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Abstract
Objectives Despite the input ofmicrobiome research, a group of
20 bacteria continues to be the focus of periodontal diagnostics
and therapy.The aimof this studywas to compare three commer-
cial kits and laboratory-developed primer pairs for effectiveness
in detecting such periodontopathogens.
Materials and methods Fourteen bacterial mock communities,
consisting of 16 randomly assembled bacterial strains, were used
as reference standard for testing kits andprimers. ExtractedDNA
from mock communities was analyzed by PCR in-house with
specific primers and forwarded for analysis to themanufacturer’s
laboratory of each of the following kits: ParoCheck®Kit 20, mi-
cro-IDent®plus11, and Carpegen® Perio Diagnostik.

Results The kits accurately detected Fusobacterium
nucleatum, Prevotella intermedia/Prevotella nigrescens,
Parvimonas micra, Aggregatibacter actinomycetemcomitans,
Campylobacter rectus/showae, Streptococcus mitis,
Streptococcus mutans, and Veillonella parvula. The in-house
primers for F.nucleatum were highly specific to subtypes of
the respective periopathogen. Other primers repeatedly detect-
ed oral pathogens not present in the mock communities, indi-
cating reduced specificity.
Conclusions The commercial kits used in this study are reliable
tools to support periodontal diagnostics. Whereas the detection
profileof thekits isfixedatageneralspecificitylevel, thedesignof
primers can be adjusted to differentiate between highly specific
strains. In-house primers are more error-prone. Bacterial mock
communities can be established as a reference standard for any
similar testing.
Clinical relevance The tested kits render good results with se-
lected bacterial species. Primers appear to be less useful for
routine clinical diagnostics and of limited applicability in re-
search. Basic information about the periodontopathogens iden-
tified in this study supports clinical decision-making.
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Introduction

Fighting periodontal diseases is one of the major goals of oral
health care, as such diseases affect more than two thirds of the

* Elisabeth Santigli
elisabeth.santigli@medunigraz.at

1 Division of Orthodontics andMaxillofacial Orthopedics, Department
of Dentistry and Maxillofacial Surgery, Medical University of Graz,
Billrothgasse 4, A-8010 Graz, Austria

2 Bacteriology and Mycology Laboratory, Institute of Hygiene,
Microbiology and Environmental Medicine, Medical University of
Graz, Universitätsplatz 4, 8010 Graz, Austria

3 Division of Prosthodontics, Restaurative Dentistry, Periodontology
and Implantology, Department of Dentistry and Maxillofacial
Orthopedics, Medical University of Graz, Billrothgasse 4,
8010 Graz, Austria

4 Research Unit Molecular Diagnostics, Institute of Hygiene,
Microbiology and Environmental Medicine, Medical University of
Graz, Universitätsplatz 4, 8010 Graz, Austria

5 Institute of Plant Sciences, University of Graz, Holteigasse 6,
8010 Graz, Austria

6 Center of Medical Research, Medical University of Graz,
Stiftingtalstraße 24/1, 8010 Graz, Austria

Clin Oral Invest (2016) 20:2515–2528
DOI 10.1007/s00784-016-1748-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00784-016-1748-9&domain=pdf


world population [1]. Periodontitis is a complex disease, with
multiple causal factors simultaneously and interactively mod-
ulating the initiation, progression, and severity of its course
[2]. Four main risk factors are recognized today, the foremost
being dental and subgingival microbiota (referred to as Boral
microbiota^ or Boral biofilm^), in addition to individual ge-
netic variability, lifestyle, and systemic factors [3–6]. Prime
attention has previously been given to identifying the specific
periodontopathic microorganisms, as both the onset and the
characteristics of periodontal diseases are closely related to
changes in the physiological oral habitat. When focusing on
changes in this microbial community, different molecular
methods can be used to detect oral pathogens related to peri-
odontal disease [7–10]. Recently, laborious and time-
consuming culture assays have been replaced by quick and easy
molecular methods. Techniques such as fluorescence in situ
hybridization and confocal laser scanning microscopy, DNA-
DNA hybridization, PCR, real-time PCR, and, more recently,
next-generation sequencing have not only accelerated but also
expanded the quest for unknown periodontopathogens [11–14].
Research results continue to broaden the picture of periodontal
disease by applying novel methods to identify new bacterial
species. The information gained from such studies is quite com-
plex and standardized methods of data analyses are still being
developed [15, 16].

