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Abstract
Objectives To explore microbial communities associated with health and disease status around teeth and dental implants.
Materials and methods A total of 10 healthy, 24 periodontitis, and 24 peri-implant sites from 24 patients were sequenced 
by next-generation sequencing. Microbial DNA was extracted and 16S rRNA gene was amplified. Bioinformatic analyses 
were performed using quantitative insights into microbial ecology (QIIME), linear discriminant analysis effect size (LEfSE), 
and STAMP.
Results Differences in microbial diversity across three types of sites were not statistically significant. Several genera and 
species were more prevalent in healthy compared with diseased sites, including Lautropia, Rothia and Capnocytophaga and 
Kingella. Among diseased sites, Peptostreptococcaceae, Dialister, Mongibacterium, Atopobium, and Filifactor were over-
represented in peri-implantitis sites, while Bacteroidales was more abundant in periodontitis sites.
Conclusions Diseased periodontal and peri-implant sites and corresponding healthy sites have distinct microbiological 
profiles. These findings suggest that microbial analyses could identify biomarkers for periodontal health and disease and 
lead to the development of new strategies to improve periodontal health and treat peri-implant and periodontal diseases.
Clinical relevance The study contributes to improving our understanding of healthy, periodontally affected, and peri-implan-
titis sites which can improve our ability to diagnose, monitor, and manage these oral conditions.

Keywords Microbiome · Periodontitis · Peri-implantitis · Biomarkers · Polymerase chain reaction

Introduction

The understanding of the role of risk factors involved in the 
onset and progression of periodontal diseases has changed 
only in the last few decades [1–3]. From the simplistic view 

of the role of microbial pathogens causing signs and symp-
toms of periodontitis, the importance of the immune sys-
tem and the inflammatory response of the host has emerged, 
leading to the concept of periodontitis as a multifactorial 
disease influenced by genetics and environmental risk fac-
tors [4–6].

Peri-implantitis is a pathological condition that occurs 
in peri-implant tissues and is characterized by inflamma-
tion in the peri-implant mucosa and progressive loss of 
supporting bone [7, 8]. Similar to the disease evolution 
process from gingivitis to periodontitis, it is assumed that 
peri-implant mucositis precedes peri-implantitis; in fact, the 
main aspect that differentiates peri-implantitis from peri-
implant mucositis is bone loss. While inflammation can be 
primarily detected by bleeding on probing, progressive bone 
loss is assessed with radiographs [9, 10]. In all cases, the key 
role of inflammation in the response to bacterial challenges, 
seems to be responsible for the enhanced severity of the 
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disease until the final consequence of the loss of teeth and 
dental implants.

Beyond poor plaque control and lack of regular main-
tenance therapy as risk factors for peri-implantitis, there 
is currently strong evidence from longitudinal and cross-
sectional studies correlating the potential association 
between the history of periodontitis (chronic or aggressive) 
and peri-implantitis, reporting that patients suffering from 
periodontitis have higher odds of developing peri-implantitis 
compared to subjects without periodontitis [11, 12]. It is 
interesting to note that the onset and progression of peri-
implantitis could be influenced by iatrogenic surgical and 
prosthetic factors [13]. In this context, it has been recognized 
by the Consensus report of the 7th European Workshop on 
Periodontology that iatrogenic factors such as inadequate 
restoration-abutment seating and the over contouring of 
restorations or implant-malpositioning may influence the 
development of peri-implantitis [7, 14]. Furthermore, the 
excess cement retained in the sulcus of the implant can also 
become the basis of colonization by oral microorganisms 
due to the rough surface structure of cement remnants may 
facilitate retention and biofilm formation, increasing the risk 
for peri-implantitis [15]. Several studies have investigated 
the potential microbial aetiology of peri-implant diseases, 
often analyzing the role of single bacterial species; more 
recently, studies have addressed the polymicrobial nature of 
the disease and pointed out the complex role of a dysbiotic 
peri-implant microbiome in the destructive tissue effects 
of the disease progression [16–19]. Bacterial colonization 
occurs within 30 min after implant placement. Fürst and 
co-authors examining subgingival plaque samples from 
implants and surrounding teeth with Checkboard DNA-
DNA hybridization before surgery and at different times 
after surgery detected Porphyromonas gingivalis, Tannerella 
forsythia, and Treponema denticola at 12 weeks. These spe-
cies were previously classified as red microbial complex of 
the subgingival plaque around the teeth [20, 21]. In the last 
few years, many papers have highlighted differences between 
dental and peri-implantitis microbial communities [22–24] 
even if these differences have not been identified. In a recent 
overview on the peri-implantitis microbiome focused on 
the identification of pathogens by advanced molecular tech-
niques, Rakic and colleagues showed different microbial 
profiles between peri-implantitis, periodontitis and healthy 
tooth sites, also pointing out the quantitative rather than 
qualitative aspect of microbial composition as an important 
disease determinant [25].

