprets the outcome of a model.

2 Models

2.1 Models of cardiac electrophysiology

Historically, it has been the top-down approach to model-
ing cardiac activation that has been to the fore where only
the largest level of detail is incorporated as is the case with
Einthoven’s heart vector [23]. He suggested that the three lead
potentials could be viewed as the projections of a vector resid-
ing in the heart and moving as if it were in an infinite conduct-
ing medium. Further improvements have seen extension from
the heart vector, which is essentially a single dipolar source
with a fixed center, to multiple moving dipolar and multipo-
lar sources within bounded torso domains. Yet another branch
of research in this area uses different types of dipole layer
sources. The theory behind these approaches has been around
for several decades and although the methods through which
these sources are quantified are improving, fundamental prob-
lems with this approach are becoming evident. This is mainly
due to the lack of detail in these lumped parameter models,
the short-comings of which are discussed later in this article.

At the other end of the spectrum, the entire myocardium
consists of in the order of 1010 cells. When constructing
a model of cardiac tissue it is natural to use models of these
cells as building blocks and connect them according to the
electrical properties between cells. Several groups have used
this so-called bottom-up technique [40, 45, 73, 121]. Such an
approach can quickly run into problems associated with scale
and detail. Furthermore, if large scale phenomenon such as
re-entry or body surface ECGs are of primary interest, it is
probably not necessary to model each cell. The contribution
from any individual cell will be blurred out by its neighbors.
A single cell’s aberrant activity does not on its own do much –
it is the response of a collection of cells that gives rise to
collective behavior (for instance a reentrant arrythmia is not
the result of a single cell’s activity, but rather the collective
effect of many cells). Also, farfield effects (such as body sur-
face potentials) do not show the results of a single cell, only
a collection. Much of the discrete cellular modeling has, in
fact, concluded that on a macroscopic level there is little or
no difference between modeling cardiac tissue discretely or as
a syncitium [117, 118].

Another modeling option is what has been termed the
middle-out approach, in which a model attempts to start be-
tween these extremes, and to incorporate both higher and
lower level detail when and if needed. This is the option to
be preferred here – sufficient detail can be included to signifi-
cantly extend the concept of a single heart vector and allow
more detail to be added at the finer scales when needed and
feasible. It also does not suffer the scale and detail problem
that one hits early on with a bottom-up approach that is used
to model every individual cell, gap junction and ionic process
(note that this could also be considered a middle out approach
since it starts significantly higher than the level of atoms and
genes, although we class it as bottom-up here). Our choice
of middle is that of a block of cells – these coming approxi-
mately half way in the spread of the length and time scales
associated with this problem. Such a block of cells is what is

termed a continuum cell, the fundamental building block of
the bidomain model.

2.2 The Bidomain Model

Even with the current increases in computational power, it
remains infeasible to solve for cardiac electrical activity dis-
cretely at a cellular level for all but small preparations of
cells. In order to investigate the electrical properties of larger
sections of cardiac tissue, a continuum approach may be
adopted that averages the electrical properties over a length
scale greater than that of a single cell. The continuum ap-
proach implemented here is known as the bidomain model
and was first proposed by Schmitt [98] before being formu-
lated mathematically by Tung [120]. It has become popular
with researchers since its initial formulation and is now used
widely to model cardiac electrical activity [42, 50, 74]. The
bidomain framework defines a model of cardiac tissue that
consists of two interpenetrating domains representing cardiac
cells and the space surrounding them. The intracellular do-
main (subscript i) represents the regions inside the cells and
the extracellular domain (subscript e) represents the space be-
tween the cells. A third region (or collection of regions) may
be included in a bidomain framework that is called an ex-
tramyocardial region and is given the subscript o. Where the
intracellular and extracellular domains are considered to oc-
cupy the same physical space, any extramyocardial regions
are defined to be in unique but adjacent physical spaces. The
extramyocardial region may be used to model a fluid bath to
imitate experimental conditions or to model the torso as is
the case in this article. While under normal conditions the ex-
tramyocardial region draws current from the cardiac region,
this flow may be reversed for example, when a defibrilla-
tion shock is applied. The intracellular space is defined to
have a potential field φi and a conductivity tensor σi while
the extracellular space is defined to have a potential field
φe and a conductivity tensor σe, (see Table 1). The deriva-
tion of the bidomain equations that is described here is based
around the derivation of Henriquez [43]. Some researchers

Table 1. Important symbols in the bidomain formulation. In addition Vm
and Iion are defined in H and normal vectors n point outwards from the
domain in its subscript. See also Fig. 2

Generic variable names: Subscripts:

J – current i intracellular space (H )

φ – electrical potential e extracellular space (H )
σ – conductivity tensor o extramyocardial space (T )

Fig. 2. The bidomain equations are defined on H , the cardiac muscle (ex-
cluding cavities), while T is the rest of the body, i.e. H ∩ T = ∅. Note that
in general T is not connected due to the ventricular cavities in the heart (not
shown)
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adopt a slightly different terminology to describe the regions
that are used in a bidomain framework. What is termed here
as the extramyocardial region is sometimes called the extra-
cellular region and the extracellular region is then called an
interstitial region [42].

2.2.1 Bidomain equation derivation. The bidomain equa-
tions may be derived in several ways depending on what
dependent variables are required. The derivation performed
here yields two equations, the first of which is an equation for
the extracellular potential. This equation is solved to calcu-
late the extracellular potential field that results from a given
transmembrane potential distribution. The second equation
is a reaction diffusion equation in terms of the transmem-
brane potential where the sum of ionic currents from the
continuum cells provide the nonlinear reaction term. An al-
ternative derivation yields equations for the intracellular and
extracellular potentials but this formulation has the disadvan-
tage that it cannot interface directly with the ionic current
models as they are based on transmembrane potentials. The
starting definition of the bidomain equations is the definition
of the potential difference across the cell membrane which is
known as the transmembrane potential and given the symbol
Vm , i.e.,

Vm = φi −φe . (1)

It is assumed that the only current flow between the extracel-
lular and extramyocardial space occurs through the boundary
conditions imposed on the domains. Ohm’s law states that

J = σ E . (2)

Here E is the electric field strength, J is a current density
and σ is a conductivity. If the quasi-static assumption is used
(see Sect. 2.4 for further details) then electric fields can be ex-
pressed as a potential gradient, i.e., E = −∇φ. Substituting
this into (2) gives for the two domains

Ji = −σi∇φi (3)
Je = −σe∇φe . (4)

In an isolated case, any current that leaves one domain must
cross the cell membrane and flow into the other domain. This
requires the change in current density in each of the domains
to be equal in magnitude and opposite in sign. The change
in current density in each domain must also be equal to the
current flow across the membrane.

−∇ · Ji = ∇ · Je = Am Im (5)

Here Am is defined to be the surface to volume ratio of the
cell membrane and Im is the outward transmembrane current
density per unit area. By combining (3) and (4) with (5), two
equations are generated that represent the conservation of cur-
rent densities, namely

∇ · (σi∇φi) = Am Im (6)

∇ · (σe∇φe) = −Am Im . (7)

This implies that

∇ · (σi∇φi) = −∇ · (σe∇φe) . (8)

Subtracting ∇ · (σi∇φe) from both sides and using (1), (8) can
be rewritten as

∇ · (σi∇Vm) = −∇ · ((σi +σe) ∇φe) . (9)

This equation is referred to as the first of the two bidomain
equations and is used to solve for the extracellular potential
field given a transmembrane potential distribution. The cur-
rent flow across the membrane, Im may be described by a time
dependent capacitive current and an ionic current

Im = Cm
∂Vm

∂t
+ Iion (10)

where Cm is a membrane capacitance per unit area and Iion is
the sum of all ionic currents that are calculated from the cel-
lular models. Combining (6), and (10) generates the following
equation

∇ · (σi∇φi) = Am

(
Cm

∂Vm

∂t
+ Iion

)
. (11)

In order to convert (11) to have Vm as a dependent variable
on the left hand side of the equation, ∇ · (σi∇φe) is added and
then subtracted giving

∇ · (σi∇(φi −φe))+∇ · (σi∇φe) = Am

(
Cm

∂Vm

∂t
+ Iion

)
.

(12)

Using (1), (12) can then be expressed as

∇ · (σi∇Vm)+∇ · (σi∇φe) = Am

(
Cm

∂Vm

∂t
+ Iion

)
. (13)

Equation (13) is known as the second of the bidomain equa-
tions and is used to calculate the transmembrane potential at
each time step. It is possible for an external stimulus cur-
rent to be applied to either the extracellular domain (Is1) or
the intracellular domain (Is2) which allows the two bidomain
equations to be written as

∇ · ((σi +σe) ∇φe) = −∇ · (σi∇Vm)+ Is1 (14)

∇ · (σi∇Vm)+∇ · (σi∇φe) = Am

(
Cm

∂Vm

∂t
+ Iion

)
− Is2 .

(15)

The extracellular domain is sometimes assumed to be highly
conducting (σe ∼ ∞) or the domains are assumed to be
equally anisotropic (σi = λσe) in an effort to reduce the
bidomain equations to a single equation, hence reducing the
amount of computational effort required to solve the problem.
The simplified equation is known as the monodomain equa-
tion and can be written as

∇ · (σ∇Vm) = Am

(
Cm

∂Vm

∂t
+ Iion

)
− Is (16)

where the transmembrane potential is equal to the intracel-
lular potential. Here σ = 1

1+λ
σi and Is = 1

1+λ
Is1 + Is2. Note

that the case σe ∼ ∞ is equivalent to λ = 0. The conductiv-
ity values in both the monodomain and bidomain equations
are represented at each point in space by a tensor containing
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conductivities in the fiber, sheet and cross sheet directions al-
lowing spatially varying fully orthotropic conductivities to be
modeled.

2.2.2 Bidomain boundary conditions. There have been some
differences in the literature as to what boundary conditions
should be applied to the bidomain model [57]. The bound-
ary conditions used here are the original boundary conditions
specified by Tung [120] and confirmed by Krassowska [57]. It
is assumed that there is no current flow between the intracel-
lular and extramyocardial domains so the boundary condition
applied to the domain boundaries in intracellular space is
written as

(σi∇φi) ·nH = 0 , x ∈ ∂H (17)

where nH is a unit vector outwardly normal to the myocar-
dial surface. The φi parameter is not explicitly represented in
the formulation of the bidomain equations so the boundary
condition is reformulated (using (1)) in terms of a boundary
condition on Vm .

(σi∇Vm) ·nH = − (σi∇φe) ·nH , x ∈ ∂H (18)

The boundary conditions on the extracellular domain are set
up as a current balance between the domain and the surround-
ing extramyocardial regions

(σe∇φe) ·nH = − (σo∇φo) ·nT , x ∈ ∂H . (19)

The negative sign is used to account for the direction of
current flow as both sides of the equation use outward nor-
mal vectors. The boundary extracellular potentials are also
required to match the boundary extramyocardial potentials,
i.e.,

φe = φo , x ∈ ∂H . (20)

In the event that an extramyocardial region is not present,
boundary conditions may be applied directly to the extracel-
lular domain to represent the physical problem. In that case,
any combination of flux and potential boundary conditions
may be applied to the domain boundary, providing at least one
potential boundary condition is imposed as this is a prerequi-
site for obtaining a unique solution.

