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Abstract Developmental dyslexia is a highly heritable

disorder with a prevalence of at least 5% in school-aged

children. Linkage studies have identified numerous loci

throughout the genome that are likely to harbour candidate

dyslexia susceptibility genes. Association studies and the

refinement of chromosomal translocation break points in

individuals with dyslexia have resulted in the discovery of

candidate genes at some of these loci. A key function of

many of these genes is their involvement in neuronal

migration. This complements anatomical abnormalities

discovered in dyslexic brains, such as ectopias, that may be

the result of irregular neuronal migration.
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Introduction

The ability to use spoken language and to read are unique

attributes of Homo sapiens that set us aside from other

species on the planet. Although it has been argued that

language development is an innate ability, reading in

contrast is not an innate ability, but is acquired through

extensive tuition. Different writing (and hence reading)

systems have developed over thousands of years across the

globe. The earliest known occurrence of H. sapiens ability

to read and write dates back over 5,000 years, in a region

including the present day middle east [102].

Most individuals can acquire the ability to read and

write to a standard of proficient fluency and accuracy, but

for at least 5% of school-aged children with the develop-

mental dyslexia (DD; [MIM 127700]) this can be a chal-

lenging task that often persists into adulthood. DD is

generally referred to as a specific impairment in reading

ability that is substantially below the expected reading

ability given the person’s chronological age, measured

intelligence and age-appropriate education. Exclusion cri-

teria are acquired brain trauma or disease and impaired

visual and auditory sensory acuity [1, 76, 133, 159, 167,

206, 209].

Recognition of DD

It is reported that the condition of word-blindness, also

known as ‘‘wortblindheit’’ or ‘‘cétité verbale’’, was recog-

nised 130 years ago by Kussmaul, and was loosely

described as inability to read words, despite being able to

see them [82, 99]. About 30 years later, individual cases of

word-blindness began to be documented in the English

literature. Many of the early reports were by Hinshelwood,

who described cases where the ability to read was spon-

taneously lost or diminished in adulthood. These cases

often coincided with secondary conditions, such as a severe

headache, stroke, epileptiform seizure, aphasia, hemiplegia

or right homonymous hemianopsia, or else a physical strike

to the head [82–85, 88]. This condition of acquired word-

blindness, or alexia, was attributed to the damage of some

parts of the brain. Pathological examinations confirmed this
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by revealing lesions in the left supramarginal and angular

gyri of the inferior parietal lobe [82–84]. This is where

cross-model integration of auditory and visual information

occurs.

At the same time, congenital word-blindness (or DD)

began to be recognised [86, 87, 89, 123, 181, 188]. These

were cases of children, often described as healthy, bright

and intelligent, who had great difficulty in learning to

read and write. Given the perceived clinical similarity of

DD and acquired word-blindness, it was postulated that

individuals with DD would also have abnormalities in their

left supramarginal and angular gyri [86].

Neurobiology of DD

Evidence for a neurobiological basis for DD comes from

postmortem examinations and brain imaging of individuals

with DD. Postmortem examinations of four male and three

female brains with DD made two primary observations; an

increase in abnormalities of the left hemisphere concen-

trated around the perisylvian region and near symmetry of

the planum temporale [61, 63, 92]. The abnormalities

included neuronal ectopias and focal architectonic dyspla-

sias, specifically micropolygyria, of the left planum tem-

porale. The ectopias, consisting of nest of neurones, and

occasionally the dysplasias, were often found in layer I of

predominantly the left inferior frontal and superior temporal

gyri. An important inference from these studies was that the

abnormalities, or lesions, occurred at a time of peak neu-

ronal migration during embryonic development [63].

Subsequently, visual processing experiments indicated

problems with rapid visual processing in individuals with

DD. This led to the postmortem re-examination of the same

DD brains as before [61, 63, 92, 108]. This revealed dis-

organisation of the magnocellular, but not the parvocellu-

lar, layers of the lateral geniculate nuclei (LGN). This

region of the brain forms part of the primate visual system

and so these observations were consistent with the visual

processing deficiencies observed in DD [108]. The cell

bodies comprising the magnocellular layers of the LGN

from the DD brains also appeared smaller than in control

brains.

Similarly, the results from auditory processing experi-

ments indicated problems with rapid auditory processing in

individuals with DD [147, 185]. This again led to the re-

examination of same DD brains. This time the medial

geniculate nuclei (MGN) were examined as these are

involved in the auditory processing system [61–63, 92].

The DD brains presented greater asymmetry between the

left and right MGN than in control brains, and generally the

left MGN had more smaller and less larger neurones [62].

Much has been learnt about the processes of reading by

functional neuroimaging of brains unaffected with DD.

These studies suggest that two posterior pathways exist,

namely the dorsal and ventral pathways, along with an

anterior component and that generally there is a bias of

leftside processing. The dorsal pathway is centred on the

left temporoparietal regions. It includes the angular and

supramarginal gyri, and also the left posterior end of the

superior temporal gyrus [173], and deals with attentionally

controlled mapping of graphemes of a visual word onto

phonological representation. An underactivation in this

pathway is considered as correlate of a phonological defi-

cit. The ventral pathway is centred on the left inferior

occipitotemporal region and includes the posterior fusiform

gyrus. It may be required for the quick automatic pro-

cessing of familiar visual words or frequent letter strings

within words. The under activation of this pathway in

dyslexic subjects was interpreted as correlate of the slow

and erroneous word recognition. The anterior component is

centred on the left inferior frontal gyrus and mainly cor-

relates with the articulation of speech sounds. An over

activation in this brain region was seen as compensatory,

although ineffective articulatory-based access to phono-

logical word representations in DD [148].