The hypothesis behind this study is that differences in 
microbial communities exist between the periodontal and 
peri-implant environments. Therefore, the present study 
aimed to determine the composition of the microbiome 
healthy, periodontal and peri-implant sites using high 
throughput sequencing of the 16S rRNA gene amplicon to 

determine a specific core microbiome and to identify, from 
a microbiological standpoint, which differences could con-
tribute to periodontal and peri-implant diseases.

Materials and methods

Study population

Twenty-four subjects (15 females and 9 males) aged between 
48 and 80 years were enrolled in this clinical study from 1 
July to 10 August 2018. In this group, 7 subjects had a his-
tory of smoking, while the remaining subjects were classi-
fied as “non-smokers” (defined as smokers of < 5 cigarettes/
day or ex-smokers for a minimum of 5 years or who had 
“never smoked”) (Table 1).

The recent classification of periodontal and peri-implant 
disease and condition was applied in this study [26]. All the 
individuals were diagnosed with at least 2 non-adjacent teeth 
affected by periodontitis and 1 implant by peri-implantitis. 
All implants involved in the study were fixed implant sup-
ported prosthesis. Written consent was obtained from all 
subjects enrolled and the study was approved by the Ethical 
Committee of Catania 2 (47/2018/CECT2).

Inclusion criteria (i) history of periodontitis (self-reported), 
(ii) at least 1 implant with peri-implantitis (according to defi-
nition above), (iii) 1 tooth with periodontitis and 1 healthy 
tooth, (iv) implants present with at least 1 year of loading, 
and (v) implants inserted in native bone.

Exclusion criteria (i) immediate post-extractive implant and/
or past regenerative procedures, (ii) use of antibiotics and/
or immune suppressants in the 3 months before enrollment, 
(iii) need for antibiotic prophylaxis before dental procedures, 
(iv) pregnancy and/or lactation and/or hormonal therapy, and 
(v) uncontrolled systemic diseases and conditions counter-
indicating implant therapy.

Sampling protocol

Subgingival plaque samples from healthy sites, periodonti-
tis, and peri-implantitis implants from each subject included 
in this study were all collected on the same day.

Definition criteria for periodontitis teeth and peri-implan-
titis implants were chosen as follows:

– Periodontitis tooth (PA): Pocket Probing Depth 
(PPD) ≥ 5  mm, with evidence of radiographic bone 
loss > 33% and with positive BOP

– Peri-implantitis implant (PI): implants with changes 
regarding increasing peri-implant probing depths (PPDi) 

2772 Clinical Oral Investigations (2022) 26:2771–2781



1 3

Ta
bl

e 
1 

 D
em

og
ra

ph
ic

 d
et

ai
ls

 a
nd

 g
en

er
al

 in
fo

rm
at

io
n 

of
 th

e 
24

 p
at

ie
nt

s

*  sm
ok

er
: 1

, n
on

-s
m

ok
er

: 0
1  La

b 
co

de
 u

se
d 

fo
r s

eq
ue

nc
in

g 
of

 sa
m

pl
es

 fr
om

 p
er

io
do

nt
al

 si
te

s (
PA

)
2  La

b 
co

de
s u

se
d 

fo
r s

eq
ue

nc
in

g 
of

 sa
m

pl
es

 fr
om

 p
er

i-i
m

pl
an

t s
ite

s (
PI

)
3  L

ab
or

at
or

y 
co

de
s u

se
d 

fo
r s

eq
ue

nc
in

g 
of

 sa
m

pl
es

 fr
om

 h
ea

lth
y 

si
te

s (
H

E)