In a monodomain formulation there is no connection be-
tween the intracellular domain and any surrounding media, so
the following boundary condition is imposed to prevent cur-
rent flow out of the myocardial domain.

(σ∇Vm) ·nH = 0 , x ∈ ∂H (21)

2.2.3 Describing the microstructure. Within the bidomain
framework lies the ability to describe the anisotropic nature
of the cardiac microstructure through the conductivity ten-
sors. Experimental work has suggested the laminar fibrous
structure of the myocardium [58]. The cardiac cells are ar-
ranged into fibers and the direction in which the fiber runs
gives the first microstructural vector (ν f ). These fibers are
then arranged into a branching and anastomosing network of
sheets, and the second microstructural direction (νs) is given
by a vector perpendicular to the fiber axis, in the plane of

the sheet. The third axis is calculated through the cross prod-
uct of the first two axes creating a third vector (νc) that is
normal to the plane of the sheet. Thus, every point in the my-
ocardium can be assigned a set of orthogonal material axes.
The anisotropic electrical properties of the myocardium may
then be defined according to this microstructural model with
different electrical conductivity values being assigned in each
of the three microstructural directions. These tensors enter the
model as diagonal tensors representing the tissue conductiv-
ity in the fiber, sheet and cross sheet directions. They must
then be rotated into the coordinates of the solution domain in
order to be inserted into the bidomain equations. A separate
tensor is used for both the intracellular and extracellular con-
ductivities, but for a generic tensor σ , the symbol σ∗ is used
to represent the unrotated tensor, i.e.,

σ∗ =
σ f 0 0

0 σs 0
0 0 σc

 .

Here σ f is the conductivity in the fiber (ν f ) direction, σs is
the conductivity in the sheet (νs) direction and σc is the con-
ductivity in the cross sheet (νc) direction. The microstructural

axes are described by a tensor quantity,
∂νj

∂xi
that describes

the change in material coordinates with respect to the refer-
ence coordinate system, xi . These are known as the direction
cosines of the material coordinates and each ν vector rep-
resents the direction of an axis in the material coordinate
system. The effective conductivity tensor σ is in general not
diagonal. The transformation essentially calculates how much
of the fiber, sheet and cross sheet vectors lie in each of the
global coordinate directions. This rotation is often expressed

using matrix products, where if the
∂νj

∂xi
terms are written into

a matrix A, then

σ = Aσ∗ AT . (22)

Often the sheet structure is left out of models of the my-
ocardium, where conductivities are only prescribed in the
fiber and cross fiber direction creating the situation of trans-
verse anisotropy.

2.3 Models of cardiac cells

In a bidomain context, the aim of a biophysically based car-
diac cell model is to represent the electrical activity of a cell
by accurately modeling subcellular features such as special-
ized compartments and ion transfers through channels, pumps
and exchangers. The models are usually formulated by fit-
ting equations to experimentally obtained data. The resulting
models represent what is believed to be happening in a single
cell and may be placed as a continuum cell into the bidomain
framework.

The first model of cellular electrical activity was created
by Hodgkin and Huxley [44]. The model is based on mathe-
matical representations of different ions flowing across a cell
membrane, driven by concentration gradients. In order to de-
scribe the time and voltage dependence of an ion channel,
Hodgkin and Huxley proposed a model that uses gating vari-
ables. The general form of this model is



The forward problem of cardiac electrophysiology 221

Ix = gx · (Vm − Ex) (23)

where Ix is the current flow through the ion channel x, gx is
the conductance of the channel and Ex is the reversal poten-
tial for the channel which is the Nernst potential for the ion or
ions. The conductance is the maximal conductance gx multi-
plied by the state of the channel which is modeled with a set
of gating variables. For a channel with m different gates, each
with ni sub-units per gate, the model of the channel conduc-
tance is given by

gx = gx

m∏
i=1

xni
i . (24)

A generic gating variable x has a time dependence which can
be expressed as

dx

dt
= αx(Vm) · (1 − x)−βx(Vm) · x (25)

or

dx

dt
= x∞ − x

τx
(26)

where

τx = 1

αx(Vm)+βx(Vm)

x∞ = αx(Vm)

αx(Vm)+βx(Vm)
.

Here x∞ represents the steady state behavior of the gate. The
αx(Vm) and βx(Vm) coefficients are known as rate constants
and are voltage dependent. The rate constants are usually
represented by an empirical formula or a set of piecewise em-
pirical formulae. Using this model of an activation channel,
the gate is fully open when x = 1 allowing maximum cur-
rent flow and fully closed when x = 0 prohibiting any ion
transfer. Ion channels often require multiple gates to properly
represent the activation and inactivation processes. The action
potential from a single cell is generated using the formula

dVm

dt
= − (Iion + Is)

Cm
(27)

where Iion is the sum of all the individual ionic currents, Is is
an externally applied stimulus current and Cm is the specific
capacitance of the cell membrane. This general form is still
used for ion channels in the most complex models around to-
day. The original Hodgkin–Huxley model is based upon three
individual ionic currents and was developed using data gath-
ered from giant squid axons. Following this work, many other
biophysically based models have been developed, including
the models of Beeler–Reuter [9], DiFrancesco–Noble [77],
Luo–Rudy [66], and Winslow et al. [131]. For a review of
these types of cell models see [79] or [132].

The level of detail in many of these models is continually
increasing, much of which probably exceeds current experi-
mental abilities to validate. Which cellular model to use will
depend on what questions are posed and the desired appli-
cation of the results. Often it is not necessary to model the

ionic currents of a cell with the accuracy and complexity in-
herent in the biophysically based models. For subthreshold
situations where the membrane does not change permeability
even a linear model could be sufficient. With a view to in-
vestigating phenomena on a larger spatial and temporal scale,
several ionic current models have been developed that do not
seek to model subcellular processes but only to provide an
action potential at a minimal computational cost. The sim-
plest of these models is a polynomial model that uses just
one variable [51]. The next level of refinement introduces
the FitzHugh–Nagumo [24, 75] type models which includes
a recovery variable in addition to a cubic polynomial depo-
larization model. With these models the whole cardiac cycle
is modeled, not just the depolarization but also the plateau
phase and the repolarization of the membrane. Another sim-
plified cardiac cell model was developed by vanCapelle and
Durrer [121] who used again used a cubic polynomial depo-
larization, and a piecewise polynomial recovery process.

2.4 The torso model

The governing equations for the problem of calculating the
potential distribution within the torso are Maxwell’s equa-
tions. These equations may be simplified by what is termed
the quasi-static assumption [80]. For the range of frequencies
over which bioelectric signals are generated, the capacitive,
inductive and propagation effects of the body may be ignored
leaving the torso to be modeled as a passive volume conduc-
tor.

The electric field strength, E may be expressed as the gra-
dient of a scalar potential field, φo, i.e.,

E = −∇φo . (28)

The total current may be expressed as the sum of the conduc-
tion current, σ E, and any source currents. Thus J, the total
current, is given by

J = Js +σ E (29)

where σ is the tissue conductivity and Js is the sum of any
source currents. Because the passive torso does not store
charge, the net current flow into and out of a region is zero,
hence

∇ · J = ∇ · (Js +σ E) = 0 . (30)

This may be written as

∇ · (σo∇φo) = −∇ · Js = Iv . (31)

Since the conductivity tensor σ is symmetric and positive def-
inite (31) is an elliptic partial differential equation. As there
are no sources outside the heart surfaces, the right hand side
of (31) may be set to zero leaving a generalized Laplace equa-
tion as the governing equation for the passive torso regions.

∇ · (σo∇φo) = 0 (32)

In general each torso region will have a different conductiv-
ity tensor which is either isotropic or anisotropic depending
on the physical properties of the tissue being modeled.
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2.4.1 Torso boundary conditions. The boundary conditions
applied to the torso mesh are dependent on the medium sur-
rounding the region of interest. Outside the torso surface the
air is assumed to have a zero conductivity meaning no current
can flow from the torso. This is set up as a zero normal flux
boundary condition,

(σo∇φo) ·nT = 0 , x ∈ ∂T (33)

where nT is now a unit vector outwardly normal to the torso
surface. The application of zero flux boundary conditions to
the air boundaries of the torso generates solutions that may
only be determined to within an arbitrary additive constant.
Computationally this causes singular matrix systems. If the
solution is computed at n points, the stiffness matrix is n ×n
and it will be of rank n −1. To overcome this problem a ref-
erence potential is set at some point on the torso surface, φref

o ,
thus adding an equation. Since the rank is n −1 one of the
equations in the original system can be removed, thus we end
up with an n −1 ×n −1 system with full rank.

If, however, all equation are retained there is one more
equation than unknowns, which makes a seemingly overde-
termined system of equations. An overdetermined matrix sys-
tem may be solved using a least squares approach to minimize
the error in each equation. Alternatively some form of ma-
trix deflation can be used [37], or the consistency criterion
proposed by Salu [95]. Computationally the method of Salu
appears to be the most efficient. The existence and uniqueness
of a solution to (32) with Neumann boundary conditions (33)
and the additional requirement that∫
T

φo dV = 0 ,

is given in [22].
For region boundaries inside the torso, such as the lung

surfaces which are surrounded by the torso cavity, bound-
ary conditions known as interface conditions are applied. The
torso surface is the only place where boundary conditions that
derive from the physical problem are applied. These interface
conditions are the result of discretising the torso into differ-
ent regions and therefore are not boundary conditions in the
physical problem. Across the internal boundaries continuity
of both current and potential is maintained. If two regions
p and q are adjacent, the two imposed interface conditions
are

φp = φq(
σp∇φp

) ·np = − (
σq∇φq

) ·nq (34)

where np and nq are unit outward normals from the regions
p and q respectively. Note that the boundary conditions be-
tween coupled extracellular and the extramyocardial regions
(Equations (19)–(20)) may also be thought of as interface
conditions.

2.5 Model summary

The equations that govern the forward problem of electrocar-
diography from a cellular level through to the body surface

can now be compiled in the following manner. If the cardiac
region is denoted by H and the torso regions by T then

∂s

∂t
= F(t, s, Vm) in H (35)

Vm = φi −φe in H (36)

∇ · ((σi +σe) ∇φe) = −∇ · (σi∇Vm)+ Is1 in H (37)

∇ · (σi∇Vm)+∇ · (σi∇φe) = Am

(
Cm

∂Vm

∂t
+ Iion

)
− Is2

in H (38)

∇ · (σo∇φo) = 0 in T (39)

and these equations are subject to the following boundary
conditions

(σi∇Vm) ·nH = − (σi∇φe) ·nH on ∂H (40)

(σe∇φe) ·nH = − (σo∇φo) ·nT on ∂H (41)
φe = φo on ∂H (42)

(σo∇φo) ·nT = 0 on ∂T (43)

Equations (35)–(43) then represent the coupled bidomain/
torso problem. In (35) we have introduced the variable s,
which is a vector collecting the gate variables and intracel-
lular ionic concentrations occuring in the cell model ODEs.
Because the heart tissue is regarded as a continuous medium
s is a vector-valued field defined throughout the heart muscle,
characterizing the state of the cells in each spatial point.

