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Abstract
Objectives Root canal sealers are widely used worldwide in endodontics to prevent reinfection and growth of surviving micro-
organisms. Considering the strong correlation between genetic damage and carcinogenesis, evaluation of genotoxicity induced
by endodontic sealers is recommended for elucidating the true health risks to patients and professionals. The purpose of this
article was to provide a comprehensive review of studies involving genotoxicity analysis of endodontic sealers and the used
methodologies.
Materials and methods A literature search was made in PubMed using the following combination of words “genotoxicity,”
“mutagenicity,” “endodontic sealers,” and “root canal sealers.” A total of 39 articles with genotoxicity studies were selected for
the present study.
Results Sealers have been ranked in decreasing order of their genotoxicity as: ZOE sealers > GIC sealers > S sealers > ER sealers
> MR sealers > Novel sealers > CH sealers > CS sealers.
Conclusions All published data showed some evidence of genotoxicity for most of the commercial root canal sealers; however,
contradictory results were found, mainly for AH Plus, the most studied sealer.
Clinical relevance The information provided would direct the endodontists to use the less genotoxic materials in endodontic
treatment in a way to reduce DNA damage promoting oral healthcare.
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Abbreviations
BisDMA Bisphenol-A dimethacrylate
BisEMA Ethoxylated bisphenol-A dimethacrylate
BisGMA Bisphenol-A-glycidylmethacrylate
CH Calcium hydroxide
CS Calcium silicate

DSB Double-strand breaks
GIC Glass ionomer cements
ER Epoxy resin
hDPF Human dental pulp fibroblast
hDPSC human dental pulp stem cells
HEMA Hydroxyethylene methacrylate
hGF Human gingival fibroblast
hPB Human peripheral blood
MR Methacrylate resin
MN Micronucleus
MTA Mineral trioxide aggregate
PBMC Peripheral blood mononuclear cells
PDL Periodontal ligament cells
PEGDMA Polyethylene glycol dimethacrylate
PR Polyvinyl resin
RCS Root canal sealer
ROS Reactive oxygen species
S Silicone
SHE Syrian hamster embryo
TEGDMA Triethyleneglycoldimethacrylate
UDMA Urethanedimethacrylate
ZOE Zinc oxide-eugenol
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Introduction

Tooth pulp is protected from injurious elements by enamel,
dentin, and periodontium; however, when these barriers are
breached, microorganisms and substances may adversely af-
fect the stability, causing inflammation (pulpitis) and even
tissue death (pulp necrosis). To overcome this, the recom-
mended procedures are pulpectomy, which involves surgical
removal of all the material in the pulp chamber and root canal,
or pulpotomy, which refers only to removal of the coronal
portion of the pulp [1]. The root canal system is sealed with
a filling material to prevent reinfection and growth of surviv-
ing microorganisms. The deposition of cementum is consid-
ered a desired healing response and a prerequisite for restoring
a functional periodontal attachment. The effectiveness of the
filling materials is critically dependent on its physical and
chemical properties, however being biological safety a prereq-
uisite for its clinical use [2].

Genotoxicity is a critical issue in determining the safety of
agents that might contact biological structures and should be
considered within a biological risk assessment process [3].
Mutagens or genotoxic substances induce DNA damage di-
rectly or indirectly through inactivation of enzymes involved
in the maintenance of genome integrity. Mutagen-target inter-
actions may result in different types of DNA damage (DNA
adducts, alkali labile sites, strand breaks) that can be pre-mu-
tagenic. Cellular mechanisms to overcome these harmful ef-
fects include protective antioxidant activity (mediating
elimination/neutralization processes) and the removal of in-
duced lesions by the DNA repair machinery [4].
Nevertheless, insufficient cell-protecting mechanisms and/or
high DNA-inflicted damage result in the disruption of the
replication and/or transcription processes hindering the cell
self-repairing potential leading, ultimately, to cell apoptosis
[5].

Several methodologies able of detecting genetic damage
and/or mutations have been established and are approved by
international regulatory agencies for validation of chemical
agents commercially available. The potential health risks are
thus elucidated as it has been established that genetic damage
is intimately linked to diseases such as cancer [6].
Understanding the impact of exposure scenarios (dose, chron-
ic, acute) on cancer risk is important but remains a scientific
challenge. Dental materials persist in the oral cavity for long
periods which imply that risk assessment is required to ensure
the safety profile of such materials [7].