Pa
tie

nt
ID

 p
er

io
do

nt
al

 si
te

1
ID

 p
er

i-
im

pl
an

t s
ite

2
ID

 h
ea

lth
y 

si
te

3
A

ge
 (y

ea
rs

)
G

en
de

r
Sm

ok
in

g 
st

at
us

 *
A

bu
tm

en
t m

at
er

ia
l

N
um

be
r 

of
 te

et
h

N
um

be
r o

f 
im

pl
an

ts
Pe

rio
do

nt
al

 
po

ck
et

s ˃
4 

m
m

Pe
ri-

im
pl

an
t 

po
ck

et
s ˃

 4
 

m
m

1
34

 P
A

33
 P

I
57

 H
E

62
F

0
C

rC
o

13
2

1
1

2
7 

PA
10

 P
I

-
52

F
0

Ti
ta

ni
um

19
7

1
15

3
46

 P
A

47
 P

I
56

 H
E

52
F

0
C

rC
o

26
3

1
1

4
44

 P
A

45
 P

I
60

 H
E

58
F

0
Ti

ta
ni

um
24

3
3

1
5

8 
PA

9 
PI

58
 H

E
49

M
1

Ti
ta

ni
um

21
3

8
6

6
25

 P
A

17
.1

 P
I

-
55

F
0

Ti
ta

ni
um

18
4

18
2

7
27

 P
A

28
 P

I
-

51
F

0
Ti

ta
ni

um
11

2
1

2
8

47
.1

 P
A

48
 P

I
-

80
F

0
Ti

ta
ni

um
18

8
3

3
9

40
 P

A
41

 P
I

-
64

M
0

C
rC

o
20

5
4

1
10

31
 P

A
32

 P
I

-
59

F
0

C
rC

o
9

3
3

1
11

43
 P

A
42

 P
I

-
66

F
0

Ti
ta

ni
um

23
1

1
1

12
18

 P
A

20
 P

I
-

65
M

0
Ti

ta
ni

um
24

1
0

1
13

13
 P

A
14

 P
I

53
 H

E
63

F
1

Ti
ta

ni
um

24
1

5
2

14
-

23
 P

I
-

70
M

1
Ti

ta
ni

um
18

2
3

2
15

39
 P

A
38

 P
I

-
73

F
0

Ti
ta

ni
um

8
8

1
1

16
-

15
 P

I
-

80
M

0
Ti

ta
ni

um
16

2
20

1
17

29
 P

A
30

 P
I

54
 H

E
68

M
0

Ti
ta

ni
um

16
2

16
0

18
12

 P
A

11
 P

I
58

F
1

Ti
ta

ni
um

16
6

16
4

19
35

 P
A

36
 P

I
55

 H
E

66
M

0
Ti

ta
ni

um
16

6
17

8
20

35
.1

 P
A

21
 P

I
61

 H
E

58
F

1
Ti

ta
ni

um
17

3
21

5
21

-
16

 P
I

-
57

F
1

Ti
ta

ni
um

27
2

10
1

22
50

 P
A

49
 P

I
62

 H
E

62
F

0
Ti

ta
ni

um
20

2
20

5
23

52
 P

A
51

 P
I

-
69

M
0

Ti
ta

ni
um

18
4

25
1

24
-

5 
A

 -P
I

59
H

E
48

M
1

Ti
ta

ni
um

10
8

8
9

2773Clinical Oral Investigations (2022) 26:2771–2781



1 3

and RBL from baseline (1 year from prosthetic loading) 
and with positive peri-implant BOP

– Healthy tooth (HE): absence of clinical signs of inflam-
mation, PPD ≤ 3 mm, CAL ≤ 3 mm, normal bone levels 
ranging from 1.0 to 3.0 mm apical to the CEJ [6].

Following a session of professional hygiene with rub-
ber cups and brushes to remove the supragingival/supra-
mucosal biofilm and plaque deposits, sampling was car-
ried out by inserting 4 sterile endodontic paper cones 
(FKG®) with tip diameter 0.25 mm and 2% taper in the 
gingival/mucosal sulcus for each selected periodontitis, 
peri-implantitis, and healthy tooth site for 2 min. The sam-
pling was isolated from saliva using cotton rolls to prevent 
contamination. Following collection, the paper cones were 
inserted in sterile Eppendorf tubes containing 2 ml saline 
solution of NaCl 0.9% and stored in a sealed refrigerated 
container and delivered to the BIOMETEC Department of 
the University of Catania within 2 h for microbiological 
analyses.

