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Abstract
Objectives The purpose of this study was to investigate the
microhardness, polymerization shrinkage, and translucency of
bulk-fill composites (BFCs) which have different light atten-
uation properties and filler contents.
Materials and methods Five BFCs [Filtek Bulk Fill (FB),
SureFil SDR (SS), Venus Bulk Fill (VB), SonicFill (SF),
and Tetric N-Ceram Bulk Fill (TB)] and two resin-based com-
posites (RBCs) [Tetric N-Ceram (TN) and Filtek Z350XT
Flowable (ZF)] were chosen. Numbers of transmitted photons,
refractive index, microhardness at different thicknesses, poly-
merization shrinkage, and translucency parameter (TP) were
evaluated.
Results Attenuation coefficients (ACs) based on measured
photons ranged from −0.88 to −1.90. BFCs, except SF, had
lower AC values than TN or ZF, and BFCs, except TN, had
smaller refractive index decreases between top and bottom
surfaces. Regardless of an exponential decrease in photon
counts, microhardness decreased linearly as specimen
thickens. Moreover, microhardness of BFCs showed smaller
top-to-bottom decreases (11.5–48.8 %) than TN or ZF (57.3
and 71.5 %, respectively). BFCs with low filler contents

showed lower microhardness and higher polymerization
shrinkage than those of high filler contents. Also, BFCs had
significantly higher (p < 0.001) TP values than TN or ZF.
Conclusion BFCs attenuated light less than RBCs. However,
some BFCs had much lower top surface microhardness and
higher polymerization shrinkage than tested RBCs.
Clinical relevance Despite the convenience of bulk filling,
careful selection of BFC is advised because some BFCs have
worse microhardness and polymerization shrinkage than
RBCs due to their lower filler contents.
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Introduction

Resin-based composites (RBCs) are the primary option for the
restoration of tooth cavity because they have acceptable me-
chanical and esthetic properties. Easy handling, long working
time, but short curing times are other advantages over other
restoration materials. However, as a commixture of fillers and
monomers, polymerization shrinkage induced by the
methacrylate-based monomers produces unwanted problems
such as postoperative sensitivity, recurrence of secondary car-
ies, and marginal leakage [1–3]. A turbid nature of RBCs due
to pigments and refractive index mismatching between fillers
and monomers causes insufficient light transmission and re-
sults in insufficient curing of the subsurface. To eliminate
these problems, less than 2-mm-thick layering became a rou-
tine option even though it is a time-consuming process [4, 5].

Recently, resin-based bulk-fill composites (BFCs) have
been introduced with claims that they can fill cavity up to 4–
6 mm at one time [6–9]. Easy and quick filling of BFCs is
possible because they have flowable nature by itself or with an
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aid of ultrasonic device. Regardless of their type, such as bulk
fill, nanohybrid, and flowable, flowability can reduce process-
ing time during restoration. To cure specimens of such deeply
filled, BFCs must have high translucency to allow the incident
light to be reached at the bottom surface. To achieve high
translucency, choice of fillers and monomers those have a
similar refractive index (refractive index matching) is impor-
tant [10–12]. Generally, low viscous BFCs [for example,
Filtek Bulk Fill (FB), SureFil SDR (SS), and Venus Bulk
Fill (VB)] have low filler content to increase flowability, and
their filler contents are much lower than those of many
flowable resins. However, despite high filler content,
SonicFill (SF) achieves flowability through sonic activation,
and Tetric N-Ceram Bulk Fill (TB) contains a new initiator to
enhance polymerization. Also, BFCs are claimed to have a
low shrinkage stress through the inclusion of stress reliever
(TB), polymerization modulator (SS), or their own closed
ways to lessen high possible stress induced by the massive
filling [13, 14].