Due to the current demand of enhanced clinical perfor-
mance of dental materials, the number of commercial products
is continuously increasing. Physical properties, biocompatibil-
ity, sealing ability, adhesion, solubility, and antibacterial effi-
cacy results are abundant for root canal sealers, and some
reviews on those issues have been written [2, 8–13].
However, genotoxic stress as a reaction to endodontic sealers

is also an important parameter to be assessed to validate the
safety of biomaterials in clinical practice [14]. So far, limited
reviews have reported about the genotoxicity of endodontic
sealers [15].

The present review intends to provide detailed information
on the genotoxicity of root canal sealers (RCS), displaying the
reported results considering the sealer’s composition. A com-
prehensive literature search on “genotoxicity,” “mutagenici-
ty,” “endodontic sealers,” and “root canal sealers” was per-
formed on studies conducted between 1998 and 2020. In brief,
a search of PubMed, MEDLINE, Embase, and Google
Scholar for a plethora of articles was carried out using the
aforementioned keywords. Case reports and articles not writ-
ten in English were excluded from this review.

Genotoxicity as a biocompatibility
requirement

ISO 10993-1 lists two components for biological response
evaluation of biomaterials [16]. The first normative compo-
nent requires a number of aspects, such as physicochemical
information, cytotoxicity, sensitization, irritation or intracuta-
neous reactivity, material-mediated pyrogenicity, toxicity, im-
plantation, hemocompatibility, genotoxicity, carcinogenicity,
reproductive/developmental toxicity, and biodegradation.
The second one provides suggestions and considerations.
These aspects are combined together with the nature of the
tissues and contact time to assist in the selection of an appro-
priate evaluation technique [14]. However, the clinical rele-
vance of these assays is limited because they do not take into
account the complexity of a living organism, as well as the
clinical presentation of the apical region. Despite that assess-
ment, it is also mandatory to determine the biocompatibility of
a material within in vivo setting [16]. Of the above-mentioned
aspects, cytotoxicity and genotoxicity are most commonly
reported in the literature [10, 11].

Genotoxicity is defined as toxicity that affects DNA struc-
ture, i.e., the ability of a substance (genotoxin) to modify the
chemical structure of DNA, causing DNA lesions [14].
However, not all genotoxins act directly on the DNA mole-
cule. Some genotoxins interact with DNA repair proteins, in-
creasing mutation rate, or mitotic spindle proteins, leading to
chromosomal misaggregation or even with proteins involved
in the cell cycle, increasing the proliferation rate [17]. Several
assays are addressed to detect DNA damage, i.e., comet assay,
sister chromatid exchange, detection of γH2AX or 32P-
postlabeling assay, and its transition to mass spectrometry
[18]. Once damaged DNA can mispair during replication, an
alteration in nucleotide sequence can arise, characterizing the
mutation, which can involve a single (point mutation), few
base pairs or a whole chromosome. Mutagenicity can be
assessed using the Ames test, cytogenetics, or micronucleus
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(MN) assay [19]. The aim of genotoxicity assays is the iden-
tification of probable mutagens.

Regulatory agencies require testing for biomaterials to be
available in the market. However, multiple tests are needed to
monitor all potential endpoints related to DNA damage or
mutations [14]. Registration, Evaluation, Authorisation, and
restriction of Chemicals (REACH) is a European Union (EU)
regulation adopted to improve protection of human health and
the environment from the risks posed by chemicals. REACH
Annexures describe the requirements on genotoxicity, speci-
fying the information that must be submitted for purposes of
registration and evaluation [20]. A set of specifications for
testing chemicals and also medical devices is established by
the Organization for Economic Co-operation and
Development (OECD) with appropriate model systems, meth-
odologies, reference standards, and recommendations for sta-
tistical analysis [21]. For medical devices, ISO10993-33 pro-
vides guidance on tests to evaluate the potential genotoxicity,
carcinogenicity, or reproductive toxicity [22]. Table 1 summa-
rizes the methodologies used to assess materials genotoxicity
according to EU/OECD/ISO10993-33 guidelines.