No formal sample size calculation was carried out for 
this study, choosing a convenience sample of 24 patients. 
This resulted in a total of 58 sites samples (10 HE, 24 PA, 
and 24 PI). Four of the 58 samples (all taken from PA sites) 
could not be included in the analysis, as the DNA yield was 
insufficient for further microbiome analysis (Fig. 1). When 
possible, 3 suitable sites per patient (as per definitions 
above) were sampled and analyzed (1 each for PA, PI, and 
HE), preferring implants with single crown restoration and 
non-restored teeth. However, this was possible only in 10 

patients, while 14 patients had 2 samples analyzed (1 each 
from PI and PA sites).

Microbiological protocol

DNA extraction, 16S rRNA gene library preparation, 
and sequencing

DNA from sterile paper cone samples was extracted with 
the PureLink® Genomic DNA Kit (Thermo Fisher Scien-
tific, USA) [27]. Extracted DNA was checked for quality 
and quantity by a NanoDrop2000 Spectrophotometer and 
the Qubit 2.0 fluorometer (dsDNA HS assay, Invitrogen) and 
was amplified using the V3-V4 region of the 16S rRNA gene 
[28]. PCR products were purified by Agencourt AMPure XP 
magnetic beads (Beckman Coulter) and the quality of the 
products was assessed by Agilent2100 Bioanalyzer (Agilent 
Technologies, USA). Finally, 12 pM of the library mixture, 
spiked with 20% PhiX control, was paired-end (2 × 300) 
sequenced (MiSeqIllumina), at the B.R.I.T. unit (UNICT). 
The sequences are available in the NCBI BioProject data-
base under accession number PRJNA548277.

Processing of sequencing data, statistical and data analyses

QIIME pipeline (Quantitative Insights Into Microbial Ecol-
ogy) version 1.9.1 was used to process the generated raw 
FASTQ files [29]. The paired-end sequences were assembled 
to a single read using FLASH [30] and quality-filtered ≥ 80% 
bases in a read above Q30 (Table S1). To focus only on 

Fig. 1  Flow-chart of sampling 
of patients. Ten patients had 3 
sites sampled, while 14 patients 
had 2 sites sampled (1 each 
from PI and PA sites). This 
resulted in a total of 58 sites 
samples (10 healthy, 24 peri-
odontitis, and 24 peri-implanti-
tis sites). Four of the 58 samples 
(all taken from PA sites) could 
not be included in the analysis, 
as the DNA yield was insuf-
ficient for further microbiome 
analysis

24 pa�ents

10 pa�ents sampled for three sites

14 pa�ents sampled for two sites (PI & PA)

58 site samples 

(10 HE, 24 PI, 24 PA)

54 site samples 
analysed 

(10 HE, 24 PI, 20 PA)

4 samples removed due 
to insufficient DNA yield
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the prominent taxa, a filtering step of 0.01% at the opera-
tional taxonomic unit (OTU) level was performed by run-
ning a workflow on QIIME (filter_otus_from_otu_table.py). 
The taxonomy of each 16S rRNA gene sequence was col-
lapsed to OTUs using the open reference-based of Human 
Oral Microbiome Database (HOMD) at 97% of sequence 
similarity [31]. Chimeras were identified and removed by 
the UCHIME algorithm. Any reads that did not match the 
reference sequence collection were subsequently clustered 
de novo. Rarefaction curves were generated with QIIME 
and calculated using Explicet with a maximum depth of 
74,469 sequences/sample [32]. The OTU tables were used 
for assessing α-diversity indices (Chao-1, Shannon diver-
sity) calculated from the taxonomic profiles and compared 
across the PA, PI, and HE groups. Independent Student’s 
t-test and the Mann–Whitney U test were used to evaluate 
α-diversity among the taxonomic profiles and compared 
across the PA, PI, and HE groups. β-diversity between PA, 
PI, and HE groups was performed by a weighted UniFrac 
distance matrix, and then visualized by principal coordinate 
analysis (PCoA) plot.

