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Abstract
Objective To verify the photobiomodulation effect on angiogenic proteins produced and released by dental human pulpal
fibroblasts (HPFs).
Material and methods HPFs were irradiated with 660-nm low-level laser at fluences of 2.5 J/cm2 and 3.7 J/cm2. The control
group was not irradiated. MTT, crystal violet, and ELISA assays respectively verified viability, proliferation, and angiogenic
protein (supernatant/lysate) at 6 h, 12 h, and 24 h after photobiomodulation. Capillary-like structure formation assay verified
functional role. Two-way ANOVA/Tukey’s test and ANOVA/Bonferroni’s multiple comparisons test respectively verified cell
viability/proliferation and intragroup and intergroup comparisons of protein synthesis (p < 0.05).
Results Irradiated and non-irradiated HPFs showed statistically similar cell viability and proliferation pattern. Intragroup com-
parisons showed similar patterns of protein synthesis for all groups: VEGF-A, VEGF-C, and vascular endothelial growth factor
receptor 1 (VEGFR1) increased significantly in the supernatant, while FGF-2 and VEGF-A increased significantly in the lysate.
The lower fluence significantly increased BMP-9 (6 h) in the supernatant and VEGFR1 (6 h and 12 h) and VEGF-D (24 h) in the
lysate, while the higher fluence significantly increased BMP-9 (6 h) in the supernatant and VEGFR1 (12 h) in the lysate.
Regardless of the time, both fluences statistically downregulated placental growth factor (PLGF) and PDGF secretion. Both
fluences statistically decreased VEGF-A secretion (24 h) and PLGF production (6 h).
Conclusion Photobiomodulation produced stimulatory effects on angiogenic protein secretion by pulp fibroblasts. In terms of
photobiomodulation, over time, both fluences significantly increased the secretion of VEGF-A, VEGF-C, and VEGFR1 and
significantly upregulated BMP-9 (6 h) in the supernatant; for capillary-like structure formation, the fluence of 2.5 J/cm2 was
better than the fluence of 3.7 J/cm2.
Clinical relevance This study results addressed effective photobiomodulation parameters tailored for pulp angiogenesis.
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Introduction

Angiogenesis is the main process to form blood vessels in
wound repair mediated by angiogenic molecules [1]. VEGF
family proteins (vascular endothelial growth factor A (VEGF-
A), vascular endothelial growth factor C (VEGF-C), vascular
endothelial growth factor D (VEGF-D), and placenta growth
factor (PLGF)) and receptors (vascular endothelial growth fac-
tor receptor 1 (VEGFR1) and vascular endothelial growth fac-
tor receptor 2 (VEGFR2)) regulate the biological activity re-
sponse of the endothelial cells through proliferation, migration,
vascular permeability, and angiogenesis [2]. Other angiogenic
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growth factors are fibroblast growth factor 2 (FGF-2), growth/
differentiation factor 2 (BMP-9), platelet-derived growth factor
(PDGF), and platelet endothelial cell adhesion molecule 1
(PECAM-1). FGF-2 and BMP-9 regulate angiogenesis [3].
PDGF has an indirect angiogenic effect by maintaining and
stabilizing newly formed blood vessels [4]. The literature re-
ports the PECAM-1 regulation of angiogenesis [5].

One of the pulp healing keystones is angiogenesis [6]. Pulp
fibroblasts produce these angiogenic molecules and receptors
for physiological angiogenesis in a paracrine manner, promot-
ing endothelial cell chemotaxis, proliferation, and differentia-
tion [7, 8]. Different stress conditions, such as caries or trau-
ma, result in different compositions and concentrations of the
secretome from pulp cells [9].

Photobiomodulation is the application of light to inhibit or
stimulate biological cellular processes [10]. Aiming at pulp
healing, photobiomodulation has been advocated as an alter-
native for vital pulp therapy of primary teeth [11–14].
However, the literature lacks a protocol regarding the most
effective photobiomodulation parameters [13, 14].
Photobiomodulation biological effects depend on wavelength,
dose, and application time [15], so that different fluences may
result in different biological responses [16].

Therapies that keep pulp vitality after caries or trauma re-
lies on the pulp tissue capable of regenerating [17]. From a
biological point of view, pulp healing depends on extracellular
matrix formation, neurogenesis, and angiogenesis, so these
biological events should be assessed to determine effective
photobiomodulation parameters tailored for maintaining pulp
vitality. In this context, studies revealed effective
photobiomodulation of pulp cell viability, proliferation, and
gene expression of type 1 collagen by human pulpal fibro-
blasts (HPFs) [18–20].

