
Digital Object Identifier (DOI) 10.1007/s00791-003-0100-5
Comput Visual Sci 5: 195–213 (2003) Computing and

Visualization in Science

Regular article

Modeling the electrical activity of the heart: A Bidomain Model of the ventricles
embedded in a torso

Glenn Terje Lines1,2, Per Grøttum2, Aslak Tveito1,2

1 Simula Research Laboratory, P.O. Box 134 Lysaker, N-1325, Norway
(e-mail: glennli@simula.no)

2 Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, N-0316, Norway

Received: 24 January 2000 / Accepted: 29 June 2002
Published online: 10 April 2003 –  Springer-Verlag 2003

Communicated by: G. Wittum

Abstract. In this paper a model for the electrical activity
of the heart will be presented and an approach to solve the
resulting numerical problem will be suggested. The Bido-
main Model is used to compute the spatial distribution of
the electrical potential. The partial differential equations are
discretized with the finite element method and the multigrid
method is used to solve the corresponding linear equations.
Adaptivity is applied to resolve the steep gradients in the
solution.

1 Introduction

The contraction of the heart is preceded and caused by a cel-
lular electro-chemical reaction. This reaction causes an elec-
trical field to be created. The measurement of this field on
the body surface is called the electrocardiogram (ECG). The
ECG is an important tool for the clinician in that it changes
characteristically in a number of pathological conditions. In-
farction and rhythm disturbances are among the illnesses that
can be detected by such measurements.

A motivation for simulating the electrical activity in the
heart is to gain a better understanding of the relationship be-
tween the ECG signal and different anomalies in the heart.
For example how does the size and the location of an infarct
affect the electrical field generated by the heart?

Mathematically the electrical activity of the heart is
described by the Bidomain Model. It was introduced by
Geselowitz in the late 70s [8]. On realistic geometries it is not
possible to solve these equations analytically. Even numer-
ically these models are hard to solve and one has been forced
to sacrifice accuracy in order to obtain any results at all. Using
simplified models or solving the equations with coarse dis-
cretizations are two options, a third possibility is to simulate
only a small portion of the myocardium (the heart muscle).
Often a combination of all the three simplifications has been
employed.

Important analysis of the model has been performed by
Colli Franzone et al. [3–5] including the derivation of the
eikonal equation. This formulation makes some simplifying
assumptions which greatly reduces the numerical workload.

The eikonal formulation has also been derived independently
by Keener [16]. The Bidomain Model includes a term de-
scribing the flow of ions across the cell membrane. The sim-
plest ion model describes the current as a cubic function of
the potential. This model is commonly used in connection
with the Eikonal Model since it makes it possible to obtain
a parameter of the model (dimensionless propagation speed)
analytically. This is not possible with more complex ionic
models, where the parameter must be estimated numerically.
Simulations with better ionic models have been performed by
Rogers and McCulloch [23] who used the FitzHugh–Nagumo
model [7]. More recently Huiskamp [13] has performed simu-
lations using the Beeler–Reuter equations [1]. That study also
made use of accurate 3D geometry made available by Hunter
et al. [21].

Determining the body surface potential from the heart sur-
face potential is termed the forward problem. It is necessary
to also solve this problem in order to compute the surface
ECGs. The mathematical model for this problem is simpler
than the Bidomain Model for the heart. However, in order to
perform realistic simulations the varying conductivities in the
torso should be incorporated. The variation in the conductivi-
ties are due to inhomogeneities and anisotropic muscle tissue.

In the present work we have implemented an accurate
simulator with few sacrifices being made with respect to the
model description. The simulator simultaneously solves the
equations of the Bidomain Model and the forward problem.
In this way iterating between the two solutions is avoided.
Furthermore, special attention has be given to representing
the ionic current accurately. To this end we have used the
cell model of Luo–Rudy [20]. Efficient numerical techniques
such as multigrid and adaptivity have been employed. The
simulator is validated by simulations on simple and more
anatomically correct geometries and the requirements on the
discretization parameters are established.

2 The physiology of the problem

Blood enters the heart via the atria and are pumped back to the
body by the contraction of the ventricles. The right ventricle
supplies the blood to the lungs while the more powerful left
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ventricle pumps blood into the rest of the body. The circuit is
illustrated in Fig. 1.

The tissue of the ventricles and atria are composed of
muscle fibers. These fibers are oblong like cylinders with
a step-like surface that connects to neighboring fibers. Electri-
cal current is lead from cell to cell through these connections
and the direction of the current flow is therefore determined
by the orientation of the fibers. This makes the myocardial tis-
sue anisotropic, i.e. the electrical conductivity is not the same
in all directions.

The individual muscle cells contract when they are stimu-
lated electrically and they also pass the stimulus on to neigh-
boring cells, thus stimulating the heart at one point creates
a wave of depolarization throughout the heart. This wavefront
is narrow typically thinner than one millimeter.

The propagation process is sped up by a special type of
fibers which conducts the stimulus faster than normal muscle
fibers, these are called Purkinje fibers. They originate from
the atrioventricular(AV) node, which is located between the
atria and the ventricles, and branch out to the ventricles. Elec-
trical pulses travels along these fibers and at their endings the
surrounding tissue is stimulated. As a result the depolariza-
tion is initiated simultaneously at multiple locations in the
heart, resulting in a synchronized contraction of the muscle
cells.

Fig. 1. The flow of blood through the body. The thick line around the left
ventricle indicates the larger amount of muscle mass compared to the right
ventricle. RA and LA represents the right and left atrium, respectively

2.1 Electrophysiology of the myocytes

The cell is delimited by the plasma membrane. The purpose
of the membrane is to control the flow of substances into and
out of the cell. The composition of the intra- and extracellular
fluid differ, both chemically and electrically. In particular, the
intracellular potassium concentration is much higher than the
extracellular potassium concentration. This causes an outflow
of potassium ions and consequently a difference in charge
distribution. The charge gradient sets up a transmembrane
potential.

Excitable cells like muscle cells and nerve cells differ
from other cells in that they have the ability to change their
transmembrane potential from the normal resting potential.
Some of the ion channels in the membrane of excitable cells
are controlled by gates which are sensitive to external stim-
ulus. The permeability of the membrane is thus affected by

changes in the external conditions. An increase of the trans-
membrane potential above the resting potential is called depo-
larization. This may occur for instance when sodium channels
are opened and the positively charged sodium ions flow into
the cell.

Up to a certain level the depolarization is graded, i.e. the
greater the stimulus the greater the response. However, if the
stimulus causes the cell to depolarize beyond the so-called
threshold potential a different kind of reaction takes place, the
action potential. The response is no longer graded but rather
a cascade response. Voltage sensitive gates open up sodium
channels, causing more ions to flow into the cell and making
the transmembrane potential depolarize further. This causes
the gates to become even more open and the influx increases
further. This self-amplifying process continues past the point
where the cell is completely depolarized and until a positive
peak potential is reached. This is called the upstroke of the
action potential and it lasts for only a few milliseconds. The
aggregated effect of the upstrokes in all the ventricular my-
ocytes is visible as the strongest signal in the ECG and it is
termed the QRS-complex.

After the depolarization the cell has a large (intracellu-
lar) concentration of both sodium and potassium. The cell is
repolarized when potassium gates open and potassium ions
flow out of the cell. For the cardiac cells the action potential
duration (APD) is about 200 ms. The repolarization is visi-
ble as the T-wave in the ECG. The Na-K pump contributes to
the restoring of concentration gradients of both sodium and
potassium. For myocardial cells the long APD is maintained
by slow inward calcium currents. The cell membrane is also
permeable to chloride ions, although their influence on the
action potential is small under normal conditions.

3 The mathematical model

3.1 The Bidomain Model

In the Bidomain Model the cardiac tissue is divided into two
spaces: the extracellular domain and the intracellular domain.
Each domain is continuous and encompasses the whole my-
ocardium, that is the domains have identical geometries and
every point of the myocardium is found in both domains. The
value of an entity defined in either space is interpreted as
a volume averaged value.

Inside each domain the current flow is assumed to be
purely resistive, this means that the current density J is pro-
portional to the gradient of the potential u:

J = −M∇u .

