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Abstract

Objectives To perform a review on the influence of preheating and/or heating of resinous and ionomeric materials on their
physical and mechanical properties and to discuss the benefits and methods of preheating/heating that have been used.
Material and methods A search was performed in the Pubmed, Scopus, Scielo, and gray literature databases. In vitro studies
published from 1980 until now were searched using the descriptors “composite resins OR glass ionomer cements OR resin
cements OR adhesives AND heating OR preheating.” Data extraction and quality of work evaluation were performed by two
independent evaluators.

Results At the end of reading the search titles and abstracts, 74 articles were selected. Preheating of composite resins reduces viscosity,
facilitates adaptation to cavity preparation walls, increases the degree of conversion, and decreases the polymerization shrinkage.
Preheating of resin cements improves strength, adhesion, and degree of conversion. Dental adhesives showed good results such as
higher bond strength to dentin. However, unlike resinous materials, ionomeric materials have an increase in viscosity upon heating.
Conclusions Preheating improves the mechanical and physical properties. However, there is a lack of clinical studies to confirm
the advantages of preheating technique.

Clinical relevance Preheating of dental restorative materials is a simple, safe, and successful technique. In order to achieve good
results, agility and training are necessary so the material would not lose heat until the restorative procedure. Also, care is
necessary to avoid bubbles and formation of gaps, which compromises the best restoration performance.
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alternative for optimizing the characteristics of dental mate-
rials has been preheating [12, 13].

The preheating of the resin-based materials has been per-
formed by commercial devices, such as the Calset (AdDent
Inc., Danbury CT, USA) [14-16], ENA Heat (Micerium SpA,
Avegno GE, Italy) [17, 18], Hotset [19], HeatSync [20], and
Caps Warmer (VOCO GmbH, Cuxhaven NI, Germany) [21].
Also, it is being used with a water bath [22-24], incubator
[25-27], and digital wax heaters [28]. The glass ionomer ce-
ments have already been heated using [9, 29, 30] LED light as
an externally applied “command set” and ultrasound to me-
chanically energized GICs rather than directly preheat them
[30], which provide energy in the form of heat, as well as
obtaining heated capsules by water bath [31]. The heating
can be done prior to manipulation and insertion into the
cavity/tooth (preheating) or after the restorative materials have
been mixed.

Although many studies have addressed the performance of
different materials with preheating techniques, there is lack of
evidence that restorative materials' preheating improves the
quality and durability of restorations. Some advantages report-
ed in the literature with the preheating technique of resinous
materials include increased degree of conversion [27], im-
proved marginal adaptation of restorations due to reduce the
viscosity [14, 16, 22], and decreased polymerization contrac-
tion [15]. Thus, the objectives of this study were (1) to per-
form a systematic review on the influence of preheating and/or
heating of resinous and ionomeric commercial materials on
their physical and mechanical properties and (2) to discuss
the benefits and methods of preheating/heating that have been
used for resin-based and ionomeric materials.

Material and methods

This is a systematic review of the literature to answer the
following question: Does preheating/heating of restorative
materials (resin, resin cement, adhesive, and glass ionomer
cement) influence physical and mechanical properties?

Eligibility criteria

In vitro studies published from 1980 onwards reported the
influence of preheating/heating of restorative materials on
physical and mechanical properties (degree of conversion, mi-
crohardness, viscosity, color, compressive strength, flexural
strength, adhesion) without restriction of language were
included.

Studies were excluded if (1) did not evaluate preheated/
heated restorative materials; (2) no control group; (3) in vivo
studies or clinical study; (4) studies that evaluated orthodon-
tics adhesive systems or experimental materials.

@ Springer

Database and search strategy

A search was conducted in the PubMed (US National Library
of Medicine National Institutes of Health), Scopus (Elsevier)
Scielo, and gray literature databases until July 2020. MeSH
terms were used along with the listed entry terms to construct
a highly sensitive search strategy. The search strategy used for
PubMed was: (“composite resins” [MeSH Terms] OR (“com-
posite” [All Fields] AND “resins” [All Fields]) OR “compos-
ite resins” [All Fields]) OR (“glass ionomer cements” [MeSH
Terms] OR (“glass” [All Fields] AND “ionomer” [All Fields]
AND “cements” [All Fields]) OR “glass ionomer cements”
[All Fields])) OR (“resin cements” [MeSH Terms] OR (“res-
in” [All Fields] AND “cements” [All Fields]) OR “resin ce-
ments” [All Fields])) OR (“adhesives” [Pharmacological
Action] OR “adhesives” [MeSH Terms] OR “adhesives”
[All Fields])) AND (“heating” [MeSH Terms] OR “heating”
[All Fields])) OR preheating [All Fields], and complemented
with references being cited in the selected papers.