Works from other fields show the photobiomodulation of
angiogenic growth factor synthesis by mesenchymal stem
cells from adipose tissue [21] and gingival fibroblasts [22].
Recently, the literature reports that photobiomodulation at
660 nm increases VEGF gene expression in fibroblasts [23],
but little is known whether higher gene expression results in
higher protein production and secretion. Thus, this study
aimed to verify the effect on angiogenic growth factors pro-
duced and released by dental pulp fibroblasts after
photobiomodulation. The null hypothesis was that
photobiomodulation would increase the angiogenic growth
factors accounting for pulp healing.

Material and methods

This study was submitted and approved by the institutional
review board (protocol CAAE 54859816.1.0000.5417). Pulp
fibroblasts were obtained from six teeth donated by six chil-
dren regulated according to the ethical aspects as reported by

the previous literature [18, 19, 24]. To overcome possible
variation, all donors met the following inclusion criteria: chil-
dren of both genders, age from 5 to 9 years, and with good
general health and sound teeth indicated for extraction due to
orthodontic reasons [19]. Children taking any type of medi-
cines or with teeth with caries lesions were excluded [19].

Primary culture and characterization

Pulp fibroblasts from human primary teeth (HPFs) were obtain-
ed through primary culture. The establishment of the HPF pri-
mary culture was based on the previous literature [19, 24].
Following extraction, the tooth was stored in Dulbecco’s mod-
ified Eagle’s medium (DMEM) (Gibco; Thermo Fisher
Scientific inWaltham,MA,USA) supplementedwith 20% fetal
bovine serum (FBS) (Gibco; Thermo Fisher Scientific in
Waltham, MA, USA). Inside the laminar flow cabinet, in a
Petri dish, the pulp tissue was removed; cut in small pieces;
immersed in DMEM + 20% FBS supplemented with 600 μl
of penicillin (Gibco; Thermo Fisher Scientific inWaltham,MA,
USA), 300 μl of gentamicin (Gibco; Thermo Fisher Scientific
in Waltham, MA, USA), and 100 μl of amphotericin B (Gibco;
Thermo Fisher Scientific in Waltham, MA, USA); and incubat-
ed at 37 °C and 5% CO2 for 40 min [24]. Next, all tissue cuts
were collected in a falcon tube and centrifuged at 1200 rpm for
5min. The supernatant was discarded, and the pellet resuspend-
ed in new culture medium (DMEM + 20% FBS), placed in 25-
cm2 culture flasks, and incubated at 37 °C and 5% CO2 [24].
The culture medium was changed at every 2 days.

The dental pulp cells were characterized as fibroblasts by
immunofluorescence staining [19]. A density of 1 × 104 cells/
well was plated on 8-well chamber slides, led to adhere, fixed
with 4% paraformaldehyde for 15 min, incubated in ammoni-
um chloride solution for another 15 min, and washed with
phosphate-buffered saline (PBS) + 3% bovine serum albumin
(BSA) for 5 min at room temperature. The primary monoclonal
antibody and anti-human fibroblast surface protein (anti-FSP)
(Abcam, Cambridge, UK) at a final concentration of 2 μg/ml
were used to mark the cells. The slides were analyzed through
laser confocal microscopy (Leica TCS SPE, Mannheim,
Germany) and demonstrated positive staining for fibroblasts.

Photobiomodulation irradiation

The study groups were divided according to different fluences
(2.5 J/cm2–10 mW/10 s; 3.7 J/cm2–15 mW/10 s). In this
study, we used a marketable aluminum-gallium-indium-
phosphide (InGaAlP) diode laser (Twin Flex Evolution MM
Optics®, São Carlos, Brazil), at 660 nm wavelength, collimat-
ed by the manufacturer, and a 0.04-cm2 laser tip output area,
0.225 cm laser tip diameter, and continuous mode were ap-
plied according to the study groups [18–20, 25]. The manu-
facturer assured the full utilization of the emitted power,
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without losses at the target. Fluence directed at a spot during
the therapy was calculated by the following formula: F
(J/cm2) = Energy (J) / Output area (cm2) [26]. Energy was
calculated by Energy (J) = P (W) × t (s), where P is the power
and t is the time during which the laser was used.