Many functional neuroimaging studies have demon-

strated altered activity of exactly these regions in DD

brains [43]. For example, in one study, phonological and

lexical tasks resulted in the activation of the left inferior

temporal gyrus of most control brains, whereas almost

none of the DD brains showed any activation of this region

[33]. Several studies have also demonstrated reduced

activity of left temporoparietal regions (including the

angular and supramarginal gyri) on tasks of word reading,

non-word reading and letter rhyming [171, 172, 187], and

left occipitoparietal regions on tasks of letter matching

[187]. A large study comparing 70 DD brains to 74 control

brains similarly revealed reduced left inferior frontal, left

superior temporal, left occipitotemporal and left temporo-

parietal regional activity on several reading-related tasks

[166]. In addition, a positive correlation was observed

between individual reading skill and activity in left pos-

terior regions, for example, between pseudoword reading

and the left occipitotemporal region [166]. A compensatory

higher activation pattern in DD subjects was found

repeatedly in the left inferior frontal brain area [21, 143,

151, 168]. Imaging studies have also identified greater

asymmetry and less grey matter content of the cerebellum

in DD brains [19, 45, 103], with one study indicating a

smaller right anterior lobe correlates with phonological

deficits [103].

Finally, it is often observed that the equivalent homo-

topic right hemispheres display increased activity in DD

brains, perhaps as a compensatory measure. For example,

the right temporoparietal regions (including the angular

gyrus) displayed greater activation in response to both
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word and non-word reading [171, 172], and increased

activity in the right relative to the left inferior temporal

gyrus during a phonological task [33].

Theories on the basis of DD

Numerous theories and ideas have been put forward to

explain the deficits observed in DD individuals, but whilst

each may be supported by evidence from a few individuals

with DD, not one is able to account for all cases of DD.

A brief description of each is given here. The phonological

deficit theory is the most widely accepted, and is explained

by a problem in representing, storing or retrieving pho-

nemes, resulting in poor or ineffectual reading [17, 177].

The rapid auditory processing theory suggests that DD

develops from an auditory deficit that inhibits the percep-

tion of short or rapidly varying sounds [185]. The visual

deficit theory suggests that an impairment of the visual

magnocellular system, and its association with the posterior

parietal cortex, is responsible for DD [179]. The cerebellar

deficit theory attempts to tie in the motor deficits often

associated with DD by recognising that the cerebellum is

important in both movement control and the automation of

skills [50, 81, 126, 183]. The magnocellular (auditory and

visual) theory extends upon both the auditory and visual

theories by postulating that a general impairment in mag-

nocellular pathways will affect visual, auditory and tactile

sensory modalities [179]. The double-deficit hypothesis

proposes that DD arises from deficits in both phonological

processes and the rapid naming of simple stimuli such as

words [207, 208]. A fundamental argument against each

theory is that they can only explain a proportion of indi-

viduals with DD, and that some individuals with DD do not

have the other peripheral deficiencies often described by

these theories [145]. Indeed, it is entirely possible that each

theory may account for different sub-sets of dyslexia,

brought about by different aetiologies, whether they are

genetic or environmental.

Prevalence of DD

The prevalence of DD, that is the occurrence of DD in the

general (unselected) population, has been estimated from

epidemiological studies, with large numbers of individuals,

typically from Western populations, employing different

selection criteria and different test languages. To illustrate

this, a study of 5,718 children in a population-based birth

cohort in the US has produced prevalence figures of

5.3–11.8% [96]. However, DD is not limited to Western

populations. A study of 690 Chinese children from Hong

Kong found prevalence rates of 9.7–12.6% [28], and a

study of reading disability in 2,878 Egyptian children

found a prevalence rate of 1.3% [49]. The prevalence of

DD is often observed greater in males than in females, at a

ratio of *2:1 [28, 41, 49, 96], and this is often explained

by an ascertainment or referral bias [52, 196]. However,

ever increasing sample sizes from unselected populations

makes this argument difficult to justify. Four independent

epidemiological samples (n = 989, 895, 5,752 and 2,163)

from a single study observed prevalences of 18.5–24.6% in

boys and 8.3–13% in girls. A huge prospective study in the

US of 32,223 children (16,080 boys and 16,143 girls)

observed that twice as many boys were affected than girls

[56], and a study of reading ability in nearly 200,000

children across 43 different countries found that in every

country examined, without exception, girls outperformed

boys on reading tests [30].

Genetic studies on dyslexia

Familiarity of DD

Developmental dyslexia does not just occur randomly

within the population. In fact, familial clustering of DD

was observed well over 100 years ago [89, 181, 188]. It

was later observed that an individual’s risk of being

affected increased, when other family members were

already affected [77]. Later, it was observed that 9% of

control children had a sibling or parent with some form of

reading problem, when compared with 34% of children

with DD [152]. Recently, it has been shown that 20–33%

of siblings of affected individuals, with unaffected parents,

are themselves also affected [67]. This increased to

54–63% if either (but not both) parent was also affected,

and to 76–78% if both parents were affected [67]. For

spelling disorder, the percentage of affected siblings has

been found to be higher (52–62%) than for word reading

[156]. The sibling recurrence risk of DD, that is the

probability of an individual being affected with DD given a

sibling is already affected (regardless of parental affection

status), is estimated as 43–60% [197, 213]. With a popu-

lation prevalence of *10% and a sibling recurrence risk of

*50%, the sibling relative risk can be estimated as

between 4 and 6, and increases with stricter affection status

criteria [213].