In a clinical aspect, bulk filling of cavity would be benefi-
cial if compared with 2-mm-thick layering of RBCs in reduc-
ing treatment time for cavity restoration, polymerization
stress, and improving esthetic quality. Also, due to the reduced
contraction stress, reduction of cuspal deflection can be ex-
pected [15, 16]. However, the reduced filler content of BFCs
for achieving high light transmission can weaken their me-
chanical properties and decrease load resistance during masti-
cation compared with RBCs which are not allowed to fill the
tooth cavity over 2 mm at one time [17, 18]. Since bulk filling
itself increases light path length into the deep subsurface and

resin volume by the increased cavity depth and each BFCs
adopt different strategies for achieving high light transmission
and flowability, their complex effects on hardness, polymeri-
zation shrinkage, and color may have different trend com-
pared to those of general RBCs. The purpose of the present
study was to evaluate microhardness and polymerization
shrinkage of BFCs. Also, light attenuation, refractive index,
and translucency parameter were evaluated. The null hypoth-
eses to be tested were that (1) BFCs have low microhardness
change on the bottom surface compared with that of the top
surface and (2) have low polymerization shrinkage compared
with the tested RBCs which are usually recommended to fill
less than 2-mm thick.

Materials and methods

Bulk-fill composites

In the present study, five different bulk-fill composites
(BFCs) [los viscous: Filtek Bulk Fill (FB), SureFil SDR
(SS), and Venus Bulk Fill (VB); high viscous: SonicFill
(SF) and Tetric N-Ceram Bulk Fill (TB)] and two RBCs
[Tetric N-Ceram (TN) and Filtek Z350XT Flowable
(ZF)] were used. Compositional details of these resins
are listed in Table 1. For light curing, a LED light-
curing unit (LCU) [L.E.Demetron (DE), Kerr, Danbury,
CT, USA] was used as a light source with 900 mW/cm2

condition.

Table 1 Materials used in the present study

Code Composition Filler content
vol%/wt%1/wt%2

Manufacturer

FB Bis-GMA, UDMA, Bis-EMA (6),
Zirconia, silica, YbF3

42.5/64.5/60.6 3M ESPE, St. Paul,
MN, USA

SF TMSPMA, EBPADMA, TEGDMA,
oxide, SiO2

/83.5/82.7 Kerr Orange, CA, USA

SS Modified UDMA, EBPADMA,
TEGDMA, Ba-Al-F-B-Si glass,
Sr-F-Si glass

45/68/66.1 Dentsply Caulk, Milford,
DE, USA

TB Bis-GMA, UDMA, Ba-Al-Si glass,
YbF3, PPF

60–61/79–81/71.5 Ivoclar Vivadent, Schann,
Liechtenstein

VB UDMA, EMPADMA, Ba-Al-F-SiO2,
YbF3, SiO2

38/65/59.7 Heraeus Kulzer, GmbH,
Hanau, Germany

TN Bis-EMA, TEGDMA, UDMA,
Barium glass, YbF3, SiO2

57/80.5/72.5 Ivoclar Vivadent, Schann,
Liechtenstein

ZF Bis-GMA, TEGDMA, Zirconia/silica
cluster fillers

55/65/58.7 3M ESPE, St. Paul, MN,
USA

FB Filtek Bulk Fill, SF SonicFill, SS SureFil SDR, TB Tetric N-Ceram Bulk Fill, VBVenus Bulk Fill, TC Tetric N-Ceram, ZF Filtek Z350XT flowable,
Bis-EMA ethoxylated bisphenol-A-glycidyl methacrylate, Bis-GMA bisphenol glycidyl dimethacrylate, EBPADMA ethoxylated bisphenol-A-
dimethacrylate, TEGDMA triethyleneglycol dimethacrylate, TMSPMA 3-trimethoxysilypropyl methacrylate, UDMA urethane dimethacrylate, wt%1

nominal weight (according to the information supplied by the manufacturers), wt%2 weight by ash method
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Filler weight

The filler weight (wt%) of each resin product was determined
using standard ash method in addition to the nominal weight
which was provided by the manufacturers [19] .
Approximately 50 mg of each resin specimen (n = 5) was
measured using an analytical balance, light cured, and heated
in an electric furnace at 650 °C for 30 min to burn out the
organic matrix. The wt% was determined by dividing the
weight of original specimen to that of the remaining specimen
after heating in furnace.

Photon counts and attenuation coefficient

To measure the number of photons, those arriving at the bot-
tom of the tested specimens, specimens (n = 3) of different
thicknesses (diameter, 7 mm; thickness, 1, 2, 3, and 4 mm)
were prepared, placed over a stage (thickness, 1 mm) which
has a hole (diameter, 6 mm) on it. Light was irradiated from
above the hole. The detector was placed under the hole at a
fixed position to measure the photons with consistency. The
photodiode detector (M1420, EG&G, PURC, Princeton, NJ,

USA) was connected to a spectrometer (SpectroPro-500,
Acton Research, Acton, MA, USA).