Selection of studies and calibration of investigators

Initially, titles and abstracts were selected and evaluated by
two independent researchers (LCPL and FMT). Selected stud-
ies were included for reading the full article. Each selected
article was independently analyzed by the researchers and
included or not in the review, based on the inclusion and
exclusion criteria. In case of disagreement between the inves-
tigators, a third reviewer (RSST) evaluated the article to reach
a consensus.

Risk of bias and quality of work

Data extraction and quality of work evaluation were per-
formed by two independent evaluators (LCPL and FMT).
The risk of bias assessment was performed following the
guidelines of the Guidelines OHAT Risk of Bias Tool
(National Health and Medical Research Council, 2015) [32],
taking into account 11 criteria. Each item analyzed received
the answers according to the guideline: ++definitely low risk
of bias; +probably low risk of bias; — probably high risk of
bias; —definitely high risk of bias.

Results

We found 1921 articles in the Pubmed database, 179 articles
in the Scopus database, and 288 in Scielo. At the end of read-
ing the search titles and abstracts, 83 articles from the Pubmed
database and 71 articles from the Scopus database and 1 article
from Scielo database were selected. After reading the full
texts, excluding repeated titles and evaluating the eligibility
criteria, 65 articles were selected and 9 references cited from
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the selected articles were included, totaling 74 articles at the
end (Fig. 1). After analyzing the risk of bias based on the
guidelines of the OHAT Risk of Bias Tool Guidelines [32],
it was found that the included articles were classified as prob-
ably low risk of bias, since most studies presented at least 2
items assessed as “definitely low risk of bias” and at least 5 or
more items rated “probably low risk of bias.” Only 4 papers
had at least 1 “probably high risk of bias” response and only 1
paper had 5 items rated “definitely high risk of bias.”

The articles selected were from 20 different countries
(Table 1). Most of the selected studies evaluated composite
resin (73.9%), followed by glass ionomer cement (11.5%),
resin cements (10.1%), and adhesives (4.3%).

Table 2 presents a summary of the heating methods that
have been employed depending on the restorative material and
the heating protocol and Table 3 the main results obtained.

Discussion

Preheating dental restorative materials have been used for al-
most 40 years. The first material to be subjected to the
preheating technique was a composite resin of regular consis-
tency [12] and subsequently fluid resins and resin cements.
Preheating apparently increases the flowability of regular con-
sistency composites [45], which improves the adaptation of
the material in the cavity walls [38, 39]. Another situation that
preheating would be indicated was for dentists who store the

resins in a refrigerator, following the manufacturer’s guide-
lines. In this context, some authors report that the cooling of
composite resins may disrupt some characteristics and it is
important that they return to environment temperature before
use [40]. Also, incomplete polymerization and unreacted
monomers may leach into saliva promoting undesirable con-
sequences and acting plasticizers that decrease mechanical
strength and dimensional stability, color change, and allow
bacterial growth. Unreacted monomers can also cause allergic
and sensitivity reactions [14].

The heating technique has been applied to glass ionomer
cements after manipulation using external heat energy as a
command set to improve mechanical properties too. Some
studies [31, 83] have shown that the application of heat in
glass ionomer cements after mixing increases surface micro-
hardness by up to 4 mm, improves marginal adaptation, and
reduces working time and crack propagation.