Heritability of DD

With such a strong familial basis for DD, twin studies have

been employed to evaluate the contribution of the envi-

ronmental and genetic components underlying its aetiol-

ogy. Typically, such studies utilise large sets of

monozygotic (MZ) and same sex dizygotic twins. The

concordance rate for DD is then compared between the two

sets of twins. A higher concordance rate in the MZ twins
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would be suggestive of a genetic aetiology for DD, and

fittingly this has been shown consistently; 1.00 versus 0.52

[212], 0.91 versus 0.45 [4] and 0.68 versus 0.38 [41]. Twin

studies also enable estimates of the heritability of DD, that

is the proportion of phenotypic variation attributable to

genetic variation, with figures ranging from 0.30 to 0.70

[27, 42, 64, 182], depending on the diagnostic criteria, age

and sample size (see Fig. 1) [38, 79, 106, 136].

Identifying the risk factors behind DD susceptibility

Twin- and family-based studies have shown that DD is

highly familial and also heritable and complex, involving

multiple risk factors, both genetically and environmentally

[53, 58, 76, 133, 155, 159, 206]. Identifying the environ-

mental factors has yielded interesting and controversial

results, ranging from the effects of maternal antibodies

[195], associations with immune disorders [69, 91, 192],

fatty-acid deficiencies [36, 186], imbalances of trace and

toxic metals [24, 70] and exposures to high levels of pre-

natal testosterone [16, 66].

Conversely, the search for genetic risk factors is yield-

ing convincing results, as will be discussed later. However,

before we touch on that, there is one more important aspect

of DD to be covered is the issue of co-morbidity (see

Table 1), particularly with other neurodevelopmental dis-

orders, such as attention deficit/hyperactivity disorder

(ADHD [MIM 143465]) [3], developmental dyscalculia

(DC) [105], specific language impairment (SLI [MIM

606711) [118] and speech-sound disorder (SSD [MIM

608445]) [13]. ADHD is characterised by inattention, over-

activity and impulsiveness and has a population prevalence

of *5% [1]. DC has a population prevalence of about 3.6–

6.6% and is generally defined as a specific impairment in

arithmetic abilities, despite any deficits in intelligence,

socioeconomical background, general motivation, emo-

tional stability, educational opportunity or sensory acuity

[1, 75, 105, 164, 165, 209]. SLI is regarded as impairment

in the ability to acquire adequate language skills, despite

normal intelligence and development and has a population

prevalence of approximately 2.3–7.4% between 2 and

5 years old [101, 191]. SSD, or phonological disorder, is

characterised by speech–sound production errors associ-

ated with deficits in articulation, phonological processing

and cognitive linguistic processing, and has an estimated

population prevalence of *15% at 3 years of age,

decreasing to 3% by 6 years of age [23, 170]. There is not

much evidence of increased co-morbidity between DD and

SSD alone, but in conjunction with language impairments

there is significant co-morbidity with DD, particularly with

deficits in spelling [13, 104].

Co-morbidity with these disorders presents a challenge

for researchers studying the genetics of DD. On the one

hand, DD individuals recruited for these studies must be

carefully vetted with strict exclusion criteria to ensure that

a homogenous sample is collected without other underlying

neurological disorders. However, on the other hand, from

the statistics presented in Table 1, individuals with DD,

depending on the diagnostic criteria used to diagnose a

comorbid disorder will commonly present with another

neurodevelopmental disorder, thus making pure DD indi-

viduals rare and not actually representative of the majority

of individuals with this disorder. Individuals with DD will

display a unique set of symptoms and severity, for both DD

and any other neurodevelopmental disorder they possess.

Furthermore, whether DD is causative of another neuro-

developmental disorder, or vice versa, or whether both

disorders are the results of the same aetiology further

Fig. 1 Heritability estimates of

reading and spelling
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complicates the matter. Indeed, from Table 1, it can be

seen that there are shared genetic influences affecting both

DD and the co-morbid disorders. Concentrating efforts on

homogenous samples affected by DD alone risks delaying

the discovery of genes implicated in this disorder. A better

strategy might be to record any co-morbid disorders and

then treat them as covariates when analysing a sample of

DD individuals. Putting this issue aside for now, genetic

studies of DD have been successful in the search for can-

didate susceptibility genes. On the whole, these studies

have made stringent attempts to use homogenous samples

affected by DD alone.

Molecular genetic studies for DD susceptibility

Not less than 19 independent linkage studies have been

performed in the search for DD susceptibility genes (see

Table 2). Eight of these were genome-wide linkage screens

[39, 46, 47, 54, 93, 94, 117, 127, 129, 146], whilst the

remainder generally targeted loci highlighted by the gen-

ome-wide screens. Another two genome-wide linkage

screens for general reading and spelling ability have also

been performed with samples not specifically selected for

DD [5, 163].

At least nine DD susceptibility regions have now been

mapped and allocated names from DYX1 to DYX9 suc-

cessively (see Table 3). Subsequent association studies

focussed at these regions have led the way in identifying

the underlying candidate genes at most of these regions,

with the exception of DYX4, DYX6 and DYX9, where no

efforts have yet been reported. A summary now follows the

remaining DYX# loci where reports exist for the positive

identification of candidate DD genes. However, before we

begin it should be noted that for the ease of reading, this

review does not delve into the different selection criteria or

reading-related measures used in each study.

DYX1 on chromosome 15

The first reported linkage to DD susceptibility anywhere in

the genome was to the centromere of chromosome 15

[175]. Unfortunately, subsequent studies were unable to

replicate this linkage [10, 54, 72, 157]. However, an

alternative locus on chromosome 15, from 15q15.1 to

15q21.3, has instead gained support from five independent

DD linkage studies (see Fig. 2) [29, 60, 72, 157, 161, 174].