To get a unique solution of (35)–(43) we demand in add-
ition that

φo(xref) = 0

for some xref on ∂T .

3 The data problem

In order to fully specify the model given by (35)–(43) the
appropriate independent variables have to be defined and
specified. These include the intracellular, extracellular and
extramyocardial conductivity tensors, which all depend inti-
mately on the structure of the cardiac region and surround-
ing tissues. One also needs a description of the cellular-level
properties used in the ionic current model, and their spatial
and temporal variations. Finally, the computational domains
H and T must be appropriately described, which incorpo-
rates details of the dynamic structures of the heart including
atrial and ventricular tissues, and the conduction system of
the heart. Further complicating this task is the fact that this in-
formation is needed for both normal and diseased states, and
on a patient-specific basis.

This is a monstrous task and is currently impossible to
achieve. However, significant progress can be made toward
defining the geometry and material properties appropriately,
and further advances in this area are being continually made.
In respect to the ionic current models, there is an unques-
tionable experimental need to further validate and refine the
existing models using human cardiac cells and tissue prep-
arations. Currently many models rely on parameters from
different species despite known differences. However, under
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certain conditions realistic representations of cardiac action
potentials are possible with existing cellular models. More is
also being learned of the spatial variation of cellular proper-
ties both in-vitro and in vivo, but again much more experi-
mental work is needed.

The heart consists of several distinct cell types with dif-
ferent characteristics, and in the ventricular wall studies have
shown that the shape and duration of the cardiac action poten-
tial changes transmurally [3, 102].

The conductivity tensors of the heart are closely tied to
the underlying structure. Significant effort has been under-
taken to accurately measure this structure in canine ventricle
through in vitro measurements [58, 76]. More recently meas-
urements have been taken from porcine myocardium at The
University of Auckland where a fully automated confocal
tissue imaging system is under construction. Improvements
in MRI technology also offer hope that structure can be in-
ferred non-invasively through diffusion imaging [7, 27, 48,
87]. Some experimental work has focussed on what the con-
ductivities should be in each of the myocardial directions, but
so far the results have been inconsistent [91]. The electrical
conductivities are also required for all of the other tissue types
within the torso where much of the experimental work has
been performed on canines.

In parallel with the proper construction of a model of
the myocardium is the problem of modelling the specialized
conduction system that governs the activation of the heart.
Gathering representative data in this area is definitely a prob-
lem. The conduction system is relatively easy to stain exper-
imentally but has been seen to be hugely variable between
subjects. One must therefore turn to some sort of statistical
or tree growth approach to create a model that represents the
actions of the specialized conduction system rather than an
anatomical description of the conduction system itself.

At the length scales required for ECG signals of the torso,
imaging modalities such as MRI, CT and even ultrasound al-
low one to obtain sufficient detail from which to construct ap-
propriate representations of the geometry of the torso. Sachse
et al. [93] has used the Visible Human Data set [122] to ex-
tract detailed 3D models of a large set of internal organs,
including cardiac and skeletal muscles with fiber directions.
Other researchers who have used fully or semi-automated
techniques for torso segmentation include Lorensen [64],
Kauppinen [55] and Cordier [21].

4 Solution methodologies

4.1 The problem size

To sufficiently resolve the spatial scale of the dynamics dur-
ing the depolarization phase a very fine spatial and temporal
resolution is required. For realistic cell models the intern-
odal distance should not be greater than 0.2 mm or 50 nodes
per cm in each spatial dimension. In 3D this yields 503 =
125 k nodes per cm3. A typical heart has volume of 250 cm3

yielding in excess of 31 million computational points for
a whole heart simulation.

The memory requirement for such a simulation will be
large. The tests shown in Table 2 indicate that in the order of
2 kb of memory is necessary per node. The following analysis
gives a break down of this number.

Table 2. The memory requirements (in Mb) for different problem sizes
(measured by the number of computational nodes). From the third row we
see that the growth is linear in the problem size, with approximately 2 kb
per node and offset of 5.87 Mb. The numbers are from a 3D simulation with
an isolated heart, i.e. no computational nodes in the torso

Problem size (N) Memory (M) (M −5.87)/N

125 6.108 Mb 1.9040 kb
729 7.396 Mb 2.0933 kb

4913 15.976 Mb 2.0570 kb
35 937 79.972 Mb 2.0620 kb

274 625 563.000 Mb 2.0287 kb

Each variable will need 8 bytes per node in double preci-
sion. A variable is needed for each of the two potentials and
also for each of the state variables of the ODE model of the
cell membrane and any cellular model parameters that vary
spatially throughout the domain. This typically totals in the
order of 30 variables and possibly more than 100 parameters
as more information is gathered on the regional variations in
cellular properties.

The mesh must also be stored in memory. Each mesh
point requires three spatial coordinates. In addition the con-
nective structure must be stored. With a finite element ap-
proach, the number of elements per node will depend upon
the element type. To get some specific numbers we assume
tetrahedral elements. In that case six elements per node is
a reasonable approximation, the exact number will depend
upon the geometry. Each element is represented by four node
numbers, each using one integer (4 bytes), so the four num-
bers will require the memory equivalent of two doubles. The
grid will thus require 3(coordinates)+ 2 · 6(elements) = 15
doubles per node. Another important contributor is the stiff-
ness matrix. One is needed for each of the two equations in
the bidomain model. Using linear, tetrahedral elements we
have found that 16 non-zero entries per row is a realistic num-
ber. By using a sparse matrix it suffices to store only the entry
(8 bytes) and an index (4 bytes). The demand per node then
is equivalent to 16 +8 doubles. Counting both matrices we
need 48 doubles per node. The two right hand sides gives
us another two doubles per node. If this is extended to lin-
ear cuboid elements then 27 non-zero entries will be present
in each row, almost doubling the memory requirements. If
a finite difference approach is taken, up to 27 non-zeros will
typically be needed for each row of the two matrices, de-
pending on the type of differencing scheme employed. For
non-uniform meshes, mapping arrays must be stored to relate
the mesh to a normalized space. Therefore, on the order of 60
doubles will be required for each finite difference point, and
possibly several integers based on the type of sparsity struc-
ture required for a given solution technique.

Another set of information that has a large memory over-
head is the 9 doubles required to define the three microstruc-
tural axes at each point. Add to this 6 doubles to fill out the
two diagonal conductivity tensors and 12 when they are ro-
tated into the effective tensors (from the symmetry of the
tensors), and the microstructure requires 27 doubles at each
point. A finite difference approach requires the first order
derivatives of the conductivity tensors and these are often pre-
calculated.

In summary we find that we could easily need 200 dou-
bles (1600 bytes) or more per mesh point, and thus 50 GB
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for a full scale heart simulation. In practice the amount of
memory actually used is larger, with many integer arrays
needed and book keeping arrays to speed up computations.
The numbers could be larger still for efficiency reasons, as
often memory can be traded for speed. Added to all this is
the need to model the torso as well. The same spatial scale is
not needed throughout the torso since detail diminishes with
distance. However, near the heart the length scale is still sub-
millimeter. Because of the large size of the torso relative to
the heart, it is estimated that a torso mesh at a converged reso-
lution will increase the size of the overall problem by at least
50%.

If one is interested in simulating a full heart beat of
500 ms, then 50 000 time-steps are required with an 0.01 ms
time step. Although steps larger than this are often reported
in the literature, simulations have shown that this step size is
required to generate accurate conduction velocities with the
bidomain model.

A typical value for CPU consumption is 1ms per node per
time step. Multiplying these numbers give us total CPU time
of 50 years for a whole heart, full cycle simulation on a single
CPU. To model reentrant phenomena would clearly require
many heart beats to be simulated, further increasing the time.

4.2 Common approaches

From the discussion in the previous section it is clear that the
problem is very CPU and memory intensive and even with
the middle-out modeling approach, still beyond the comput-
ing power of all but perhaps the very largest supercomputers
(although this situation is improving all the time). In the fol-
lowing we will highlight some of the efforts that various
groups have made in dealing with these challenges. Both the
isolated bidomain problem where the heart is not connected to
any outside tissue, and the coupled problem with a conductive
medium outside the heart are considered.

4.2.1 Integration techniques. There are two main types of in-
tegration that are required to solve the bidomain equations,
the first is the integration of the time derivative that is present
in the capacitive component of the transmembrane potential
equation (15), and the second is the integration of the sys-
tem of ordinary differential equations that is used to describe
the cellular electrical properties of the continuum cells at each
solution point. There exists several way of integrating the
bidomain equations ahead in time. Many of these integration
techniques fit into the schematic form:

V n+1
m − V n

m

∆t
= ∇2V p

m + f(V q
m) (44)

The simplest and therefore most common scheme is forward
Euler, p = q = n, which does not involve solving systems
of equations for the transmembrane solution (a system of
equations is still required for the extracellular potential so-
lution). This scheme is only conditionally stable based on
the potential gradients, time steps and spatial discretiza-
tion. On the other extreme is the fully implicit approach,
p = q = n + 1, here a non-linear set of equations must be
solved for each time step, requiring the use of a root find-
ing technique. Larger time steps can be taken, but the cost

per step is much larger. A semi-implicit approach, p = n +1,
q = n is a popular compromise. Here only linear equa-
tions must be solved but large time steps are still possible.
A variant is the Crank–Nicholson scheme p = n +1/2, i.e.
∇2V p

m = (∇2V n
m +∇2V n+1

m )/2. With q = n this is not a sec-
ond order accurate method in time, but probably more accu-
rate than the semi-implicit method.

More sophisticated techniques have been proposed that
do not fit into the structure in (44). For example, Skouib-
ine et al [106] makes use of a predictor-corrector technique
and they report performance that is superior to a standard ex-
plicit Euler approach. The operator splitting method of Qu
and Garfinkel [84] is covered later in the section on adaptive
algorithms, and is not on the form given in (44).

The second type of integration that deals with the in-
tegration of the cellular ionic currents is perhaps best cus-
tomized to the ionic current model that is being integrated.
Simple cell models, especially those that are not biophys-
ically based, may only require a simple Euler or Runge-
Kutta scheme. More complicated models may require more
advanced integrators such as an Adams–Moulton technique
with adaptive polynomial orders and time steps [101]. As
the cell models become more complicated, incorporating
features over a wider range of scales, the systems are be-
coming more stiff and so the method of Gear [28] may be
favored.

It has been found that for the Noble 98 cell model [78]
a time step of no greater than 0.01 ms is required to gener-
ate accurate conduction velocities. A Gear based method is
able to integrate this cell model with a time step of 0.1 ms but
using steps this large introduces significant conduction de-
lays. The simple Euler integrator is able to integrate the model
at the 0.01 ms time step required for accurate conduction and
is computationally much faster than the Gear method because
of its simplicity. There is no discernible difference between
the cellular time courses between the two integrators when
both use the 0.01 ms time step so in this case using the Euler
integrator is highly desirable.