Awell-defined group of bacteria continues to be the focus
of periodontal diagnostics and therapy. A specific bacterial
composition of periodontopathic biofilm was first described
in detail by Socransky and Haffajee. Five bacteria complexes
are thus associated with periodontal disease to a varying ex-
tent, serving as targets or biomarkers for clinical research [17].
The red complex, which contains the bacteria that are most
strongly related to periodontitis, has been studied extensively
[18–21]. Yet, less has been reported about the relationship
between periodontal disease and bacteria belonging to other
complexes. In the last two decades, several commercial kits,
based on various molecular technologies such as DNA-DNA-
hybridization and real-time PCR, have been developed for
quick and accurate identification of such bacteria. Such kits
are designed to support dentists in clinical decision-making.
Not only do the kits indicate the presence of certain
periodontopathogens but they also propose antimicrobial ther-
apy options.

The use of mock communities as a reference standard has
been previously shown to facilitate standardization, analysis
and interpretation of microbiome data [22, 23]. Bacterial
mock communities, consisting of a custom-selected variety
of bacterial species, can also be employed to test the accuracy
of primers and probes used in kits. For the present study, such
microbial mock communities were randomly composed from
a pool of 16 different bacterial species that represent key peri-
odontal pathogens and other oral or human-associated bacte-
ria. These mock communities were used to test the capability

of accurately identifying bacteria, as shown by (1) three com-
mercial kits: ParoCheck®Kit20 (Greiner Bio-One GmbH,
Frickenhausen, Germany), micro-IDent®plus11 (Hain
Lifescience GmbH, Nehren, Germany), Carpegen® Perio
Diagnostik (Carpegen GmbH, Münster, Germany) and (2)
eleven previously published PCR primer pairs [7, 24–27].

Methods

Mock communities used as reference standard in this
study

The bacterial strains for the mock communities were selected
from reference strains based on the following criteria: (1)
availability at the microbiological laboratory of the Institute
of Hygiene, Microbiology and Environmental Medicine
(IHMEM), Medical University of Graz; (2) suitability in terms
of corresponding with the detection profile of the three com-
mercial kits and the primers while roughly covering half of the
species potentially identified by the kits (ParoCheck®Kit 20: 9
of 20; micro-IDent®plus11: 6 of 11 and Carpegen® Perio
Diagnostik: 3 of 6); (3) control strains reflecting commensals
or contaminants of the oral cavity. Strains were included from
the American Type Culture Collection (ATCC, Manassas,
USA), Belgian Coordinated Collection of Microorganisms
(LMG, University of Ghent, Belgium) and clinical isolates
identified through 16S rRNA gene sequencing at the
Institute of Hygiene, Microbiology and Environmental
Medicine, Medical University of Graz. Within the selected
pool of bacteria, more than half belonged to the microbial
complexes described by Socransky [3]: Campylobacter rectus
(LMG 7612), Fusobacterium nucleatum subsp. nucleatum
(ATCC 25586), Prevotella intermedia, Peptostreptococcus
micros (synonymous with Parvimonas micra) (ATCC
33270), Streptococcus mitis, Eikenella corrodens ,
Aggregatibacter actinomycetemcomitans serotype b (ATCC
43718), Capnocytophaga canimorsus, and Veillonella
parvula. To test for specificity, additional control strains were
added to the mock communities, including Aggregatibacter
aphrophilus, Campylobacter coli (LMG 9220), Escherichia
coli (ATCC 25922), Neisseria subflava, Prevotella denticola,
Porphyromonas somerae, and Streptococcus mutans (all
information on strains is listed in Table 1).

Preparation of bacterial suspensions for mock community
randomization

Twelve bacterial mock community compositions were
assessed by a random generator. Each strain was randomly
added to four samples and excluded from four other ones.
For the remaining four samples a 50/50 probability decided
over addition of this strain. Additionally, one negative control
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(DNA-free water) and one positive control (all bacteria) were
prepared, resulting in a total of 14 samples (P1 - P14 in Fig. 1).
To mix bacteria in defined numbers according to bacterial
culture, stock suspensions of each species were prepared in
DNA-free water with turbidity equivalent to a McFarland
standard of 0.5 (corresponding to 1.5 × 10+E08 CFU/ml).
The stock solutions were then used to compose 12 defined
mock communities by random selection, with each bacterial
species subsequently assigned between six and nine times.