This locus, DYX1, was made all the more interesting by the

discovery of a Finnish family co-segregating a balanced

translocations of 15q21-22, specifically t(2;15)(q11;q21),

with reading problems in four members of a two-genera-

tion family [128]. The chromosome 15 breakpoint of this

translocation disrupts a gene, now known as dyslexia sus-

ceptibility 1 candidate 1 (DYX1C1 [MIM 608706]),T
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Table 2 A summary of the different linkage studies for developmental dyslexia

Study

no.

Sample

no.

Sample

origin

No. of

families

Family

type(s)

Loci examined DYX# References

1 2 3 4 5 6 7 8 9

1 1 Finland 1 Extended Genome screen · · · · 4 · · · · [78, 127]

2 2 Finland 11 Extended Genome screen · · * · · · · · · [94, 141]

3 3 Norway 1 Extended Genome screen · · 4 · · · · · ? [46–48]

4 4 Dutch 1 Extended Genome screen · · · · · · · · 4 [39]

5 5 Dutch 67 ASP males and

mothers

Xq27.2-Xq28 . . . . . . . . · [39]

6 6 87%

Caucasian

51–52

(?38)

Nuclear ? extended Genome screen 4 · · · · · · · ? [29, 93,

146]

7 7 America 9–19 Extended chr15 ? 6p23-q23.1 4 4 . . . . . · . [25, 60,

174–176]

8 8 America 9 Multiplex Various regions · . . . . . . 4 . [144]

9 9 America 50 ?
46

Nuclear twins 6p23-q23.1 . 4 . . . . . . . [25, 26]

10 10 America 79 Nuclear twins 6p22.3-6p21.2 . 4 . . . . . . . [65]

11 9?10 US 119

(104)

Nuclear twins Genome screen · 4 4 · 4 4 · · · [54, 57, 95])

12 11 UK 82–89 Nuclear Genome screen · 4 4 · * 4 * · * [54, 55,

117]

13 12 UK 84 Nuclear 18p11.31-18q12.2 . . . . . 4 . . . [54, 117]

14 13 German 7 Multiplex chr6 and chr15 4 · . . . . . . . [130, 157]

15 14 German 82 Nuclear 18p11.21-18q12.3; 15q13.3-

15q22.2

4 . . . . · . . . [160, 161]

16 15 Norway 1 Extended Genome screen · · · · · · · · · [129]

17 16 Canadian 79–100 46–51 nuclear ?

30–50 extended

1p34-p36; 2p16.3-2p16.1;

6p25.1-p21.2; 6p12.1-6q16.1;

11p15.5-11p15.4

. * 4 4 . . 4 4 . [51, 90,

137, 139,

140, 194]

18 17 America 6–8 Extended 1p36-1q23; 6p23-p21.3;

chr15; chr16

4 4 . . . . . 4 . [71–74]

19 18 Danish 5 Backcross families chr15 · . . . . . . . . [10]

20 19 ? 1 Extended Various regions · · . . . . . · . [153]

Table 3 A summary of the DYX# loci

DYX# Chromosome

region

MIM No. of

positive

studiesa

References

of positive

studiesa

No. of

negative

studies

References of negative studies Candidate DD

susceptibility

genes

DYX1 15q21 127700 6 [29, 60, 72, 116, 124, 130,

157, 161, 174]

10 [10, 39, 47, 54, 94, 117, 127, 129, 144,

153]

DYX1C1

DYX2 6p22.3-p21.3 600202 7 [25, 26, 54, 55, 65, 71–73, 95,

117, 174, 193]

9 [29, 39, 46–48, 51, 93, 94, 127, 129,

130, 140, 146, 153, 157]

DCDC2 and

KIAA0319

DYX3 2p16-p15 604254 4 (?1) [46–48, 54, 57, 117, 139]

(?[94, 141])

4 [29, 39, 93, 127, 129, 146] MRPL19 and

C2ORF3

DYX4 6q11.2-q12 [#127700] 1 [137] 8 [39, 47, 54, 93, 94, 117, 127, 129, 146] –

DYX5 3p12-q13 606896 2 (?1) [54, 78, 127] (? [54, 117]) 5 [39, 47, 93, 94, 129, 146] ROBO1

DYX6 18p11.2 606616 3 [54, 117] 7 [29, 39, 47, 93, 94, 127, 129, 146, 160] –

DYX7 11p15.5 [#127700] 1 (?1) [90] (? [54, 117]) 7 [39, 47, 54, 93, 94, 127, 129, 146] –

DYX8 1p36-p34 608995 3 [74, 144, 194] 9 [39, 46–48, 54, 93, 94, 117, 127, 129,

146, 153]

KIAA0319L

DYX9 Xq27.2-q28 300509 1 (?1) [39] (? [54]) 5 [39, 54, 94, 127, 129] –

a Positive studies, and their references, in brackets indicate linkages close to the DYX# loci
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between exons 8 and 9 [184]. A subsequent association

study of DYX1C1 performed with a Finnish sample

revealed an increased frequency of two alleles in DD

individuals; -3A from the SNP rs3743205 (-3G[A) and

1249T from rs57809907 (1249G[T) [184]. A haplotype of

these two alleles, -3A:1249T, also associated with DD.

A separate sample of Finnish cases and controls again

revealed a significant association with these same alleles

[184]. The allele -3A disrupts a putative promoter-binding

site and 1249T is a nonsense mutation resulting in the loss

of ten amino acids from the N-terminus of the full-length

protein. Hence, both SNPs made attractive functional

mutations with regard to DD.