4.2.2 Adaptivity. The strict demands on spatial and tempo-
ral resolution are caused by the fast dynamics of the wave-
front. Away from the wavefront the demands are less strict
and this fact can be utilized to construct adaptive algorithms.
Some care must be taken with this approach however. For
example in the cellular model developed by Jafri, Rice and
Winslow [53], it appears that it is the intracellular calcium
spike in the diadic space (the space between the sarcolemma
and sarcoplasmic reticulum) that limits the time step, and this
spike is not at, or relatively near the wavefront.

A simple method is to use explicit time steps and divide
the tissue into an active and a passive part. Only variables
within the active region are updated [4, 41, 82]. This approach
has been found to cause distortions in the action potential.
Also, the quality of the solution is questionable when per-
forming reentry simulations with head-tail interaction [85].

Quan et al. [85] suggested an algorithm where the time
step can vary locally. The computational domain was divided
into a pre-specified set of subdomains, and the time step of
each domain was controlled only by the nodes inside the do-
main. This allows for passive regions to take longer time
steps, and small time steps are only applied in domains with
active nodes. To reduce round off errors the local forward
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Euler steps are intertwined with small, global implicit steps.
The reported speed-up was a factor of 3–17, depending on the
number of domains and the problem size.

Qu and Garfinkel [84] and also Lesh et al. [62] use opera-
tor splitting to achieve spatially varying time steps. The diffu-
sive and non-diffusive part associated with the ionic currents
are solved in different steps. Adaptive time stepping is then
used on the non-diffusive part. Since there is no communica-
tion between neighboring nodes in this part of the problem,
the time step can vary locally as the dynamics dictate.

Cherry et al. [17] suggested a scheme where both the spa-
tial and temporal resolution varies. They report a factor of 5
reduction of the computational effort compared to an explicit
forward Euler scheme with full resolution. The degradation in
error is between 1% and 6%.

4.2.3 Parallel algorithms. Parallel hardware has been em-
ployed by several groups. There are several possible ways of
implementing a parallel simulator. The different ways can be
arranged according to the level at which the parallelization
takes place. At the lowest level the parallelization is done by
the compiler (loop-level parallelization). Such strategies are
seldom efficient. Parallelization at the linear algebra level is
another possibility. Here the parallelization is done by seg-
menting the vectors and matrices of the computation such that
vector addition, inner products and other basic operations can
be computed with little inter-processor comunication.

The highest level of parallelization is to have individ-
ual simulators running on their own processors, assigned to
a specific geometric sub domain. Generally speaking higher
levels of parallelization require less frequent communication
making it more attractive on platforms with a high latency
network.

Saleheen and Ng [94] have implemented a finite differ-
ence scheme which utilizes a low level form of paralleliza-
tion. They report good efficiency although no speed-up num-
bers are given.

An example of high level parallelism is given by Porras
et al. [83]. They use a set workstations connected by a high
latency network. Only subproblems are tackled, either parts
of the ODE problem or the linear equation system, thus the
theoretical speed-up is low. The speed-up is good on the com-
putation of ion currents, but poor for the conjugate gradient
iterations. This is as expected since there is a smaller amount
of calculation per required communication step compared to
ion current calculations which are spatially decoupled.

4.2.4 Decoupled approaches. A lot of CPU work can be
saved by altering the mathematical formulation of the prob-
lem in different ways. We group these techniques here under
the heading decoupled approaches.

Previous methods of generating body surface potentials
from an active cardiac region mostly utilize some form of
equivalent cardiac source that is applied to the cardiac re-
gion within a passive torso. Many examples of this approach
may be found in the literature [31, 35, 49, 126, 127]. Often
with this approach, the feedback loop that allows the torso to
influence the active cardiac region is neglected as the gener-
ation of the cardiac source and its application to the torso are
performed in two separate steps. Another problem with this
two step approach is that the current flowing across the epi-
cardial and endocardial surfaces from the equivalent cardiac

source may not be consistent with the current flow from a de-
tailed cardiac model. These factors that do not ensure there
is current conservation detract from the accuracy of the torso
solutions.

Einthoven [23] developed the first mathematical model of
cardiac electrical function. The electrical output of the heart
was lumped into a heart vector that was projected onto the
faces of an equilateral triangle whose vertices consisted of
one leg and two arm electrodes. The heart vector was later
expressed as a dipole source by Wilson [128] who suggested
a positive pole could be placed immediately in front of the
activation wave with a negative pole immediately behind the
wavefront. A dipole source based approach is still often used
today as a simple lumped parameter way of describing the
electrical activity of the heart. Evidence is presented here,
however, that suggests a dipole source representation may be
an inadequate approximation. As early as 1963, experimen-
tal observations by Taccardi [112] suggested that a multipole
instead of single dipole cardiac source may be required to
account for some of the more complex waveforms. Barr [5]
described the calculation of body surface potentials from
a given dipolar cardiac source in an irregular torso geometry,
based on a boundary integral formulation which is essen-
tially equivalent to a zeroth-order boundary element method.
This was followed by some of the early modeling investiga-
tions into the effects of both the ventricular blood mass and
torso inhomogeneities on recorded potentials in a concentric
spheres system [69, 70]. Here the thickness of a homogeneous
muscle layer was adjusted to reflect the inhomogeneous na-
ture of the skeletal muscle tissue.

Often dipole sources are formulated to reproduce an ex-
perimentally recorded activation pattern. Bradley [13] used
a single moving dipole source that had been fitted using
a least squares approach in order to reproduce a measured
electrocardiogram. Others use a multiple dipole approach,
Miller [72] divided the heart into 23 regions, each of which
contained a single dipole. These dipole models produce
a lumped or integrated representation of the distributed car-
diac activity. Researchers also use dipole sources to examine
the effects of myocardial anisotropy [86, 113], the effects of
torso inhomogeneities [13] or a combination of the two [97].
The formulation of several different types of dipole source
models are given in Gulrajani [35].

Barr [6] adopted a different approach to transfer potentials
from the heart to the body surface. By creating a matrix of
transfer coefficients based on the geometry of the heart/torso
system, a given set of epicardial potentials could then be
transferred to the body surface through a matrix–vector prod-
uct instead of a complete solution process. This approach
has also been used more recently by Shahidi [100] who used
a transfer coefficient approach with a three dimensional finite
element torso model and recorded epicardial potentials. This
approach does require the epicardial potentials to be known.

Another class of cardiac models, termed empirical models,
seek to create a stylized representation of cardiac activation.
These models do not attempt to recreate the underlying elec-
trophysiology of cardiac tissue, which ultimately limits their
applications, but in general they may be solved quickly be-
cause of their simplifications. One such approach is cellular
automata modeling where the cardiac domain is discretized
into regular elements, each representing a small tissue unit.
These blocks of tissue may be in a finite number of states
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where rules are set up to govern the transitions between the
states along with rules prescribing the activation time of a tis-
sue block relative to its neighbors. Cellular automata models
have an advantage over other empirical models in that they
can have rules regarding tissue recovery, allowing the model-
ing of some reentrant phenomena. While these models have
been popular in large scale simulations, the rule based system
can not model any phenomena that change cellular proper-
ties over the space of multiple beats, such as the formulation
of an infarct. They are also unable to cope with externally
applied defibrillation shocks. Overviews of the history of cel-
lular automata modeling may be found in Sands [96] and
Rogers [88].

A different empirical approach uses a constant wave speed
model and is known as the Huygen’s wavefront method. The
cardiac region is discretized into a regular arrangement of
cells over which the position of the wavefront is calculated at
each time step. The Huygen’s wavefront method uses a gov-
erning equation of the form

|∇u| = 1 (45)

where u represents an activation time. This formulation gen-
erates ellipsoidal isochrones where u = constant defines an
activation wavefront. For a given active cell, each inactive
neighboring cell is considered active after a fixed time inter-
val. Hookings [46] developed a Huygen’s wavefront frame-
work that incorporates fiber rotations in two and three dimen-
sions, including an anatomically based ventricular geometry.
More recently Adams [1] employed a Huygen’s wavefront
approach over a realistic ventricular domain. A review of this
type of model is given in Plonsey [81]. The main disadvan-
tage of this approach is that only the upstroke of the activation
wave is modeled so the investigation of reentrant phenomena
is not possible. In addition to this, propagation is restricted to
occur in a finite number of directions meaning that wavefront
curvature has no effect on the speed of propagation. Using
an eikonal equation to calculate the position of the wavefront
overcomes this problem. Whereas the Huygen’s wavefront
method uses a parabolic equation, the eikonal approach uses
an elliptic equation and the wavefront position at all times can
therefore be calculated in one step.

The governing eikonal equation has the form

|∇u| = 1 +∇2u (46)

where the inclusion of the diffusive term allows the wave-
front curvature to influence the wave speed. Applications of
the eikonal approach include a simplified three dimensional
model of the left ventricle that was solved using finite elem-
ents [19, 20]. Tomlinson [115] used a finite element method
to solve an eikonal equation over a realistic ventricular geom-
etry. The final model required only 180 tricubic Hermite
elements to describe the wavefront position.

Numerous authors have adopted a continuum bidomain
(or monodomain) framework to model different aspects of
cardiac activation. Street [109] used a bidomain framework
with a modified FitzHugh–Nagumo ionic current model to
investigate propagation across a region containing connec-
tive tissue. Geselowitz [32] used a bidomain framework to
model propagation in a thin tissue layer. Cimponeriu [18]
used a finite difference technique with a monodomain model

on a grid of 200 ×200 cells. By adjusting the parameters in
the Luo–Rudy cellular model [66] they investigated different
cardiac disease states and created theoretical ECGs based on
a dipole source within an infinite volume conductor. A se-
ries of papers has also been written describing the activation
of a monodomain model of a simplified left ventricle where
the cells use a cellular automata approach [59–61]. The fi-
nite difference method was again used to calculate diffusion
and the extracellular potential fields were calculated though
equivalent cardiac dipoles. Other authors [47, 90] have used
a bidomain framework to investigate the effects of includ-
ing a fibrous cardiac microstructural model. A large volume
of research focuses on using the bidomain model to investi-
gate the effects of defibrillation shocks [50, 105, 119]. Most
bidomain implementations are based around a finite differ-
ence solution technique but the finite element method has also
been used [89], as has the finite volume technique [38, 39].
Summaries of the bidomain framework are available in Hen-
riquez [43] and Plonsey [81].

Most torso models utilize some form of boundary element
technique to define the torso surface on which potentials are
calculated. An example of this is seen in Stanley [107] who
used a boundary integral technique. Their framework was
later extended to include a coupled finite element/boundary
element model through what was termed the combination
method [108]. This framework, however, only used low order
elements and had very simple coupling between the methods.
Bradley [12] used a coupled finite element/boundary element
technique to model a human male torso. High order elem-
ents and a general coupling strategy were used throughout the
torso to ensure derivative continuity and to reduce the number
of elements needed for a converged solution. Kauppinen [55]
differed from this standard approach and used a finite dif-
ference technique to evaluate potentials within the torso that
result from a simple dipole source. Automatic medical image
segmentation was used to create detailed torso models to spe-
cific geometries.

Berenfeld [10] created a cardiac model from 145 000
cubes and used a finite difference technique along with
FitzHugh–Nagumo cellular model variations [24, 75] to
model cardiac electrical activity. This was later extended to
215 000 cubes [11] and included the addition of a special-
ized ventricular conduction system. Body surface potentials
were then generated in a second step by calculating a single
dipole source and evaluating the potentials at appropriate sites
in a homogeneous, unbounded torso model.