Based on previous studies [18, 19], a black mask covers the
culture plate, and the distance between the laser beam and the
cell culture was standardized at 1 mm from the bottom of the
plate with the aid of a customized device to assure perpendic-
ularity. The output power was checked by a radiometer (Laser
Check MM Optics®, São Carlos/São Paulo, Brazil), prior to
and after laser application, considering a low-level laser trans-
mission loss of about 12% [27]. To avoid laser overexposure,
we maintained the emptiness of the wells adjacent to each test
well [18, 19].

Considering that the optically clear 96-well plate (cell and
proliferation assay) has an area of 0.32 cm2/well, each well
was irradiated in a single point [19]; for 24-well plates (protein
immunoassay), each well (1.9 cm2/well) was irradiated in five
equidistant points [25]. All irradiation procedures were

accomplished in controlled temperature (± 24 °C) in a dark
room. The control group (not irradiated) was exposed to the
same conditions of the irradiation groups [18, 19].

Cell viability and proliferation assays

HPFs were used at 4th passage and a density of 1 × 104 cells/
well and seeded in a 96-well plate (well area 0.32 cm2) with
DMEM + 10% FBS. After 24 h, at 37 °C/5% CO2, the culture
mediumwas replaced by DMEM+ 1% FBS to synchronize the
cell cycle prior to irradiation [18, 19]. After more 24 h, at 37 °C/
5% CO2, prior to irradiation, the culture medium was replaced
by DMEMwithout phenol red (Sigma Chemical Co., St. Louis,
MO, USA) + 10%FBS [19]. The negative and positive controls
had the same cell density and were maintained in DMEMwith-
out phenol red + 1% or + 10% FBS, respectively [18–20].
Groups were plated in triplicate, and the assays were repeated
three times as in previous studies [18, 19].

Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich

Fig. 1 Intergroup comparison of
viability (a) and proliferation (b).
Different lowercase letters mean
statistically significant differences
among groups at each period
(p < 0.05)
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Co., St. Louis, MO, USA), at 6 h, 12 h, and 24 h after irradi-
ation. After the removal of the culture medium, HPFs were
washed with PBS 1×. Next, 110 μl of MTT solution
(0.5 mg/ml in DMEM) was added to each well. Plates were
covered with aluminum foil and incubated at 37 °C and 5%
CO2 for 4 h. Elapsed that period, MTT solution was removed
and 200 μl of dimethyl sulfoxide (DMSO; Fisher Scientific,
Hampton, VA, USA) was added per well. The absorbance was
determined in a spectrophotometer (Synergy H1 MultiMode
Reader; BioTek, Winooski, Vermont, USA) at 570 nm wave-
length [19].

Cell proliferation was analyzed by crystal violet assay, at
6 h, 12 h, and 24 h after irradiation. The culture medium was
removed, and HPFs were washed with PBS 1×. Methanol
(methyl alcohol 99.8%, Vetec; Sigma-Aldrich, Duque de
Caxias, RJ, Brazil) was added to each well for 10 min. After
that, crystal violet solution was added to each well for 3 min.
Then, HPFs were washed twice with PBS 1×. The HPFs re-
ceived sodium citrate (0.05 mol/l) for 10 min. The absorbance
was determined in a spectrophotometer (Synergy H1
MultiMode Reader; BioTek, Winooski, Vermont, USA) at
540 nmwavelength [19]. Cell proliferation assay was repeated
three times with a washout period of 1 week [19].

Protein immunoassay

There were 2 × 104 cells/well seeded in a 24-well plate (code
3524, polystyrene; Corning, NY, USA; well area 1.9 cm2)
with DMEM + 10% FBS and incubated at 37 °C and 5%
CO2, for 24 h to adhere. The culture medium was replaced
by DMEM + 1% FBS to synchronize the cell cycle prior to
irradiation and achieve proliferative deficit [18, 19]. After
24 h, prior to irradiation, the culture medium was replaced
by DMEM without phenol red + 10% FBS for all groups
[18, 19]. Groups were plated in triplicate, and the assays were
repeated three times as previous studies [18, 19].