Efforts to replicate these associations have produced

mixed results and interpretations (see Table 4). Ten inde-

pendent studies have tested rs3743205, rs57809907 and

numerous other SNPs within DYX1C1 for association with

DD or reading-related measures [6, 7, 18, 32, 37, 113, 114,

122, 154, 184, 200]. Four of these studies provide no support

for either rs3743205 or rs57809907 [6, 7, 32, 122], whilst the

others produce conflicting results [18, 37, 113, 154, 184,

200]. Specifically, two studies lend support to -3A and

1249T, and four studies to -3G and 1249G. The associations

from the studies are mostly nominally significant and may

result from multiple testing of numerous phenotypes. Four of

these studies also report associations with other DYX1C1

variants, but none are replicated as yet. Two further studies

have tested autism and ADHD samples for association with

rs3743205 and rs57809907, but only yield limited support

for -3G:1249G and ADHD [201, 202, 210].

Therefore, it is unlikely, but not impossible, that

rs3743205 and rs57809907 are causative for DD. An

alternative explanation is that they are in linkage disequi-

librium with a causative genetic variant. This idea is sup-

ported by the fact that the four DD samples yielding

association between the alleles -3G and 1249G are of

central European descent, whilst the others supporting

-3A and 1249T are of Finnish and Italian descent. Hence,

the causative genetic variant could be present on one

haplotypic background of central European descent, and on

a different haplotypic background in other populations.

Alternatively, different causative mutations might exist

between different populations.

DYX2 on chromosome 6

A DD susceptibility locus on the short arm of chromosome

6, known as DYX2, has been reported by at least five

independent studies (see Fig. 3) [25, 54, 55, 65, 71–73, 95,

174]. DYX2 is located at 6p22.3-p21.3 and spans over

15 Mb. It was the first locus to be positively replicated for

DD susceptibility. Possibly for this reason, DYX2 became a

focal point for subsequent association studies employing

extensive high-throughput genotyping methods (Table 5).

Many genetic variants have been tested, including micro-

satellites and SNPs, and lots of sporadic associations have

been observed to a range of genes. However, from all these

studies of DYX2, there are two genes that stand out:

KIAA0319 and DCDC2. These genes are just 150 kb from

one another on 6p22.2.

Fig. 2 The DYX1 locus on chromosome 15. a Black horizontal lines
are linkage reports for DD from independent samples. Box with
diagonal lines indicates a translocation. b Genes that have been tested

for association. Interesting SNPs, deletions or translocation break-

points are highlighted
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Association with KIAA0319 was first identified in a

study of DXY2 using samples from the Colorado Learning

Disabilities Research Center (CLDRC) [95]. In this study,

association was observed to a microsatellite marker known

as JA04 that resides within the first exon of KIAA0319.

Although association with JA04 has never been replicated,

four of the five independent DD studies to have tested

KIAA0319 do find association with other markers [18, 31,

40, 44, 59, 80, 95, 121, 158]. Although these associated

markers are distributed across the entire 102 kb length of

KIAA0319, there is a tendency for the most significant

associations to cluster around the first intron and predicted

promoter region of this gene. Four markers, namely

rs4504469, rs6935076, rs2038137 and rs2143340 (actually

located in the adjacent gene called ‘‘TRAF and TNF

receptor associated protein’’ (TTRAP [MIM 605764])),

have each been robustly associated in at least two

independent samples. Furthermore, a specific risk-haplo-

type composed of rs4504469, rs2038137 and rs2143340

has been shown to associate with DD in three independent

samples. This risk-haplotype has also been tested and

associated with a range of reading-related measures in two

large unselected samples; approximately 6,000 children

from the Avon Longitudinal Study of Parents and Children

(ALSPAC) [134] and a sample of 440 twins collected from

Queensland, Australia [110]. Disconcertingly, the haplo-

type within KIAA0319 was actually associated with better

reading scores in the Australian twin sample. The two

likely explanations for this are a type I error or a conse-

quence of the sample being ethnically heterogeneous—

only *82% of the sample was reportedly of Anglo-Celtic

origin [110]. Nevertheless, functional studies have been

performed with this risk-haplotype, and an elegant exper-

iment has associated it with a reduction in the expression of

Table 4 Reported associations of DYX1C1 at DYX1

Study Study and

reference

Proband’s

disorder

Study

population

Sample Reported associations with DYX1C1

rs3743205

[-3G[A]

rs57809907

[1249G[T]

Haplotype:

rs3743205:rs57809907

Other (s)

1 Taipale et al.

[184]

Dyslexic Finnish 109 Cases and 195

controls

-3A 1249T -3A:1249T None

2 Scerri et al. [154] Dyslexic British 264 Families n/s 1249G -3G:1249G None

3 Wigg et al. [200] Dyslexic Canadian 148 Families -3G n/s -3G:1249G rs11629841(G),

Two 2-marker

haplotypese

4 Cope et al. [32] Dyslexic British 247 Trios n/s n/s n/s None

5 Marino et al. [113,

114]

Dyslexic Italian *212 Families n/s n/s -3A:1249T None

6 Meng et al. [122] Dyslexic American 150 Families n/s n/s n/s None

7 Bellini et al. [7] Dyslexic Italian 57 Cases and 96

controls

n/s n/s n/s -2Af

8 Brkanac et al. [18] Dyslexic American 191 Trios, and 191

cases and 192

controlsb

n/s 1249Gb n/s None

9 Dahdouh et al.

[37]

Dyslexic German 366 Trios [-3G]c n/s n/s 3-Marker

haplotypec

10 Ylisaukko-Oja

et al. [210]

Autistic Finnish 100 Families n/s n/s n/s None

11 Wigg et al. [201,

202]