The final concentration of each bacterium in the mock was
7.5×10+E06 CFU/ml. Depending on the number of bacteria
in the mock, concentrations varied between 3.0 ×10+E07
CFU/ml and 1.2×10+E08 CFU/ml.

DNA extraction

Prior to DNA extraction, bacterial suspensions were
pretreated by mixing 180 μl of MagNA Pure Bacteria Lysis
Buffer (Roche Applied Science, Penzberg, Germany), 20 μl
of proteinase K solution (20 g/l), and 200 μl of the bacterial
suspension. The mixture was incubated at 65 °C for 10 min
and at 95 °C for another 10 min. After transferring 400 μl of
the suspension to the MagNA Pure Compact sample tube, the
DNA was extracted through a fully automated procedure
using the MagNA Pure Compact instrument (Roche) with
the MagNA Pure Compact Nucleic Acid Isolation Kit I
(Roche). The DNA bacterium purification protocol was cho-
sen with an elution volume of 50 μl. The extraction was per-
formed in duplicate, and eluates were pooled to a final volume
of 100 μl. These comparable eluates were stored at ms 70° C
pending analysis.

Commercial kits

Three commercial kits were applied to test the accuracy in
identifying selected bacterial species assigned to the 14 mock
communities as mentioned above. Referred to below also as
Bsamples,^ the DNA extracted from the mock communities
was forwarded for analysis to the manufacturer’s laboratory of
each of the following in vitro diagnostics (IVD) kits carrying
the Conformité Européene (CE) label: ParoCheck®Kit 20
(Greiner Bio-One, Frickenhausen, Germany), micro-
IDent®plus11 (Hain Lifescience GmbH, Nehren, Germany)
and Carpegen®Perio Diagnostik (Carpegen, Münster,
Germany). ParoCheck®Kit 20, based on DNA chip technolo-
gy, is used in the analysis of 20 periodontopathogens

Table 1 Laboratory strains used in the mock communities

Strain ID Strain Source

A Fusobacterium nucleatum
subsp nucleatum

ATCC 25586

B Prevotella intermedia/ nigrescens resp MUGS

C Campylobacter rectus LMG 7612

D Aggregatibacter
actinomycetemcomitans
Serotype b

ATCC 43718

E Peptostreptococcus micros
(syn Parvimonas micra)

ATCC 33270

F Streptococcus mutans MUGS

G Veillonella parvula MUGS

H Neisseria subflava MUGS

I Eikenella corrodens MUGS

J Streptococcus mitis MUGS

K Aggregatibacter aphrophilus MUGS

L Prevotella denticola MUGS

M Capnocytophaga canimorsus MUGS

N Campylobacter coli LMG 9220

O Porphyromonas somerae MUGS

P Escherichia coli ATCC 25922

ATCC American Type Culture Collection (Manassas, USA), LMG
Belgian Coordinated Collection of Microorganisms (University of
Ghent, Belgium), MUGS Graz 16S rRNA Gene Sequencing Collection
(Medical University of Graz, Austria)
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Fig. 1 Study design and mock
community composition by
random selection. (Each bacterial
strain present in six to nine
samples)
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(detection limit of 10 + E03 bacterial genomes). micro-
IDent®plus11, based on a DNA hybridization technology
known as DNA-STRIP®, supports the detection of 11
periodontopathogens (detection limit of 10 +E03 bacterial
counts for Aggregatibacter actinomycetemcomitans and
10 + E04 for the other ten bacteria). Carpegen® Perio
Diagnostik is a real-time PCR kit for identifying six
periodontopathogens (detection limit of 2.5×10+E02 bacte-
rial counts). A summary of the bacteria detected by the kits
and their assignment to the microbial complexes described by
Socransky [3] is given in Table 2.

PCR primers

Previously published primer pairs (referred to below as
Bprimers^) were applied in-house to identify the selected

bacteria in the mock communities. For PCR, Illustra™
puReTaq Ready-To-Go PCR Beads (GE Healthcare) were
used with 1–5 μl template DNA and 1–2 μl primer (10
pmol/μl) per 25 μl as described in the manual. In cases where
no signals resulted with the Illustra beads, PCR amplification
was repeated with Phusion polymerase (Biozym) using 5 μl
template DNA and 1.5 μl primer per 25 μl PCR reaction.
Singleplex PCR was performed in all cases according to pro-
tocols found in original publications (Table 3).