After 6 h, 12 h, and 24 h, the supernatant of all groups was
collected and stored for the analysis. After the collection of the
supernatant, 300 μl/well of lysis solution (CelLytic M, Sigma-
Aldrich, C2978-50ML) was dispensed to obtain the chemical
lysis. Also, the mechanical lysis was performed by scratching
the pipette tip. The lysate of all groups was collected and
stored for analysis.

The following panels were used to verify the protein syn-
thesis and secretion of VEGF-A, VEGF-C, VEGF-D,
VEGFR1, VEGFR2, FGF2, PLGF, PDGF, PECAM-1, and
BMP-9 at 6 h, 12 h, and 24 h after irradiation, in the lysate

Table 1 Angiogenic protein synthesis by non-irradiated HPFs (control group)

Proteins 6 h, M ± SD 12 h, M ± SD 24 h,M ± SD p value

Supernatant

VEGF-C 66.48 ± 1.75a 115.22 ± 5.00b 201.46 ± 34.23c < 0.0001*

VEGF-A 31.03 ± 4.00a 69.00 ± 9.96b 214.70 ± 23.50c < 0.0001*

VEGFR2 31.33 ± 2.22 30.05 ± 0.00 30.05 ± 0.00 0.7230

FGF-2 17.66 ± 5.01a 36.63 ± 42.8 22.36 ± 3.14 0.6113

PDGF 7.65 ± 2.84 8.33 ± 1.24 10.88 ± 4.06 0.7879

VEGFR1 6.00 ± 0.48a 7.35 ± 0.80a 17.13 ± 2.42b < 0.0001*

PECAM-1 3.67 ± 0.25 3.38 ± 0.00 3.52 ± 0.25 0.3153

VEGF-D 2.24 ± 0.25 2.39 ± 0.00 2.47 ± 0.14 0.5768

PLGF 1.04 ± 0.13 1.01 ± 0.09 0.98 ± 0.13 0.2807

BMP-9 0.61 ± 0.10a 0.72 ± 0.04ab 0.76 ± 0.02b 0.0164*

Lysate

FGF-2 1296.67 ± 233.14a 1420.33 ± 179.51ab 1754.33 ± 311.59b 0.0442*

VEGFR2 30.58 ± 2.16 29.33 ± 0.00 28.12 ± 2.10 0.6734

VEGF-C 26.06 ± 1.56 22.06 ± 3.07 23.99 ± 2.71 0.0515

VEGFR1 10.74 ± 0.00 7.12 ± 3.24 8.39 ± 6.01 0.1741

VEGF-A 8.78 ± 0.36a 10.07 ± 0.39a 14.46 ± 0.39b < 0.0001*

PECAM-1 3.24 ± 0.24 3.52 ± 0.43 3.24 ± 0.24 0.7874

VEGF-D 2.38 ± 0.24 2.52 ± 0.00 2.52 ± 0.00 0.7545

PLGF 0.60 ± 0.05 0.55 ± 0.00 0.55 ± 0.00 0.6410

BMP-9 0.52 ± 0.00 0.52 ± 0.00 0.49 ± 0.05 0.5645

PDGF 0.00 0.00 0.00 –

*Different superscript lowercase letters in row mean statistically significant differences among periods (two-way ANOVA followed by Bonferroni’s
multiple comparisons test; p < 0.05). Values in pg/ml
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and supernatant: HAGP1MAG-12K (MILLIPLEX® MAP
Human Angiogenesis Panel 1) and HANG2MAG-12K
(MILLIPLEX® MAP Human Angiogenesis Panel 2) (Merck
Millipore, Darmstadt, Germany). All samples, quality control
samples, and standards were prepared as recommended in the
MILLIPLEX®map assay kit protocols with supplied diluents,
following the manufacturer’s instructions. The assay plate was
then analyzed with the Luminex® instrument equipped with
xPONENT® and Multiplex Analyst 5.1 software (Merck
Millipore, Darmstadt, Germany). The results were obtained
in pg/ml.

Capillary-like structure formation assay

Human umbilical vein endothelial cells (HUVECs) were plat-
ed on 24-well plates at 1 × 104 cells/well [28–30]. After 24 h
for adhesion, HUVEC were treated with 1 ml/well of condi-
tioned medium with aliquots of the supernatants secreted by
HPFs after the irradiation with both fluences at 6 h. The con-
ditioned medium was obtained with equal proportions of
Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12
(Gibco; Thermo Fisher Scientific in Waltham, MA, USA)
(DMEM/F-12) + 10% FBS and supernatant aliquots. The con-
trol group was maintained in DMEM/F-12 + 10% FBS. The

cells were observed at every 24 h in optical microscopic. After
96 h, the cells were fixed and stained by hematoxylin-eosin for
descriptive analysis.