Results

Commonly used sealers are based on zinc oxide-eugenol
(ZOE sealers), silicone (S sealers), glass ionomer cements
(GIC sealers), methacrylate resin (MR sealers), epoxy resin
(ER sealers), polyvinyl resin (PR sealers), calcium silicate
(CS sealers), calcium hydroxide (CH sealers), and novel
sealers (Table 2). Detailed information of the commercial
sealers with reported results on genotoxicity is presented in
the Supplementary material (Table S1).

The present survey addresses the information on the
genotoxicity of available root canal sealers reported from
1998 to the present date. A total of 39 articles were included.
Figure 1 shows the publication periodicity grouped over a 4-
year time span. On average, 1.9 articles were published per
year, with two peak periods (2006 to 2009, 9 articles; 2014 to
2017, 11 articles). The two more recent articles were available
in 2018 and 2020. Table 3 presents an overview of the includ-
ed studies in terms of the experimental protocol (cell line/type,
exposure time, concentration range, genotoxicity assay) and
the relevant results, considering the sealers’ groups. Most of
the studies were performed in vitro; the comet assay and the
micronucleus test were widely used and broadly applied to
assess genotoxic and mutagenic effects, respectively.
Relevant results are given below.

Zinc oxide-eugenol-based sealers

Six articles addressed the genotoxicity of eight ZOE sealers
(five of them published from 1999 to 2009, and the last one in

2016). One or two studies were performed for each sealer
(Table 3). All sealers were considered genotoxic in the tested
cell lines through different methods, i.e., comet assay [36, 40],
DNA precipitation assay [37], proto-oncogenes expression
[38], and micronuclei assay [39]. The Ames test was per-
formed for Tubli-Seal and Endométhasone N, and the results
were considered negative [35].

Silicone-based sealers

RoekoSeal demonstrated time-dependent positive
genotoxicity results on V79 cells using comet assay [41],
and GuttaFlow showed negative results performing chromo-
somal alteration analysis and comet assay in hPB lymphocytes
[40].

Glass-ionomer cement-based sealers

Ketac Endowas not mutagenic on S. typhimurium strains [35].
Vitrebond was tested on CHO cells exhibiting a clear
genotoxic effect in the hprt test and umu chromotest [42].
Additionally, the genotoxic compounds, being hydrophilic,
leached out rapidly when in contact with saliva [42], and when
tested on V79 cells using the MN test, results were also con-
sidered positive [43].

Resin-based sealers

The prototype of R sealers was developed as a bis-phenol
resin using methenamine for polymerization; however, the
product released formaldehyde during setting [74].
Alternatives were sought and variants include phenol-formal-
dehyde, resorcin-formaldehyde, and methylmethacrylate,
which were strongly antibacterial however presenting shrink-
age and discoloration and poor biocompatibility during set-
ting. Genotoxicity results for resin-based sealers were consid-
ered for methacrylate resin (MR)-, epoxy resin (ER)-, and
polyvinyl resin (PR)-based sealers and are summarized in
Table 3.

MR sealers were involved in a variety of studies performed
from 2009 to 2018, and a higher number revealed absence of
genotoxicity. Several studies that compared single MR sealer
(EndoRez) with multi-MR sealer (RealSeal) found no toxic
effects on FMM1 cells and transfected COS-7 cells [47] and
also hGF [44]; EndoRez caused low double-strand break
(DSB) formation in PDL cells while RealSeal did not [46].
EndoRez also showed positive results on V79 cells [41, 45]
and on PDL cells [46]. Epiphany, using the comet assay,
showed negative effects on hPB lymphocytes [40] and hPB
leucocytes [49]; however, results were positive with the mi-
cronucleus test on V79 cells [48]. Coming to RealSeal, only
one study (out of six) reported dose- and time-dependent
DNA damage, namely on BHK-21 cells using the comet assay
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Table 1 Methodologies used to assess materials genotoxicity according to EU/OECD/ISO guidelines

Assay EU
guideline

OECD
guideline

ISO/TR
10993-33
[22]

Genotoxic
endpoints measured

Principle of the test methods

VII. In vitro gene mutation study in bacteria
Bacterial reverse mutation
test—Ames test

B13/B14
[20]

OECD 471
[23]

Chapter 6 Gene mutations It uses amino-acid-requiring strains of bacteria to detect reverse
gene mutations (point mutations and frameshifts).