To evaluate how the light intensity decreases its intensity
within the specimen, the attenuation coefficient (AC, mm−1)
was estimated using the measured photons at different thick-
nesses based on Beer-Lambert law (I = I0·e

−α·z, where I0 is the
initial light intensity, it is the measure of photons in the ab-
sence of specimen, α is the attenuation coefficient, and z is the
specimen thickness at the time of measurement.)

Refractive index

The refractive index of the specimens (n = 5) was measured
using an Abbe-type refractometer (NAR-1T; ATAGO,
Tokyo, Japan). For the measurement, a tiny amount of resin
was sandwiched between two thin glass slides to be approx-
imately 50 μm thick, placed below the mold of 1, 2, 3, and
4 mm thick, and light was irradiated from the top of the mold
to the bottom direction for 40 s. The light-cured specimens
were stored for 24 h in a 37 °C dry and dark chamber. One
drop of high refractive index interfacial contact agent,
monobromonaphthalen (nD = 1.64 where nD is the refractive
index at the D line wavelength, the center of the yellow
sodium double emission at 589 nm), was added on the spec-
imen, and then the milky white refractor (nD = 1.6199) was
placed over it to enhance diffuse scattering of the cured slabs.
Diffuse scattering at the front surface is necessary to improve
the accuracy of the measurement. Refractive index readings
were performed at room temperature (23 ± 1.0 °C) unless
otherwise mentioned. The system used in this study gives
sodium D-line (589 nm) light.

Microhardness test

To measure the surface microhardness (n = 12 for each con-
dition) of specimens, each resin was filled into ring-type
molds (internal diameter, 7 mm; thickness, 1, 2, 3, 4 mm).
The top surface of the resin-filled mold was covered with a
thin glass slide, pressed firmly, and light cured for 40 s by
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Fig. 1 Detected photons from specimens of different thicknesses

Table 2 Number of photons
detected at different thicknesses
and the estimated attenuation
coefficients (AC) by assuming
exponential decay of photon
count

Photon counts AC (mm−1) R2

0 1 2 3 4

FB 13,451 ± 253 1293 ± 87 396 ± 25 138 ± 13 48 ± 4 −1.52 0.94

SF 13,851 ± 252 558 ± 43 123 ± 12 36 ± 3 18 ± 3 −1.90 0.87

SS 13,986 ± 426 1566 ± 188 788 ± 91 392 ± 32 211 ± 18 −1.18 0.85

TB 13,721 ± 533 1447 ± 57 462 ± 44 184 ± 28 61 ± 17 −1.45 0.94

VB 13,498 ± 314 3489 ± 198 1609 ± 69 932 ± 37 576 ± 28 −0.88 0.92

TN 13,740 ± 608 771 ± 86 192 ± 25 61 ± 7 26 ± 3 −1.76 0.90

ZF 13,210 ± 616 1185 ± 32 250 ± 23 77 ± 12 48 ± 6 −1.61 0.91
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contacting the light guide to the top surface of the glass slide at
an environmental temperature of 23 ± 1 °C. Cured specimen
was removed frommold and stored for 24 h in a 37 °C dry and
dark chamber. The microhardness of top (z = 0) and each
surfaces (z = 1, 2, 3, and 4 mm) of each specimen was mea-
sured using a Vickers hardness tester (MVK-H1, Akashi,
Tokyo, Japan). Measurements were performed by determining
the sizes of the microindentations generated on the specimen
surface using a 200-g load and 10-s dwell time.

Polymerization shrinkage

The polymerization shrinkage (percent) of the specimens dur-
ing and after the light-curing process was measured (n = 5 for
each product) using a linometer (RB 404, R& B Inc., Daejon,
Korea). A resin of cylinder shape (diameter, 4 mm; thickness,
2 and 4 mm) was placed over the aluminum disk (the speci-
men stage of the linometer), and its top surface was secured
using a glass slide. Since resin can flow downward, placing
resin over the aluminum disk was performed as quickly as
possible through the repeated practice. The end of the light
guide was placed in contact with the glass slide. Before light
curing, the initial position (the distance between the aluminum
disk and inductive shrinkage sensor) of the aluminum disk
was set to zero and then the light from the LCU was irradiated
for 40 s. The amount of disk displacement from the sensor that
occurred due to polymerization shrinkage was measured au-
tomatically for 130 s using the sensor. The resolution and
measurement range of the sensor were 0.1 and 100 μm,
respectively.