Statistical analysis

All statistical analyses were obtained with the level of signif-
icance of 5%. Intragroup and intergroup comparisons of cell
viability and proliferation were analyzed by two-way
ANOVA followed by Tukey’s test (Statistica 10.0 software
for Windows). Intragroup (time) and intergroup (fluences)
comparisons of the protein immunoassay were analyzed by
two-way ANOVA followed by Bonferroni’s multiple compar-
isons test for each protein separately (Prism GraphPad 7 for
Windows).

Results

Cell viability and proliferation assays

The intragroup comparison showed that cell viability statisti-
cally decreased over time for all groups (p < 0.001). The in-
tergroup comparison revealed that the negative control

Table 2 Angiogenic protein
synthesis by HPFs irradiated with
2.5 J/cm2

Proteins 6 h, M ± SD 12 h, M ± SD 24 h, M ± SD p value

Supernatant

VEGF-C 62.88 ± 4.60a 115.87 ± 4.54b 154.59 ± 49.39b < 0.0001*

VEGF-A 29.59 ± 3.07a 60.48 ± 8.28b 142.41 ± 18.00c < 0.0001*

VEGFR2 30.05 ± 0 31.33 ± 2.22 31.33 ± 2.22 0.7230

FGF-2 15.99 ± 8.70 16.25 ± 5.98 12.52 ± 1.13 0.6113

VEGFR1 5.68 ± 0.27a 8.43 ± 0.84a 16.90 ± 3.91b < 0.0001*

PDGF 5.30 ± 0.74 3.70 ± 2.90 5.63 ± 1.73 0.7879

PECAM-1 3.38 ± 0 3.38 ± 0 3.52 ± 0.25 0.3153

VEGF-D 2.39 ± 0 2.55 ± 0.28 2.24 ± 0.25 0.5768

PLGF 0.52 ± 0.04 0.52 ± 0.04 0.54 ± 0.00 0.2807

BMP-9 0.77 ± 0 0.72 ± 0.04 0.72 ± 0.04 0.5190

Lysate

FGF-2 1240.67 ± 85.17a 1545 ± 156.51ab 1818.67 ± 78.42b 0.0110*

VEGFR2 29.36 ± 3.69 28.12 ± 2.10 30.58 ± 2.16 0.6734

VEGF-C 24.89 ± 1.12 25.07 ± 2.14 25.52 ± 2.34 0.0515

VEGFR1 17.60 ± 4.13 21.21 ± 9.94 11.37 ± 3.57 0.1741

VEGF-A 9.00 ± 0.74a 10.58 ± 2.46ab 13.45 ± 1.98b 0.0057*

PECAM-1 3.52 ± 0 3.38 ± 0.24 3.38 ± 0.24 0.7874

VEGF-D 2.38 ± 0.24a 2.52 ± 0a 2.95 ± 0.00b 0.0123*

PLGF 0.47 ± 0.08 0.47 ± 0 0.50 ± 0.05 0.6410

BMP-9 0.47 ± 0.05 0.47 ± 0.05 0.47 ± 0.05 0.5645

PDGF – – – –

*Different superscript lowercase letters in row mean statistically significant differences among periods (two-way
ANOVA followed by Bonferroni’s multiple comparisons test; p < 0.05). Values in pg/ml
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statistically showed the smallest viability mean (p < 0.001;
Fig. 1a). Cell proliferation did not show statistically signifi-
cant differences over time (p = 0.2046). The negative control
group showed statistically significant lower proliferation than
the positive control group (p = 0.0276; Fig. 1b).