Four studies have been found that investigate the calcu-
lation of body surface potentials from cardiac cells using
equivalent cardiac sources and proper bounded torso models.
Wei [126] used approximately 50 000 connected elements to
model the cardiac geometry and a cellular automata model
was used to activate the cardiac tissue that was categorized
into 16 cell types. The myocardium was divided into 27 ven-
tricular and 27 atrial regions, and equivalent dipole sources
were calculated within each region through the summation
of cellular dipoles. These dipole sources were then used to
calculate body surface potentials. Weixue [127] constructed
a 65 000 element heart model from computer tomography
(CT) images with a cubic close-packed structure. Again a rule
based cellular automata approach was used to model the car-
diac activation. Cellular dipoles were created based on the
transmembrane potential gradient and were summed to cre-
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ate 82 cardiac dipoles. The dipoles were then placed inside
a triangulated torso mesh to generate body surface poten-
tials. Huiskamp [49] created a model of the ventricles that
was composed of 810 546 elements and used a biophysically
based membrane model in a monodomain framework to sim-
ulate the spread of excitation. A double layer cardiac source
was then defined on the endocardial and epicardial surfaces
assuming an equal anisotropy ratio, and the boundary elem-
ent method was used to solve for the torso surface potentials.
In the most recent study of this nature, Gulrajani [36] cre-
ated a cardiac model from 12 million solution points with
a Luo–Rudy [65] cellular model. Here an equal anisotropy as-
sumption was used to simplify the system to a monodomain
model, and the computations were performed on a large par-
allel shared memory computer. From the cardiac solution,
58 time varying current dipoles were calculated and these
were placed inside a torso model to calculate body surface
potentials.

4.3 Experimental results

The physical situation suggests that a fully coupled approach
is the appropriate means of solving the forward problem as
boundary conditions are only present on the surface of the
torso. As early as the 1960’s, researchers began question-
ing the validity of the classic heart vector approach when
experimental observations suggested that a dipolar cardiac
source was not sufficient to account for some of the more
complex waveforms observed on the body surface. A higher
order multipolar source was then suggested as an alterna-
tive [30, 112]. More recent experimental evidence has elu-
cidated the inadequacies of the top-down equivalent cardiac
source approaches, instead suggesting the necessity of the
fully coupled approach that is inherent in the physical prob-
lem. Macleod placed a perfused dog heart into a tank that
was in the shape of a human torso and was filled with elec-
trolyte [67]. The recorded epicardial potential magnitudes
changed by 50% when the electrolyte conductivity was dou-
bled, and introducing a pair of balloon insulators near the
heart to represent the lungs produced changes in the epi-
cardial potential magnitude of between 8.1% and 20.6%.
Throughout these experiments the epicardial activation pat-
tern was stable. In another study, Akiyama noted that placing
saline soaked gauze pads on an exposed porcine epicardium
significantly reduced the magnitudes of the epicardial po-
tentials [2]. Contact between the epicardium and other con-
ductive tissues within the torso also produced a reduction in
the epicardial potential magnitudes. Green measured the epi-
cardial potentials on an isolated, perfused canine heart and
also reported no significant changes in the epicardial activa-
tion pattern but significant reductions in the magnitude of the
epicardial potentials when the heart was moved from an insu-
lating medium to a conducting medium [34].

This experimental evidence can be interpreted from
a modeling standpoint by considering that the calculation
of an equivalent source in this context is usually performed
by the summation of cellular dipoles in an isolated heart.
While the patterns of activation will be generally similar be-
tween cardiac regions solved in isolation and within a coupled
torso, the epicardial potentials will be significantly differ-
ent and therefore so will the body surface potentials. Given

that one of the goals of this modeling is to generate accu-
rate body surface potentials, calculating an equivalent cardiac
source from an isolated cardiac model and then using that
equivalent source in a torso model is not sufficient for this
purpose. It is unlikely that suitable boundary conditions can
be placed on the surface of an isolated heart model to prop-
erly represent the influence of the ventricular blood masses
and passive torso loading on cardiac activation. It is also
difficult to quantify the errors associated with placing the ex-
tracellular reference potential on the surface of the heart as
opposed to the surface of the torso. Only through using a fully
coupled approach with boundary conditions in their right-
ful place on the body surface can more accurate solutions be
generated.

Initial model based solutions closely resemble the ex-
perimental evidence. Using a fully coupled inhomogeneous
model of a slice through the human male torso, an interest-
ing result is achieved when examining the effects of adding
realistic lung conductivities as opposed to an average torso
conductivity. The lungs contain large amounts of air and
therefore are poor electrical conductors. Their conductivi-
ties were therefore set to 0.05 mS mm−1 (compared with
0.22 mS mm−1 for the average torso conductivity). Compar-
ing the results from the two simulations (with and without
lungs) revealed average body surface potential magnitude
changes of 16.6% and the equivalent change on the epi-
cardium is 17.3% [15]. This epicardial change was within
the experimental range that has been found using a torso
tank. The traditional two step approach begins with a so-
lution in an isolated heart mesh that knows nothing of the
lung conductivities or any other torso components. The car-
diac source is then generated, neglecting the large effect the
lung conductivities have on the extracellular potential field.
As is seen from (14) and (15) which form part of the defin-
ition of the bidomain framework, the extracellular poten-
tial field is tightly coupled through to the cellular level and
therefore changes in the extracellular field have far reaching
consequences.

In Fig. 3 another important modeling result is seen. Here
the Noble 98 ionic current model [78] has been used within
a homogeneous 2D torso slice. The figure displays the body
surface potentials over time from one point on the torso
that are the result of a two step dipole source solution and

Fig. 3. Body surface potential traces from one node when using an equiva-
lent cardiac source based on multiple moving dipoles (Dipole) and a fully
coupled solution (Coupled). These traces are taken from a 2D torso slice
and the dipole trace has been scaled up to match the fully coupled potential
magnitudes
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a fully coupled solution. The dipole solution is created from
28 dipoles with moving centers and the resulting body surface
potentials are scaled up about zero so that the peak absolute
potential value on the body surface is the same between the
simulations.

While the timing of the events in the two traces is simi-
lar, the dipole solution produced much smaller body sur-
face signals and therefore the scaling was necessary. Even
after the scaling, Fig. 3 shows that there are quite clearly
sections where the two traces have different waveforms,
more than enough to be considered clinically significant.
While it is acknowledged that the outcomes of simulations in
three dimensional may be significantly different, the evidence
against a two step approach to solving the forward problem
of electrocardiology, both experimental and computational, is
mounting. The physical problem is a fully coupled system
and it may be necessary to adopt a fully coupled modeling
approach to properly quantify the problem.

4.4 Fully coupled approaches

As far as is known, there are at least two groups that have
presented results on this fully coupled approach. Both groups
are attempting to solve the problem described in (35)–(43),
but through different means. These two approaches are now
described.

Schematically the complete problem can be divided into
four subproblems: The ODEs in H (OH), the parabolic PDE
in H (PH), the elliptic PDE in H (EH), and the elliptic PDE
in T (ET). These subproblems may be solved fully coupled
(which means that for each time step (discrete) solutions are
found that simultaneously satisfies all the (discrete) equa-
tions. This is accurate but costly. As mentioned above, people
have in practice been using operator splitting, i.e. solving
each subproblem in sequence. The methods presented below
also use this technique to some extent. In particular, the ODE
part is always solved separately.

In the first two suggested algorithms (Sects. 4.5.1 and
4.5.2) a tighter coupling is implemented between EP and ET.
In the first case by boundary iterations which ensures that EP
and ET are satisfied simultaneously. In the second approach
the same is achieved by assembling these subproblem into
a common linear algebra system (direct assembly). In both
cases PH is solve separately.

In the third suggested algorithm (Sect. 4.6) the EP and
ET coupling is handled by formulating a scalar PDE whose
solution satisfies EP and ET. The coupling with PH is imple-
mented with direct assembly.

4.5 The Auckland approach

Much of the work described in this section is also described
in Buist & Pullan [15] which has been submitted to Annals
of Biomedical Engineering. The different domains present in
the forward problem contain important dynamics that occur
on different spatial scales. No single solution technique is
likely to be the most efficient across all of the scales and
therefore descriptions of two new solution methodologies that
are based on the coupling of solution techniques that have
proven their worth on uncoupled problems are given here.

The first new method utilizes an iterative, boundary condition
matching approach. Iterations between the extracellular and
extramyocardial solutions are undertaken to achieve match-
ing potential fields and current flows across the cardiac sur-
faces. The second new method treats the problem as a whole
where the extracellular domain and all of the extramyocardial
regions are assembled directly into a single matrix system.
A solution of this matrix system then produces a continu-
ous potential distribution throughout the torso in one step.
In some situations it is also useful to combine these two
techniques, directly assembling some of the extramyocardial
regions and iterating across others. It is important to note that
both of these techniques include the torso-heart feedback loop
that is omitted from the standard two step approach.

The active cardiac domain is modelled by the bidomain
equations which are solved by the Finite Element Derived
Finite Difference Method [14]. The cardiac geometry is de-
scribed using a small number of finite elements with high
order interpolation functions. A high resolution finite differ-
ence grid is then generated in the normalized local element
(ξ) space of each finite element. The resulting finite difference
mesh may be neither regular or orthogonal in global space,
but in the local element space a standard finite difference
formulation can be used. Metric tensors transform the spa-
tial derivatives in the bidomain equations into this normalized
space. The passive regions that occupy the remainder of the
torso volume are governed by a generalized Laplace equation
that couples to the extracellular bidomain equation. Tissue
regions that are electrically isotropic are modeled using ei-
ther a standard or derivative boundary element method [114].
The anisotropic regions are modeled using the finite element
method and the coupling of the finite and boundary element
techniques is described elsewhere [12].

Across the myocardial surfaces, the interface conditions
given in (19) and (20) must be satisfied to properly represent
the physical situation. Any Dirichlet (potential) interface con-
ditions can be coupled directly though a simple mapping as
the cardiac and passive regions both have potential as a de-
pendent variable. While Neumann (current) interface condi-
tions are solved for directly by the boundary element method,
the same cannot be said for the finite difference method. In-
stead an approximation is required to calculate the normal
current flow from the cardiac region. Given a conductivity
tensor σ and a dependent variable φ, a Neumann interface
condition can be stated as

c = (σ∇φ) ·n (47)

=σk
i

∂φ

∂ξ j

∂ξj

∂xi
nk (48)

where c is the value of the current flow. In traditional formula-
tions a zero current condition is required from the extracellu-
lar domain so the value of c is zero. The ξj term represents the

local element ξ directions within a finite element, and the
∂ξj

∂xi
and nk terms are calculated from the finite element geometry.
A fully anisotropic description of the cardiac microstructure
is included and σk

i is the resultant conductivity tensor after the
tensor aligned with the microstructural axes has been rotated

into ξ space. The
∂φ

∂ξi
term is calculated either by a two point,

two-sided or a three point, one-sided differencing scheme de-
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Fig. 4. The
∂φ

∂ξj
term is calculated in each ξ direction using either a central

(a) or one sided (b) differencing scheme based on the availability of points
in the direction of interest

pending on the availability of surrounding difference points
as is shown in Fig. 4. With these building blocks in place, the
details of the two coupling techniques are now given.