VIII. In vitro gene mutation study in mammalian cells
In vitro mammalian cell
gene mutation test—hprt
test

B17 [20] OECD 476
[24]

N/A Gene mutations It identifies substances that induce gene mutations in the hprt
gene of established cell lines.

In vitro mammalian cell
gene mutation tests

B17 [20] OECD 490
[25]

Chapter 9 Gene mutations and
structural
chromosome
alterations

It identifies substances that induce gene mutations in the tk gene
of the L5178Y cell line. If colonies are scored using the
criteria of normal (large) and slow growth (small) colonies,
gross structural chromosome alterations may be measured,
since mutant cells that have suffered damage to both the tk
gene and growth genes situated close to the tk gene have
prolonged doubling times and are more likely to form small
colonies.

Syrian hamster embryo
(SHE) transformation as-
say

B21 [20] N/A N/A Phenotypic
alterations

It refers to the induction of phenotypic alterations in cultured
cells that are characteristic of tumorigenic cells. Transformed
cells with the characteristics of malignant cells have the ability
to induce tumors in susceptible animals; this validated the use
of phenotypic alterations in vitro as criteria for a carcinogenic
potential in vivo.

VIII. In vitro cytogenetics
In vitro mammalian
chromosome alteration
test

B10 [20] OECD 473
[26]

Chapter 7 Structural and
numerical
chromosome
alterations

It identifies substances that induce structural chromosome
alterations in cultured mammalian-established cell lines, cell
strains, or primary cell cultures. An increase in polyploidy
may indicate that a substance has the potential to induce nu-
merical chromosome alterations, but this test is not optimal to
measure numerical alterations and is not routinely used for
that purpose.

In vitro micronucleus (MN)
test

N/A OECD 487
[27]

Chapter 8 Structural and
numerical
chromosome
alterations

It identifies substances that induce micronuclei in the cytoplasm
of interphase cells which may originate from acentric
fragments or whole chromosomes, and the test thus has the
potential to detect both clastogenic and aneugenic substances.

DNA damage and repair
In vitro unscheduled DNA
synthesis

B18 [20] OECD 482
[28]

N/A DNA damage It identifies substances that induce DNA damage (measured as
unscheduled “DNA” synthesis).

In vitro sister chromatid
exchange (SCE) assay

B19 [20] OECD 479
[29]

N/A Mammalian DNA
damage

It detects reciprocal exchanges of DNA between 2 sister
chromatids of a duplicating chromosome. SCEs represent the
interchange of DNA replication products at apparently
homologous loci which presumably involves DNA breakage
and reunion.

IX. In vivo cytogenetics
In vivo mammalian bone
marrow chromosome
alteration test

B11 [20] OECD 475
[30]

Chapter 11 Structural and
numerical
chromosome
alterations

It identifies substances that induce structural chromosome
alterations in the bone marrow cells of animals, usually
rodents. An increase in polyploidy may indicate that a
substance has the potential to induce numerical chromosome
alterations, but this test is not optimal to measure numerical
alterations and is not routinely used for that purpose.

In vivo mammalian
erythrocyte micronucleus
(MN) test

B12 [20] OECD 474
[31]

Chapter 10 Structural and
numerical
chromosome
alterations

It identifies substances that cause micronuclei (originated from
acentric fragments or whole chromosomes) in erythroblasts
sampled from bone marrow and/or peripheral blood cells of
animals, usually rodents.

Transgenic rodent (TGR)
somatic and germ cell
gene mutation assays

B58 [20] OECD 488
[32]

N/A Gene mutations and
chromosomal
rearrangements

Since the transgenes are transmitted by the germ cells, they are
present in every cell. Therefore, gene mutations and/or chro-
mosomal rearrangements can be detected in virtually all tis-
sues of an animal, including target tissues and specific site of
contact tissues.

In vivo alkaline single cell
gel electrophoresis
assay—comet assay

N/A OECD 489
[33]

N/A DNA strand breaks It does not only recognize DNA damage that would lead to gene
mutations and/or chromosome alterations but will also detect
DNA damage that may be effectively repaired or lead to cell
death. It can be applied to almost every tissue of an animal
from which single cell or nuclei suspensions can be made.
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[50], while others reported negative genotoxicity on several
cell types [45, 49]. Hybrid Root Seal, a self-etching hydro-
philic material as a result of the inclusion of 4-META, showed
significant DSB formation in PDL cells [46].

