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Abstract
Objectives The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-
lactam-resistant subgingival bacteria from patients with periodontitis.
Materials and methods Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or
IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic condi-
tions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-
lactamase genes was performed by the polymerase chain reaction (PCR) technique: blaTEM, blaSHV, blaCTX-M, blaCfxA, blaCepA,
blaCblA, and blaampC. Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and
kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial.
Results β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different
genera were obtained, with Prevotella and Streptococcus being the most identified genera. blaCfxA was the gene most detected,
being observed in 24.8% of the isolates, followed by blaTEM (12.9%). Most of the isolates (81.3%) were multidrug-resistant.
Conclusions This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it
suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes.
Clinical relevance Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected
among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be
effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes.
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Introduction

Periodontitis is a complex infectious disease caused by a
dysbiosis of the subgingival biofilm and a disproportionate
response of the host’s immune system [1]. Supra- and

subgingival debridement along with motivation and oral hy-
giene instructions are the standard treatment for periodontitis,
and antimicrobials can be used as adjunctive therapy if pa-
tient’s conditions apply [2–4]. The microbial etiology of in-
flammatory periodontal diseases provides the rationale for the
use of antimicrobial medication in periodontal therapy.
Antibiotics may be specially indicated for periodontal patients
36 years of age or younger with periodontitis stage II or for
patients with attachment or radiographic bone loss at more
than two nonadjacent sites [5]. The most used antimicrobials
in periodontitis are the β-lactams, particularly amoxicillin
(AMX) which can be administered together with metronida-
zole [2]. It has been described that those bacteria resistant to
β-lactams may also be resistant to other antibiotics such as
tetracyclines, aminoglycosides, and chloramphenicol [6–8].
The most important resistance mechanism to β-lactam antibi-
otics are the β-lactamases, enzymes that break the β-lactam
ring and inactivate the antimicrobial [9]. Extended spectrum
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β-lactamases (ESBLs) can hydrolyze a wide array of β-
lactams such as penicillins, cephalosporins, and monobactams
while inhibited by β-lactamase inhibitors such as clavulanic
acid [8, 10, 11]. ESBLs were first detected in the 1980s in a
Klebsiella pneumoniae isolate, and now these are found in
both enteric and non-enteric microorganisms. More than 230
ESBLs have been described, including TEM-type, SHV-type,
CTX-M-type, OXA-type, and KPC-type [11]. In the oral en-
vironment, blaTEM have been described as the most prevalent
ESBLs, although there are only a few studies that have
screened for these genes [12–15]. Other β-lactamases found
in the oral biofilm include blaCfxA, blaCepA/CblA, and blaampC,
suggesting that the mouth might be a reservoir for β-
lactamase genes. In fact, the oral environment, being a transit
place for bacteria entering the digestive tract and harboring
more than 700 bacterial species that grow to form a biofilm,
offers an excellent opportunity for horizontal gene transfer to
occur [16, 17].

Spain is one of the European countries with the highest
consumption of antibiotics, which has been suggested to be
linked with the increase of antibiotic resistance [18]. Little is
known about the distribution of β-lactamase genes in the
subgingival microbiota of Spanish patients with periodontitis.
For this reason, the aim of the current study was to screen for
β-lactamase genes in the AMX- and cefotaxime-resistant
subgingival microbiota isolated from 130 patients with peri-
odontitis. Additionally, these isolates were tested for their
multidrug resistance (MDR) to chloramphenicol, tetracycline,
kanamycin, erythromycin, and streptomycin.

Materials and methods

Patients involved in the study

Subgingival samples were taken consecutively from 130 pa-
tients, recruited between 2016 and 2017, and diagnosed with
generalized severe chronic periodontitis or generalized ag-
gressive periodontitis according to the 1999 classification
[19]. Nowadays, this diagnosis corresponds to generalized
periodontitis stage III or IV, according to the new classifica-
tion [20]. Stages were assessed according to the interproximal
attachment loss. Grading was established considering the co-
efficient radiographic bone loss and patients age, adding the
status of the systemic conditions such as smoking and diabe-
tes. The samples were obtained from patients that attended at
the Department of Periodontology of the Universitat
Internacional de Catalunya (UIC) (Barcelona, Spain). All pa-
tients were supervised by the same clinician (CM), who also
took the microbial samples. The study was previously ap-
proved by the Ethics Committee of the UIC (Study number:
ODO-2014-01) and complied with the principles of the
Declaration of Helsinki. Additionally, all the participants

signed an Institutional Review Board approved informed con-
sent form. None of the patients had taken antibiotics at least
3 months prior to the sampling.