Here M is the matrix representing the conductivities in the
different directions. By conservation of current we have that
the inflow in one domain must be the opposite of the outflow
in the other domain, i.e.:

∇ · Ji = −∇ · Je (1)

where the subscripts i and e denotes the intra- and extracel-
lular volume, respectively. The flow between the domains as
expressed in (1) are referred to as the transmembrane current
and denoted Im . Per definition of Im we have that

Im = −∇ · Ji . (2)
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An alternative expression for Im follows from the cable the-
ory [14]. The membrane has the ability to both conduct and
accumulate charge. This is modeled as an electrical circuit
with a resistor and capacitor in parallel, see Fig. 2. The cur-
rents corresponding to each term are denoted the ionic cur-
rent (Iion) and the capacitive current (Ic). These currents are
measured per unit area of surface membrane, while the trans-
membrane current is measured per unit volume. To convert
between the two dimensions one must know the surface area-
to-volume ratio, denoted χ. We then have:

Im = χ (Iion + Ic) . (3)

The capacitor is characterized by its capacitance C which
is the ratio of the accumulated charge (q) to the potential dif-
ference over the capacitor (v), i.e

C = q/v . (4)

In our setting v will be the difference between the intracellular
and the extracellular potential, i.e.

v = ui −ue . (5)

This difference is referred to as the transmembrane potential.
An expression for the capacitive current is obtained by rear-
ranging the terms in (4), divide by a time interval ∆t and then
go to the limit:

Ic
def= lim

∆t→0

∆q

∆t
= C lim

∆t→0

∆v

∆t
= C

dv

dt
(6)

Unlike the current passing through an Ohmian resistor, the
ionic current does not vary linearly with the transmembrane
potential. This is due to the non-linear conductivity properties
of the cell membrane described in Sect. 2.1. The ionic cur-
rent is not only a function of the transmembrane potential but
also of ionic concentration gradients and the state of the mem-
brane. We put all these variables in one vector and denote it
by s. We then have the relation

Iion = Iion(v, s) (7)

where Iion(v, s) will be specified below.
Inserting (3) into (2) and eliminating ui from (1) and (2)

by using (5) we obtain the following coupled PDE system:

Cχ
∂v

∂t
+χIion(v, s)−∇ · (Mi∇v) = ∇ · (Mi∇ue)

∇ · ((Mi + Me) ∇ue) = −∇ · (Mi∇v) (8)

Fig. 2. The membrane is modeled as a resistor and a capacitor coupled in
parallel

The state vector s will vary throughout the myocardium
just like v and ue, i.e. it will be a function of position. Typic-
ally, s is governed by an ODE for each point in space so the
system for s(t, x) will be on the form

∂s

∂t
(x) = F (t, s(t, x), v(t, x); x) (9)

with an initial value

s(0, x) = s0(x) .

Here F is the vector valued function defining the time deriva-
tives of the state variables.

3.2 The ionic current

The appropriate expression for Iion(v, s) in (7) depends upon
the type of species under study and also on the location within
the myocardium. In our study we have chosen to use the
model of Luo–Rudy [20] since it is well documented and very
accurate. The additional variables of the model are

s = ([Na]i, [K]i, [Ca]i, [Ca]JSR, [Ca]NSR, m, h, j, x, d, f ) .

The terms in the square brackets represent ionic concentra-
tions. Specifically, [Na]i, [K]i and [Ca]i are the intracellular
concentrations of sodium, potassium and calcium, respec-
tively. The symbols [Ca]JSR and [Ca]NSR represents the con-
centration of calcium in two special compartments within the
cell: The Junctional- and Network Sarcoplasmic Reticulum.
The latter six variables are referred to as gating variables and
they characterize the permeability of the cell membrane for
different ions. They will be discussed below.

The time derivatives of the concentrations are propor-
tional to the current flow of the specific current. For example
the time rate of change for the sodium concentration is

d[Na]i

dt
= −c · INa,tot

where c is a constant that depends upon the geometry of the
cell and INa,tot represents the net outward sodium current.
This outflux is a sum of several currents, each correspond-
ing to a specific type of channel in the membrane. The flux
for the other ions are modeled in a similar way. The total
ionic current is the sum of the three ionic currents crossing the
membrane:

Iion = INa,tot + IK,tot + ICa,tot

See Sect. A.1 in the appendix for details.
The expressions for the currents through the different

channels are derived by combining analytical consideration
with measurements and the result can be quite esoteric.
The following will give some of the background for the
expressions.

One may divide the ionic channels into two different
types, passive and active channels. The passive channels sim-
ply let ions pass according to the electro-chemical gradient
of the ion. For these channels there exists an equilibrium po-
tential where flux in one direction due to the concentration
gradient is counterbalanced by a flux in the opposite direction
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due to the electrical field generated by imbalance of charge.
This potential is known as the Nernst equilibrium potential
and is given by

vX = RT

zF
ln

[X]o

[X]i

where R is the gas constant, F is the Faraday constant, T is
the absolute temperature and z is the valence of the generic
ion X. [X]o and [X]i denote the extra- and intracellular con-
centrations, respectively. The passive channels thus have zero
net flow when v = vX. The current through a channel of this
kind might look like

I = G (v−vX)

where G is the conductance of the channel. However, the de-
pendence on v need not be linear as long as the current is
zero at the equilibrium. The correct form of the expression
can only be determined through measurements.

The active channels move ions against their concentration
gradient and are not restricted by the Nernst equilibrium. The
energy may be taken from ATP (pumps) or the potential en-
ergy stored in form of concentration gradients of other ions
(exchangers).

The conductance G might be a constant or depend upon
ion concentration or the transmembrane potential. For some
channels it has been shown that it also is time dependent.
This dependency is modeled by the gating variables. They
take on values in the interval [0, 1] and represent the openness
of a channel. The actual conductance of a channel is calcu-
lated by multiplying the maximum conductance (G) with the
corresponding gating variable. The time rate of change for
a generic gate g is given as

dg

dt
= (g∞(v)− g)

/
gτ(v) . (10)

The value of the gating variable approaches the steady state
value g∞ at a rate determined by gτ . For numerical reasons it
is favorable to express (10) as

dg

dt
= αg(1 − g)−βgg .

Here αg represents the rate at which closed gates open and βg
represents the rate at which opened gates close.

The gating variables m, h and j are related to the fast
inward sodium current iNa, d and f are related to currents
through a class of channels called L-type channels with the
calcium current iCa being the most important. Finally, x is re-
lated to an outward potassium current, iK. The definitions of
αg and βg for g = m, h, j, x, d, f are given in Sect. A.2.

3.3 Boundary conditions

The myocardial domain, denoted by H , is assumed to be
embedded in a conductive medium which we will call the ex-
tracardiac domain and denote by D. The potential on D is
denoted by uD. This medium might be a torso or just a sim-
ple homogeneous and isotropic bath. Due to the cavities of
the heart, the domain H will contain holes for physiological

correct geometries. Thus D can also represent one of these
cavities depending on what part of the myocardial bound-
ary we are considering. The computation of uD is discussed
below.

At the boundary between D and H the extracellular do-
main of the heart connects to the extracardiac tissue and thus
ue and uD will refer to the same quantity so

ue(x) = uD(x) , x ∈ ∂H . (11)

The most general assumption about the relationship between
the current densities on the boundary is to allow for both ex-
tra and intra cellular current to pass out of the myocardial
volume:

n · JD = n · (Je + Ji) . (12)

Substituting for currents equation (12) can be rewritten as

n · MD∇uD = n · (Mi + Me) ∇ue +n · (Mi∇v) . (13)

This assumption will have to be accompanied by a supple-
mentary boundary condition in order for the equation system
to be complete. There has been some debate regarding the
appropriate condition [11]. Some argue that intracellular cur-
rent does not leave the domain (e.g. nMi ·ui = 0) in that case
equation (12) reduces to n · JD = n · Je. Another possibility is
to invoke a condition on v directly. Colli Franzone et al. [5]
suggest

n · (Mi∇v) = 0 . (14)

It can be argued for the physiological plausibility of this
choice, in our setting however the main motivation is that of
the two possibilities (14) leads to the most tractable form of
the problem.