The core microbiome was determined by QIIME algo-
rithms (compute_core_microbiome.py) and the diversity 
analysis was performed with the script core_diversity_
analyses.py to detect the abundance of different taxonomic 
categories at the genus/species levels, defined as the OTUs 
that are present in at least 50% of the samples. The data 
obtained by core microbiome were used to evaluate the 
statistical diversity between PA, PI, and HE groups. OTU 
frequencies across sample groups (diseased/healthy) were 
compared using the Kruskal–Wallis test, a nonparametric 
ANOVA test. Statistical analysis of taxonomic profiles was 
performed using STAMP [33]. Extended error bar plots were 
computed (White’s non-parametric t-test and p-value < 0.05) 
showing the bacterial taxa with a significant difference 
(p-value < 0.05). The linear discriminant analysis effect size 
(LEfSE) biomarker discovery tool [34] was used to identify 
discriminatory OTUs (LDA = 3.0).

Results

A total of 54 sites from 24 patients with a mean age of 
62 years old were included in this study. The average num-
ber of teeth and implants for the 24 patients were 18 teeth 
and 4 implants. The average number of periodontal pock-
ets > 4 mm was 9 while an average of 3 sites present had 
peri-implant pockets > 4 mm (Table 1). Seven were smokers 
at the time of the study (≥ 5 cigarettes/day) while the remain-
ing were non-smokers (≤ 5 cigarettes/day or ex-smokers for 
a minimum of 5 years). At the implant level, only 4 abut-
ments were in chrome-cobalt while the rest were in titanium. 
The microbial profile was detected for all peri-implant sites 

(PI), 20 periodontal sites (PA), and only 10 healthy teeth 
(HE). The average age of patients with healthy sites sampled 
(n = 10) was 59 years, including 4 smokers while the average 
age of patients with periodontitis sites sampled (n = 20) was 
62 years, including 4 smokers.

Microbial profile of healthy and diseased 
periodontal and peri‑implant sites

A total of 24 PI, 20 PA, and 10 HE samples were sequenced 
using the MiSeq platform to determine the microbial diver-
sity between diseased (PA and PI) and healthy samples. A 
total of 7,414,811 valid reads, with an average of 137,311 
reads/participant, were generated (70,265–266,973 range), 
which were clustered in 376 OTUs, with at least 97% simi-
larity level using the Human Oral Microbiome Database.

Microbial profile

The microbial diversity within each group (alpha-diversity) 
was estimated by the Chao-1 index (community richness) 
and the Shannon H-index (diversity) (Fig. 2a, b). OTU rich-
ness was not significantly different in the HE group com-
pared to the PA and PI groups (Chao-1 index, p = 0.705; 
ANOVA). The Shannon diversity index showed that HE 
and PI had a slightly greater variety of microbial communi-
ties than PA sites, but the differences were not statistically 
significant (p = 0.443; ANOVA). The microbial diversity 
between the three groups (β-diversity) revealed variation in 
both diseased and healthy groups. Most of the PI and PA 
samples clustered together and only two (one PA and one PI) 
were outliers (PERMANOVA, p = 0.001) (Fig. 2c).

Microbiome differences between healthy 
and diseased periodontal and peri‑implant sites

Most taxa across all sites clustered predominantly in 10 
phyla: Bacteroidetes, Firmicutes, Fusobacteria, Proteobac-
teria, which accounted for approximately 85% of all isolates; 
other dominant taxa included Absconditabacteria (SR1), 
Actinobacteria, Fusobacteria, Saccharibacteria (TM7), Spi-
rochaetes, and Synergistetes. Among these, Bacteroidetes 
(33%) and Firmicutes (31.4%) were the most abundant in 
the PA and PI groups while Proteobacteria (29.1%) was the 
most abundant in the HE group (Figure S1).

Overall, a total of 109 genera and 187 species were identi-
fied. STAMP software analysis at taxonomic level showed 
that 22 genera had statistically significant difference in 
prevalence across the 3 study groups, namely Lautropia 
(the most prevalent), Klebsiella, Escherichia, Cardiobacte-
rium, Acidovorax, Burkholderiaceae, Alcaligenaceae, Rho-
dobacteraceae, Afipia, Bradyrhizobiaceae, Clostridiales, 
Bergeyella, and Corynebacterium were more abundant in the 
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Fig. 2  α- and β-diversity 
between PA, PI and HE groups. 
a The α-diversity associated 
with PA (green), PI (blue), 
and HE (red) samples was 
calculated by Chao-1 index (A, 
community richness) (p-value: 
0.70468), and b Shannon H 
index (B, diversity) (p-value: 
0.44315. c Principal coordinate 
analysis (PCoA) plot generated 
using weighted UniFrac dis-
tances based on the abundance 
of OTUs of PA (periodontitis 
n = 20), PI (peri-implantitis 
n = 24) and HE (healthy n = 10) 
samples (PERMANOVA, 
p-value: 0.001). Peri-implantitis 
(blue) and periodontitis (green) 
samples tended to cluster 
together with respect to healthy 
samples (red)