Various types of resin-based materials (hybrid composite
resin, methacrylates, silorane, resin cements) have been tested
in the laboratory to evaluate the influence of preheating on
their physical, mechanical, and photoactivation properties.
The average preheating temperature found in the literature is
54-68 °C, considered a safe temperature for some authors [29,
50, 69], since it does not cause damage to the pulp tissue.
Clinically, other situations can commonly cause increased
pulp temperature such as the use of diamond burs during cav-
ity preparation and photoactivation of resin materials.
Possibly, the heating caused by the use of high irradiance from
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Table 1 Countries of origin of
articles selected for analysis

Continent (country of origin) Percentage
(%)
America (Brazil 23.2%; USA 11.6%; Argentina 1.4%) 36.2%
Europe (Greece 8.7%; Holland 4.3%; Italy, Turkey, and Croatia 17.4%; England 5.8%; 43.6%
Germany 2.9%; Switzerland, Ireland, and Poland 4.5%)
Africa (Egypt 5.8%) 5.8%
Asia (Iran 10.1%, India 2.9%, Korea 1.4%) 14.4%

light-curing units is similar or greater than the heating of re-
storative materials. The temperature of the heated material
placed into the cavity is not the same, as there is a rapid
dropping of approximately 50% in 2 min counted after remov-
ing the material from the heating device [40]. A pulp temper-
ature rise of 5.5 °C is considered as the potential damaging
threshold for human pulp tissue [88] and the remaining dentin
thickness still appears to be one of the most important factors
for the protection of the pulp since dentin acts as a thermal
barrier against harmful stimuli [69]. However, Knezevic et al.
[48], when assessing cellular toxicity resulting from
preheating of resins at 68 °C suggested that this procedure
may not be safe.

Another important consideration about preheating is the
required time to achieve good fluidity and improvement of
restorative material properties. Not all papers mention this
information. From studies that mentioned the required time
for material heating, the minimum and maximum times found
were 40 s to 24 h, i.e., there is a very wide variation. However,
a reasonable clinical time is approximately 15 min, as used in
some studies [24, 26, 65, 69, 72]. For another study, 11 min
was enough to reach the temperature required [40].

The most common device for preheating is Calset (AdDent
Inc, Danbury, CT, USA). The manufacturer’s instructions rec-
ommend it to preheating many types of instruments and ma-
terials like compules or syringes of composite resins, compos-
ite dispenser, anesthetics, spatulas, and laminate venners. The
device is presented with different trays, depending on what the
clinician needs for preheating. It offers three different temper-
atures and permits preheat or maintain the temperature at 37
°C, 54 °C, or 68 °C, as Caps Warmer (VOCO) [21]. Another
devices, ENA Heat (Micerium SpA, Avegno GE, Italy) offers
two different temperatures 39 °C and 55 °C, Hotset 39 °C and
69 °C [19] and HeatSync 68 °C [20].

The composite resins reduce their viscosity when heated,
facilitating the adaptation to the walls of the cavity preparation
[14,16,22,37,39, 40,42, 58, 76, 78] and there is an improve-
ment of many physical properties [17, 18, 24, 26, 38, 45, 46,
61, 65, 72], such as a higher degree of conversion [27, 44, 57,
60, 61, 71, 73] and lower polymerization shrinkage [15].
Preheating of resin-based materials enhances conversion with-
out hastening the time at which maximum cure rate occurs.
This enhancement is probably attained by increased molecular

@ Springer

mobility and collision frequency of reactive species. The phe-
nomenon involves a postponement of diffusion-controlled
propagation, reaction-diffusion-controlled termination, and
autodeceleration, thereby allowing the system to reach higher
limiting conversions before vitrification [89]. It is further
known that, in addition to preheating, resin properties can be
improved due to other situations such as increased light-
activation time and the power of the LED light-curing units
[38, 45, 77, 78]. Usually, the temperature used to enhance
these properties is 54 °C to 68 °C, depending on the type of
device available. At this moment no work searched the differ-
ences between preheating at 54 °C or 68 °C.

It should be considered that resin composites with different
compositions may take different times to reach stable temper-
ature and sufficient time is mandatory for they reach and
maintain the temperature [40]. Also, when the effect of
compules/composite types on temperature values was evalu-
ated, it seems that different compule types did not affect tem-
perature values and maximum compule temperature attained
was 48.3 £ 0.7 °C when the Calset unit was preset to 54 °C,
and 54.7 £ 1.9 °C when preset to 60 °C [40]. But the compos-
ite compule already loaded into a delivery syringe was more
efficient: higher temperatures were attained with this method
as opposed to preheating the compule separately.