3.4 Anisotropy

Since the muscle fibers conduct current mainly along their
lengths, the conductivity of the cardiac tissue is not isotropic.
To simulate the propagation pattern of the wave front accu-
rately, it is necessary to include the orientation of these fibers
in the model. The introduction of fiber orientation leads to an
anisotropic model. In the Bidomain Model this anisotropy is
dealt with through the introduction of the conductivity tensors
Mi and Me. Following [4] we let

(a1(x), a2(x), a3(x))

be a perpendicular set of vectors of unit length and with a1(x)
lying along the fiber direction, see Fig. 3. Furthermore, let

M∗ =

σl 0 0

0 σt 0
0 0 σt


 (15)

be the local conductivity tensor, i.e. expressed with respect
to the basis formed by (a1, a2, a3). The conductivity along
the fiber direction is σl (l for longitudinal) and the con-
ductivity across the fiber direction is σt (t for transversal).
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Fig. 3. The orientation of the local coordinate system of a single strand of
fiber. The length of the arrows indicate the variation in conductivity in the
different directions

For a potential gradient p∗ = (p1, p2, p3)
T expressed in this

local coordinate system the corresponding current vector will
be

i∗ = M∗ p∗ = (σl p1, σt p2, σt p3)
T = (i1, i2, i3)

T . (16)

This vector is converted to global coordinates by

i = i1a1 + i2a2 + i3a3 = Ai∗ (17)

where A is the matrix formed by taking the vectors a1(x),
a2(x), a3(x) as columns. A potential gradient vector p ex-
pressed in global coordinates is mapped to local coordinates
with the inverse mapping, that is p∗ = A−1 p. Since A has
perpendicular and normalized column vectors we have that
A−1 = AT so the mapping is simply

p∗ = AT p . (18)

Combining (16), (17) and (18) we get the relationship be-
tween a potential gradient and a current density vector, both
expressed in global coordinates:

i = AM∗ AT p (19)

and thus we define the global conductivity tensors by

Mi = AM∗
i AT and Me = AM∗

e AT (20)

where M∗
i and M∗

e is given as in (15) with (σl, σt) set
equal to (σ i

l , σ
i
t ) and (σe

l , σe
t ) respectively. The pair (σ i

l , σ
i
t )

refers to the conductivities in the intracellular domain and
(σe

l , σe
t ) refers to the conductivities in the extracellular

domain.
The expression for the conductivity tensors in (20) can be

simplified. A general element in M is

Mij = σla
i
1a j

1 +σta
i
2a j

2 +σta
i
3a j

3

= (σl −σt) ai
1a j

1 +σt

(
ai

1a j
1 +ai

2a j
2 +ai

3a j
3

)
(21)

so

M = (σl −σt) a1aT
1 +σt AAT

= (σl −σt) alaT
l +σt I (22)

where we have defined al = a1.

3.5 Electrical potential outside the myocardium

The Bidomain Model only describes the electrical potentials
in the myocardium. In order to simulate ECG measurements
we also need to compute the potential distribution in the rest
of the torso.

The properties of the tissue outside the heart are much
simpler, and it is assumed to be neither excitable nor contain
any current sources. It may therefore be modeled as a pas-
sive conductor. By the conservation of current we obtain the
following model for the electrical potential in D:

∇ · (MD∇uD) = 0 , x ∈ D . (23)

The equation is valid for D = L, R, T where L and R are
the left and the right ventricle and T is the torso excluding
the heart. The topology of a horizontal cross-section of the
domains are shown in Fig. 4. The plane normal of the cross-
section is in the head-to-toe direction and cuts the middle of
the heart. Cross-sections taken at heights below or above the
heart will contain a single domain. In between there will be
two domains, the torso and the heart without the cavities. The
matrix MD is the conductivity tensor on the corresponding
domain.

Fig. 4. A schematic horizontal cross section of the torso and the heart. H
represents the myocardium, i.e. the heart muscle. L and R represent the left
and right ventricles, respectively. T represents the torso. The four domains
are disjoint and their union is denoted Ω

At the boundary of the torso a no-flow conditions is used:

n · (MT ∇uT ) = 0 , x ∈ ∂D . (24)

The coupling to the heart is obtained through the boundary
conditions on the myocardial surface as stated above in (11),
(13), (14).

3.6 The parameters

The values of the parameters of the model are as follows:

σT = 2.39 mS/cm

σL = 6.0 mS/cm
σR = 6.0 mS/cm

σ i
l = 3.0 mS/cm

σe
l = 2.0 mS/cm
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σ i
t = 0.31525 mS/cm

σe
t = 1.3514 mS/cm

χ = 2000 cm−1

C = 1 µF/cm2 (25)

The conductivity parameters were found in Klepfer
et al. [17], the surface area to volume ratio was found in Hen-
riquez et al. [12] and the membrane capacitance was taken
from Pollard et al. [22].

3.7 Summary of the model

The equations in L, R, T and the second equation in (8) for H
all share the same structure, with the biggest difference being
that the right hand side in (8) is non-zero. Due to the continu-
ity conditions of the extracellular and extracardiac potential
as stated in (11) and (13) it is possible to replace these four
equations with a single equation, cf. [10] and [19] (page 37).
This simplifies the implementation of the model considerably.
We define Ω to be the union of all the domains, Ω = T ∪ H ∪
L ∪ R, and u(x) to coincide with the different potentials on
each subdomain:

u(x) =




uT (x) , if x ∈ T

ue(x) , if x ∈ H

uL(x) , if x ∈ L

u R(x) , if x ∈ R

The equation for u becomes

∇ · (M∇u) = f , x ∈ Ω

n · (M∇u) = 0 , x ∈ ∂Ω(= ∂T )

where

f(x, v) =
{−∇ · (Mi∇v) if x ∈ H

0 otherwise ,
(26)

and

M(x) =




MT (x) , if x ∈ T

Mi(x)+ Me(x) , if x ∈ H

ML (x) , if x ∈ L

MR(x) , if x ∈ R .

(27)

With this simplification the system (8), (14), (23), (24)
with (9) becomes

H : ∂s

∂t
= F(t, s, v; x)

H : Cχ
∂v

∂t
+χIion(v, s) = ∇ · (Mi∇(v+u))

∂H : n · (Mi∇v) = 0
Ω : ∇ · (M∇u) = f(x, v)

∂Ω : n · (M∇u) = 0 (28)

with f and M defined as in (26) and (27), respectively.
Above u is unique modulo a constant. To fix this constant

we impose a Dirichlet condition in one of the computational
nodes. We are only interested in gradients of u, hence the
value of this constant is not significant.

4 A numerical method

4.1 Time discretization

In order to discretize (28) we introduce the timestep tn =
n∆t = nT/N where N denotes the number of time steps
and T is the duration of the simulation. At these time-levels
we introduce the variables un = u(tn, x), vn = v(tn, x) and
sn = s(tn, x).

The equations in (28) are a coupled system and should
ideally be solved simultaneously. We have chosen to solve
them sequentially thus applying a standard sequential opera-
tor splitting technique. The equations are solved in the follow-
ing order:

1. Assume that un, vn and sn are known at time tn
2. Compute sn+1 by solving

∂s

∂t
= F(t, s, v; x) , s (tn, x) = sn and v (tn, x) = vn

for t ∈ (tn, tn+1]
3. Compute vn+1 in H by solving

Cχ
∂v

∂t
+χIion

(
vn, sn+1) = ∇ · (Mi∇v)+∇ · (Mi∇un) .

4. Compute un+1 in Ω by solving

∇ · (M∇un+1) = f n+1

where f n+1 is obtained by inserting vn+1 in (26).

In Step 2 the ODEs are integrated forward in time with in-
ternal time steps. There is an ODE problem for each node in
space so in this spatial continuous description there is an infi-
nite number of problems. When the space is discretized there
will be one ODE problem for each node in the grid. If adaptiv-
ity is used in the time stepping, the work load of each problem
will depend upon its location. In quiescent areas large time
steps can be taken while small time steps are used in areas
where the upstroke takes place.

In Step 3 we have evaluated the ionic term by using the
previous update of the transmembrane potential. In this way
the reaction-diffusion equation will become linear with re-
spect to v and thus much easier to solve. The error committed
by this approximation will depend upon the size of the time
step taken. Solving with a fully implicit scheme may have
permitted larger time steps to be taken but each step would be
very costly. As described below we will use a semi-implicit
technique and we have found that evaluating the ionic current
with the previous update of the transmembrane potential has
not led to any instability problems. In fact, the scheme seems
to be unconditionally stable.

The time derivative in Step 3 is approximated by

∂v

∂t
≈ vn+1 −vn

∆t

which gives us the following time discrete equation:

Cχ
vn+1 −vn

∆t
+χIion

(
vn, sn+1) =∇ · (Mi∇vn+1)

+∇ · (Mi∇un) . (29)
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The diffusive term ∇ · (Mi∇v) is evaluated at tn+1 yielding
a semi-implicit equation. This scheme requires a linear sys-
tem of equations to be solved at each time step. If ∇ · (Mi∇v)
was evaluated at tn instead the solution vn+1 could be calcu-
lated without solving a linear system, however smaller time
steps would be needed to avoid a divergence of the solution
algorithm. Collecting terms of vn+1 and vn in (29) yields

vn+1 − ∆t

Cχ
∇ · (Mi∇vn+1) = vn + gn (30)

where

gn = ∆t

Cχ

(∇ · (Mi∇un)−χIion
(
vn, sn+1)) .