Color evaluation

To make disk-type specimens, ring-type molds (inner diame-
ter, 8 mm; thickness, 1, 2, 3, and 4 mm) were placed over a

glass slide, filled the mold with resin, covered the top surface
with a glass slide, pressed firmly to flatten the surfaces, then
light cured for 40 s. The cured specimen was then removed
from the mold and stored for 24 h in a 37 °C dry and dark
chamber. Colors of specimens (n = 7) were measured in a
reflectance (%R) mode, and CIEL*a*b* color coordinates
were evaluated from the obtained %R values. Here, L* repre-
sents the degree of gray, and it corresponds to a lightness.
Parameter a* represents the red–green axis, whereas b* is a
parameter for the blue–yellow axis. The translucency param-
eter (TP) was obtained using the formula.

TP ¼ L*B−L*W
� �2 þ a*B−a*W

� �2 þ b*B−b*W
� �2h i1=2

;

Where subscript B refers to color coordinates obtained
using a black background (L* = 2.93, a* = 0.38, and
b* = −0.34) and W refers to those obtained using a white
background (L* = 93.26, a* = −0.61, and b* = 2.09).

Statistical analysis

The results of polymerization shrinkage and TPwere analyzed
using one-way ANOVAwhere the factor was resin product. A
post hoc Tukey test was used to determine significant differ-
ences between individual groups. All tests were analyzed at
p < 0.05.

Results

The detected photons from the specimens of different thick-
nesses were shown in Fig. 1. The number of the detected
photons decreased exponentially as specimen thickens.
Table 2 shows the estimated attenuation coefficients (AC,
mm−1) of different specimens using the curve fit of photon
c-
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ounts by assuming exponential decrease. Among the speci-
mens, VB and SF showed the lowest and highest AC values
(−0.88 and −1.90), respectively.

Figure 2 shows the refractive index of specimens at differ-
ent thicknesses. Specimens showed a linearly decreasing
(R > 0.87) refractive index values as specimen thickens.
Among the specimens, ZF showed the highest refractive index
change (0.55 %) if compared values of the top and bottom
surfaces.

Figure 3 and Table 3 show the microhardness (Hv) of spec-
imens at different thicknesses. Among the specimens, ZF and
VB showed the highest (71.5 %) and lowest (11.5 %) micro-
hardness decrease if compared values of the top and bottom
surfaces. BFCs showed less microhardness decrease (11.5–
48.8 %) compared with TN and ZF (57.3 and 71.5 %).

Table 4 shows the polymerization shrinkage (percent) of
specimens for two different thicknesses. For 2-mm-thick case,
FB and TN showed the highest (1.46 %) and lowest (0.78 %)
shrinkage, respectively. For 4-mm-thick case, VB and TN
showed the highest (1.16 %) and lowest (0.42 %) shrinkage,
respectively. Among BFCs, FB, SS, and VB showed greater
shrinkage than ZF.

Table 5 showed the CIEL*a*b* values of the speci-
mens for different backgrounds. Among the specimens,
despite their A3 shade, FB and VB showed much lower
lightness (L*) values (39.1 and 43.9) than the others
(>53.9) regardless of background. The estimated TP
values are showed in Fig. 4. Among the specimens,
VB showed the highest TP (8.89) and SF and TN
showed similarly the lowest TP (0.37 and 0.36),
respectively.

Discussion

From the obtained data, the first hypothesis that BFCs have
low microhardness change on the bottom surface compared
with that of the top surface is acceptable. However, the second
hypothesis that BFCs have low polymerization shrinkage
values compared with that of the tested RBCs is partially
acceptable because some BFCs have much higher shrinkage
values than that of RBCs.