ADHD Canadian 253 Families n/s n/s [-3G:1249G]d 6-Marker

haplotyped

12 Bates et al. [6] Unselecteda Australian 789 Families n/s n/s n/s Other not specified

n/s not significant
a Unselected population tested for reading
b Over-transmission of 1249G observed with the trios, but no associations were observed with the case:control analysis; the cases are derived

from the trios
c The 3-marker haplotype is rs3743205[G]:rs3743204[G]:rs600753[G], and hence includes -3G
d The 6-marker haplotype is rs2007494[A]:rs3743205[G]:rs3743204[C]:rs11629841[T]:rs692691[C]:rs57809907[G], and hence includes

-3G:1249G
e The 2-markers haplotypes are rs11629841[G]:rs692691[T] and rs3743204[C]:rs11629841[G]
f The allele -2A is for a SNP without an official name, but it is immediately adjacent to rs3743205
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KIAA0319 [135]. Subsequent characterisation of the risk-

haplotype sequence has revealed an allele of the SNP

rs9461045 that occurs rarely on other (non-risk) haplotypic

backgrounds [44]. The association analysis of rs9461045

proves to be highly significant with respect to DD [44].

Furthermore, a series of functional experiments that tested

the regulatory properties of numerous sequence variants in

the promoter region of KIAA0319 found that the risk allele

of rs9461045 specifically reduced gene expression.

Association with DCDC2 was also first observed in

samples from the CLDRC [40]. In all, five of the six

independent DD studies that have been tested recently,

association has been found between DCDC2 and a variety

of markers across the 212 kb length of this gene [18, 31,

40, 59, 80, 95, 112, 121, 158]. Several noteworthy genetic

variants have been identified in DCDC2 which have pro-

duced mixed results when tested in independent samples.

A polymorphic deletion has been associated in three of six

studies [18, 80, 112, 121], and the SNP rs793862 in four of

the six independent DD studies [18, 40, 80, 121, 158].

A haplotype of rs793862 and another SNP, rs807701, has

also proved significant association in two of five DD

studies [158]. Both rs793862 and rs807701, and their

haplotype, have also been tested in a sample of families

with ADHD probands and also tested for reading measures,

and revealed association with attentional phenotypes, but

not the reading phenotypes. Although the association of

rs793862 to DD or ADHD in four of the five studies

appears to be with the minor allele [35, 40, 121, 158], in

the remaining British sample, it is with the major allele

[80]. However, the association observed in this British

sample is modest (P values from 0.02 to 0.04), suggesting

it may be a type I error. Lastly, an independent study has

examined the effect of the DCDC2 deletion on the brain

morphology of healthy samples (not selected for DD).

A significant increase in grey matter in regions of the brain

involved in reading was observed in individuals heterozy-

gous for the deletion (individuals homozygous for the

deletions were too infrequent and so not tested) [120].

For both KIAA0319 and DCDC2, independent studies

have observed that the significance of the associations

within these genes increase on selecting a sub-set of sam-

ples containing the more severe cases of DD [59, 80, 158].

On the other hand, it is interesting to note that markers

within these genes have also been associated with general

reading ability within two unselected populations [6, 110,

134]. One possible interpretation is that variants within

both genes can influence the development of reading

ability, but that there are also specific functional variants

within these genes that can cause DD.

Finally, two independent analysis have tested for an

interaction been the markers of DCDC2 and KIAA0319

[80, 111]. Both studies find an interaction with a single

SNP (rs761100) within KIAA0319 and either rs793862

alone [80], or the haplotype it forms with rs807701 [111],

within DCDC2. Further work is required to determine

Fig. 3 The DYX2 locus on chromosome 6. a Black horizontal lines
are linkage reports for DD from independent samples. Box with
diagonal lines indicates a translocation. b Genes that have been tested

for association. Interesting SNPs, deletions or translocation break-

points are highlighted
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whether the interactions are between the same alleles in

these two studies.

DYX3 on chromosome 2

A locus for DD susceptibility on chromosome 2 was first

observed in one of the earliest genome-wide linkage scans

for this disorder, using a large pedigree of Norwegian

descent [47]. DYX2 is located on the short arm of chro-

mosome 2, at 2p15-16. Linkage to DD has since been

observed to DYX2 in at least three independent studies of

British, American and Canadian families (see Fig. 4) [54,

139]. A further study has identified a locus close to DYX2,

at 2p11, reportedly linked to DD in a sample of Finnish

families [94]. From the few early association studies to

investigate this region, negative findings were reported for

a very small number of SNPs in the gene tachykinin

receptor 1 (TACR1 [MIM 162323]) within the Finnish

families [141], and also the two genes ‘‘sema domain,

immunoglobulin domain, transmembrane domain and short

cytoplasmic domain, (semaphorin) 4F00 (SEMA4F [MIM

603706]) and orthodenticle homeobox 1 (OTX1 [MIM

600036]) in the American families [57].

Subsequently, the Finnish locus has been re-investigated

in a high-density SNP association study covering *5 Mb

of genomic sequence [2]. On this occasion, association was

observed in an overlapping region in two independent

samples of Finnish and German descent. In both samples, a

range of haplotypes were found associated with DD.

Common to several of these risk-haplotypes were the two

SNPs rs917235 and rs714939, and importantly in both the

Finnish and German samples an allele G at both rs917235

and rs714939 was over-transmitted to the DD samples.

Flanking these two SNPs are three genes; ‘‘family with

sequence similarity 176, member A’’ (FAM176A), mito-

chondrial ribosomal protein L19 (MRPL19 [MIM 611832])

and chromosome 2 open reading frame 3 (C2ORF3 [MIM

189901]). A reduction in the expression of both MRPL19

and C2ORF3 was subsequently observed from chromo-

somes carrying derivates of the risk-haplotype; specifically,

from chromosomes carrying both rs917235[G] and

rs714939[G] [2].