Although much work has shown the benefits of
preheating composite resins, others have shown that
preheating did not influence on some physical and me-
chanical properties of resin [49], such as flexural strength
[16, 54], microhardness [59], degree of conversion [47,
64, 90], polymerization shrinkage [62] and marginal
microleakage [74]. Repeated heating of the resin may
not be detrimental to flexural strength [55] but can cause
color change [77]. Also, re-heating of unused composite
may not affect its degree of conversion, thus decreasing
material waste [40]. These results may be a function of
different methodologies, but the benefits of preheating are
achieved when light-activation is performed with the resin
still warm [39, 41]. Thus, to succeed with this technique,
it is important to insert the material into the cavity quickly
and efficiently, also avoiding the formation of bubbles
and gaps [41]. The success of the technique also depends
on other variables, such as the formulation of the material
itself [56, 91], quantity and organic matrix type [92],
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Table 2 Publication characteristics of the articles included in the analysis

Material Manufacturer Commercial name Heating type Preheating/ Temperatures
type heating
time
Adhesive  Dentsply Prime&Bond 2.1 [33] Waterbath [23] 30 min [23] 4 °C [23]
Caulk Calset [33] 1 h [34] 5°C [34]
Ivoclar Excite [25] Oven [25] 2 h[25] 20 °C [34]
Vivadent  Tetric N-Bond [25] Halogen light [34] 22 °C[33]
XP Bond [25] 25°C[23, 25]
Kuraray Clearfil SE Bond [23] 37°C [34]
Noritake 40°C[23]
3MESPE  Adper Single Bond 2 [23, 25, 33] 50 °C [34]
Adper Easy One [25] 58 °C[33]
Scotchbond Multi-Purpose [33] 60 °C [25]
Composite Bisico Micro Esthetic [35] Caps warmer [21,36] 1 h[70] 0°C[52,61]
resin  Bisco Aelite LS Posterior [35] Calset [14-16,37-51] 2min[62] 3 °C[73]
Coltene Synergy [37, 67] Differeqtial scanning 3 min [36, 4°C][22,26,51,59,62]
Dentsply ~ CeramX [37, 54, 57] calorimetry [32] 63] 3 °C [20]
2 Digital wax [28] Smin [15, 8°C[12,46]
Caulk  Core Max Il [52] EASE-IT [53] 19,28, 10 °C [64, 73]
gzrr:gt Ei‘ot:;‘ [[3355]] Ena Heat [17, 18,35,  47,66]  15°C [52]
Esthet-X [37-41, 73] 54-56] 10°C/min 20 ZC [62, 73]
Esthet-X Flow [37, 39] Incubator [2§, 57, 58] [67] 21 OC [38, 54, 55]
QuixFil [15] Infrared heating source 10 min [20, 22 °C [14, 21, 28, 52, 71, 73]
SDR Bulk fill [27] [12] 43,48, 23°C[12, 15,17, 18,22, 35,
Spectrum TPH [14, 35, 72] Heated platform [59] 54] 36, 43, 50, 64, 74-76]
Surefil [71] e Heater [22] 8h [71] 24 °C [41, 45, 47, 66, 72]
TPH [21, 37, 38] HeatSync [20] 12 m¥n [55] 25°C 16, 24, 26, 42, 46, 60,
Vvtol lé ’ Hotset [19] 15 min [24, 61, 68, 73, 77]
ytol [12] Non-commercial heater 26, 65, 27 °C [73]
FGM Opallis [54, 55] [60, 61] 69,72]  30°C[73, 76]
GC Corp. EverX Posterior [56] Oven [62-64] 20 min [21, 36 °C [37]
Grandia Direct [37, 75] Programmable 38] 37°C[12, 17,21, 22, 24, 38,
Kalore [75] temperature 24 h [40] 41-44, 48, 52, 58, 59, 62,
Heracus Charisma [35, 59, 65] controller (type 680) 30 s [36, 71,75, 76]
Kulzer Charisma Diamond [35] [65] 46, 57, 39 °C[54, 64]
Charisma Opal Flow [35] Therma-flo ™ [6'6] 73] 40 °C [53, 57, 73]
Durafil VS [60, 62, 63] Thermal mechanical 30 min [22, 44 °C[76]
Venus [28, 42, 75, 76] analyzer [67] 37,' 49]  45°C |26, 53,55, 77]
Venus Bulk fill [56] Water bath [24, 68, 69] 40 min [45, 50 ZC [53, 57, 61]
Ivoclar Ceram X [37] 74 545 g %5’632776399;;4’7‘;&710,
Vivadent Compoglass F [35] 55 oé [1%’ 1{;7 2(’), 7:7] 74
Compoglass flow [35] 58 °C [24]
Hel?omolar [14, 35, 37] 60 °C [12’ 147 35’ 38, 407 46,
i—[ehose[allzl; [65] 52,57, 59, 60, 63, 69, 72,
socap
IPS Empress Direct [19] 647:2 gé]m]
Matrixx [37] 68 °C [15, 36, 37, 41-45,
Tetric Ceram [43—45] 47-51, 62, 64, 66, 68]
Tetric EvoCeram[15, 21, 37, 42, 64, 65] 70 °C [71]
Tetric EvoCeram Bulk fill [15, 35, 56] 75 °C [61]
Tetric Evo Flow [35, 65] 100 °C [61]
Tetric Flow [43, 65] 25-69 °C [67]
Tetric N- Ceram [46] 25-250 °C [65]
Tetric N- Ceram Bulk fill [68] Te-Econom Plus
[35]
4 Seasons [37]
Kerr Dental ~ Herculite Classic [63]