Statistical analyses

All statistical analyses were performed using SPSS version
21.0 (SPSS Inc., Chicago IL, USA). Clinical sensitivity and
specificity were calculated on the basis of contingency tables.
Cohen’s Kappa coefficient, a statistical measure of inter-rater

Table 2 Bacteria in mock communities and detection profiles of test kits and published PCR primers

ID in mock 
community  Bacterium ParoCheck®Kit 

20
micro-IDent® 

plus11
Carpegen® Perio 

Diagnos�k Primer

Detec�on 
method DNA-Chip DNA-Strip® Real-�me PCR PCR

Ba
ct

er
ia

 d
et

ec
te

d 
by

 k
its

 a
nd

 p
rim

er

Porphyromonas gingivalis x x x x
Tannerella forsythia x x x x
Treponema den�cola x x x x
Campylobacter gracilis x

A Fusobacterium nucleatum x x* x x
B Prevotella intermedia x x x x

Prevotella nigrescens x
Streptococcus constellatus x

E Parvimonas micra x x
D Aggrega�bacter ac�nomycetemcomitans x x x x

Campylobacter concisus x
I Eikenella corrodens x x x

Capnocytophaga gingivalis x
Capnocytophaga sp. x

C Campylobacter rectus/showae x x x
Eubacterium nodatum x x

F Streptococcus mutans x** x
J Streptococcus mi�s x

Ac�nomyces odontoly�cus x
G Veillonella parvula x

Ac�nomyces viscosus x

Ad
di

�o
na

l b
ac

te
ria

 te
st

ed H Neisseria subflava
K Aggrega�bacter aphrophilus
L Prevotella den�cola
M Capnocytophaga canimorsus
N Campylobacter coli
O Porphyromonas somerae
P Escherichia coli

Lactobacillus fermentum x
Colors assigned according to microbial complexes defined by Socransky et al. (1998)
a Including Fusobacterium periodonticum
b Included in Streptococcus gordonii group
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agreement, was used to calculate the concordance of positive
and negative test results. Complete agreement corresponds to
κ=1, while lack of agreement (i.e., purely random coinci-
dences of rates) corresponds to κ=0. A p value<0.05 was
considered statistically significant.

Results

All commercial kits performed well in the detection of
the following periodontopathogens: F. nucleatum,
P. micra, A. actinomycetemcomitans serotype b, C. rec-
tus/showae, S. mutans, S. mitis group, and V. parvula.
P. intermedia was not, however, detected by any of the
three commercial kits; hence, this laboratory strain was
retested and identified as P. nigrescens. After redefini-
tion, negative results for P. intermedia were accurately
obtained with all three kits. Two false positives
remained, when PCR primers were applied to identify
P. intermedia and then P. nigrescens. E. corrodens as
part of the mock communities was falsely identified
positively three times out of seven by both the PCR
primers and ParoCheck®Kit 20. The primer pairs tested
in this study showed the poorest performance of all test
systems (Table 4).

ParoCheck®Kit 20

When the mock communities were used to test the
ParoCheck®Kit20 DNA chip, eight out of nine
periodontopathogens were identified accurately:
A. Actinomycetemcomitans serotype b was correctly
identified in all cases. F. nucleatum, P. nigrescens,
P. micra, all representatives of the orange complex and
representatives of the yellow complex, such as C. rec-
tus/showae, S. mutans as part of the Streptococcus
gordonii group, and S. mitis were accurately identified,
as was V. parvula, a representative of the purple com-
plex. E. Corrodens from the green complex was present
in seven mock communities but detected in ten,
resulting in three false positives. Capnocytophaga spe-
cies (gingivalis, ochracea, sputigena) tested once as
borderline positive though not present in the mock com-
munities (Table 4).

micro-IDent®plus11

micro-IDent®plus11 correctly identified five bacteria pre-
sent in the mock communities. A. actinomycetemcomitans
serotype b, two representatives of the orange complex,
F. nucleatum and P. micra, one representative of the yellow

Table 3 Primer details

Primer name Sequence 5’-3’ Bacterium Base position (amplicon
length in bp)

Reference

PoGifwa AGG CAG CTT GCC ATA CTG CG Porphyromonas gingivalis 729-1,132 (404) Slots et al. [24]
PoGireva ACT GTTAGC AAC TAC CGATGT

TaFofwa GCG TAT GTA ACC TGC CCG CA Tannerella forsythia 120-760 (641) Slots et al. [24]
TaForeva TGC TTC AGT GTC AGT TATACC T