DYX5 on chromosome 3

Linkage to the peri-centromeric region of chromosome 3

has been observed for DD susceptibility in three indepen-

dent genome-wide screens (see Fig. 5). First, linkage was

reported in a Finnish family spanning the centromere of

chromosome 3 from 3p12 to q13 [127]. Within this four

generation family, it was deduced that 19 out of 21 affected

individuals carried a common haplotype identical-by-des-

cent that was about 35 Mb in length. Linkage to DD was

subsequently reported at 3p13 in a British sample and 3q13

in an American sample [54]. In addition, linkage for

reading ability at this peri-centromeric region was also

observed in a sample of American families ascertained for

SSD [178]. Specifically, linkage for the reading measures

was observed at 3p12 and from 3p12 to q12 for other

language-related measures also tested [178].

The first DD association study to examine this region

produced negative results in a sample of Italian families for

the gene dopamine receptor D3 (DRD3 [MIM 126451])

located at 3q13 [115].

Subsequently, the gene ‘‘roundabout, axon guidance

receptor, homolog 1 (Drosophila)’’ (ROBO1 [MIM

Fig. 4 The DYX3 locus on chromosome 2. a Black horizontal lines
are linkage reports for DD from independent samples. Box with
diagonal lines indicates a translocation. b Genes that have been tested

for association. Interesting SNPs, deletions or translocation break-

points are highlighted
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602430]) has been identified as a likely candidate gene for

DD susceptibility. The primary evidence comes from an

individual carrying a translocation involving DYX5, spe-

cifically t(3;8)(p12;q11), and who is also affected with DD

[78]. The chromosome 3 breakpoint of this translocation

was identified between exons 1 and 2 of ROBO1.

The 35-Mb haplotype co-segregating with DD in the large

Finnish family includes ROBO1, and expression of ROBO1

from this specific haplotype was shown to be significantly

reduced, either partially or completely [78]. ROBO1 is

nearly 1 Mb in length and contains thousands of SNPs.

A limited assessment of some of these SNPs in indepen-

dent samples could not yield evidence for an association

with DD [78], which may be explained by a different

diagnostic criteria in the replication sample.

DYX7 on chromosome 11

Just two studies report the linkage of a DD susceptibility

locus to chromosome 11. Both studies report linkage at

11p15; specifically at 11p15.4 in a British sample [54] and

11p15.5 in a Canadian sample [90]. The linkage observed

in the latter study appears to peak in a region containing the

gene dopamine receptor D4 (DRD4 [MIM 126452]).

However, analysis of DRD4 in the Canadian sample and

also in an independent sample of Italian families has found

no evidence of an association with DD [90, 115].

DYX8 on chromosome 1

Linkage to DD susceptibility has been reported at chro-

mosome 1 in three independent studies (see Fig. 6)

[74, 144, 194]. Up-to-date genetic maps reveal a consensus

region of linkage at 1p36 in all three studies [74, 144, 194],

but there is also evidence for linkage at 1p34-35 from two

of these studies as well [74, 194]. Located at 1p34.3 is the

gene KIAA0319-like (KIAA0319L) which has a high-

protein sequence identity to KIAA0319. KIAA0319L is

therefore a natural target for association studies given its

proximity to DYX8 and homology to KIAA0319. However,

just a single study has reported an investigation of

KIAA0319L in a sample of Canadian families [34]. Of the

handful of SNPs to have been tested, modest association

with DD was observed in just one SNP and a haplotype

derived from that SNP [34].

Other candidate DD gene studies

Other loci have received attention from DD linkage and

association studies, despite limited evidence from linkage

studies. For example, dopamine receptor D1 (DRD1

[MIM 126449]) at 5q35, dopamine receptor D2 (DRD2

[MIM 126450]) at 11q23, dopamine receptor D5 (DRD5

[MIM 126453]) at 4p16 and ‘‘solute carrier family 6

(neurotransmitter transporter, dopamine), member 3’’

(SLC6A3 [MIM 1406597]) at 5p15 have all been

investigated, but show modest or no linkage or associa-

tion with DD susceptibility [109, 115, 138].

A single family co-segregating dyslexia and a telomeric

deletion of at least 176 kb from the q-arm of chromosome

21 in four out of nine family members has also been

reported [142]. This region contains four genes that may be

variably affected by the deletion; pericentrin (PCNT [MIM

605925]), DIP2 disco-interacting protein 2 homolog A

(Drosophila) (DIP2A [MIM 607711]), S100 calcium-

binding protein B (S100B [MIM 176990]), and protein

Fig. 5 The DYX5 locus on chromosome 3. a Black horizontal lines
are linkage reports for DD from independent samples. Box with
diagonal lines indicates a translocation. b Genes that have been tested

for association. Interesting SNPs, deletions or translocation break-

points are highlighted
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arginine methyltransferase 2 (PRMT2 [MIM 601961]). The

authors suggest DIP2A as the most likely candidate DD

susceptibility gene of the four because of its function in the

regulation of neuronal connectivity [142]. However, this

inference of DIP2As function is incorrect as the authors

have inadvertently identified DIP2A as ‘‘DLX interacting

protein 2 (DIP2)’’ which is an alternatively spliced form of

glutamate receptor interacting protein 1 (GRIP1 [MIM

604597]) [211], rather than ‘‘DIP2 disco-interacting protein

2 homolog A (Drosophila)’’. DIP2A may still be involved

in neuronal connectivity although as shown by mutation

experiments of the disconnected gene (disco) in Drosophila

[125, 180]. S100B is also an attractive candidate for DD

susceptibility as SNPs within this gene have been associ-

ated with low cognitive ability in the elderly [100],

schizophrenia [107] and bipolar disorder [149]. However, it

is impossible to assess the influence of any of the four

genes with respect to DD without evidence from linkage or

association studies from independent samples.