4.5.1 Boundary iterations. The first of the coupling tech-
niques is called the method of boundary iterations and seeks
to divide the large problem of solving for the extracellular and
extramyocardial fields simultaneously into several smaller
problems. For the case of the idealized two dimensional torso
slice that is illustrated in Fig. 5, the solution domain is divided
into three distinct subproblems.

Two problems are set up for the two passive regions, one
for region outside the epicardial surface and one for the region

Fig. 5. An idealized view of the three separate problem domains used by
the method of boundary iterations. The left figure (a) shows an annular
torso region constructed from two boundary element surfaces where the so-
lution domain lies between the surfaces. The middle figure (b) shows an
annular cardiac region whose geometry is described by finite elements. The
finite element derived finite difference technique has then been used to gen-
erate the high resolution finite difference solution mesh. The right figure
(c) shows a circular ventricular blood mass region defined by a ring of
boundary elements where the solution domain is inside the circle. The com-
plete solution domain is created by placing the ventricular domain inside the
annular cardiac domain and then surrounding the cardiac domain with the
annular torso domain

enclosed by the endocardial surface. In the annular cardiac
region a third problem is set up to solve the bidomain equa-
tions. The method of boundary iterations then sets up a fixed
point iteration across each of the cardiac surfaces. The aim
of the fixed point iterations is to converge until there is no
difference between the solutions across the cardiac bound-
aries. Before any iterations are undertaken a transmembrane
equation time step is taken using (15). Then, using the con-
verged epicardial potential solution from the previous time
step as an initial guess, the extracellular potential field is
calculated from (14). The resulting extracellular field then
defines the new boundary conditions on the extramyocardial
regions. Both potentials and current flows are passed between
the problems creating the fixed point iterations. It has been
found that as the solution changes by relatively small amounts
with each bidomain time step, only a small number of itera-
tions are required.

In order to minimise the number of computations that are
necessary during each iteration, many quantities may be cal-
culated before the start of the iteration process. An efficient
mapping is required that relates the boundary element nodes
that lie on the cardiac surfaces from the extramyocardial re-
gions to the boundary finite difference points that carry the
information from the cardiac region. This is always set up as
a one-to-one mapping and is time invariant. An illustration of
this is given in Fig. 6.

Fig. 6. Multiple difference points may be mapped to each boundary elem-
ent. Here the curves actually lie on top of each other, representing a finite
element boundary and three boundary elements. The red points are differ-
ence points and the green points are boundary element nodes

The mapping in the opposite direction between the bound-
ary finite difference points and the surface boundary elements
also does not change over time. As multiple difference points
can lie along a single boundary element (as is illustrated
in Fig. 6 where four boundary finite difference points map
to each boundary element) this mapping can be more com-
plex. The closest adjacent boundary element is found for each
boundary finite difference point and a modified Newton itera-
tion is used to calculate the ξ position of the point within the
selected element.

With this approach it is necessary for all of the problems
to be solved in isolation and therefore some restrictions must
be placed on the imposed boundary conditions. The regions
outside the epicardium form one problem where the bound-
ary conditions on the torso surface are prescribed by (33) with
the addition of some form of reference potential. On the epi-
cardial surface any combination of flux and potential condi-
tions may be imposed on the passive regions surrounding the
heart. Each ventricular region must have at least one potential
boundary condition to provide a potential reference, but apart
from this restriction either a flux or a potential boundary con-
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dition can be set at each node on the endocardial surfaces. The
boundary conditions set on the epicardial and endocardial sur-
faces only specify the boundary condition type to be used.
The value of the boundary condition is calculated from the
finite difference solution and is time and iteration dependent.

The type of boundary conditions set on the surface of the
extracellular cardiac domain are derived from the boundary
conditions applied to the surrounding extramyocardial sur-
faces. For example, if the boundary element associated with
a given boundary finite difference point has a potential bound-
ary condition set at each local element node then the finite
difference point must have a current boundary condition. If
each of the local element nodes has a current boundary con-
dition, the finite difference point must have a potential bound-
ary condition. In some situations the local element nodes have
different types of boundary conditions applied and in these
cases the difference points are assigned boundary conditions
based on their ξ location within the coupled boundary elem-
ent. The convergence of the iteration algorithm relies on this
application of complementary boundary conditions to ensure
that at a given interface point, both problems are not solving
for the same dependent variable. Initially all boundary condi-
tions are set to be consistent with a zero reference potential
and no current flow across the outer torso surface.

The solution process is started by incrementing the solu-
tion time and solving for the updated cellular variables and
transmembrane potential at the new time step. After each time
step the iterative process begins anew. If linear elements are
used to model the regions surrounding the heart then current
and potential values are exchanged across the cardiac bound-
aries, i.e.,

φe ⇐⇒ φo (49)

(σe∇φe) ·ne ⇐⇒ − (σo∇φo) ·no (50)

Updating the boundary condition values at the extramyocar-
dial nodes on the cardiac surfaces is a trivial process. If a po-
tential is required at a node it is obtained directly from the
extracellular potential of the appropriate coupled finite differ-
ence point. If a normal current is required, the finite difference
approximation given in (48) is used to calculate the appropri-
ate value. Once all of the passive region boundary values have
been updated all passive problems are resolved.

Following the solution of the passive problems, nodal in-
terpolation is used to update the extracellular cardiac bound-
ary conditions as it is quite possible there are more finite
difference points than local element nodes within each bound-
ary element. The stored element number and ξ position is
used to interpolate the previously calculated nodal fields to
find the new boundary values. It is then possible to recalcu-
late a new extracellular potential field that is influenced by the
passive torso regions. At the start of each iterative process,
the converged extracellular field from the previous time step
is used as the initial extracellular solution estimate.

The iterative process continues until the difference be-
tween the extracellular and extramyocardial solutions is be-
low specified maximum allowable current and potential tol-
erances. The solutions fields are compared at each boundary
element node on the myocardial surfaces and only when the
solution differences are below the tolerances at every node
do the iterations cease. As the final extracellular field may
be quite different to the initial field, after the iterations have

converged the transmembrane potential field is recalculated
at the current time step to reflect these differences. Another
bidomain time step is then taken and the iterative procedure
is restarted. The complete solution algorithm is therefore

foreach time step
Solve for the transmembrane potential field

(Equation (15))
while not converged and less than maximum

iterations
Solve for the extracellular potential

(Equation (14))
Update the cardiac surface nodal boundary

conditions(Equations (49) and (50))

Solve for a new ventricular solution

(Equation (32))
Solve for a new torso solution (Equation (32))
Update the extracellular boundary conditions

(Equations (49) and (50))
end while
Solve for the transmembrane potential

(Equation (15))

end foreach

It has been found that it is necessary to add relaxation
parameters to the iteration algorithm to prevent oscillations.
These effectively reduce the step size taken each time bound-
ary conditions are transferred, moving only part of the way
towards the solution suggested by the other region. The first
parameter, α1, applies to obtaining cardiac boundary condi-
tions from the boundary elements and the second parameter,
α2, applies to obtaining nodal boundary conditions from the
finite difference solution. In both cases (51) is used with the
αi (= α1, α2) parameter always multiplying the finite differ-
ence contribution.

φ = (αi) φe + (1 −αi) φo (51)

These parameters introduce a trade off between convergence
stability and speed. In the extreme case of α1 = 1.0 or α2 =
0.0, no progress can be made towards the converged solu-
tion. It is envisaged that the lowest value of α1 and the highest
value of α2 that maintains convergence will allow the largest
steps to be taken and therefore the fastest convergence.

4.5.2 Direct assembly. While the boundary iteration ap-
proach divides the forward problem into smaller pieces, the
direct assembly approach seeks to couple the different prob-
lem regions by assembling all of the equations from the ex-
tracellular and extramyocardial domains into a single matrix
system. The application of the interface conditions from (19)
and (20) are an integral part of the resulting matrix structure.
Given a transmembrane potential distribution, this matrix sys-
tem directly returns solutions that are continuous across the
cardiac boundaries. The methods by which the extracellular
finite difference equations and the extramyocardial boundary
element equations are coupled are presented here.
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The direct assembly method eliminates the need to per-
form multiple solutions at each time step and also avoids the
additional book keeping that is necessary with the iterative
process. The main disadvantage with this approach is that
the solution matrix is significantly larger than the matrices
from the iterative approach and they contain large dense re-
gions due to the boundary elements and the imposition of the
coupling conditions. With the current implementation it has
been assumed that there is a one to one mapping between the
boundary finite difference points and the surrounding bound-
ary element nodes to which they are coupled. Here two cases
are used to illustrate the formulation of the direct assembly
method. In the first case we consider an active cardiac region
that completely encloses a passive ventricular region, and in
the second case an additional passive region is added that sur-
rounds the cardiac region.

An idealized occurrence of the first scenario is illustrated
in Fig. 7 where a single circular boundary element ventricular
region is completely enclosed by an annular cardiac region.
The finite difference points in the cardiac region are placed
into one of several classes based on their location with respect
to the cardiac surfaces. Boundary finite difference points that
are not coupled to boundary element nodes are given the
subscript h and the corresponding matrix coefficients are de-
noted by Kh . Boundary finite difference points connected to
boundary element nodes are given the subscript b with matrix
coefficients Kb. Internal finite difference points that are used
in the finite difference approximations of the normal bound-
ary currents are given the subscript j and matrix coefficients
Kj . Any remaining finite difference points are internal and are
not directly involved in the boundary element coupling. These
points are given the subscript I with coefficients KI .

The governing equation for the extracellular potential
field, φe, in the cardiac region is given by (14) and results in

Fig. 7. A simple annular finite element mesh enclosing a circular boundary
element mesh. The finite difference points of interest are drawn enlarged.
The first figure (a) shows type b finite difference points that are coupled
to boundary elements. The second figure (b) shows type j finite difference
points that are used to calculate normal boundary fluxes. The third figure
(c) shows type I finite difference points that are internal and not involved on
any coupling, and the fourth figure (d) shows type h finite difference points
that are external but are uncoupled

a matrix system of the form

Kφ = f (52)

where K is the matrix of finite difference coefficients, φ is the
vector of extracellular potentials and f is calculated from the
transmembrane potential field and boundary conditions that
have been applied. The K matrix can then be expressed in
terms of the finite difference groupings as

Khh Kh I Kh j Khb
KIh KII KI j KIb
Kjh KjI Kjj Kjb
Kbh KbI Kb j Kbb




φh
φI
φj
φb

 =


fh
f I
fj
fb

 .