4.2 Spatial discretization

The PDE on each time steps is discretized using the finite
element method with linear basis functions over the elements.
The linear systems are solved using multigrid. The methods
are described in [18].

4.3 The construction of the conductivity tensors

As shown in (22) the conductivity tensors are defined in terms
of the direction of the muscle fibers of the heart. To define
the tensor in a given point one must know the axis direction
in that point. In practice the fiber direction are only known
at some discrete locations. Denote the direction at n such lo-
cations by a1, a2 . . . an . The direction at an arbitrary point x
can be computed by a weighted average of these known
directions

ai(x) =
∑n

j=1 ai
je

−λd(x)2
j∑n

j=1 e−λd(x)2
j

where the superscript i denotes the ith component of the vec-
tor. The function dj(x) is the distance from the given point
x to location number j , and λ is a parameter controlling the
relative weight of locations with different distances. The com-
puted vector is normalized.

4.4 Adaptivity

In order to represent the narrow wave front of the depolariza-
tion accurately very small elements are required. The distri-
bution of the transmembrane potential away from the wave
front displays comparatively little variation and the require-
ments on the element size there are less strict. This fact can
be exploited by using an adaptive grid.

The basic idea of any adaptive scheme is to increase the
node density where it is most needed. In our context this is in
the wave front. A possible strategy is to go through the elem-
ents of the coarsest grid and mark those elements which con-
tains the wave front and then subsequently refine all marked
elements. This will give rise to a new grid on which the pro-
cess can be repeated. The scheme is illustrated in Fig. 5. Note
that in the first grid none of the elements inside the square
[0, 2]2 are tagged since they do not contain the wave front,

however they are still refined. The refinement of these elem-
ents is necessary to obtain a legal grid, i.e. a grid where no
node lies on an edge of another element. Similar effects are

Fig. 5. Top: Coarse grid with elements containing the wave front (curved
line) are marked with dots. Middle: The grid after refinement, original grid
shown with thick lines. Bottom: The grid after two more refinements
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also seen on the subsequent grids. On the finer grids the re-
finements are located on a narrow strip around the wave front.

To determine if a given element contains the wave front
it is sufficient to compute the differences in transmembrane
potential v between all pairs of nodes in the element. If the
wave front passes through an edge, the change over the pair of
nodes defining that edge will be large. The element is marked
if the change is above a given threshold. In our simulations we
have chosen a small threshold (5 mV) to ensure that the wave
front is maximally refined even on fine grids.

We use the solution from the previous time step, vn−1,
to compute the change in the solution over the elements in
the coarser grids, as illustrated in Fig. 6. When the elements
containing the wave front have been tagged a refined grid is
computed. The solution vn−1 is then projected down to this re-
fined grid and the process is repeated until the finest grid level
has been reached.

The use of the previous solution to estimate the loca-
tion of the wave front is justified by the small time step size
compared to the movement of the wave front. With a typi-
cal propagation speed of 1 mm/ms the wave front will move
0.125 mm during a time step of 0.125 ms. We will find in the
next section that this is a sufficiently small time step and that
the distance between the nodes of an element can be larger
than 0.125 mm, thus the movement during a time step will

Fig. 6. The solution from the previous time step is projected onto the coars-
est grid where the elements containing the wave front are refined, the
process is repeated on the next grid etc.

Fig. 7. Left: The coarsest grid of
the circle geometry. The bound-
ary of Ω and H are drawn with
thick solid line. The initial condi-
tion is indicated by the circle in the
center. Notice that the grid is not
rotationally invariant. The crosses
show the location of the tracking
points. Right: The grid after two
refinements, the boundary nodes
are projected towards the circum-
scribing circles

not be larger than a single element. Due to requirements for
a legal grid, the high node density area will constitute a belt
several elements thick around the wave front. The wave front
of the solution computed on the new grid will therefore also
lie inside this belt.

5 Simulations

5.1 Validation of the model on a simple 2D geometry

To validate the numerical results we would ideally like to
compare the computed solution to an analytical solution and
study the difference. Due to the complexity of the problem
under study it is not feasible to compute an analytical solution
and we have to use an indirect method to validate the model.
We have chosen to formulate a problem to which the shape of
the solution is known.

5.1.1 Geometry. A rotationally invariant problem has been
formulated where the torso and the heart regions are con-
centric disks with radius of 70 mm and 50 mm, respectively.
Both regions are isotropic and homogeneous. The tissue is
initially stimulated inside a disk at the center of the heart
region. The applied current is sufficient to initiate the de-
polarization process. The solution of this problem should
be a wave front propagating in all directions with the same
speed. The numerical solution of the problem should thus ap-
proximate this behavior better and better as the grid becomes
more refined.

The left panel in Fig. 7 shows the coarsest of this series
of grids. The grid has been designed not to be rotationally in-
variant as this would give a false impression of the accuracy
of the method, since the reproduction of a rotationally invari-
ant solution would be inherent due to the grid. As the grid is
refined the nodes on the boundaries of the two domains are
projected outwards to the circles they are approximating. In
this way the discretization error of the representation of the
circle tends towards zero as the grid is refined. The right panel
in Fig. 7 shows the grid after two refinements.

In order to inspect the propagation speed in a quantita-
tive way, the solution of the simulations has been recorded at
60 equally spaced sites 40 mm from the center as shown in
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Fig. 7. Since the solution is radial, the solution at these loca-
tions should be identical.

5.1.2 Estimate of the required spatial resolution. Simulations
of the depolarization phase have been performed with several

Fig. 8. The transmembrane potential after 30 s, plotted for simulations with
three different levels of refinements

levels of refinement and for different sizes of the time step.
Table 1 shows the number of nodes and elements for the dif-
ferent levels. To find the required node density the refinement
level was varied as the time step was held constant. Prelim-
inary experiments suggested that ∆t = 0.125 ms was small
enough to ensure reliable results. Figure 8 shows the trans-
membrane potential for three different levels of refinement
at 30 ms after the initial stimulation. We see that the correct
shape is not reproduced with relatively coarse grids but on
finer grids the solution becomes more circular. The solution
at refinement number 6 in Fig. 8 is hard to distinguish from
a circle. By inspecting the solution at the tracking points it is
easier to see the difference between the solution and a perfect
circle. Note that for the exact solution, these curves coincide
due to angular invariance. In the first row of Fig. 9 the trans-
membrane potential at the 60 tracking locations are shown for
different levels of refinement. The figure clearly shows that
the numerical solutions deviate from the correct rotationally
invariant solution.

Table 2 contains some characteristic numbers of the ac-
tivation times. From the table it is evident that the solution
approaches a circular shape as the number of nodes increases.
The standard deviation falls from 0.64 to 0.23 and then in
the last refinement from 0.23 to 0.16. This last reduction in-
dicates a somewhat slower convergence rate than what we
could expect from a doubling of the node density. A halving
of the error would be more in accordance with expectations.
A possible reason for this behavior could be numerical dif-
fusion, e.g. diffusion of the solution due to the numerical
algorithm. Such unwanted diffusion will depend upon the
element geometry and therefore break the symmetry in our
simulations.

Table 1. The number of nodes in the two circular domains for different
numbers of refinements. The number of elements increases by a factor of
four with each refinement

No of Nodes Elements
refs Heart Torso Heart Torso

0 20 48 25 66
1 64 161 100 264
2 227 585 400 1056
3 853 2225 1600 4224
4 3305 8673 6400 16 896
5 13 009 34 241 25 600 67 584
6 51 617 136 065 102 400 270 336
7 205 633 542 465 409 600 1 081 344
8 820 865 2 166 273 1 638 400 4 325 376

Table 2. Some characteristics of the activation pattern shown in the first row
of Fig. 9. The first column shows the number of refinements, the next shows
the average time of activation, measured here as the moment where the po-
tential becomes positive. The ‘max(∆τ)’ column is the difference between
the activation times of the earliest and the latest tracking point, and finally
the last column shows the standard deviation of the 60 activation times. All
numbers are in milliseconds

Ref no mean(τ) max(∆τ) sd(τ)

4 48.17 8.30 2.14
5 32.21 2.67 0.64
6 29.23 1.00 0.23
7 30.59 0.57 0.16
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Fig. 9. The transmembrane poten-
tial at the tracking locations. The
first row shows the action poten-
tial with the original computation,
in the second row mass lump-
ing and nodal evaluation has been
used. The last row shows the ef-
fect of changing the time step

Mass lumping

Mass lumping is a technique to reduce the numerical dif-
fusion described above. In short it is a manipulation of the
stiffness matrix of the assembled linear system, where some
off-diagonal components are moved onto the diagonal.