Characterisation of the DD susceptibility genes

As described, seven candidate DD genes have been iden-

tified with supporting evidence from two or more inde-

pendent DD studies; DYX1C1 at DYX1, KIAA0319 and

DCDC2 at DYX2, MRPL19 and C2orf3 at DYX3, ROBO1

at DYX5 and KIAA0319L at DYX8. Some evidence for

other genes has been identified from a single family co-

segregating DD and a deletion on chromosome 21; PCNT,

DIP2A, S100B and PRMT2.

Functional characterisation of these genes has revealed

that many of them have important roles in the brain, often

during embryonic development. In particular, DYX1C1,

DCDC2, KIAA0319, S100B and ROBO1 have all been

implicated in neuronal migration [20, 121, 135, 150, 189,

198, 199]. ROBO1 and DIP2A may also be involved in

axon guidance and neural development [97, 125, 180]. This

adds further weight to their involvement in DD because

disruptions of these genes could result in the abnormalities

observed from the postmortem examinations of DD brains,

such as the focal architectonic dysplasias and neuronal

ectopias which result from disruptions in neuronal migra-

tion [61, 63, 92]. Indeed, disruption of Dyx1c1 activity in

adult rodent brains revealed hippocampal dysplasias and

molecular layer ectopias similar in appearance to those

reportedly seen in the postmortem DD brains [150].

Behavioural studies of rodents with disruptions of Dyx1c1

activity revealed deficits in discerning auditory stimuli and

spatial learning, particularly in the rodents displaying

hippocampal heterotopias [189]; auditory detection deficits

are good behavioural markers for SLI and DD [8, 185], and

the hippocampus is important in spatial and working

memory [9, 22, 132]. However, only a sub-set of DD

individuals actually presents deficits in these phenotypes,

and these deficits are not part of the definition of DD.

Hence, it is possible that the effect of disrupting DYX1C1

activity is to produce a general or wide-ranging cognitive

deficit that would not be restricted to just reading ability in

humans.

Nevertheless, disrupting the activity of these candidate

genes in rodents has shown that they may produce ana-

tomical phenotypes similar to those observed in human DD

brains. However, it should be noted that only a small

number of human DD brains have actually been examined

anatomically. Furthermore, the specificity of the anatomi-

cal effects observed in rodents may not correlate precisely

Fig. 6 The DYX8 locus on chromosome 1. a Black horizontal lines
are linkage reports for DD from independent samples. Box with
diagonal lines indicates a translocation. b Genes that have been tested

for association. Interesting SNPs, deletions or translocation break-

points are highlighted
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with regions affected by autopsies or functional imaging

studies of DD brains. Indeed, the disruption of Dyx1c1

produced quite general effects, including regions of the

brain not implicated in DD.

Whole-genome association studies

Although there have been no published whole-genome-

wide association screens for DD specifically, there have

been two other studies of reading ability. The first has used

several thousand samples from the Twins Early Develop-

ment Study (TEDS) [131], and compared genotypes from

pooled samples of high and low reading ability individuals

[119]. The second involved 705 stroke- and dementia-free

individuals from the Framingham study tested for a range

of cognitive measures [163]. Both studies genotyped their

samples on the 100 K Affymetrix microarrays. Neither

study found associations within any of the candidate DD

genes discussed in this review, although both studies did

find a variety of signals in the broader linkage regions of

the DYX# loci. Lastly, we are part of a large consortium

known as NeuroDys (http://www.neurodys.com) that is in

the latter stages of a whole-genome-wide association

screen for DD. We have individually genotyped 600 sam-

ples with DD on either the 350 or 550 K Illumina micro-

arrays, and several hundreds more on the 1 M Illumina

chip with a pooled sample approach. Integrating individual

data from intensive neuropsychogical testing, brain imag-

ing and electrophysiological studies, the significance of

different endophenotypes will be investigated. The overall

goal of this project is to understand the biological basis of

dyslexia through investigating the correlations between

candidate genes and brain functions that are found to be

relevant for learning to read and to spell like speech per-

ception and grapheme–phoneme association.

Summary and outlook

Numerous candidate DD susceptibility genes have now

been identified at a variety of loci; DYX1C1 at DYX1 [184],

KIAA0319 and DCDC2 at DYX2 [31, 59, 80, 121, 135,

158], MRPL19 and C2ORF3 close to DYX3 [2], ROBO1 at

DYX5 [78] and KIAA0319L at DYX8 [34]. The evidence for

each of these genes has been acquired from cytogenetic,

linkage, association and biological studies.

Upon discovering genes for DD susceptibility and

their underlying causal variants, it is envisaged that

1-day young people may be screened for their potential

risk in developing DD. Appropriate action may then be

taken to reduce this risk by providing tailored tuition

governed by their underlying genetic makeup. There may

even be the potential for the design of drugs to be

prescribed in the most extreme of cases. Finally, the

discovery of these genes will allow us to learn more

about human cognition and our unique abilities to

communicate with one another.

To achieve these aims, the subsequent steps of molec-

ular genetic work are genome-wide association studies

based on the samples of several thousand of dyslexic

individuals. This goal can be reached by joint research

initiatives such as the EU project NeuroDys that currently

has access to the DNA from two thousand dyslexic chil-

dren from eight EU member states. Essential for this

research strategy is that the dyslexic individuals are phe-

notypically well characterised. Based on the gene–gene

interaction studies, the contribution of a single suscepti-

bility genes will be better understood. Moreover, the

investigation of copy number variants in dyslexic samples

might help in detecting clinically relevant variations that

contribute to the development of dyslexia.
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