If the internal boundary element region is considered in
isolation, a system of equations would normally be created to
solve the generalized Laplace equation given by (32), where
the coefficients can be assembled into a matrix system of the
form

Gφ = Hq . (53)

Here φ represents the potential field and G is the matrix
of the potential field coefficients, q represents the normal
boundary flux at each node and H is the matrix of flux coeffi-
cients. Boundary conditions would usually be applied to (53)
to form a square b ×b system of equations to be solved. In
the coupled problem b is both the number of boundary elem-
ent nodes and the number of coupled finite difference points.
Each element of the q vector of fluxes can be described in
terms of a finite difference approximation from (48). The co-
efficients from these approximations are assembled into a ma-
trix, D, where each row in D is generated from a boundary
finite difference point coupled to a boundary element node,
and the values in each row are the finite difference flux co-
efficients. The D matrix therefore has b rows and (b + j)
columns. The continuity of current interface condition can
now be written as

q = −Dφ . (54)

Here it has been assumed that both the cardiac and the bound-
ary element regions are defined with outward normal vectors
so the negative sign is required to reflect the direction of the
current flow. Combining (53) and (54) gives

Hq = − HDφ

= [
Hbb

] [−Dbb − Db j
] [

φb
φj

]
= [−HbbDbb − HbbDb j

] [
φb
φj

]
(55)

and substitution back into (53) gives[
Gbb 0

] [
φb
φj

]
= [−Hbb Dbb −Hbb Db j

] [
φb
φj

]
. (56)

Rearranging (56) gives the expressions for the coupled
boundary points in terms of potentials over the finite differ-
ence mesh, i.e.,[
Gbb + HbbDbb HbbDb j

] [
φb
φj

]
= 0 . (57)
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This expression is then assembled into the finite difference
coefficient matrix from (52) to obtain the final system.

Khh Kh I Kh j Khb
KIh KII KI j KIb
Kjh KjI Kjj Kjb
0 0 HbbDb j Gbb + HbbDbb




φh
φI
φj
φb

 =


fh
f I
fj
0


(58)

Equation (58) is actually a simplified view of the matrix struc-
ture. Because of independent node and finite difference point
numbering systems, the G and H matrices have their rows
and columns pivoted to prepare them for assembly into the K
matrix, which is assembled in an ascending finite difference
point order. The global finite difference point numbers within
each classification are also not contiguous. Throughout the
assembly process only dense matrices are not stored in sparse
structures to allow large problems to be solved. The right
hand side vector components, f I and fj are found from (14)
and for fh , any potential or current boundary conditions may
be applied.

The addition of an external region that surrounds both the
cardiac and the ventricular regions results in a three compon-
ent problem that is illustrated in Fig. 5. Instead of iterating
across the two cardiac surfaces, all three regions are directly
assembled into a single solution matrix. In situations such as
this where all of the cardiac boundaries are coupled there are
no h finite difference points as they are all coupled to bound-
ary element nodes. The torso surface nodes are not directly
coupled to a finite difference point and are assigned global
numbers that are consistent with the finite difference point
numbering system. This allows them to be assembled into the
final finite difference based solution matrix. The torso surface
points are given the subscript t with matrix coefficients Gt
and Ht.

If the boundary element coefficient matrices from the ven-
tricular region are denoted by G1 and H1, and the matrices
from the torso regions are denoted by G2 and H2 then these
can be assembled into global G and H matrices of the formG1bb 0 0

0 G2bb G2bt
0 G2tb G2tt

φ1b
φ2b
φ2t

 =
H1bb 0 0

0 H2bb H2bt
0 H2tb H2tt

 q1b
q2b
q2t


(59)

The torso element matrix system can now be thought of in
terms of coupled (b) and uncoupled (t) nodes.[
Gbb Gbt
Gtb Gtt

][
φb
φt

]
=

[
Hbb Hbt
Htb Htt

][
qb
qt

]
(60)

The outer surface of the torso domain is assumed to have an
insulating air boundary and therefore the qt values are zero.
The coupling conditions are then formulated to find an ex-
pression equivalent to (55).

Hq =−
[

Hbb Hbt
Htb Htt

] [
Dbb Db j 0
0 0 0

]φb
φj
φt


=−

[
HbbDbb Hbb Db j 0
Htb Dbb Htb Db j 0

]φb
φj
φt

 (61)

This system is then combined with the G matrix to obtain an
equation in the same form as (57).

(G + HD) φ = 0[
Gbb + HbbDbb HbbDb j Gbt
Gtb + HtbDbb Htb Db j Gtt

]φb
φj
φt

 = 0 (62)

This result is then assembled into the global matrix system, K
to obtain the final system shown in (63).



KII KI1 j KI2 j KI1b KI2b 0
K1 jI K1 j1 j K1 j2 j K1 j1b K1 j2b 0
K2 jI K2 j1 j K2 j2 j K2 j1b K2 j2b 0

0 H1bb D1b j 0 G1bb + H1bb D1bb 0 0
0 0 H2bb D2b j 0 G2bb + H2bb D2bb G2bt

0 0 H2tb D2b j 0 G2tb + H2tb D2bb G2tt



×


φI
φ1 j
φ2 j
φ1b
φ2b
φt

 =


f I
f1 j
f2 j
0
0
0

 (63)

The physical problem requires some sort of reference poten-
tial on the surface of the torso and here a single reference
node is set to have a zero potential. The matrix row and col-
umn that correspond to this reference are eliminated from the
final matrix system during the assembly process and the con-
sistency criteria of Salu is again used to generate solutions
consistent with the system of equations [95].

4.6 The Oslo approach

It is possible to solve the PDEs of the bidomain model sim-
ultaneously with a fully implicit approach. In theory it is
possible to also include the cell model ODEs in such a sim-
ultaneous discretization, for a fully implicit solution of the
complete problem. However, most ionic current models are
non-linear and highly complex, and it is convenient to sepa-
rate these equations from the PDEs with an operator splitting
technique. Such a semi-implicit technique may be described
as follows.
1. Assume that the solution of Vm and s at time tn is known.
2. Integrate the cell model ODEs with a suitable solver for

stiff ODE systems, to obtain the state vector s at time step
tn+1.

3. Solve the PDEs fully coupled to determine the unknown
fields V n+1

m , φn+1
e and φn+1

o .
A possible choice of solver for the stiff ODE systems is
described in [110]. To discretize the PDEs we combine an
implicit Euler time discretization with a finite element dis-
cretization in space [111]. Recall that the PDEs in (35)–
(43) are linear except for the ionic current term Iion(Vm, s).
To avoid solving non-linear equations for each time step
we evaluate this term explicitly, i.e. Iion(V n

m, sn+1). Because
sn+1 is already known we then have no problems with non-
linearity.
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With this approach we get a time discrete PDE system
given by

∇ · (σ ′
i ∇V n+1

m

)+∇ · (σ ′
i ∇φn+1

e

)
= Am

V n+1
m − V n

m

∆t
+ A′

m Iion
(
V n

m, sn+1) x ∈ H , (64)

∇ · (σ ′
i ∇V n+1

m

)+∇ · ((σ ′
i +σ ′

e

) ∇φn+1
e

) = 0 x ∈ H , (65)

∇ · (σ ′
o∇φn+1

o

) = 0 x ∈ T , (66)

nH · (σ ′
i ∇V n+1

m +σ ′
i ∇φn+1

e

) = 0 x ∈ ∂H , (67)

φn+1
e = φn+1

o x ∈ ∂H , (68)

nH · (σ ′
e∇φn+1

e

)+nT · (σ ′
o∇φn+1

o

) = 0 x ∈ ∂H , (69)

nT · (σ ′
o∇φn+1

o

) = 0 x ∈ ∂T . (70)

The primes on the Am and the conductivity tensors are in-
troduced because we have scaled the equations with the
membrane capacitance Cm . The new quantities are defined
by

σ ′
i = 1

Cm
σi , σ ′

e = 1

Cm
σe ,

σ ′
o = 1

Cm
σo , A′

m = 1

Cm
Am .

For the remainder of this section we will skip the primes
on the symbols, as we will always refer to the scaled
quantities.

We may use a standard Galerkin finite element method
to obtain a spatial discretization of the time discrete system.
To obtain a weak formulation of the equations we intro-
duce appropriate function spaces V(H ) and V(T ) such that
Vm, φe ∈ V(H ) and φo ∈ V(T ). To simplify the notation we
also introduce the inner products

(v, ϕ) = Am

∫
H

vϕdx , (71)

ai(v, ϕ) =
∫
H

σi∇v ·∇ϕdx , (72)

ai+e(v, ϕ) =
∫
H

(σi +σe)∇v ·∇ϕdx , (73)

aT (v, ϕ) =
∫
T

σo∇v ·∇ϕdx . (74)

A weak formulation of (64)–(66) may then be written

−ai
(
V n+1

m , ϕ
)−ai

(
φn+1

e , ϕ
)

+
∫
∂H

ϕ
[(

σi∇V n+1
m

) ·nH + (
σi∇φn+1

e

) ·nH
]

dS

= 1

∆t

(
V n+1

m − V n
m, ϕ

)+ (
ϕ, Iion

(
V n

m, sn+1)) ∀ϕ ∈ V(H ) ,

(75)

−ai
(
V n+1

m , ϕ
)−ai+e

(
φn+1

e , ϕ
)

+
∫
∂H

ϕ
[(

σi∇V n+1
m

) ·nH + (
σi∇φn+1

e

) ·nH
]

dS

+
∫
∂H

ϕ
[(

σe∇φn+1
e

) ·nH
]

dS = 0 ∀ϕ ∈ V(H ) , (76)

−aT
(
φn+1

o , ϕ
)+

∫
∂H

ϕ
[(

σo∇φn+1
o

) ·nT
]

dS

+
∫
∂T

ϕ
[(

σo∇φn+1
o

) ·nT
]

dS = 0 ∀ϕ ∈ V(T ) . (77)

The weakly formulated equations may be simplified by
applying the conditions specified on the surface of the heart
and the torso. The boundary integral in (75) and the first of
the two boundary terms in (76) vanish because of the bound-
ary condition (67). Furthermore, the boundary integral over
∂T vanishes because of (70). The system is reduced to

−ai
(
V n+1

m , ϕ
)−ai

(
φn+1

e , ϕ
)

= 1

∆t

(
V n+1

m − V n
m, ϕ

)+ (
ϕ, Iion

(
V n

m, sn+1)) ∀ϕ ∈ V(H ) ,

(78)

−ai
(
V n+1

m , ϕ
)−ai+e

(
φn+1

e , ϕ
)

+
∫
∂H

ϕ
[(

σe∇φn+1
e

) ·nH
]

dS = 0 ∀ϕ ∈ V(H ) , (79)

−aT
(
φn+1

o , ϕ
)+

∫
∂H

ϕ
[(

σo∇φn+1
o

) ·nT
]

dS = 0 ∀ϕ ∈ V(T ) .

(80)

Equation (68) states that on the heart surface the extracellular
potential is equal to the potential in the surrounding torso. We
may introduce a new field φ, defined over H ∪ T , given by

φ =
{
φe in H
φo in T .