b

c

a
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HE group, Slackia, Bacteroidaceae [G-1], Eubacteriaceae 
[XV], Peptostreptococcaceae [XI], Selenomonas, and Lac-
nospiraceae [G-7] were more abundant in PI samples, and 
Mogibacterium, Olsenella, and Dialister were showing 
increased abundance in PI and PA groups compared with 
healthy groups (Fig. 3; Table S1).

In pair-wise analyses:

– 30 genera (Fig. 4a) and 36 species (Figure S2) had sta-
tistically significant difference in relative abundance 
between HE and PA groups. Among these species, F. 
alocis, Parvimonas micra, Prevotella nigrescens, and 
Mogibacterium spp. were the most abundant in PA, while 
Lautropia mirabilis, Rhodobacteraceae, Bacillus, and 
Rhyzobiales were the most abundant in healthy sites.

– 46 genera (Fig. 4b) and 65 species (Figure S3) had sta-
tistically significant difference in relative abundance 
between HE and PI groups.

– 10 genera had statistically significant differences 
when comparing PA vs. PI sites, including Atopo-
bium, Bacteroidaceae [G-1], Peptostreptococcaceae 
[XI], Selenomonas, Peptoniphilaceae, Mollicutes, and 
Lachnospiraceae are more abundant in PI sites and 
Corynebacterium and Cardiobacterium and Lactobacil-
laleae are more abundant in PA sites (Fig. 5). Fourteen 

species were differentially abundant when comparing PA 
and PI sites (Figure S4).

Linear discriminant analysis (LDA) effect size was 
used (p-value < 0.05, LDA = 3.0) to evaluate the differ-
ences between the three groups at the genus level or higher 
taxonomic level, 45 OTUs were statistically discriminated 
between infected and healthy sites. Twenty-one OTUs were 
prevalent in healthy sites including Lautropia, Rothia, and 
Capnocytophaga and Kingella, suggesting their associa-
tion with a healthy periodontium. Twenty-four OTUs were 
associated with PI (21 taxa) and PA (3 taxa) including Pep-
tostreptococcaceae XI, Dialister, Mongibacterium, Atopo-
bium, and Filifactor for PI and Bacteroidales for PA groups 
(Figure S5).

Discussion

The present study investigated differences in the micro-
biota between periodontally healthy, periodontitis, and 
peri-implantitis sites in the same patients. It is still one of 
a few published studies employing 16 s rRNA analysis of 
the subgingival plaque for this aim. Overall, by comparing 
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Fig. 3  Different bacterial abundance of the HE, PA, PI groups. a 
The microbial composition between HE and PA sites was explored 
in terms of the relative abundances at the genus level using STAMP 
software (White’s non-parametric t-test; p-value < 0.05) to deter-
mine statistically significant differences. b The microbial composi-

tion between HE and PI sites was explored in terms of the relative 
abundances at the genus level using STAMP software (White’s non-
parametric t-test; p-value < 0.05) to determine statistically significant 
differences
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a b

Fig. 4  Different bacterial abundance between PA and PI groups. The 
microbial composition between PA and PI sites was explored in terms 
of the relative abundances at the genus level using the STAMP soft-

ware (White’s non-parametric t-test; p-value < 0.05) to determine sta-
tistically significant differences

Fig. 5  Different bacterial abun-
dance across the three groups, 
PA, PI, and HE. The significant 
differences in terms of abundant 
of genera in PA, PI, and HE 
samples were estimated by sta-
tistical analysis using ANOVA 
(one-way, p-value < 0.05)
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the α-diversity in each group of samples (HE, PA, and PI) 
and their clustering, PA and PI genera seem to overlap in 
many cases, while a slightly greater diversity (not statisti-
cally significant) was found in the healthy site. Significant 
differences at the genus level were found comparing healthy 
sites with diseased sites (periodontitis and peri-implantitis).