ER-based sealers have also been extensively tested, with
published studies from 1998 to 2020, prevailing the results
reporting genotoxicity. Results are available for Topseal,
AH26, AH Plus/AH Plus Jet, and Acroseal (Table 3). Most
concern AH Plus. AH26 and AH Plus showed positive
genotoxicity [36, 37, 51] but negative effects on the Ames test
[35, 52–54]. AH Plus was also genotoxic in V79 cells [41, 48,
55], FMM1 cells [56], UO2S cells [38], hDPS cells [57], and,
recently, in hGF cells [58]. However, controversial results
were found with the same cell lines, i.e., results were negative
with V79 cells [45], FMM1 cells [47], hGF cells [44], and
PDL cells [46] perhaps due to different methodologies.
Other ER sealers have also been investigated. Topseal showed
some DNA damage in OC2 cells using the comet assay [36],
and Acroseal increased the production of ROS and MN and
delayed the cell cycle in G2 phase on V79 cells [48]; however,
it did not alter DSB formation on PDL cells [46].

Diaket, a PR sealer, sets by chelation, but contains polyvi-
nyl chloride as polymer and showed positive genotoxicity on
hPB lymphocytes [40].

Calcium silicate-based sealers

CS sealers were the most tested, from 2005 to 2020, and only
few studies demonstrated genotoxicity in mammalian cells
(Table 3). Portland cement (PC) did not cause genotoxic ef-
fects in four cell lines, using the comet assay [59–62]. ProRoot
MTAwas also safe in most studies [43, 63, 65, 66], except for
one exhibiting some genotoxicity on L929 cells using comet
assay [64], perhaps due to the high concentrations used.
Endocem MTA [65] and MTA Plus [50] were not genotoxic
using the comet assay on CHO cells and BHK-21 cells, re-
spectively. MTA Fillapex was tested in five cell lines being
genotoxic in four of them [46, 50, 55, 57], except with hGF
cells [58]. MTA Angelus, the most tested CS sealer, showed
absence of genotoxicity, with the comet assay, on L5178Y
cells [67], CHO-K1 cells [60, 68], hPB lymphocytes [61,
69], and 3T3-L1 cells [62]. MTA Angelus also showed

Table 2 Endodontic sealers classified by composition

Classes of endodontic sealers Abbreviation Examples

Zinc oxide-eugenol ZOE sealers Tubli-Seal, N2, Endométhasone N, Canals, Canals-N, IRM, SuperEBA, Hermetic

Silicone S sealers RoekoSeal, GuttaFlow

Glass ionomer cements GIC sealers Ketac Endo, Vitrebond

Resin derivatives

Methacrylate resin MR sealers EndoRez, Epiphany, RealSeal, Hybrid Root SEAL

Epoxy resin ER sealers Topseal, AH26, AH Plus, Acroseal

Polyvinyl resin PR sealers Diaket

Calcium derivatives

Calcium silicate CS sealers Portland cement, ProRoot MTA, Endocern MTA, MTA Plus, MTA Fillapex,
MTA Angelus, CS cement, TheraCal LC

Calcium hydroxide CH sealers Sealapex, Calcibiotic RCS, Apexit, Calcipex II, Vitapex, Calcicur, Hydro C, P.A. CH

Other sealers Novel sealers Endosequence BC, iRootSP Injectable, Biodentine, BioRoot RCS, Polifil, Bioseal, CEM, CS+HA

Table 1 (continued)

Assay EU
guideline

OECD
guideline

ISO/TR
10993-33
[22]

Genotoxic
endpoints measured

Principle of the test methods

In vivo DNA damage and repair
In vivo unscheduled DNA
synthesis (UDS) test

B39 [20] OECD 486
[34]

N/A DNA repair It identifies substances that induce DNA damage followed by
DNA repair in liver cells of animals, commonly rats. It is
usually based on the incorporation of tritium-labeled thymi-
dine into the DNA by repair synthesis after excision and re-
moval of a stretch of DNA containing a region of damage.