We have tried using this method in connection with a spe-
cial choice of integration points (nodal as opposed to Gaus-
sian) to further reduce the diffusion. The results can be seen
in the the second row in Fig. 9 and also from Table 3. Due
to reduced diffusion the node density required to sustain
a traveling wave was higher with this technique. The coarsest
simulation has therefore been left out of the table. In refine-

Table 3. The first four columns of the table are similar to Table 2, but the
simulations are run with mass lumping and nodal evaluation in the numeri-
cal integration. Under the heading ‘Spatial’ the ‘max(∆r̂)’ column contains
estimates of the maximal spatial deviation from a circular solution. The last
column shows the resolution of the grid. The numbers of both columns
are in millimeters. The corresponding activation patterns are shown in the
second row of Fig. 9

Ref no Temporal Spatial
mean(τ) max(∆τ) sd(τ) max(∆r̂) ∆x

5 46.99 3.86 0.98 2.46 0.78
6 35.15 0.66 0.14 0.56 0.39
7 32.61 0.12 0.033 0.11 0.20
8 32.05 0.07 0.016 0.066 0.098
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ment number 6 and 7 the standard deviation goes from 0.98
to 0.14 and then down to 0.033, so the convergence towards
the circular solution has been considerably improved by this
technique. A further refinement (number 8) only halves the
error. As argued for below, this indicates that the problem is
sufficiently resolved already at refinement number 7.

Converting from the time domain to the spatial domain

The numbers in columns two to four in Table 3 are all in the
time domain. In order to convert these figures into the spa-
tial domain, we need an estimate for the propagation speed v̂.
If such an estimate is available then the maximal discrepan-
cies in time of activation, ∆τ , can be translated into maximal
variation in the radius of the depolarized tissue, ∆r̂, by

∆r̂ = v̂∆τ .

If constant propagation speed is assumed then

v̂ = r/τ

where r is the distance traveled by the front (30 mm). The
fifth column of the table shows the estimated maximal spatial
errors. The last column shows the resolution of the grid, it has
been calculated in the following way:

∆x =
√

Area

Number of nodes

At the coarser grids the error in the solution is larger than the
resolution of the grid, i.e. the solution is off by several elem-
ents. On refinement number 7 however the error drops below
the grid resolution and the wavefront is located within the
correct element. This means that the numerical solution is as
circular as it can be on the given grid.

Conclusion

The experiments show that there is a gain in accuracy as the
number of nodes is increased up to over 200 000 in the my-
ocardial domain and that this density was required to achieve
convergence to the proper solution. The corresponding reso-
lution is 0.2 mm or 5 nodes/mm.

5.1.3 Estimate of the required temporal resolution. Above
we concluded that reliable results were achieved at a spa-

Fig. 10. Left: The boundary of the myo-
cardium and the torso. The dots indicate
the activation sites. The signs indicate the
positions of ECG leads. Right: The fiber
directions used in the model. The basis di-
rections are shown with the large arrows
while the interpolations used to compute
the conductivity tensors are shown with
small arrows

tialresolution of ∆x = 0.2 mm. We would now like to find
the required temporal resolution ∆t. Generally, ∆t will de-
pend upon the size of ∆x. What we are interested in here is
a reasonable value for ∆t when we have ∆x = 0.2 mm. To
find this value we proceed in a similar way as above. The
grid is kept fixed at refinement level 7 while the time step is
varied.

The last row of Fig. 9 shows the tracking points for three
choices of the time step, ∆t={0.25 ms, 0.125 ms, 0.0625 ms}.
Clearly ∆t = 0.25 ms is insufficient to obtain an accurate
simulation. On the other hand, there is practically no differ-
ence between the solutions with ∆t = 0.125 ms and ∆t =
0.0625 ms, indicating that ∆t = 0.125 ms is sufficient. The
action potential uses about 0.5 ms to rise from the threshold
potential to the peak potential. A time step of ∆t = 0.125 ms
ensures that the solution is updated several times during the
upstroke.

5.2 A 2D simulation based on anatomical data

5.2.1 Geometry. In 2D we have also performed computations
on a geometry based on anatomical data. The boundary of the
heart was traced from an image of a human heart sliced in the
horizontal plane [26]. The chosen slice is from the middle of
the heart. The boundary of the torso was obtained from the
Visible Human Man data [25]. This data set consists of a large
number of high resolution photographs of cross sections of
a male body.

The torso boundary was traced from the photograph cor-
responding to the same plane as the cardiac slice. The slice
was then imposed upon the image and translated, scaled and
rotated so that the traced slice matched the heart on the pho-
tograph. The reason why a different source was used for the
heart data is that the contours of the chambers were not easily
distinguishable in the Visible Human Man data. The traces of
the boundaries are shown in the left panel of Fig. 10.

The fiber directions in the myocardium were not taken
from measurements but set according to the known gross
structure of this tissue. The fibers were set to run concentri-
cally around the left ventricle. The fibers in the right ventricle
runs in the same general direction as if it were cut out from
the right hand side of the left ventricle. The three dimen-
sional aspect of the fibers were not modeled. The right panel
of Fig. 10 shows the basis directions as thick arrows and the
interpolation throughout the domain. The interpolation was
performed as described in Sect. 4.3
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Fig. 11. Snapshots of the transmembrane potential, the time is indicated by the number on the left hand side of each plot. Animation at
http://www.ifi.uio.no/˜glennli/cvs/2D.mpeg

The activations sites were set according to Dürrer’s ac-
tivation map [6]. Myocardial activation was initiated at two
locations in the left ventricle and 20 ms later at a site in the
right ventricular wall as indicated in Fig. 10. There are more
activation points in a real heart but since this is a 2D model
only sites lying in the vicinity of the slice in question were in-
cluded. Wave fronts originating from sites lying outside the
slice could in principle depolarize tissue inside the slice be-
fore the fronts from the sites included. This possible effect is
not included in the simulation.

The extracardiac potential has been tracked at two pairs of
locations on the body surface, as shown in Fig. 10. The differ-
ence between the poles of each pair will then correspond to an
ECG signal.

5.2.2 Results. The simulation includes both the depolariza-
tion and the repolarization phase, 300 ms in all. Figure 11
shows the transmembrane potential for some selected mo-
ments in time. The wave front radiates from the points of
stimulation, first from the two sites in the left ventricle. This
initiates a wave of depolarization that spreads concentrically
around the left ventricle. The third activation site located in
the right ventricle starts 20 ms later. After about 45 ms the
wave fronts merge in the anterior part of the right ventricle.
The depolarization is completed after 75 ms when the wave
fronts merge in the posterior part of the right ventricle. The
repolarization follows a similar but more protracted pattern.
The myocardium is back to its resting potential 300 ms after
the initial stimulation.

Figure 12 shows the evolution of the two ECG signals
for two different levels of refinement, corresponding to re-
finement level 7 and 8 in Table 4 in Sect. 5.4.1. At refinement
level 7 the node density is approximately 5 nodes per mil-
limeter, which we in Sect. 5.1 concluded was sufficient. The
signals in Fig. 12 are very similar which shows that there is
a marginal difference between the two solutions. Both sig-
nals reproduce the QRS complex and the T-wave. There are

however some serious discrepancies between the simulated
signals and the ones obtained from an actual measurement.
First of all the amplitude of the signal is an order of mag-
nitude larger than a typical measured signal. An explanation
might be that we use a homogeneous torso which does not
include the conductivity properties of the skin where the elec-
trodes are placed.