The tested BFCs are claimed by the manufacturers that they
can bulk-fill the cavity to the depth of 4–6 mm at one time
without extended light-curing time, but with normal light in-
tensity condition, such high bulk-fill nature would be attribut-
able to high transmission of incident light compared with that
of RBCs. Low light attenuation can be related with high light
transmission. According to the obtained data (Table 2), BFCs
showed less light attenuation (0.88–1.52) than RBCs (1.61
and 1.76), so high transmission in BFCs seems natural.
Light attenuation within the specimen is the result of compli-
cated scattering and absorption process by constituents, such
as monomer, pigments, and fillers [20–22]. According to the
formula, light intensity by Raleigh scattering within the medi-
um relies on the volume fraction of fillers, filler size, and
refractive index of resin matrix and fillers. It also inversely
relies on the wavelength of the incident light [23, 24]. So, as
filler volume and size increase, the resultant light transmission
will be changed (increased or decreased) as well. In the pres-
ent study, attenuation coefficient (AC) was linearly correlated
(R = 0.73) with filler volume of the tested resin products. So as
specimen volume decreases, less light attenuation (low atten-
uation coefficient) can be probable due to the decreased
blocking of incident light by less bulky fillers [20, 25]. The
tested BFCs have two different viscosities based on the man-
ufacturers’ claim: low and high. Except the inclusion of
TEGDMA, diluent, filler content can be involved in control-
ling viscosity as well. FB, SS, and VB are claimed to be of low
viscosity. Actually, their filler volumes are less than those of
other BFCs (SF and TB) and RBCs (TN and ZF).

Refractive index differently changed depending on resin
product as specimen thickens. Basically, fraction of refractive
index will inconsistently change depending on the combina-
tion of monomer and filler because the refractive index of
typical monomers and fillers are different (Bis-GMA, 1.551;
TEGMA, 1.460; UDMA, 1.484; Silica, 1.463; Barium, 1.530;

Table 3 Microhardness (Hv) of specimens with different thicknesses

0 1 2 3 4

FB 28.7 ± 1.3 26.5 ± 0.9 26.0 ± 0.7 21.3 ± 2.1 14.7 ± 1.2

SF 74.3 ± 0.9 72.9 ± 1.0 65.5 ± 1.2 57.1 ± 1.2 48.6 ± 2.8

SS 27.6 ± 1.3 27.2 ± 0.8 27.2 ± 1.2 27.1 ± 1.0 23.7 ± 0.7

TB 44.5 ± 2.7 42.7 ± 1.2 42.0 ± 2.1 39.4 ± 1.4 34.1 ± 1.6

VB 27.8 ± 0.5 27.4 ± 1.2 27.2 ± 1.6 26.5 ± 1.6 24.6 ± 1.8

TN 43.3 ± 1.4 42.4 ± 1.7 38.0 ± 1.2 30.5 ± 2.4 18.5 ± 1.5

ZF 45.6 ± 1.5 44.1 ± 0.8 39.2 ± 1.4 24.5 ± 0.7 13.0 ± 0.9

Table 4 Polymerization
shrinkage (percent) of specimens
for different thicknesses

FB SF SS TB VB TN ZF

2 1.46 ± 0.3a 0.83 ± 0.7b 1.19 ± 0.2c 0.87 ± 1.0b 1.43 ± 1.3a 0.78 ± 1.4b 1.36 ± 0.6a

4 0.82 ± 0.3a 0.46 ± 0.8bc 0.90 ± 0.4d 0.50 ± 0.4c 1.16 ± 0.9e 0.42 ± 0.6b 0.81 ± 1.7a

Statistically significant difference on resin product is shown by superscript letters a and b. Same letters in the same
row are not significantly different (p > 0.05)
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Strontium, 1.510) [10, 26]. Furthermore, resin matrix of each
resin products are complex mixture of these monomers and
fillers; the resultant refractive index cannot be simply quanti-
fied. Also, as specimen thickens, refractive index in subsur-
face decreases due to incomplete polymerization and subse-
quently by less shrinkage [27]. Since the refractive index is a
measure of the speed of light in the medium, refractive index
on the top surface is high due to much condensation by high
light intensity, but low on the bottom surface due to less con-
densation by reduced light intensity. Among the BFCs, VB
and TB showed less than 0.13 % and FB, SS, and SF showed
0.22–0.33 % refractive index change between values of their
top and bottom surfaces. These values are much lower than
that by ZF (flowable resin, 0.55 %), but not lower than that by
TN (nanocomposite, 0.17 %).