Abbreviations:EU, European Union; ISO/TR, International Organization for Standardization/Technical Reports;OECD, Organization for Economic Co-
operation and Development

3351Clin Oral Invest (2020) 24:3347–3362



negative results using the MN test with V79 cells [55] and the
bone marrow of Swiss mice [39]. Genotoxicity was observed
on hDPS cells, evaluated by gene expression analyses [57].
Other CS-based sealers not displaying genotoxicity were a CS
cement [63] and TheraCal LC [66], a light-cure single-com-
ponent material for direct and indirect pulp capping.

Calcium hydroxide-based sealers

CH sealers have a complex and inhomogeneous setting reac-
tion, producing a hard surface with the deeper part retaining a
dough-like structure. They perform remarkably well in labo-
ratory leakage tests and also on biological, animal, and human
tests [12]. Lack of physical sturdiness, poor clinical and radio-
graphic outcomes when compared with other sealers are
causes for concern [75]. CH is also added to other cements
such as resins and ZOE sealers [76–79].

As a group, CH sealers appeared safe, as suggested from
the studies performed through 1999 to 2018 (Table 3). CRCS
[35], Sealapex [36, 38], Hydro C [43], Calcicur [44], P.A. CH
[39], and Apexit [47] showed negative results. Positive
genotoxicity was only noted for Calcipex II and Vitapex with
CHO-K1 cells, observed by a higher incidence of micronuclei
and higher tail moment values when compared with MTA
[65].

Other novel sealers

Bioceramics exhibit excellent biocompatibility properties due
to compositional similarity with biological hydroxyapatite,
producing mineral hydroxyapatite with an osteoconductive
effect, leading to bone formation at the interface between ma-
terial and bone. Even though these advantages have contrib-
uted to their rapid spread in the dental field, they are not
widely used, and products on the market are not yet known
or used by many dentists [9]. Other novel sealers include the

use of medicinal plants with studies showing the effect of
natural products in pulpal and dentin repair with variable ef-
fectiveness such as alkaloids, coumarins, saponins, and flavo-
noids [80].

Genotoxicity results of novel sealers are summarized in
Table 3. Studies were reported through 2008 to 2020.
EndoSequence BC and iRoot SP are the same product, a hy-
drophilic sealer where the moisture inside the tubules initiates
setting and shows genotoxicity [46], however lower than ZOE
with L929 cells [70] and AH Plus with FMM1 cells [56].
Biodentine, a Ca3SiO5-based material indicated as a dentine
substitute, was not mutagenic or genotoxic [66, 71]. However,
using the MN test, an increase in the frequency of micronuclei
was observed [72] which may have occurred because the high
concentrated test solution BioRoot RCS demonstrated negli-
gible DSB formation [46]. Two novel natural resin-based
sealers have been recently created, namely Polifill [43, 45]
(based on a polymer from R. communis—castor oil) and
Bioseal [45] (based on Copaifera multijuga oil-resin—copai-
ba—with CH and zinc oxide) which tested negative for
genotoxicity with V79 cells. Other experimental sealers tested
with the comet assay include calcium silicate-hydroxyapatite
(CS+HA) which was not genotoxic with hPB lymphocytes
[73] and calcium-enriched mixture (CEM) which was
genotoxic with L929 cells [64]. Novel sealers with favorable
biocompatibility results that require genotoxicity studies in-
clude polymer nanocomposite resins [81], PC-based partial
stabilized cement with zinc [82], and new resin cement [83].

Discussion

In 1981, Grossman listed requirements for RCS, as they
should (1) be tacky when mixed to provide good adhesion to
the canal wall when set; (2) make a hermetic seal; (3) be
radiopaque to be visualized on radiographs; (4) have fine par-
ticles of powder to mix easily with liquid; (5) not shrink upon
setting; (6) not discolor tooth structure; (7) be bacteriostatic or
at least not encourage bacterial growth; (8) set slowly; (9) be
insoluble in tissue fluids; (10) be well tolerated by the
periapical tissue; and (11) be soluble in common solvents if
it is necessary to remove it [84]. In 2007, de Ingle et al added
two more requirements: (1) should not provoke an immune
response and (2) should not be mutagenic or carcinogenic
[85]. Thus, a RCS should have an acceptable level of biocom-
patibility and according to regulations, successfully pass a
clinical risk assessment before commercialization, fulfilling
the technical, biological, handling, and biocompatibility re-
quirements [86].