Clinical evaluation

The following clinical parameters were collected from a
whole-mouth evaluation at baseline: probing pocket depth
(PPD), clinical attachment level (CAL), full mouth plaque
index (FMPI), full mouth bleeding on probing (FMBP), and
mobility and furcation involvement. The PPD was measured
at 6 sites per tooth (mesiobuccal, mid-buccal, distobuccal,
mesiolingual, mid-lingual, and distolingual) as the distance
in millimeters from the free gingival margin to the base of
the probeable pocket using a handheld periodontal probe
(PCP-UNC 15; Hu-Friedy Mfg. Co., Chicago, IL, USA).
The CAL was measured at 6 sites per tooth from the
cemento-enamel junction (CEJ) or from the base of the dental
restoration or prosthesis to the bottom of the pocket. The
plaque index (PI) was recorded according to the criteria de-
scribed by Silness and Löe [21]. Bleeding on probing (BOP)
was determined as being present or absent (±) within 30 s after
probing of the aforementioned 6 sites per tooth. Only the
parameters of PPD, CAL, PI, BOP, and mobility of the select-
ed teeth, those with deepest PPD of each quadrant, were eval-
uated in the study.

Sample collection

Subgingival microbial samples were taken from the deepest
periodontal pocket of each quadrant. Each area was isolated
with cotton rolls, the supragingival plaque deposits were care-
fully removed with curettes, and subgingival microbial sam-
ples were obtained by inserting two sterile paper points in each
subgingival pocket and keeping them in place for 20 s.
Samples from each patient were pooled in a vial containing
1.5 ml of cold sterilized reduced transport medium without
ethylenediaminetetraacetic acid (EDTA) [22] and sent to the
microbiology laboratory at 4 °C for processing within the
same day.

Microbial culture and bacterial selection

Subgingival biofilm samples were dispersed by vortex for
45 s. Serial tenfold dilutions were plated on blood agar (blood
agar base no. 2; Oxoid Ltd., Basingstoke, UK) containing 5%
of horse blood, hemin (5 mg/l), menadione (1 mg/l), and on
the same media with 2 μg/ml of cefotaxime (CTX) or 8 μg/ml
of AMX (Sigma Aldrich, St. Louis, MO, USA). Both concen-
trations were selected based on the breakpoint concentrations
recommended by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) and the Clinical and
Laboratory Standards Institute (CLSI) [23, 24]. Given that
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the oral microbiota harbors many different bacterial genera
and that many of these are not mentioned in either the
EUCAST or the CLSI guidelines, these concentrations were
chosen based on taxonomic relatedness to bacteria of the oral
environment, using the higher concentration of antibiotics
when in doubt. Therefore, bacteria that grew on plates with
antibiotics were considered to be resistant. In order to obtain a
wider array of the subgingival microbiota, plates were incu-
bated at 37 °C under microaerophilic (5% CO2) and anaerobic
(10% H2, 10% CO2, and 80% N2) conditions for 48–72 h.
Resistant colonies were isolated according to their morpholo-
gy (two of each morphology), replated to obtain pure cultures,
and preserved at − 80 °C in a 30% sterilized glycerol solution.

DNA isolation and 16S rRNA gene sequencing

Genomic DNA extraction was performed on each isolate
using the ATP™ Genomic DNA mini Kit (ATP Biotech
Inc., Taipei City, Taiwan) following the manufacturer’s in-
structions. Once extracted, DNA was visualized in a 0.7%
agarose gel with ethidium bromide and quantified using a
Nanodrop 2000C UV-vis spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA).

Isolates were identified to a species level, through 16S
rRNA gene sequencing [25]. Zero point five (0.5) micromolar
of primers 27F and 1544R (Table 1) were added to the poly-
merase chain reaction (PCR)mix with 30–100 ng of DNA, 1X
PCR buffer, 1X dNTPs solution, 2.5 mMofMgCl2, and 1 unit
of Taq polymerase (all reagents from Takara, Tokyo, Japan).
Amplification was carried out using a T3000 Thermocycler
(Biometra, Goettingen, Germany) under the following condi-
tions: 5 min at 95 °C, followed by 35 cycles of 95 °C for 60 s,

57 °C for 60 s, and 72 °C for 60 s, and followed by 10 min at
72 °C. The PCR products were purified using the E.Z.N.AGel
Extraction Kit (Omega Bio-Tek, Norcross, GA, USA) and
sent for sequencing to Macrogen Inc. (Amsterdam,
Netherlands). The sequences obtained were aligned using
Clustal Omega Software and analyzed using NCBI’s
BLAST (available at http://www.ebi.acuk/ and https://blast.
ncbi.nlm.nih.gov/Blast.cgi, respectively). Only sequences
with ≥ 99% identity were accepted as proof to identify to the
species level.