According to the results, some BFCs (FB, SS, and VB)
have lower top-surface microhardness values compared with
ZF (26.0–27.8 Hv vs. 45.6 Hv) despite their higher filler
weight (59.7–66.1 % vs. 58.7 %). A report by Zorzin et al.
was similar in trend to those of the present study even though
experimental conditions in two studies are a little different
[28]. Generally, microhardness has high correlation with filler
content, and such correlation was found in the present study
for vol% and wt% (R > 0.72), but these BFCs have

contradictory result despite high correlation. On the bottom
surface (z = 4 mm), these BFCs have slightly higher micro-
hardness values than ZF (14.7–24.6 Hv vs. 13.0 Hv). Slightly
higher microhardness values on the bottom surface would be
due to higher filler weight but less light attenuation due to
lower filler volume.

Polymerization shrinkage occurs as a result of the shorten-
ing of molecular distance by the changed governing molecular
bond from van der Waals to covalent and causes many clini-
cally unwanted problems [1–3]. Since shrinkage occurs in the
course of monomer conversion to polymer, the lesser the filler
content, the higher the resultant shrinkage will be probable
[29, 30]. In the present study, filler content has correlation
with polymerization shrinkage (R > −0.78 for 2- and 4-mm-
thick specimens). High shrinkage of FB, SS, and VB and low
shrinkage of SF and TB in BFCs regardless of specimen thick-
ness would be related with low and high filler content, respec-
tively. These results are also similar in trend to the study by
Zorzin et al. [28]. Also, their values are comparable or slightly
higher than the values of ZF and TN, respectively. After all,
some products can increase light transmission by lowering
filler content, but it adversely can increase polymerization
shrinkage much further than that of flowable resin.

The tested BFCs have higher TP values (0.37–8.89) com-
pared with that of TN and ZF. However, except VB, TP dif-
ference among BFCs was not high (0.37–1.89). For the tested
specimens, filler volume has a negative linear correlation with
TP (R = 0.77), so specimens of lower filler volume (FB, SS,
and VB) have a significantly (p < 0.001) higher TP than SF
and TB whose filler volumes are greater than those of FB, SS,
and VB [31]. A linear correlation of TP with attenuation co-
efficient (R = −0.83) and polymerization shrinkage (R = 0.79
for 4-mm-thick specimens) seems probable.

Conclusions

The tested BFCs have a significantly higher light transmission
compared with that of the tested RBCs. However, since these
products have apparently different filler contents, some of

Table 5 CIEL*a*b* values obtained from specimens with black and white backgrounds

FB SF SS TB VB TN ZF

B L* 43.91 ± 0.48 55.51 ± 0.61 54.74 ± 1.57 53.96 ± 1.22 39.17 ± 0.69 54.84 ± 1.09 59.07 ± 1.44

a* 1.56 ± 0.15 −0.61 ± 0.22 −3.62 ± 0.26 −2.35 ± 0.14 −2.23 ± 0.81 −1.08 ± 0.15 0.59 ± 0.07

b* 7.90 ± 0.66 3.24 ± 0.62 −4.89 ± 0.67 2.16 ± 0.66 −1.10 ± 0.56 7.73 ± 0.87 9.12 ± 0.30

W L* 44.63 ± 0.45 55.68 ± 0.73 55.73 ± 1.39 54.27 ± 1.10 44.40 ± 0.30 55.03 ± 1.04 59.25 ± 1.48

a* 2.70 ± 0.15 −0.43 ± 0.25 −3.48 ± 0.09 −2.08 ± 0.15 −0.47 ± 0.08 −0.88 ± 0.12 0.93 ± 0.05

b* 9.22 ± 0.69 3.45 ± 0.74 −3.69 ± 0.54 2.68 ± 0.57 5.81 ± 0.96 7.95 ± 0.83 9.42 ± 0.31

B black background, W white background
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Fig. 4 Translucency parameter (TP) of the tested specimens. Statistically
significant difference on resin product is shown by superscript letters (a,
b). Same letters in the same row are not significantly different (p > 0.05)
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them have much lower top-surface microhardness or higher
polymerization shrinkage compared with those of RBCs even
though refractive index and microhardness change of BFCs
on the bottom surface was not high due to low light attenua-
tion. Filling over 4 mm can be convenient and time-saving,
but due to inconsistent outcomes by the different ways for
increasing transmission of light in BFCs, a careful selection
of BFC would be asked for the reliable and durable
restoration.
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