Herculite XRV [14, 37, 40, 65, 71] Point 4 Flow

[37]
Point [37]
Premise [37, 76]
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Table 2 (continued)

Material Manufacturer Commercial name Heating type Preheating/ Temperatures
type heating
time

Sonic Fill Bulk fill [15]
Harmonize [21]

King Dental  King Dental [52]

Corp.

Kuraray Clearfil AP-X [35, 37, 76]
Clearfil Majesty Posterior [41]

Micerium Enamel Plus HFO [54, 55]
Enamel Plus HRI [55]

SDI Conseal [65]
Wave [14, 35]
Shofu Beautifil 11 [35]
Beautifil Bulk Restoration [56] Beaultifil Bulk
flowable [56]

Ultradent PermaFlo [37]
Vit-I-essence [37, 45]
VOCO Admira Fusion [21]
GmbH Grandio [17, 35, 37, 53, 75]
Viscalor [21, 36]
Xtra base [56, 68]
Xtra fill Bulk fill [15, 56, 68]

Tokuyama  Estelite Omega [19]

3 M ESPE Concise [12]

F2000 [14]

Filtek A110 [71]

Filtek Bulk fill [47, 56]

Filtek Bulk fill Posterior [69]

Filtek Flow [35, 37]

Filtek One Bulk Fill [20]

Filtek P60 [14, 22, 35, 58]

Filtek P90 [26, 77]

Filtek Z100 [19, 37, 48, 63]

Filtek Z250 universal/XT [17, 18, 22, 24, 26, 28,
35,37, 47,49, 53, 60, 61, 65, 76, 77]

Filtek Z350Flow/XT1 [16, 58, 60, 70, 74, 78]

Filtek Z350XT [66]

Filtek Z 550 [49]

Filtek Silorane [18, 24, 35, 50, 51], Filtek Supreme
XT/Ultra [20, 21, 35,37,42, 45, 48,49, 51, 75],

Silar [12]
Ionomeric  Dentsply Chemfil Rock [79] External heat source 40s[9, 80] 20°C [82]
material Caulk [30, 80] 60s[79] 30 °C [82]
GC Corp. Equia Fil [29, 79] Led [9, 29, 79, 81] 90 s [83] 24-54 °C [9]
Fuji II LC [67, 83] Thermal mechanical 32-57 °C [79]
Fuji VII [30] analyzer [67] 40 °C [82, 83]
Fuji IX [9, 30, 67, 79, 80, 82] Ultrasonic [30, 80] 50 °C [82]
Fuji Triage capsule [80] Reometro [82] 60 °C [82]
Megadenta ~ Megacem [30] Water bath [83] ;g ;(é C[fg]m
VOCO Tonofil Molar [29, 30, 80] i [67]

GmbH IonoStar Molar [81]