This review put together the results concerning the studies
addressing the genotoxicity of commercially available end-
odontic sealers and endodontic agents, included in 39 articles
published from 1998 to the present data. The results’ outcome

Fig. 1 Number of articles that performed genotoxicity studies with root
canal sealers grouped over a 4-year time span, from 1998 to the present
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was presented considering the chemical composition of the
sealers and are summarized in Table 3. Most studies were
performed in vitro, with only three studies being conducted
in vivo [39, 72, 87]. A great heterogeneity on the experimental
protocols was evident, involving a variety of animal and hu-
man cell lines, exposure conditions (sealers’ concentration
and exposure time) and the genotoxicity assays, hampering
the results’ analyses and the characterization of genotoxicity
patterns. Nevertheless, some trends were clearly noted. As a
whole, all sealers’ groups presented agents with reported
genotoxicity, but differences were observed among the
groups, and also within each group. Figure 2 gives a quanti-
tative overview of the reported studies, displaying also the
genotoxicity outcome. Resin-based sealers (methacrylate-
and epoxy-based) and calcium silicate sealers were addressed
in a higher number of studies, followed by the zinc oxide-
eugenol sealers and calcium hydroxide sealers.

As displayed in Fig. 2, resin-based sealers were tested in a
great number of studies. Detailing the methacrylate-based
sealers, EndoRez, Epiphany and RealSeal presented different
outcomes depending on the cell line and experimental proto-
col; however, absence of genotoxic effects was reported in
most studies. RealSeal was the most tested sealer of this
group, and genotoxicity was rarely observed [50].
Otherwise, MetaSeal was only addressed in one study, being
genotoxic [46]. On the epoxy resin-based sealers, AH 26 but,
particularly, AH Plus, were thoroughly tested. This sealer
yielded different outcomes although prevailing an absence of
toxicity [44, 46, 47]. TopSeal and Acroseal were less ad-
dressed. The same was verified with Diaket, a polyvinyl
resin-based sealer [40]. In the R sealers, the monomers and

co-monomers appear potentially associated with genotoxicity,
and a relationship between the structural and biological activ-
ities has been reported [88]. Resin monomers enhance the
formation of ROS affecting the expression and levels of pro-
tective antioxidant enzymes as superoxide dismutase, gluta-
thione peroxidase, and catalase [89], and the redox imbalance
triggers DNA damage and apoptosis [90]. In methacrylate
resin-based sealers, leached compounds as BisGMA,
BisDMA, HEMA, PEGDMA, TEGDMA, UDMA, and the
photoinitiator camphorquinone [91], possibly due to their sol-
ubility [92], alter tightly regulated metabolic pathways, by
inducing cellular stress responses, including oxidative DNA
damage and DSB [93–95]. In the oral environment, HEMA
increases production of ROS and causes oxidative DNA dam-
age through DSB as evidenced by the presence of
micronuclei, cell-cycle delay, and apoptosis [96], as well as
the transcription of early inflammatory genes [97]. For epoxy
resin-based sealers, identified leachable components include
bisphenol-A diglycidyl ether and formaldehyde, which are
considered carcinogens and probably responsible for cellular
toxicity [98] and apoptotic cell death [91].

Calcium silicate-based sealers are mainly composed of
mineral trioxide aggregate (MTA) and were described as the
most biocompatible material with most predictable outcomes
[99], however with some drawbacks [100]. These sealers were
tested in a large variety of studies and genotoxicity was ob-
served only occasionally (Fig. 2). The most tested were
Portland cement, ProRoot MTA, MTA Fillapex and, particu-
larly, MTA Angelus. Portland cement (and also MTA Plus,
Endocem MTA, CS cement) did not reveal genotoxic effects.
ProRoot MTA showed toxic effects in only one study, as well

Fig. 2 Root canal sealers’
genotoxicity studies presented by
composition: methacrylate-based
sealers (MR), epoxy resin-based
sealers (ER), polyvinyl resin-
based sealers (PR), calcium
silicate-based sealers (CS), zinc
oxide eugenol-based sealers
(ZOE), silicone-based sealers (S),
glass ionomer cement-based
sealers(GIC), calcium hydroxide-
based sealers (CH), and other
novel sealers
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as MTA Angelus. Comparatively, MTA Fillapex displayed
higher toxicity. As a whole, MTA-based sealers are associated
with low genotoxicity potential [65, 69]. However, calcium-
enriched mixtures of MTAwere genotoxic [64]. Nevertheless,
pure CS-based cements, modified CS-based cements, and
three resin-based CS cements showed no genotoxicity in hu-
man osteoblast cells [101].