TreDefwa TAATAC CGA ATG TGC TCATTTACAT Treponema denticola 193-508 (316) Slots et al. [24]
TreDereva TCA AAG AAG CAT TCC CTC TTC TTC TTA

Fv35-F1 ATA ATG TGG GTG AAATAA Fusobacterium
nucleatum subsp. vincentii

not available (208) Shin et al. [27]
Fv35-R1 CCC AAG GAA AATACTAA

Fs17-F14 GAT GAG GAT GAA AAG AAA CAA AGTA Fusobacterium
nucleatum subsp. fusiforme

not available (393) Shin et al. [27]
Fs17-R14 CCATTG AGA AGG GCTATT GAC

PrInfwa TTT GTT GGG GAG TAA AGC GGG Prevotella intermedia 458-1,032 (404) Ashimoto et al. [25]
PrInreva TCA ACATCT CTG TAT CCT GCG T

AgAcfwa AAA CCC ATC TCT GAG TTC TTC TTC Aggregatibacter
actinomycetemcomitans

478-1,034 (557) Ashimoto et al. [25]
AgAcreva ATG CCA ACT TGA CGT TAA AT

EiCofwa CGATTA GCT GTT GGG CAA CTT Eikenella corrodens not available (410) Furcht et al. [7]
EiCoreva ACC CTC TGTACC GAC CAT TGTAT

CaRefwa TTT CGG AGC GTA AAC TCC TTT TC Campylobacter rectus 415-1,012 (598) Slots et al. [24]
CaRereva TTT CTG CAA GCA GAC ACT CTT

Sm479F TCG CGA AAA AGATAA ACA AAC A Streptococcus mutans 599-1,077 (478) Chen et al. [26]
Sm479R GCC CCT TCA CAG TTG GTTAG

LF1 AATACC GCATTA CAA CTT TG Lactobacillus fermentum 196-529 (337) (Dickson et al.,
2005)LF2 GGT TAA ATA CCG TCA ACG TA

aNames assigned in this study
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complex, C. rectus/showae, and one of the green complex, E.
corrodens, were correctly detected. None of the other six bac-
teria covered by micro-IDent®plus11 showed up as false pos-
itives (Table 4).

Carpegen® Perio Diagnostik

Carpegen® Perio Diagnostik covers six periodontopathogens,
three of which were included in the mock communities.

Table 4 Detection of selected bacteria in 14 mock communities—three test kits and PCR primer on the test bench

ID Bacteria included in
mock communi�es

ParoCheck®20
micro-

IDent®plus11 Carpegen® Perio PCR Primer

posi�ve nega�ve posi�ve nega�ve posi�ve nega�ve posi�ve nega�ve

A Fusobacterium  nucleatum
posi�ve 7 0 7 0 7 0 0 (7)

nega�ve 0 7 0 7 0 7 0 7

B Prevotella 
intermedia *

preliminary 
evalua�on 

posi�ve 0 (8) 0 (8) 0 (8) 0 (8)

nega�ve 0 6 0 6 0 6 2 4

re-evalua�on posi�ve 0 0 0 0 0 0 0 0

nega�ve 0 14 0 14 0 14 2 12

E Parvimonas micra
posi�ve 7 0 7 0 - - - -

nega�ve 0 7 0 7 - - - -

D Aggrega�bacter 
ac�nomycetemcomitans

posi�ve 9 0 9 0 9 0 9 0

nega�ve 0 5 0 5 0 5 0 5

I Eikenella corrodens posi�ve 7 0 7 0 - - 7 0

nega�ve 3 4 0 7 - - 3 4

C Campylobacter rectus/showae
posi�ve 7 0 7 0 - - 7 0

nega�ve 0 7 0 7 - - 0 7

F Streptococcus mutans **
posi�ve 7 0 - - - - 7 0

nega�ve 0 7 - - - - 0 7

J Streptococcus mi�s group
posi�ve 6 0 - - - - - -

nega�ve 0 8 - - - - - -

G Veillonella parvula
posi�ve 7 0 - - - - - -

nega�ve 0 7 - - - - - -

Bacteria dedected but not 
included in mock communi�es

Porphyromonas gingivalis
posi�ve - - - - - - 0 0

nega�ve - - - - - - 6 8

Treponema den�cola
posi�ve - - - - - - 0 0

nega�ve - - - - - - 3 11

B Prevotella 
nigrescens *

preliminary 
evalua�on 

posi�ve 0 0 - - - - - -

nega�ve (8) 6 - - - - - -

re-evalua�on posi�ve 8 0 - - - - - -

nega�ve 0 6 - - - - - -

Capnocytophaga species (gingivalis, 
ochracea, spu�gena)