Detection of β-lactamase genes

Detection of β-lactamase genes was achieved using the
primers described in Table 1. To ensure that most of the ge-
netic variants would be detected in the screening, universal
primers were used in the detection of blaCfxA, blaTEM,
blaSHV, and blaCTX-M. PCR reactions were performed with
30–100 ng of DNA, 1X PCR buffer, 1X dNTPs solution,
2.5 mMMgCl2, 0.5 μM of each primer, and 1 unit Taq poly-
merase (Takara, Tokyo, Japan). Amplifications were carried
out in a T3000 Thermocycler. The thermocycling conditions
were as follows: (i) for the detection of blaCfxA, 1 min of
denaturation at 95 °C, 1 min of annealing at 58 °C, and
1 min of extension at 72 °C for 26 cycles; (ii) for the detection
of blaCepA/CblA, 30 s of denaturation at 95 °C, 30 s of anneal-
ing at 58 °C, and 30 s of extension at 72 °C for 29 cycles; (iii)
for the detection of blaampC, 1 min of denaturation at 95 °C,
1 min of annealing at 50 °C, and 1 min of extension at 72 °C
for 30 cycles; (iv) for the detection of blaOXA, 40 s of dena-
turation at 95 °C, 40 s of annealing at 55 °C, and 40 s of
extension at 72 °C for 30 cycles; (v) for the detection of

Table 1 Primers and polymerase chain reaction conditions for the detection of β-lactamase and 16S rRNA genes

Gene Primer name Sequence 5′ – 3′ Tm °C Product size (bp) Reference

16S rRNA 27 F GAG TTT GAT CCT GGC TCA G 57 1500 [25]
1544 R AGA AAG GAG GTG ATC CAG CC

blaCfxA CFXA F GCA AGT GCA GTT TAA GAT T 58 934 [14]
CFXA R GCT TTA GTT TGC ATT TTC ATC

blaCepA/CblA CepA/CblA F CAA AGY GAC AAY AAT GCC TGC G 58 426 [26]
CepA/CblA R TSA CGA AGR CGG CWA T

blaampC AMPC F TAA ACA CCA CAT ATG TTC CG 50 769 [27]
AMPC R ACT TAC TTC AAC TCG CGA CG

blaOXA OXA F TAT CGC GTG TCT TTC GAG TA 55 700 [28]
OXA R TTA GCC ACC AAT GAT GCC

blaTEM TEM F TCG CCG CAT ACA CTA TTC TCA GAA TGA 60 445 [25]
TEM R ACG CTC ACC GGC TCC AGA TTT AT

blaSHV SHV F ATG CGT TAT ATT CGC CTG TG 60 747 [29]
SHV R TGC TTT GTT ATT CGG GCC AA

blaCTX-M CTX-M F ATG TGC AGY ACC AGT AAR GTK ATG GC 60 593 [30]
CTX-M R TGG GTR AAR TAR GTS ACC AGA AYC AGC GG
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blaTEM, blaSHV, and blaCTX-M, a multiplex was performed as
previously described [31]. In all reactions an initial, 5-min
denaturation at 95 °C and a final 10 min extension at 72 °C
were applied. DNA of the isolates carrying the genes screened
was used as positive controls. To confirm the presence of the
genes in the controls, PCR amplicons of the expected size
were sequenced and annealed with reference sequences avail-
able at NCBI’s GenBank. Negative controls included water in
place of DNA in the PCR mix.

PCR products were observed through electrophoresis using
a 2% agarose gel with ethidium bromide. Gels were
photographed using a UV light transilluminator GEL
DOC™ XR+ system (Bio-Rad Laboratories Inc. Hercules,
CA, USA).