Zinc oxide-eugenol sealers were also involved in a
number of studies. Overall, these sealers appeared to
be genotoxic. The eight tested sealers presented delete-
rious effects in several in vitro [51–54] and in vivo [39]
assays. In the other way, calcium hydroxide-based
sealers showed low genotoxicity [35, 36, 38, 39, 43,
44, 47]. Eight sealers were analyzed, and only
Calcipex II and Vitapex were genotoxic [65]. Sealapex
did not exhibit genotoxicity [36, 38].

The other sealers’ groups were less tested, as shown
in Fig. 2. Two silicone-based sealers were tested, i.e.,
RoekoSeal and Gutta Flow presenting, respectively, pos-
itive [41] and negative [40] genotoxicity. For the glass
ionomer cement sealers, three genotoxicity studies were
reported, namely involving Ketac-Endo [35] and
Vitrebond [42, 43]. The presence of the resin compo-
nent in the sealer composition might play a role in the
observed deleterious effect [102, 103]. Miscellaneous
commercially available sealers were grouped together,
and tested sealers included Endosequence BC [56, 70],
iRootSP [56, 70], Biodentine [66, 71, 72], BioRoot
RCS, Polifil, CEM, and CS+HA. Although only one
or two studies were conducted per sealer, overall,
genotoxicity potential was low (Fig. 2).

Considering the three groups of sealers involved in a higher
number of studies, calcium silicate-based sealers presented the
lower genotoxicity potential, followed by methacrylate resin-
based sealers, which appeared slightly lower genotoxic than
the epoxy resin-based sealers, whereas zinc oxide based
sealers presented the higher genotoxic potential. The other
groups of sealers were less addressed. Calcium hydroxide-
based sealers appeared to present low genotoxic potential,
whereas silicone-based and glass ionomer-based sealers
showed variable outcomes. Nevertheless, establishing rank-
ings of genotoxicity is a risky exercise. Major drawbacks are
the great heterogeneity of the experimental protocols, namely
the use of multiple cell lines, some of them not recommended
by OECD guidelines, differences in the exposure conditions
and in the performed genotoxicity assays. Also, there is insuf-
ficient information to draw firm conclusions concerning the
sealers’ safety. Gene expression profiles and epigenetic mech-
anisms for damage response, antioxidant, or DNA repair
genes, despite being indirect methods of analysis and not com-
monly recommended by standard guidelines, could provide
relevant information on the involved genotoxicity mecha-
nisms [104].

In a translational view, the reported information on the
sealers’ genotoxicity must be placed in a proper context.
Results were collected mostly from in vitro studies, using static
cell culture models, and exposure conditions that are far from
those anticipated in a clinical setting. Following the endodontic
treatment, the levels of degradable/leachable compounds even-
tually observed are expectably low due to the very small contact
area of the sealer potentially yielding leachable components.
Also, due to the dynamic in vivo conditions, namely the con-
tinuous extracellular fluid flow, eventual leachates are continu-
ously being cleared decreasing the local levels. The exposure
features also deserve some observations. In vivo, cells of the
periapical tissues are embedded in a collagenous extracellular
matrix organized in a three-dimensional structure, thus with
lower susceptibility to deleterious effects from the surrounding
environment. Due to these unique physiological features and
exposure conditions, the genotoxicity trends observed in vitro
might not translated to the periapical environment with, even-
tually, less noticeable differences and/or outcomes among
sealers [105]. Nonetheless, efforts to regulate the in vitro and
in vivo genotoxicity assays is critical, in order to standardize
protocols allowing representative information and translational
usefulness.

Conclusions

An overview of the collected studies suggests that most
sealers present some degree of genotoxicity and DNA dam-
age, however with a trend toward low or high genotoxic po-
tential. As the available information is mostly from in vitro
studies, and involving a great heterogeneity on the experimen-
tal protocols, there is insufficient information to draw firm
conclusions concerning the sealers’ safety.
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