Protein immunoassay

Intragroup comparison

In the control group, HPFs produced and secreted all the tested
proteins before photobiomodulation, except for PDGF in the
lysate. Non-irradiated HPFs secreted higher levels of VEGF-
A, VEGF-C, and VEGFR2, but low levels of FGF-2, PDGF,
VEGFR1, PECAM-1, VEGF-D, PLGF, and BMP-9 in the
supernatant (Table 1). In the lysate, non-irradiated HPFs pro-
duced higher levels of FGF-2, VEGF-C, and VEGFR2, but
lower levels of VEGFR1, VEGF-A, PECAM-1, VEGF-D,
PLGF, and BMP-9 (Table 1). Over time, VEGF-A, VEGF-
C, VEGFR1, and BMP-9 by non-irradiated HPFs increased
significantly in the supernatant, while FGF-2 and VEGF-A
increased significantly in the lysate (p < 0.05). In the superna-
tant of non-irradiated HPF, VEGFR2 and PLGF decreased the
secretion over time, while FGF-2 had a peak of maximum

secretion at 12 h and PDGF, PECAM-1, VEGF-D, and
BMP-9 had different secretion patterns, but without statistical-
ly significant differences (p > 0.05). In the lysate of non-
irradiatedHPFs, VEGFR2, VEGF-C, and VEGFR1 decreased
the synthesis over time, while PECAM1, VEGF-D, PLGF,
and BMP-9 were constant, but without statistically significant
differences (p > 0.05).

HPFs irradiated with 2.5 J/cm2 produced and secreted all
tested proteins, except for PDGF in the lysate. The quantifi-
cation of the proteins in both the supernatant and lysate after
irradiation with 2.5 J/cm2 showed a pattern similar to that of
the control group. Over time, VEGF-A, VEGF-C, and
VEGFR1 increased significantly in the supernatant (p <
0.05), while FGF-2, VEGF-A, and VEGF-D increased signif-
icantly in the lysate (p < 0.05) (Table 2). The other angiogenic
proteins had different patterns of synthesis and secretion over
time, but without statistically significant differences (p > 0.05)
(Table 2).

HPFs irradiated with 3.7 J/cm2 produced and secreted all
tested proteins, except for PDGF in the lysate. The quantifi-
cation of the proteins in both the supernatant and lysate after
irradiation with 3.7 J/cm2 showed a pattern similar to that of
the control group (Table 3). Over time, VEGF-A, VEGF-C,
and VEGFR1 increased significantly in the supernatant

Table 3 Angiogenic protein
synthesis by HPFs irradiated wit
3.7 J/cm2

Proteins 6 h, M ± SD 12 h, M ± SD 24 h, M ± SD p value

Supernatant

VEGF-C 62.81 ± 8.54a 115.86 ± 4.17b 207.85 ± 10.98c < 0.0001*

VEGF-A 37.03 ± 2.75a 60.60 ± 9.73a 178.75 ± 19.02b < 0.0001*

VEGFR2 31.33 ± 2.22 30.05 ± 0 30.05 ± 0 0.7230

FGF-2 21.56 ± 7.86 16.89 ± 5.68 16.06 ± 3.89 0.6113

PDGF 6.41 ± 1.80 7.00 ± 1.45 4.78 ± 1.77 0.7879

VEGFR1 4.94 ± 0.66a 8.53 ± 0.98b 18.50 ± 0.73c < 0.0001*

PECAM-1 3.67 ± 0.25 3.52 ± 0.25 3.38 ± 0 0.3153

VEGF-D 2.24 ± 0.25 2.24 ± 0.25 2.39 ± 0 0.5768

BMP-9 0.76 ± 0.06 0.75 ± 0.04 0.75 ± 0.04 0.5190

PLGF 0.66 ± 0.05 0.61 ± 0 0.69 ± 0.08 0.2807

Lysate

FGF-2 1253.67 ± 234a 1435.00 ± 244.01ab 1732.67 ± 178.35b 0.0345*

VEGFR2 29.33 ± 0 29.33 ± 0 29.33 ± 0 0.6734

VEGF-C 28.05 ± 0.96 23.27 ± 3.52 24.39 ± 2.53 0.0515

VEGF-A 10.30 ± 0.78a 10.31 ± 1.40a 13.91 ± 2.91b < 0.0001*

VEGFR1 6.11 ± 0 13.75 ± 7.57 9.14 ± 5.25 0.1741

PECAM-1 3.24 ± 0.24 3.38 ± 0.24 3.52 ± 0 0.7874

VEGF-D 2.52 ± 0 2.66 ± 0.25 2.52 ± 0 0.6911

PLGF 0.47 ± 0.08 0.50 ± 0.05 0.52 ± 0.05 0.6410

BMP-9 0.47 ± 0.05 0.44 ± 0 0.44 ± 0 0.5645

PDGF – – – –

Different superscript lowercase letters in row mean statistically significant differences among periods (two-way
ANOVA followed by Bonferroni’s multiple comparisons test; p < 0.05). Values in pg/ml
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(p < 0.05), while FGF-2 and VEGF-A increased significantly
in the lysate after irradiation with 3.7 J/cm2 (p < 0.05)
(Table 3). The other proteins had different patterns of synthe-
sis and secretion over time, but without statistically significant
differences (p > 0.05) (Table 3).