If we add (79) and (80), the weakly formulated system is
reduced to two equations. The remaining boundary integral
terms cancel due to the continuity condition (69). We get(
V n+1

m , ϕ
)+∆tai

(
V n+1

m , ϕ
)+∆tai

(
φn+1, ϕ

)
= (

V n
m, ϕ

)−∆t
(
ϕ, Iion

(
V n

m, sn+1)) ∀ϕ ∈ V(H ) , (81)

∆tai
(
V n+1

m , ϕ
)+∆tai+e

(
φn+1, ϕ

)
+∆taT

(
φn+1, ϕ

) = 0 ∀ϕ ∈ V(H ∪ T ) , (82)

where both equations have been multiplied with ∆t.
As stated in (73) and (74), ai+e(·, ·) is defined as an inte-

gral over H while aT (·, ·) is an integral over T . Accordingly,
the terms ai+e(φ

n+1, ϕ) and aT (φn+1, ϕ) are non-zero only for
test functions ϕ with support in H and T , respectively. Both
terms will be non-zero if ϕ has support in both H and T .

To discretize the weakly formulated equations we intro-
duce two grids, one over H and one over H ∪ T . We define
basis functions ψi , i = 1, . . . , m and ηi, i = 1, . . . , n, which
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span discrete subspaces of V(H ) and V(H ∪ T ) respectively.
The unknown fields V n+1

m and φn+1 may be approximated by

V n+1
m =

p∑
i=1

ψivi (83)

φn+1 =
q∑

i=1

ηiui . (84)

Inserting these approximations into the weak formulation
given above, we obtain the block structured linear system

A

[
v
u

]
=

[
A B

BT C

] [
v
u

]
=

[
α
0

]
. (85)

The blocks are given by

Aij = (
ψi , ψj

)+∆tai
(
ψi , ψj

)
, (86)

Bij = ∆tai
(
ψi, ηj

)
, (87)

Cij = ∆tai+e
(
ηi, ηj

)+∆taT
(
ηi, ηj

)
, (88)

and the right hand side vector

αi = (
vn, ψi

)−∆t
(
ψ, Iion

(
vn, sn+1)) .

We see that A has dimension m ×m, B m ×n and C is an
n ×n matrix. Since we normally have m �= n, B and BT are
rectangular matrices.

The structure of the linear system presented here is fairly
complex, and a common method for solving such systems is
to apply some sort of operator splitting technique. By sim-
ple techniques like e.g. block Jacobi iterations, defined for the
present system by

vk+1 = A−1 (
α− Buk

)
, (89)

uk+1 = C−1 (−BT vk
)

, (90)

it is possible to reduce the complex coupled system to two
simpler systems. It is then often possible to construct effi-
cient solution algorithms for solving these sub-systems, i.e.
for computing the inverses A−1 and C−1. However, even if
the sub-systems may be solved efficiently, the convergence
of the operator splitting algorithm itself may in many cases
be slow. To avoid such problems, we have proposed to use
the block Jacobi iteration as a preconditioner for a Krylov-
subspace iterative method, rather than as a solver in itself.
The inverses A−1 and C−1 are then approximated with a fixed
number of multigrid cycles. In matrix form, the suggested
preconditioner may be written

B =
[(

A−1)̂ 0
0 (C−1)̂

]
,

where (·)̂ denotes a multigrid approximation to the respec-
tive inverse. Because of the symmetry of the operators ai(·, ·),
ai+e(·, ·) and aT (·, ·), the linear system (85) is obviously sym-
metric. This also applies to the preconditioned system

BA

[
v
u

]
= B

[
α
0

]
,

to which we apply the iterative solver. Preliminary analysis
indicates that the system is also positive definite, and we have
thus chosen the Conjugate Gradient (CG) method to solve the
linear system. Although the positivity of the system remains
to be formally verified, experimental results confirm that the
CG algorithm performs well.

The fully coupled solution technique presented here has
been tested for a number of problems differing in complex-
ity and physiological relevance. The obtained results demon-
strate that the scaling properties of the algorithm are very
close to being optimal, in the sense that the workload is linear
with respect to the number of unknowns. Results from a 3D
simulation on a realistic geometry are shown in Fig. 8. For
this simulation the geometry and fiber directions of the ventri-
cles were taken from [76], and the geometry of the torso was
constructed from the Visible Human dataset [122]. A rela-
tively coarse grid with 83 025 unknowns in the heart and
473 738 nodes in the torso has been used. The time instant
shown is after 20 ms and after time step number 160.

Fig. 8. The transmembrane potential and the body surface potential after
20 ms. The heart is view from the front and from above. Both on the heart
and on the torso red and blue indicates negative and positive potentials,
respectively

5 Presentation and visualization of results

Solutions to the forward problem generate huge amounts of
data, often on the order of several gigabytes. Time depen-
dent data is generated from each individual cell through to
all of the solution points within the torso. Binary file formats
allow the generated information to be stored efficiently but
perhaps the best solution to this data problem is to decide
what information will be required before any simulations are
run. Often not all of the data is necessary and it is possible to
only store the information of interest, for example only stor-
ing body surface potential traces while omitting much cellular
information. The way in which the resulting data is displayed
depends on what information is most useful to the viewer and
has some element of personal preference. Here several of the
visualization techniques commonly used in this field are illus-
trated to give an idea of what sorts of displays are possible.

The first illustration is shown in Fig. 9 shows two views
of the torso model developed at The University of Auck-
land which is constructed from high order finite and boundary
elements. The left figure (Fig. 9a) shows the full inhomoge-
neous torso mesh including a cardiac region, two lung re-
gions, a torso cavity, an anisotropic skeletal muscle later and
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Fig. 9. The left figure (a) shows the full inhomogeneous Auckland torso
model. The right figure (b) shows a body surface map that was recorded
from a normal volunteer

a subcutaneous fat layer. One of the applications of this model
is the interpretation of experimentally recorded body surface
maps. The right figure (Fig. 9b) shows one way of represent-
ing a body surface potential map that has been recorded off
a normal volunteer, using a 256 electrode jacket and fitting the
recorded potentials to the torso surface. Here white represents
a zero potential value, blue represents negative potentials and
red represents positive potentials.

Figure 10 shows two pictures from the same torso that is
used in Fig. 9a. Here computed body surface potential fields
are drawn at one time instant, where again blue potentials are
negative and red potentials are positive. Over the body surface
potential field, contours of constant potential have been drawn
using black lines. Figure 10a shows the contours on the front
of the torso and Fig. 10b shows the contours on the back of
the torso where both pictures are drawn using data from the
same time step. In addition to drawing these potential fields
and contours on the torso surface, it is also possible to draw
them on the epicardial surface or any of the other region sur-
faces within the torso.

Often it is useful to use transparency to look at what
is happening within the torso cavity. An illustration of this
given in Fig. 11a. Here colored isosurfaces are drawn through
two potential values within the torso geometry. This can be
thought of as a 3D representation of what the contour lines
show on the surface of the torso and gives a way of visual-

Fig. 10. These figures show the calculated potential field on the front and
back surfaces of the torso where contours have been drawn at constant
potential intervals

izing how potential lines on the epicardium are mapped out
to the body surface. In Fig. 11b the torso surface has been
made transparent again in order to see lines of constant cur-
rent drawn within the torso. Here the current lines link the
areas of the heart that have positive and negative potentials.
These current lines are started from either fixed or random
seed points and give an indication of the current loops within
the torso that result from cardiac electrical activity.

At the level of the heart it is possible to draw either the
transmembrane potential field (as is shown in Fig. 12a) or ex-
tracellular potential field on the surface of the myocardium.
Here the Noble 98 cellular model is used with a 40 finite
element description of the myocardium over which the finite
element derived finite difference method has been used to cre-
ate a high resolution mesh. The blue tissue is at the resting
potential and the red tissue is at the peak potential. Any of
the cellular parameters can also be plotted over the cardiac
mesh so features such as the calcium wave can be visual-
ized. One other option is to calculate the activation times of
each of the cardiac solution points and it is then possible to
draw the activation times as a field over the cardiac geometry.
This situation is illustrated in a 2D cross section through the
heart in Fig. 12b where blue regions are early activation times
and yellow regions are late activation times. The contours are
drawn at uniform time intervals.

Fig. 11. The left figure (a) shows calculated potential isosurfaces within
a homogeneous torso that are the result of a cardiac source. The right fig-
ure (b) shows current lines within the torso that start and end in the heart
as a result of the zero flux torso surface boundary conditions

Fig. 12. The left figure (a) shows the transmembrane potential field on
the surface of the Auckland ventricular model. Here the Noble 98 cellular
model is used. The right figure (b) shows a slice through the ventricu-
lar model onto which a field showing calculated activation times has been
drawn
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Figure 13 demonstrates the use of an isosurface to show
the position of the wavefront as it moves through a block of
myocardium. In this case the block is the inter-ventricular
septum from the Auckland heart model and into this do-
main an idealized Purkinje fiber tree is grown. The terminal
branches of the tree are coupled to the myocardium so that
stimulation to the proximal end of the tree will start an ac-
tivation wave that traverses the tree and then activates the
myocardial tissue. The semi-transparent surfaces on the tissue
block in this situation have been colored by the transmem-

Fig. 13. These figures show three time instants in the activation of the ven-
tricular septum from the Auckland heart model. Here an idealised Purkinje
tree is coupled to the myocardium at the distal ends of the tree

Fig. 14. The first figure (a) shows the local refinement of the solution mesh
around an infarcted region in the left ventricular wall. The second figure
(b) shows the cellular action potential from the Beeler–Reuter [9] model
in normal and ischemic tissue. The picture in figure a is courtesy of Carey
Stevens, The University of Auckland

brane potential field where blue tissue is at rest and red tissue
is at the plateau potential. The three pictures shown in Fig. 13
show the position of the activation wave 25, 30 and 40 ms
after a stimulation has been applied to the proximal end of the
Purkinje tree.

One current application area is the study of myocardial is-
chemia and infarction. Figure 14a shows a porcine left ventri-
cle where an infarcted region is present within the myocardial
wall. The location and geometry of the infarct is determined
from experimentally obtained slices. An adaptive meshing
technique is used to increase the finite element resolution
around the area of interest so the infarct geometry is well de-
fined. It is then possible to adjust the cellular parameters to
reflect material property changes that occur in the infarct, and
in the ischemic border zone around the infarct. Fig. 14b shows
the cellular model developed by Beeler & Reuter [9] in nor-
mal and ischemic tissue. This change in the action potential
is achieved by reducing the conductance of the slow inward
current.

6 Discussion

We have described the forward problem of cardiac electro-
physiology and reviewed the current state of this research
area. We have presented above how the inherently coupled
nature of the current flow through the heart and torso may
be modeled and solved. The size of this problem currently
prevents a full solution of this model in 3D even using the
middle-out modeling approach adopted here. We have also
focussed solely on the electrical activity. However, cardiac
activity is a highly complicated and coupled problem, and
factors such as mechanics, energetics, fluid flow all affect
the electrical and geometric nature of the problem. The me-
chanics changes the geometry of the heart and thus also the
conductivity tensors and the propagation. Furthermore, the
blood flow is coupled to the mechanical behavior of the heart.

One often hears such limitations being used as reasons
for dismissing a models utility outright. The forward prob-
lem presented here is a step towards the virtual heart. It must
be the way forward – there is no other feasible way of deal-
ing with the emerging volumes of data in any sensible sort of
manner.

With the steady advance in hardware and software we be-
lieve that the field of electrocardiology will find computations
increasingly useful and necessary. First as a research tool, but
ultimately also in clinical use.
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