In vitro antimicrobial resistance testing

MDR was determined for all isolates using blood agar plates
containing 5% of horse blood, hemin (5 mg/l), and menadione
(1 mg/l) and supplemented with (i) 1 μg/ml of erythromycin
(ERY), (ii) 64 μg/ml of kanamycin (KAN), (iii) 8 μg/ml of
chloramphenicol (CHL), (iv) 128 μg/ml of streptomycin
(STR), (v) 8 μg/ml of tetracycline (TET), and (vi) 2 μg/ml
of CTX or 8 μg/ml of AMX (all antimicrobials were obtained
as pure powder from Sigma Aldrich, St. Louis, MO, USA).
Incubation was performed at 37 °C in anaerobic and
microaerophilic conditions for 48–72 h. The antibiotic con-
centrations used were set according to the recommendations
provided by the EUCAST and CLSI and following the same
criteria used for the initial selection for AMX and CTX.

Statistical analysis

The chi-square test was used as a paired statistical test for discrete
variables to find statistical differences between the prevalence of
the genes screened and phenotypical resistance to the antibiotics
tested among the identified bacterial species of this study. p-
values of < 0.05 were accepted for statistical significance.

Results

One hundred and thirty subgingival samples were obtained
from patients with generalized periodontitis stage III or IV.
Patients were between the ages of 24 and 82 years old (mean
of 51.3) and showed a mean probing depth of 6.6 ± 1.8 mm, a
mean clinical attachment loss of 7.6 ± 2.1 mm, and 92.1% of
gingival sites with bleeding on probing. From the 130 sam-
ples, 63 (48.5%) and 33 (25.4%) samples had AMX-resistant
isolates in anaerobic (ARIA) and in microaerophilic (ARIM)
conditions, respectively, while 98 (75.4%) and 70 (53.6%)
samples had CTX-resistant isolates in anaerobic (CRIA) and
in microaerophilic (CRIM) conditions, respectively. Twenty-

eight (21.5%) samples grown in anaerobiosis and 53 (40.8%)
samples grown in microaerophilic conditions did not present
any β-lactam-resistant isolates. Twenty-two samples (16.9%)
did not present any β-lactam-resistant isolate in either
microaerophilia or anaerobiosis. Samples grown in blood agar
without antibiotics showed a mean bacterial load of 7.3 log10
colony-forming units per milliliter (cfu/ml) (± 1.3) in anaero-
bic conditions and 7.1 log10 cfu/ml (± 0.9) in microaerophilic
conditions. The number of β-lactam-resistant bacteria aver-
aged a 1 logarithmic reduction (Table 2).

The subgingival samples yielded 181 ARIAs, 84 ARIMs,
293 CRIAs, and 179 CRIMs, making a total of 737 isolates.
Isolated bacteria were identified by the sequencing of their
16S rRNA gene, and β-lactam resistance genes were screened
by PCR. Additionally, phenotypic resistance to CHL, STR,
ERY, TET, and KAN was determined. Furthermore, AMX
and CTX resistance was also tested depending on which anti-
biotic the isolates were selected for (Table 3). Data regarding
the species detected, their phenotypic resistance, and their
screened genes is shown in the Supplementary data
(Table S1). Bacteria from the genus Prevotella were the most
frequently isolated (n = 213), mainly the species Prevotella
nigrescens (n = 70) and Prevotella intermedia (n = 65),
followed by the genus Streptococcus (n = 153) with a wide
variety of species within this genus (see Table S1). The genus
Prevotella was significantly (p < 0.01) more prevalent in the
ARIAs, while the genus Veillonellawas more prevalent in the
CRIAs (p < 0.01) . Regard ing bac te r ia grown in
microaerophilic conditions, the genus Neisseria was signifi-
cantly more prevalent in ARIMs (p < 0.05), while the genus
Micrococcus was more prevalent in CRIMs (p < 0.01). More
than 12 % (12.1%) of the isolates were identified at a genus
level, and 8% could not be identified at all (Tables 3 and S1).

Regarding the bla genes, blaCfxA was the most prevalent
gene (24.8%), followed by blaTEM (12.9%), blaCepA/CblA
(1.1%), and blaSHV (0.8%). The blaCTX-M, blaOXA, and
blaampC genes were not detected. A significantly higher
(p < 0.01) percentage of blaCfxA was observed in those isolates
grown in anaerobic conditions compared to those grown in
microaerophilic conditions.