Intergroup comparison

The results were normalized and expressed as percentage of
controls. In the supernatant, at 6 h, the both fluences signifi-
cantly increased BMP-9 secretion (Fig. 2). A significant de-
crease of PLGF occurred in the supernatant with both
fluences, at 6 h (Fig. 2). At 12 h, both fluences significantly
downregulated the secretion of PLGF (Fig. 3). At 24 h,
VEGF-A, VEGF-C, PDGF, and PLGF secretion significantly
decreased after photobiomodulation application with 2.5 J/
cm2, while the fluence of 3.7 J/cm2 significantly downregu-
lated VEGF-A, PDGF, and PLGF secretion (Fig. 4).

In the lysate, at 6 h, the fluence of 3.7 J/cm2 significantly
decreased VEGFR1 production compared with 2.5 J/cm2 and
the control group (Fig. 2). Statistically significantly lower
values of PLGF production occurred at 6 h in the lysate for
both fluences (Fig. 2). Both fluences significantly decreased
BMP - 9 p r o d u c t i o n i n t h e l y s a t e , 1 2 h a f t e r
photobiomodulation (Fig. 3). At 24 h, VEGF-D production
in the lysate significantly increased after photobiomodulation
with 2.5 J/cm2 (Fig. 4).

Capillary-like structure formation assay

HUVECs treated with the conditioned medium with the su-
pernatant released by HPFs irradiated with both fluences
showed capillary-like structure formation (Fig. 5) compared
with those maintained in the culture medium + 10% FBS. The
supernatant obtained after the irradiation with the fluence of
2.5 J/cm2 (Fig. 5a) showed more frequent capillary-like struc-
ture formation than with the fluence of 3.7 J/cm2 (Fig. 5b).

Fig. 2 Intergroup comparison of
the quantification of angiogenic
growth factors after
photobiomodulation at 6 h, in the
supernatant (a) and lysate (b).
Different lowercase letters mean
statistically significant differences
among groups for each protein
(p < 0.05)
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Discussion

This study showed the inhibitory and stimulatory
photobiomodulation of the main angiogenic factors in the su-
pernatant and lysate by pulp fibroblasts. Despite some differ-
ences in the results, both fluences resulted in capillary-like
structure formation. To the best of our knowledge, this is the
first study addressing the synthesis and secretion of angiogen-
ic proteins by pulp fibroblasts after photobiomodulation,
which makes comparisons difficult.

In terms of photobiomodulation, the lower fluence signifi-
cantly upregulated BMP-9 in the supernatant at 6 h and
VEGF-D in the lysate at 24 h. The higher fluence significantly
upregulated BMP-9 in the supernatant at 6 h. In general, stim-
ulatory photobiomodulation of angiogenic factors occurs due
to nitric oxide modulation [23] through nitric oxide produc-
tion synthase via activation of PLCϒ-Ca-dependent influx [31,
32]. At 6 h, the statistically increased secretion of BMP-9 may
have led to the inhibition of other angiogenic factors as
VEGF-A and its isoforms because BMP-9 suppresses VEGF

expression by activating VEGFR1 [33]. VEGF isoforms have
negative and positive feedback mechanisms with their related
receptors, and VEGFR1 is the main mediator, so VEGF up-
regulation increases VEGFR1 availability [3, 8]. VEGFR1
controls vascular biology acting as “VEGF trap” by seques-
tering VEGF isoforms away from VEGFR2 and forming non-
signaling VEGFR1-VEGFR2 heterodimer through dimeriza-
tion, transphosphorylation, and regulation of expression
levels, in a negative feedback cycle [3, 8, 34, 35].