Another striking feature of the signal is that it contains
high frequency components not observed in ordinary surface
ECGs. However, potentials recorded by placing electrodes in
the myocardium display higher frequency components than
the signal recorded at the body surface [15]. The difference
in frequency content might be attributed to the fact that the
signal recorded from surface electrodes are filtered due to the
capacitor properties of the electrodes. Furthermore, the shape

Fig. 12. ECG signals along the two axes. Results are shown for both a fine
and a coarser simulation. Coarsest simulation shown with dashed lines
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Table 4. Execution times for the simulations with the anatomical 2D geometry. NP is the number of nodes in myocardium, NE is the number of nodes in the
entire torso (including the myocardium). ‘ODE’ is the time spent for solving the ODEs. Make-P: Assembly of the linear system of the parabolic equation.
Solve-P: Solving the linear system arising from the parabolic equation. Make-E and Solve-E: Equivalent for the elliptic equation. All execution times are
per time step and are reported in seconds. Simulation was performed in 300 ms in steps of 0.125 ms, giving a total of 2400 time steps

Ref. No NP NE Total ODE Make-P Solve-P Make-E Solve-E

5 4059 18 433 2.45 1.62 0.14 0.01 0.09 0.54
6 15 607 73 313 8.45 5.72 0.56 0.08 0.35 1.68
7 61 167 292 417 29.91 20.60 2.10 0.44 1.53 5.19
8 242 143 1 168 001 125.92 90.95 8.93 2.32 5.31 18.32

of the ECG signal depends upon the exact propagation of
the wave fronts, one can therefore not hope to reproduce this
signal accurately in a 2D simulation and with a simplified rep-
resentation of the Purkinje network.

A third deviation from a normal ECG signal is the sign
of the T-wave which is negative rather than positive. The rea-
son for this is that in our simulations we have a fixed cell
model throughout the myocardium while in reality the shape
of the action potential varies. By not modeling this difference
the repolarization will follow the same pattern as the depo-
larization, i.e. spreading from the inside to the outside of the
heart, and with the potential gradients having opposite direc-
tion. If the APD is shorter near the outer surface, so that this
part of the tissue will start to repolarize first, the wave front
will follow the opposite pattern, thus inverting the sign of the
T-wave.

5.3 A 3D simulation based on anatomical data

The geometry of the heart is taken from the data obtained by
Nielsen et al. [21]. These data are unique in that, in addition
to the description of the internal and external boundaries of
the heart, it also contains the orientation of the muscle fibers
throughout the myocardium.

The simulation has not taken advantage of all this data
and it has been carried out on a much coarser grid than
what we found is necessary from the numerical experiments
of Sect. 5.1. The main point of including the simulation is
to show that the simulator works fine also on irregular 3D
geometries.

Figure 13 shows the propagation of the wave front. It is
represented as an isopotential surface at 0 mV. The tissue is

Fig. 13. The myocardium viewed from the front and above. The position of the wave front is represented as an isopotential surface at 0 mV, shown
in green. An opaque transversal slice is also included. Polarized tissue is shown in red and depolarized tissue is shown in blue. Animation at
http://www.ifi.uio.no/˜glennli/cvs/3D.mpeg

stimulated initially in a single location located between the
ventricles and the depolarization spreads out from there.

5.4 Time consumption

When solving the bidomain equations numerically three sub-
problems are solved. These are the ODE equations to find the
ionic current in each node, and the two PDEs of the bidomain
system. Solving each PDE consists of two parts: assembling
and solving the linear system of equations. Thus the whole
problem can be divided into five separate tasks. In the fol-
lowing subsections we will study how the work load of the
different parts vary with the problem size and with the spatial
dimension. All execution times are obtained from simulations
performed on a Linux PC with a 2 GHz Intel Xeon processor
and with 2 Gb of memory.

5.4.1 The 2D case. Table 4 shows the time consumption of
the 2D simulation presented in Sect. 5.2 with varying prob-
lem size. Below the workload of each subproblem has been
ranked. The most CPU intensive task is listed first:

1. Solving the ODEs
2. Solving the linear system of the elliptic equation
3. Assembly of the parabolic equation
4. Assembly of the elliptic equation
5. Solving the linear system of the parabolic equation

The numbers in each row in the table are not entirely com-
parable since there are different number of nodes involved
in the different subproblems. Specifically, the tasks under the
headings “ODE”, “Make-P” and “Solve-P” in Table 4 are
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computed on the myocardial grid, while the last two are com-
puted on the torso grid, which in this case is about four times
as large.

The CPU-times shown in the table are averages over all
time steps. The work load for some of the tasks however
shows considerable variation. The ODE problem is harder to
solve in the start and in the end of the cycle. This is when
most of the heart has the resting potential. The work load
is much smaller when the whole heart has been depolarized.
For a single node most CPU time is consumed the moment
when the wave front passes. The area of the wave front is
so small however, that it does not contribute much to the
total work. Thus the important aspect is not the area of the
wave front (which also varies with time, unlike its thickness)
but rather the amount of polarized tissue. The fact that the
ODE system is stiffer in the polarized phase is not self evi-
dent. The reason is that the voltage dependent coefficient βm
of the m-gate of the fast inward current is very large dur-
ing the resting potential, thus making this gating equation
stiff and small time steps are therefore required. In the de-
polarized phase the m gate is still the stiffest equation but
the coefficients are smaller so that the time steps can be
larger.

The elliptic problem also varies in difficulty. The work
load is highest during the time when the heart contains wave
fronts. When there are no wave fronts present the changes
from time step to time step will be less so that the ini-
tial guess, which is the previous solution, is good. Also,
the coarse grid approximation of the solution will be better
since the solution has only small high frequency components,
yielding fewer multigrid iterations.

For the other three subproblems there is no systematic
variation in time, except for the first time step where the time
independent stiffness matrices are built.

5.4.2 The 3D case. The CPU consumption for 3D simula-
tions (not shown) is very similar to the 2D case. The only
significant difference is that the workload per node for the
Make routines are more costly in 3D. The reason is that there
are more elements per node in 3D and that the workload per
element is higher.

5.4.3 Growth in CPU time with problem size. Table 5 shows
the CPU-times from Table 4 divided by the number of nodes
involved in the problem. In this way the numbers along each
row becomes comparable and we can study the growth of
work load as a function of the problem size. As expected
the work needed to solve the ODEs in a single node is in-
dependent of the number of nodes in the problem. The same
is true for the assembling of the linear systems for the two
PDEs. The assembly routine consists of a single loop over all
elements, and the work performed on a single element is inde-
pendent of the problem size. Since the number of elements are

Ref. No NP NE ODE Make-P Solve-P Make-E Solve-E

5 4059 18 433 398.52 35.15 2.89 4.67 29.38
6 15 607 73 313 366.50 35.62 4.87 4.78 22.95
7 61 167 292 417 336.71 34.31 7.12 5.23 17.76
8 242 143 1 168 001 375.62 36.90 9.58 4.54 15.68

Table 5. Same as Table 4 but with execution
times divided by the number of unknowns in
addition to the number of time steps. All num-
bers are reported in microseconds

almost proportional to the number of nodes the linear work
growth is as expected.

The discretization of the PDEs yields linear equation sys-
tems with as many unknowns as the number of nodes in
the grid. The linear systems are solved with the Multigrid
Method [2, 9]. It has been proved [9] that the work load for
elliptic equations is proportional to the number of unknowns.
From the last row in Table 5 we see that the implemented
solver performs in agreement with this result.

The only exception from the linear growth in work load
is the solving of the parabolic equation. Although the rate of
work increases faster for the parabolic case it is still an ef-
ficient solver. Furthermore, it constitutes the smallest part of
the problem even on the finest grid. The linear speed up prop-
erty is very desirable in our setting since the number of nodes
required for a full scale 3D simulation will be extremely high.
The work load for solving the parabolic equation may under
these circumstances blow up and thus it might be necessary
to find ways of solving the problem in linear time in order to
avoid this.

5.5 Effect of adaptivity

The adaptive scheme suggested in Sect. 4.4 has been tested
on the 2D problem with the geometry based on anatomical
data.

5.5.1 The grid outside the myocardium. The adaptive algo-
rithm is based on the idea of refining the grid around the wave
front of the transmembrane potential in the myocardium. Out-
side the myocardium the transmembrane potential is not mod-
eled so the criterion can obviously not be used there. The
extracardiac potential is governed by a different equation and
the solution is qualitatively different. In particular the solution
has no localized wave front. Furthermore, the solution de-
pends upon the transmembrane potential in a global way, i.e.
a movement of the wave front in the myocardium causes the
extracardiac potential to change over the whole domain. Thus
the solution varies substantially from time step to time step so
the simple idea of the adaptive algorithm does not carry over
to this part of the grid. Instead a fixed grid is used in the torso
outside the myocardium.