Phenotypic resistance to other antibiotics was observed in
599 isolates (81.3%). These isolates were resistant to, at least,
one antimicrobial besides the β-lactam for which they were
previously selected. Fifty-six point eighty-five percent
(56.9%) of the isolates showed resistance to KAN, 54.6% to
ERY, 29.4% to TET, 27.7% to STR, and 9.9% to CHL.
Isolates selected for AMX resistance showed resistance to
CTX more frequently (53.6%) than conversely (32.2%).
Most of the MDR isolates were resistant to 1–3 antimicrobials
(22.2%, 26.4%, and 25.7%, respectively), and 15 isolates
(2.5%) were resistant to the 6 antimicrobials tested
(Table 4). Statistical differences were observed between the
percentage of ARIAs and ARIMs resistant to CHL and KAN
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and between the percentage of CRIAs and CRIMs resistant to
AMX and KAN.

Discussion

This study analyzed the β-lactam-resistant subgingival micro-
biota isolated from patients with severe forms of periodontitis.
Bacteria were isolated based on their resistance to AMX or to
CTX. AMX was chosen for being the first-choice β-lactam
for many bacterial infections including periodontitis [2, 32,
33]. The use of CTX, as a third-generation cephalosporin, is
much more restricted, and therefore, resistance to this antibi-
otic should be scarcer. However, ESBLs such as CTX-M,
which are active against it, are prevalent worldwide [34, 35],
making them interesting targets to study when analyzing β-
lactam resistance. An average of 7.8% of the culturable mi-
crobiota isolated in this study was resistant to AMX, slightly
higher that what a previous study found in Spanish samples
comparing subgingival microbiota from Spain and the
Netherlands [36]. In our study population, CTX resistance
turned out to be more prevalent, with 82.3% of the patients
having at least one resistant isolate, than AMX resistance
(55.4%). We detected a large amount of Veillonella isolates
resistant to CTX (n = 76) and very few resistant to AMX (n =
5), which might be an explanation for the higher prevalence of
CTX resistance. Previous studies have already shown that the
genus Veillonella has a low susceptibility for β-lactams, prob-
ably due to the presence of penicillin-binding proteins with
lower affinity for β-lactams [37–40]. Furthermore, other stud-
ies analyzed Veillonella isolates and found higher MICs of
cefoxitin than AMX and ampicillin [38, 39], suggesting that
Veillonella spp. might be more resistant to cephalosporins
than aminopenicillins. P. nigrescens (n = 70), P. intermedia
(n = 65), and Veillonella parvula (n = 60) were the species
most often isolated. This agrees with previous reports of
Prevotella being the main genus in the oral environment ex-
pressing β-lactam resistance [41–43]. Most of the studies an-
alyzing β-lactam resistance have based their selection of iso-
lates on the production of β-lactamases, and therefore, despite
being β-lactam-resistant, the Veillonella genus has been ruled
out because it does not produce β-lactamases [37, 39, 44].

In this study, MDR was analyzed in each isolate using
breakpoint concentrations suggested by the EUCAST and
the CLSI. All the isolates that grew on agar plates with anti-
biotics were considered resistant. Of the 737 β-lactam-
resistant isolates, 81.3% were MDR. From these, 63.3% were
selected for CTX resistance and 36.7% for AMX resistance,
these values being very similar to the percentage of total CTX-
and AMX-resistant isolates obtained (64% and 35%, respec-
tively) with little difference regarding whether they were cul-
tured in anaerobic or in microaerophilic conditions; this sug-
gests that MDR does not depend on the initial AMX or CTX
selection. Few differences were observed between the 4
groups of isolates, except for KAN, CHL, and AMX resis-
tance. Kanamycin resistance showed a higher prevalence in
anaerobic isolates due mainly to the inherent resistance of
anaerobic bacteria to this antibiotic [45] and to the
Prevotella isolates, which are known to present a higher tol-
erance to kanamycin than other oral bacteria [46].
Chloramphenicol resistance was observed in higher percent-
ages in microaerophilic isolates due mainly to the
Pseudomonas isolates, which are able to exhibit high resis-
tance levels thanks to their multidrug efflux pumps [47, 48].
On the other hand, AMX resistance was less often observed in
the CTX microaerophilic isolates, probably due to the lack of
Prevotella isolates, which increased the prevalence of AMX
resistance in the CTX-resistant anaerobic group.