In the supernatant, at 24 h after photobiomodulation, the
secretion of VEGF-A was statistically lower than that of the
control group for the fluence of 2.5 J/cm2 and 3.7 J/cm2. The
regulation of VEGF family proteins and receptors is a complex
interplay. Many factors regulated VEGF synthesis: VEGFR1
and BMP-9 (as mentioned above) [3, 8, 33–35], VEGF bio-
availability through either plasmin cleavage or extracellular
proteolysis [3], splicing of VEGF proteins affecting temporal
and spatial distribution [35], FGF controlling of VEGF up-
stream [3], and VEGFR2 binding to integrin [3, 29, 35].
Integrin is a transmembrane heterodimer that mediates cell-

Fig. 3 Intergroup comparison of
the quantification of angiogenic
growth factors after
photobiomodulation at 12 h, in
the supernatant (a) and lysate (b).
Different lowercase letters mean
statistically significant differences
among groups for each protein
(p < 0.05)
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matrix adhesion through binding to extracellular proteins, such
as collagen, fibronectin, and laminin [35]. Integrin recruitment
qualitatively modulates the signaling of VEGF receptors [35],
and the VEGFR2 binding to integrin prevents aberrant angio-
genesis stimulation [3]. Photobiomodulation increases COL1
gene expression by HPFs [18]. Collagen 1 downregulates the
VEGF-A-mediated activation of VEGFR2 through phospha-
tase SHP2 recruitment [35]. As demonstrated by Table 2, the

irradiated and non-irradiated groups showed the same cell via-
bility and proliferation pattern, excluding the probability that
the fluctuation of the protein quantity, in this study, would have
been caused by HPF death in later periods. Taken together, this
information suggests the crosstalk between proteins and recep-
tors of the VEGF signaling cascade.

Both fluences downregulated PDGF and PLGF in the su-
pernatant and lysate. The literature lacks studies on the protein

Fig. 4 Intergroup comparison of
the quantification of angiogenic
growth factors after
photobiomodulation at 24 h, in
the supernatant (a) and lysate (b).
Different lowercase letters mean
statistically significant differences
among groups for each protein
(p < 0.05)

Fig. 5 Capillary-like structure formation assay on HUVEC (arrow). a Conditioned medium with the supernatant released by HPFs irradiated with 2.5 J/
cm2. b Conditioned medium with the supernatant released by HPFs irradiated with 3.7 J/cm2. c HUVECs without conditioned medium
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synthesis and secretion of PLGF by pulp fibroblasts. Studies
on angiogenesis show that PLGF plays a crucial role in
inflammation-associated angiogenesis by recruiting inflam-
matory cells, mediated by binding VEGFR1 [3, 34]. The lit-
erature reported an increase in PDGF levels after
photobiomodulation, but with different wavelengths
(1064 nm) and fluences (1.6 J/cm2) on different cells (palatal
tissue) [36, 37]. Works from other fields highlighted the in-
hibitory effect of photobiomodulation in PDGF-stimulated
cells [38]. Although Rombouts et al. [9] report the increase
of PDGF transcription by pulp cells, we did not find the same
protein transduction in this study.

The methodology of this study was based on previ-
ous research using 660-nm wavelength [18–20, 23].
Before photobiomodulation, HPFs secreted and pro-
duced all the tested angiogenic factors, except for
PDGF in the lysate, which agrees with the literature
[39, 40]. Other studies show that to simulate pulp stress
conditions, either hypoxia or serum deprivation leads to
different angiogenic secretions by pulp cells [9, 41–43].
This would explain the synthesis of angiogenic proteins
by non-irradiated HPFs in this present study.

Although this study used HPFs, the results have the inher-
ent limitations of an in vitro study. At this point, this study
provided two fluences tailored for pulp angiogenesis.
However, further studies are necessary to verify the
photobiomodulation effect of these doses on different pulp
cells and on the control of pulp inflammation and to elucidate
other molecular mechanisms of the angiogenesis of pulp
healing to help in developing photobiomodulation-mediated
strategies.

To sum up, photobiomodulation with either 2.5 J/cm2 or
3.7 J/cm2 produced stimulatory and inhibitory effects on an-
giogenic protein production and secretion by pulp fibroblasts,
resulting in capillary-like structure formation.

Conclusion

Photobiomodulation produced stimulatory effects on angio-
genic protein secretion by pulp fibroblasts. In terms of
photobiomodulation,

& Over time, both fluences significantly increased the secre-
tion of VEGF-A, VEGF-C, and VEGFR1;

& Both fluences significantly upregulated BMP-9 (6 h) in
the supernatant;

& For capillary-like structure formation, the fluence of 2.5 J/
cm2 was better than the fluence of 3.7 J/cm2.
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