The main point of the first simulation is to isolate the
effect of adaptivity in the myocardium. Therefore the grid
outside the myocardium is the same as the one used in the
non-adaptive simulation we are comparing with, which cor-
responds to refinement number 7 in Table 4 and Table 5. Later
in this section we will also try to simulate with a coarse grid
in the torso.

5.5.2 CPU usage. In row A and B of Table 6 we compare
the time consumption with and without using adaptivity. The
work spent on solving the ODEs is reduced, the same is
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true for solving the parabolic system and the elliptic system.
Since the number of unknowns is reduced, especially for the
problems solved on the myocardial grid, this is as expected.
For the assembling the situation is different. Since the stiff-
ness matrix must be recomputed for each time step, the work
load per node increases. For the parabolic equation this is
more than counterbalanced by the reduction in the number of
nodes. For the elliptic case the assembly process is more CPU
intensive when using adaptivity. Again this is not surprising
since the reduction of the number of nodes in the torso grid is
marginal. However, under the ‘Total’ column in rows A and
B we see that the increased cost of assembling does not out-
weigh the benefits of reducing the number of unknowns. It is
not necessary to recompute all elementary stiffness matrices,
but only those corresponding to new elements. By utilizing
this fact it should be possible to construct assembling routines
that handle the adaptivity efficiently. The workload connected
to assembly could then be greatly reduced.

Table 6. Execution times for simulations on the accurate 2D geometry,
with or without adaptivity. All numbers are per time step and measured
in seconds. Simulation A is the second finest simulation from Table 4,
simulation B is the same as A but with adaptivity on the myocardial grid,
simulation C is the same as B but with a coarse grid outside the myocardium

Parabolic eq. Elliptic eq.
Sim. Total ODE Make Solve Make Solve

A 29.91 20.60 2.10 0.44 1.53 5.19
B 13.60 4.70 0.54 0.10 4.02 4.26
C 2.08 1.11 0.18 0.02 0.20 0.57

5.5.3 Temporal variation in the number of nodes. The num-
ber of nodes in the myocardial grid is shown as a function
of time in Fig. 14. In the initial steps the grid is forced to
have a high resolution in order to represent the initial condi-
tion properly. Similarly, at T = 20 ms the adaptivity is turned
off when the last activation site is started. The number of
nodes falls sharply when the adaptivity is turned on. As the
wave front spreads out the node density increases, because
the area of the wave front increases. A peak is reached after

Fig. 14. The variation of the number of nodes throughout a simulation when
using the adaptivity on the myocardial grid

40 ms. When the whole myocardium is depolarized the wave
fronts disappear and the number of nodes falls quickly. The
repolarization creates a wave front not unlike the depolariza-
tion, following the same pattern but being less steep. It is the
propagation of this wave front that causes the last peak in
the node density towards the end of the simulation. After this
wave has passed through the domain the node density falls
down to that of the coarsest grid in the multigrid hierarchy.
Figure 15 shows the grid after 20 ms.

Fig. 15. The myocardial grid recorded 20 ms after initial stimulation. The
node density is low on either side of the wave front. (Simulation number 2,
coarse torso grid)

5.5.4 Simulation with a coarse torso grid. In the next simu-
lation the elements outside the myocardium have not been
refined, i.e. the coarsest grid is used. Row C of Table 6 shows
the time consumption for this simulation. The tasks related
to the elliptic problem (E-make and E-solve) are obviously
solved much faster since the number of elements outside the
myocardium is greatly reduced. For the tasks carried out ex-
clusively on the myocardium there is also a substantial de-
crease in work load. In the first adaptive simulation the high
density of nodes outside the myocardium also implied a high
density of nodes on the myocardial side of the boundary. By
having a coarse grid outside the myocardium the node density
will initially be lower also in the myocardial grid. This ex-
plains the reduction in CPU time for solving the ODEs and
the parabolic equation.

5.5.5 Quality of solutions. The reduced CPU times are of lit-
tle use if the computed solutions are incorrect. The quality
of the solutions can be evaluated by comparing the ECG sig-
nals. Figure 16 shows these signals for the three different
simulations.

All simulations produce similar signals. The QRS com-
plexes match up both with respect to amplitude and duration,
although the signal of the last simulation cuts some of the
steepest peaks. The T-wave sets in a bit earlier in the sim-
ulations using adaptivity. This means that the propagation
speed is a bit faster on the adaptive grid during repolariza-
tion. In the transversal lead ECG there is a significant off-set
in the ST-segment. This part of the signal is important when
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Fig. 16. The effect of using adaptivity, ECG signals for three simulation.
Full grid both domains (solid line), adaptivity in myocardium and full grid
outside (dashed line), adaptivity in myocardium and coarse grid outside
(dashed/dotted line)

diagnosing ischemia and the inaccuracies introduced by adap-
tivity may be too large to make a quantitative study of these
effects possible.

The ECG signal is a sensitive measure. Although there
is some clear discrepancy in the signals, the solution ob-
tained by using adaptivity might be sufficiently accurate in
many circumstances. Certainly the activation sequence is well
preserved.

The relatively little error committed when going from
a fine to a coarse grid in the domain outside the myocardium
shows that it is not necessary to have the same node density
here as in the myocardium.

6 Discussion

The tests on the simple 2D geometry have shown that the
simulator reproduces the basic features of the electrical prop-
erties of the myocardium. Current applied to an area with
resting tissue caused depolarization. Subsequently, the depo-
larization spread out from this area and out to the rest of the
myocardial tissue. From analytical considerations we knew
that the solution of the these problems had to be rotationally
invariant. This behavior was reproduced when the node dens-
ity was about five nodes per millimeter and the time step no
larger than an eighth of a millisecond.

On the geometries which were based on anatomical data
the numerical solution could not be compared to features
of an analytical solution since there were non available. On
the other hand, the simulated situations were in these cases
more comparable to what actually goes on in the heart so
comparisons could be made directly to measurements. Only
in 2D has it been possible to simulate with sufficient accu-
racy. In this case the propagation speed, the activation pat-
tern and the duration of the depolarization process seemed
plausible.

The repolarization phase has also been demonstrated. The
inversion of the T-wave was attributed to the fact that identical

models for the ionic current were used throughout the my-
ocardium. If a more realistic distribution of APDs had been
included the T-wave would show the normal behavior.

The growth in the CPU consumption was roughly lin-
ear with respect to the number of unknowns and the work
load was less than one millisecond per unknown per time
step. The only part of the problem that did not show the
linear growth in the CPU consumption was the solving of
the linear system of the parabolic equation. It constitutes of
a small part of the problem even on the finest grids, but for
fine 3D simulations this part of the problem may become sig-
nificant. Solving the ODEs was the most CPU intensive part
of the problem. The present implementation uses an explicit
solver. In [24] implicit solvers are successfully applied to this
problem.

The adaptive scheme yielded a significant reduced work
load, but at the cost of a less accurate solution. An interest-
ing result of the adaptivity simulations is that the grid outside
the myocardium can have much larger elements than the ones
in the myocardium. Even with many millimeters between the
nodes, the generated ECG signals were very similar to the
signals generated by using full resolution.

Appendix: The Luo–Rudy model

A.1 Ionic concentration change

The change in the ionic concentration is given by:

d[Na]i

dt
= − INa,tot · ACap

VMyo · F

d[K]i

dt
= − IK,tot · ACap

VMyo · F

d[Ca]i

dt
= − ICa,tot · ACap

2 · VMyo · F

− (IUp − ILeak) · VNSR

VMyo
− IRel · VJSR

VMyo

d[Ca]JSR

dt
= −IRel + ITr

d[Ca]NSR

dt
= IUp − ILeak + ITr · VJSR

VNSR

where ACap = 1.534 ×10−4 is the capacitive membrane area,
VMyo is the volume of the myocardium, occupying 68% of
the cell volume which is 38 ×10−6 µL. VNSR and VJSR occupy
92% and 8% of the SR respectively, and VSR is 6% of the cell
volume. F = 96 500 is the Faraday constant. The currents re-
lated to SR are listed in Sect. A.4, the total transmembrane
currents for each ions is as follows:

INa,tot = INa +3INaCa +3INaK + Ins,Na + INab + ICaNa

IK,tot = IK + IK1 + IKp −2INaK + Ins,K + ICaK

ICa,tot = ICa −2INaCa + Ip(Ca) + ICa,b

The definition of the individual terms is listed in Sect. A.3
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A.2 Gating variable coefficients

αm(v) = 0.32 · (v+47.13)
/(

1 − e−0.1·(v+47.13)
)