3 M ESPE Ketac Cem [67]
Ketac fil Plus Aplicap [81]
Ketac Molar [9, 29, 67, 79, 82]

Resin Bisco Dental BisCem [84] Digital wax heater [28] 1 day [79, 4 °C [84, 87]
cement Dentsply Dyract Extra [65] Hotset [19] 80] 22 °C [28]
Caulk XP Bond/Calibra [84, 86] Programmable 1 min [83] 23 °C[70]
GC Corp. G-Cem [84] temperature 24 °C [84, 87]
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Table 2 (continued)

Material Manufacturer Commercial name Heating type Preheating/ Temperatures
type heating
time
Ivoclar Compoglass F [65] controller (type 680) 25°C[19, 86]
Vivadent  Excite DSC [86] [65] 37°C [84, 87]
Multilink Sprint [84] Water bath [85] 50 °C [86]
Kuraray Panavia 2.0 [85, 87] Incubator [70] 4°C[70]
Noritake ~ SAC-A [84] Hez;tl6ng stirrer surface 2(5) Og [ZZ] 0
3MESPE  RelyX ARC [28, 70] (86] o [8. 85, 87]
RelvX Ultimate [70 Oven [84, 87] 64 °C [28]
elyX Ultimate [70] 69 °C [19]

RelyX Veneer [19, 70]
RelyX Unicem [87]

25-69 °C [19]
25-250 °C [65]

inorganic load filling [17], heating time and temperature,
light-activation technique [38, 49], in addition to the op-
erator variability [39, 52].

The same preheating technique has also been applied to
adhesives with incongruent results. Some studies have
reported dentin bond strength of Adper Single Bond im-
provement [23], degree of conversion increasing and less
solubility for Adper Single Bond 2 [25], solubility and
water sorption increasing for XP Bond adhesive [25],
and others have not found a significant difference in den-
tin bond strength, using Scotchbond Multipurpose
Adhesive [33], Prime&Bond 2.1 and Adper Single Bond
2 [34], and Clearfil SE Bond [23].

There are many manufacturers developing resin cements
with color and consistency appropriate for esthetic and effi-
cient cementation. However, there are alternative materials to
be used in prosthetic cementation. The greatest benefit of
preheating composite resins is the reduction in viscosity, en-
abling the use for cementation of indirect restorations [28].
Clinically, it looks easier to apply than resin cements.
Preheating of regular consistency resins also appears to reduce
cement line thickness by 24% [28, 35]. Composite resins may
perform better than resin cement on restoration margins due to
more inorganic load filling and the long term color stability
should be better because they do not have the
autopolymerization reaction [28]. On the other hand, the

Table 3 Advantages and

Disadvantage

Increase of penetration rate and high evaporation of

Improve of dentin bond strength [23]

Increase of water sorption and
solubility [25]

Increase of degree of conversion [25]
Reduction of sorption and solubility [25]

Increase of fluidity [19, 37, 45, 58, 72, 78]

Increase of microhardness [12, 17, 18, 24, 45, 49, 72]
Increase of degree of conversion [27, 4446, 57, 61,

Modification in resin color [46, 77]

Increase of volumetric contraction
[25, 30, 59, 71]

Reduction of flexural strength [55]

Improvement of marginal adaptation [14, 16, 37, 39,

Reduction in the extrusion force and increased

Reduction of setting time and working time [9, 82]

Fluoride release reduction [81]

disadvantages of preheating Material Advantage
Adhesives
monomers [23]
Composite
resin
71, 73]
41, 51, 78]
Microleakage Reduction [56]
extruded mass [21]
Tonomeric
material

Increase of microhardness [31, 81]

Improve of adhesion [80]

Improvement in marginal adaptation and reduction in

microleakage [30]
Water sorption reduction and solubility [70]

Increased dentin adhesion [86, 87]

Resin cement

Reduction of root canal bond
strength [85]
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benefits of preheating resin cements are still controversial.
Lima et al. [70] observed that preheating of luting agents at
54 °C for 15 s reduced water sorption and oral solubility.
Improvement in microtensile strength has been reported for
dual-cure resin cements at 50 °C [86], because the monomeric
conversion increasing following a specific light-activation,
condition [93]. However, some authors have reported that
heating at 60 °C was not beneficial [84], leading to hardening
of RelyX Unicem cement before being dispensed from the
syringe [87] or reduction of resin cement bonding in the root
canal [85]. In contrast, other types of resin cements such as
Panavia 2.0 and self-adhesives had their bond strength im-
proved [87]. The divergence of results is probably due to
differences in research methodologies and material composi-
tion, light-activation time, or even technical and operator
variability.