Fifteen isolates were resistant to the 7 antibiotics tested in
this study and were all obtained from different patients. The
isolates identified were V. parvula (n = 3), Pseudomonas
aeruginosa (n = 2), Acinetobacter guillouiae (n = 3), and
Stenotrophomonas maltophilia (n = 1). Of the 15 isolates, 6
could not be identified through 16S rRNA gene sequencing. It
has been reported that Pseudomonas, Acinetobacter, and
Stenotrophomonas genera are rich in efflux pumps, which
confer on them resistance to multiple antimicrobials [49].
Furthermore, tetracycline, kanamycin, and erythromycin re-
sistance can be linked to the presence of transposons of the
Tn916/1545 family, which are ubiquitous in the oral microbi-
ota and carry genes that confer resistance to these antibiotics
[50, 51]. These transposons have been described in Veillonella
[52, 53], which might be responsible for the observed MDR.

The blaCfxA gene was detected in 24.8% of the isolates, of
which 71.0% (n = 136) were bacteria from the Prevotella

Table 2 Bacterial counts expressed in colony-forming units per milliliter

Anaerobic Microaerophilic

AMX-resistant CTX-resistant Total bacteria AMX-resistant CTX-resistant Total bacteria

Bacterial counts 1.3 × 106 2.3 × 106 2.0 × 107 1.3 × 106 1.2 × 106 1.4 × 107

Resistance % 6.5 11.6 – 9.6 8.8 –

AMX amoxicillin, CTX cefotaxime
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genus. This genus has been previously associated with the
blaCfxA gene, acquiring resistance to a variety of penicillins
and cephalosporins [54]. As previously reported by other stud-
ies [12, 13, 55], we observed a high prevalence of blaCfxA in
isolates of theCapnocytophaga genus (83.3%). To our knowl-
edge, this is the first report of blaCfxA in the Staphylococcus,
Alloprevotella, Streptococcus, and Veillonella genera. Since
oral biofilm is a favorable environment for horizontal gene
transfer [56, 57], it might be possible for blaCfxA to have been
transferred from the Prevotella or Capnocytophaga genera,
which are usual carriers of the gene [13]. The blaTEM gene
was found in 23.1% of the samples and in 12.9% of the iso-
lates, mainly in Veillonella spp. and Prevotella spp. The prev-
alence of this gene in our samples was low when compared to
the study conducted by Ioannidis et al. which observed a
prevalence of between 46.2 and 72.7% of blaTEM in
subgingival and tongue samples from Greek subjects [58].
These differences might be related to the higher consumption
of β-lactams by the Greek population according to the
European Centre for Disease Prevention and Control [59], or
methodologically related, since the detection of blaTEM was
done from a pool of subgingival bacteria in each sample, re-
gardless of their resistance patterns or ability to grow in isola-
tion. The detection of the genes blaTEM, blaSHV, and blaCfxA
in streptococci is noteworthy, given that there is some contro-
versy about the presence of bla genes in this genus. Although
it has been suggested that streptococci are unable to acquire
foreign bla genes [60], at least two studies have reported the
presence of these genes in Streptococcus pneumoniae [61,
62]. The detection of blaTEM by Ding et al. was questioned
due to possible contamination of the Taq polymerase used in
the reaction [63]; however, in our study, the negative controls
did not suggest the presence of any contamination. Therefore,
it would be interesting to conduct further studies to analyze the
presence of bla genes among oral streptococci. Both blaCepA/

CblA and blaSHV were found in low numbers as observed by
the previous studies [13, 43, 64], suggesting that they may not
play a critical role in β-lactam resistance in the oral
environment.

With the data obtained in this study, we conclude that β-
lactam resistance is widespread among the subgingival bacte-
ria of Spanish patients with periodontitis. Prevotella,
Veillonella, and Streptococcus were the genera with the
highest number of β-lactam-resistant isolates, suggesting that
in this population, oral commensal microbiota might be a res-
ervoir of β-lactam resistance. Of special importance is the
presence of β-lactamases that are coded in transferrable genes
such as blaCfxA and blaTEM, which could transfer to other oral
or transient bacteria. Moreover, a high prevalence of MDR
was observed, constraining the number of antibiotics available
against bacterial infections, where these to be needed. Despite
the reports warning about increasing antimicrobial resistance,
antimicrobials are usually prescribed in the clinical practice
without studying microbial profiles and without performing
antibiograms, a practice that favors the spread of antimicrobial
resistance. The above, together with the high percentages of
β-lactam resistance observed in this study, underlines the risk
of a currently successful antibiotic treatment becoming
ineffective.
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