βm(v) = 0.08 · e−v/11

αh(v) =
{

0.135 · e(80+v)/(−6.8) if v < −40

0 otherwise

βh(v) =
{

3.56 · e0.079·v +3.1 ×105 · e0.35·v if v < −40

1 /
(
0.13 · (1 + e(v+10.66)/(−11.1)

))
otherwise

αj(v) =




(
−1.2714×105 · e0.2444·v −3.474×10−5 · e−0.04391·v)

· v+37.78

1+ e0.311·(v+79.23)
if v < −40

0 otherwise

βj(v) =




0.1212 · e−0.01052·v/ (
1 + e−0.1378·(v+40.14)

)
if v < −40

0.3 · e−2.535×10−7 ·v /(
1 + e−0.1·(v+32)

)
otherwise

αx(v) = 7.19 ×10−5 · (v+30)
/(

1 − e−0.148·(v+30)
)

βx(v) = 1.31 ×10−4 · (v+30)
/(−1 + e0.0687·(v+30)

)
αd(v) = (0.035 · (v+10))

/(
1 − e−(v+10)/6.24)

βd(v) = αd · e−(v+10)/6.24

α f (v) = f∞/ fτ

β f (v) = (1 − f∞)
/

fτ

f∞(v) = 1
/(

1 + e((v+35.06)/8.6)
) +0.6

/(
1 + e(50−v)/20)

fτ (v) = 1
/(

0.0197 · e−(0.0337·(v+10))2 +0.02
)

A.3 Ionic currents

In this section [Ca] and [Ca]JSR refers to free concentration as
opposed to total concentration elsewhere.

INa(v, s) = GNa ·m3 ·h · j · (v− ENa)

where ENa = RT

F
· log ([Na]o/[Na]i)

and GNa = 16

ICa(v, s) = d · f · fCa · ICa

where fCa = 1
/(

1 + ( [Ca]i
/

Km,Ca
)2

)
,

Km,Ca = 0.6 , k = F · vF

RT

and ICa = 5.4 ×10−4 ·4 · k

·
(

1 · [Ca]i · e2· vF
RT −0.341 · [Ca]o

)/(
e2· vF

RT −1
)

ICaNa(v, s) = d · f · fCa · ICaNa

where ICaNa = 6.75 ×10−7 · k

·
(

0.75 ·
(
[Na]i · e

vF
RT −[Na]o

))/(
e

vF
RT −1

)
ICa,K(v, s) = d · f · fCa · ICaK

where ICaK = 1.93 ×10−7 · k

·
(

0.75 ·
(
[K]i · e

vF
RT −[K]o

))/(
e

vF
RT −1

)
IK(v, s) = GK · Xi · x2 · (v− EK)

where Xi = 1
/(

1 + e(v−56.26)/32.1)
EK = RT

F
· log

(([K]o + PNa,K · [Na]o
)/

([K]i + PNa,K · [Na]i
) )

and PNa,K = 0.01833 , GK = 0.282 ·√[K]o/5.4

IK1(v, s) = GK1 ·K1∞ · (v− EK1)

where EK1 = RT

F
· log ([K]o/[K]i) ,

GK1 = 0.75 ·√[K]o/5.4 ,

K1∞ = αK1
/
(αK1 +βK1) ,

αK1 = 1.02
/(

1 + e0.2385·(v−EK1−59.215)
)

,

and βK1 =
0.49124 · e0.08032·(v−EK1+5.476)

+e0.06175·(v−EK1−594.31)

1 + e−0.5143·(v−EK1+4.753)

IKp(v, s) = GKp ·Kp · (v− EK1)

where Kp = 1
/(

1 + e(7.488−v)/5.98)
and GKp = 0.0183

INaCa(v, s) = kNaCa · (1
/(

K3
m,Na +[Na]3

o

))
· (1

/(
Km,Ca +[Ca]o

))
·
(

1
/(

1 + ksat · e(η−1)· vF
RT

))

·
(
eη· vF

RT · [Na]3
i · [Ca]o − e(η−1)· vF

RT · [Na]3
o · [Ca]i

)
where kNaCa = 2000 , Km,Na = 87.5 , Km,Ca = 1.38 ,

ksat = 0.1 , η = 0.35

INaK(v, s) = INaK · fNaK ·
(

1
/(

1 + (
Km,Nai

/[Na]i
)1.5

))
· ([K]o/([K]o +Km,Ko)

)
where

fNaK = 1
/(

1 +0.1245 · e−0.1· vF
RT +0.0365 ·σ · e− vF

RT

)
,

σ = (1/7) · (e[Na]o/67.3 −1
)

,

and INaK = 1.5 , Km,Nai = 10 , Km,Ko = 1.5
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Ins,Na(v, s) = Ins,Na

/[
1 + (

Km,ns(Ca)/[Ca]i
)3

]
where Ins,Na = 1.75 ×10−7

· vF2

RT
·
(

0.75 ·
(
[Na]i · e

vF
RT −[Na]o

))/(
e

vF
RT −1

)
,

and Km,ns(Ca) = 1.2

Ins,K(v, s) = Ins,K

/[
1 + (

Km,ns(Ca)/[Ca]i
)3

]
where Ins,K = 1.75 ×10−7

· vF2

RT
·
(

0.75 ·
(
[K]i · e

vF
RT −[K]o

))/(
e

vF
RT −1

)
Ip(Ca)(v, s) = Ip(Ca) ·

([Ca]i
/(

Km,p(Ca) +[Ca]i
) )

,

Ip(Ca) = 1.15 , Km,p(Ca) = 0.5

ICa,b(v, s) = GCa,b · (v− ECa,N
)

where ECa,N = 0.5 · RT

F
· log ([Ca]o/[Ca]i) ,

GCa,b = 0.003016

INa,b(v, s) = GNa,b · (v− ENa) , GNa,b = 0.00141

A.4 Calcium currents related to SR

IUp = IUp · [Ca]
[Ca]+ Km,Up

where Km,Up = 9.2 ×10−4 , IUp = 0.005

ILeak = KLeak · [Ca]NSR

where KLeak = IUp
/ [

Ca
]

NSR ,
[

Ca
]

NSR = 15

ITr = ([Ca]NSR −[Ca]JSR)
/

τTr , τTr = 180

IRel = GRel · ([Ca]JSR −[Ca])

IRel is only activated if the calcium concentration increase
during the first 2 ms after the depolarization, denoted by
∆[Ca]2, is larger than a given threshold ∆[Ca]th. The conduc-
tance GRel is therefore zero if ∆[Ca]2 < ∆[Ca]th. It is given
by:

GRel =




GRel · ∆[Ca]2 −∆[Ca]th

Km,Rel +∆[Ca]2 −∆[Ca]th

(
1 − e−t/τon

)
· e−t/τoff if ∆[Ca]2 > ∆[Ca]th

0 otherwise

Here t + 2 ms is the time elapsed since the time derivative
of the transmembrane potential reached its peak. The con-
stants are G = 60, Km,Rel = 0.8, τon = τoff = 2 and ∆[Ca]th =
0.18.

A.5 Buffers

A buffer is a substance that can absorb a compound (in our
case ions) when the concentration of that compound is high
and which returns the compound to the solution if the concen-
tration decreases. In this way the buffer prevents large con-
centration variation of that compound. The buffers included
in the Luo–Rudy model are calmodulin and troponin in my-
oplasma and calsequestrin in JSR which all act as buffers for
calcium.

The calcium concentration calculated by the model refers
to the total amount of calcium both free and buffered, that is

[Ca]i = [Ca]i,Tot = [Ca]i,Free +[Ca]i,Buffered (A.1)

However, the [Ca]i referred to in the current- and buffer-
equations is the concentration of free calcium. The same sub-
tle distinction also applies to [Ca]JSR.

In JSR there is a single type of buffer, calsequestrin, and
the amount of buffered calcium is given as a function of the
amount of free calcium:

[Ca]JSR,Buffered = [CSQN] [Ca]JSR,Free

[Ca]JSR,Free + Km,CSQN

with [CSQN] = 10 and Km,CSQN = 0.8.
The amount of buffered calcium in the myoplasma is

given by:

[Ca]i,Buffered = CaTRPN +CaCMDN

=[TRPN] Cai,Free

Cai,Free + Km,TRPN

+[CMDN] Cai,Free

Cai,Free + Km,CMDN

The constants are [TRPN] = 70, Km,T = 0.5, [CMDN] = 50
and Km,C = 2.38.
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