Although some studies have reported that intraradicular
temperature [94] and relative humidity [95] do not interfere
in the bond strength, it is important to consider that despite the
fact laboratory studies were careful and well-conducted, they
do not bring clinical evidence. There are few case reports or
clinical trials showing the advantages of preheating resinous
materials in these conditions. Also, as mentioned above, ac-
cording to Daronch et al. [40], when a compound is heated to
60 °C and removed from the heat source, its temperature drops
50% after 2 min and 90% after 5 min. So, the clinician must
work very fast to ensure the least temperature drop possible.
The clinician should dispense the material, adapt it, remove
the excess and sculp it if necessary and light-cured while the
material is still heated to obtain the advantages of higher mo-
nomeric conversion.

Another concern is related with time necessary for the com-
posite resins stored in the refrigerator to reach room tempera-
ture. The clinician should wait at least 11 min before using
composite within a compule stored in a refrigerator [72]. This
time should be higher when the clinician uses a bigger
compule or a syringe, for example.

Unlike resin materials, heating of glass ionomer cements
promotes an increase in viscosity. Heating is believed to in-
crease the ion diffusion rate, accelerating the reaction, reduc-
ing working time, and hardening time [82]. However, it can be
seen that heating glass ionomer cements after mixing pro-
motes an improvement in their physical and chemical proper-
ties. The heating of the ionomeric materials have been per-
formed with LED light or mechanically energized with ultra-
sound and there was improvement in marginal adaptation;
reduction in microleakage [30]; increase in flexural strength
[9, 79], increase in microhardness [81], increase in bond
strength [80], and acceleration of gelification reaction that
protects the material in the early periods that are most critical
against contamination with saliva [9]. Glass ionomer cement
showed the smallest dimensional change when heated to 50
°C [67]. O’Brien [31] observed that the preheating of glass
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ionomer capsules before mixing had a better influence on the
depth microhardness than heat application after mixing with
ultrasound and LED light.

It is suggested that the heating of the glass ionomer
cement after mixing promotes water evaporation and this
promotes acceleration of the chemical reaction of the ma-
terial [96]. The positive effect of preheating on the glass
ionomer cement is not well established and clear yet, be-
cause there are few reports on this matter. The differences
in the results can be attributed to complexity of the mate-
rial setting reaction. It is known that the reaction of glass
ionomer cement happens not only by the neutralization of
polyacids but also the phosphates proved to be key com-
ponents in the reaction [97, 98]. Also, any change in the
proportion of components, such as the polyacid concen-
tration, size, and shape of the glass particles may influ-
ence the end result of the reaction [99]. Preheating glass
ionomer cement is also considered to be a safe procedure
as it does not raise the pulp temperature significantly [29].
There are still few studies that make it clear whether
heating of glass ionomer cement is really beneficial, so
more research is needed to confirm this promising
technique.

Despite the fact that the investigated commercial mate-
rials are not specifically designed for preheating/heating
and more clinical results are necessary, heating or
preheating is still a technique to be more investigated.
There are new resins in the market like Viscalor [21, 36]
designed specifically for preheating/heating with easy ma-
nipulation due to enhanced handling properties. Because
the indication of injectable composite resin technique is
increasing, further in vitro and in vivo studies are neces-
sary to answer the performance of these new techniques
and heated materials.

Conclusions

Based on the results of laboratory studies, preheating proce-
dures for dental restorative materials is a simple, safe, and
relatively successful technique. In general, for resinous mate-
rials, there is an increase in microhardness and degree of con-
version, reduction in viscosity, and better adaptation to cavity
walls. For ionomeric materials, heating promotes reduction of
setting time, working time, and porosity and increase of mi-
crohardness. However, there is a lack of clinical research
proving the advantages of indication of the preheating tech-
nique. In order to achieve good results, agility and training are
necessary so the material would not lose heat until the restor-
ative procedure. Also, care is necessary to avoid bubbles and
formation of gaps, which compromises the best restoration
performance.
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