The greatest abundance of Proteobacteria in healthy sites 
was confirmed by statistical analysis at the genera level in 
which Clostridiales, Bradyrhizobiaceae, Alcaligenaceae, 
Burkholderiaceae, Lautropia, Escherichia, and Klebsiella 
were specifically, and almost exclusively, present, defin-
ing a microbial community associated with a healthy core 
microbiome [35]. Furthermore, Actinomyces, Rothia, Strep-
tococcus, Haemophilus, and Neisseria were also among the 
most abundant taxa shared in the HE core. Lautropia and 
Neisseria has been shown to be significantly present in high 
abundance in subgingival sites associated with health [36]. 
Streptococcus and Actinomyces have also been shown to be 
more abundant in healthy individuals compared with peri-
odontitis patients [37], which affirms the results obtained 
in this study. It is also important to note that 2 of the 10 
healthy sites were prosthetically restored which may have 
affected the composition and quantity of the microbiota in 
this category. Interestingly, a recent study has also shown 
that successfully treated aggressive sites contained greater 
proportions of Rothia, Lautropia, and Streptococcus com-
pared to persistent sites with aggressive disease [38].

On the other hand, in diseased sites (PA and PI), Mogi-
bacterium, Dialister, Prevotella, Filifactor, Alloprevo-
tella, and Olsenella were the most prevalent genera, with 
increased abundance compared with healthy sites. F. alocis, 
Parvimonas micra, Prevotella nigrescens, and Mogibac-
terium spp. were particularly in periodontal sites. This is 
consistent with previous studies, showing that Filifactor, as 
well as Mogibacterium, genera were associated with “per-
sistent” aggressive periodontitis in a recent study [38] and 
with presence of periodontitis compared with periodon-
tal health in another study [39]. Such species have unique 
properties in periodontal pathogenesis; for example, Filifac-
tor is able to induce proinflammatory cytokines leading to 
apoptosis of gingival cells [40] and chronic inflammation 
[41]. Meanwhile, Prevotella can drive periodontal inflamma-
tion through recruitment of neutrophils via Th17 mediated 
immune response [41]. Among classic periodonto-patho-
genic bacteria belonging to the “red complex” [25, 42, 43], 
Treponema denticola, Tannerella spp., and Porphyromonas 
gingivalis were higher in disease groups in the present study, 
although not significantly more than in healthy sites. Prevo-
tella nigrescens, part of the orange complex of periodontal 
pathogens showed equal abundance in periodontitis and 
peri-implantitis samples, while Prevotella intermedia and 
Prevotella denticola were significantly more abundant in 
peri-implantitis. Meanwhile, Parvimonas micra, Filifactor 

alocis, and Dialister invisus were more abundant in the PI 
samples compared to the HE samples by STAMP, while A. 
actinomycetem comitans was missing in the disease condi-
tions (PI and PA). Among other genera, Atopobium, Bacte-
roidaceae [G-1], Peptostreptococcaceae [XI], Selenomonas, 
Peptoniphilaceae, Mollicutes, and Lachnospiraceae were 
more abundant in PI sites and Corynebacterium and Car-
diobacterium and Lactobacillaleae were more abundant in 
PA sites, lending support to the hypothesis in which distinct 
ecosystems were suggested in periodontitis vs. peri-implan-
titis [44, 45]. To our knowledge, this is the first study in 
which Alloprevotella (mainly Alloprevotella tannerae) and 
Atopobium were detected as significantly more abundant in 
peri-implantitis.

Overall, the present study contributes to improving our 
understanding of a “disease core subgingival microbiome” 
(with some taxa shared between PI and PA and others more 
abundant in one or the other condition) and a “healthy core 
subgingival microbiome” (in which the genus Lautropia was 
particularly abundant).

The limitations of this study include the relatively small 
sample size and the different disease levels both in peri-
odontal and peri-implant sites could influence microbiome 
composition. Furthermore, no sample size calculation was 
done prior to the study so the results which showed signifi-
cant differences should be interpreted with caution. Lastly, 
bias can be introduced in the analysis as not all participating 
subjects had the same number of samples collected, poten-
tially impacting the analysis due the hierarchical nature of 
the data (patient-tooth-site).

In conclusion, diseased sites (peri-implantitis and peri-
odontitis) exhibit a distinct dysbiotic subgingival microbio-
logical ecosystems compared with healthy sites in the same 
patients. Upon analysis of data of larger studies, specific 
treatments to manipulate the microbial profile of teeth and 
implants, directing them towards a more stable health-asso-
ciated microbiome could be potentially be considered.
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