posi�ve 0 0 0 0 - - - -

nega�ve 1 0 0 0 - - - -

Lactobacillus  fermentum posi�ve - - - - - - 0 0

nega�ve - - - - - - 10 4
a Re-evaluation revealed Prevotella nigrescens instead of Prevotella intermedia in the mock community
b Included in Streptococcus gordonii group
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Correct positive and negative results were obtained for
A. actinomycetemcomitans serotype b, F. nucleatum and
P. intermedia (both orange complex). None of the three other
bacteria covered by Carpegen® Perio Diagnostik showed up
as false positives (Table 4).

PCR primers

PCR primers correctly identified three of the six bacteria in-
cluded in the mock communities: A. actinomycetemcomitans
serotype b, C. rectus/showae, and S. mutans (both yellow
complex). Within the orange complex, P. intermedia was
wrongly detected twice, rendering false positives in both eval-
uations for this bacterium (see above). F. nucleatum present in
the mock communities was not detected in any of the seven
positive samples. The tested primer pairs were shown to bind
specifically to the F. nucleatum subspecies vincentii and
fusiforme described in the original publications. The strain
used in the mock communities was, in contrast, subspecies
nucleatum. E. corrodens (green complex) was detected three
times though not present in the mock communities. Other
bacteria not included in the 14 mock communities were de-
tected incorrectly: P. gingivalis (n=6), T. denticola (n=3),
and L. fermentum (n=10) (Table 4). Under the PCR condi-
tions described in the original publications, unspecific bands
could be detected on agarose gel for T. forsythia. Only sam-
ples showing bands with the accurate length were considered
positive.

Statistical agreement

When applied, testing resulted in exact Kappa agreement of
statistical significance for all but one bacterium included in the
commercial kits: F. nucleatum, P. nigrescens, P. micra,
C. rectus/showae, Streptococcus mitis group and S. mutans
a s pa r t o f t h e S t rep t o coc cu s go rdon i i g roup ,
A. actinomycetemcomitans serotype b and V. parvula, with a
corresponding sensitivity of 100 % and a specificity of 100 %.
The exception was E. corrodens, for which moderate agree-
ment (κ=0.57, p=0.07) was reached with ParoCheck®Kit 20
and PCR primers, resulting in a sensitivity of 100 % and a
specificity of 57 %. When analyzed using PCR primers, false
positives were rendered for P. intermedia in both rounds of
evaluation with a specificity of 86%,while the purported false
negatives for F. nucleatum revealed no sensitivity at all for this
species (see discussion and Table 5).

Discussion

More than 700 species are reported to contribute to oral bacte-
ria diversity [28]. When recent next-generation sequencing
studies on oral microbiomes are considered, estimates of the

number of species-level phylotypes range to as much as 10,000
when different sampling sites and pooled data from healthy
and diseased individuals are taken into account [6, 13, 29,
30]. While the microbiome picture is expected to get even
bigger as a result of refined methods, to date only 20 bacterial
species have found their way into marketed periodiagnostics.
Over the last two decades, methods based on PCR and cloning
strategies have replaced time-consuming culturing procedures
and produced commercial kits that are easy to use in dental
practice. Even though the broadened view necessitated taxon-
omies to be modified in time, the species routinely tested in
daily practice still correspond to the microbial complexes de-
scribed by Socransky [17, 31]. In the present study, three com-
mercial kits and formerly published PCR primers were tested for
their accuracy in detecting A. actinomycetemcomitans serotype b
and representatives of the orange, green, yellow, and purple
complexes using mock communities as a reference standard.
This approach overcomes some limitations to culture tech-
niques traditionally used as gold standard. In our study the
mock communities were used to verify test instruments avail-
able for outcome measurement in clinical and scientific set-
tings. Scientific evidence, though contradictory, tends to sup-
port the use of systemic antibiotics and/or local antimicrobials
as adjuncts to periodontal treatment [32–35]. Clear guidelines
and distinct protocols are still lacking. Therapy decisions are
based on interventional studies and in vitro experiments
[36–39]. Commercially available kits and PCR primers are
currently used in periodontal risk assessment, in monitoring
therapeutic success and as an aid in choosing appropriate
antibiotics [40–48]. Therefore, their accuracy and also the
relevance of single representatives should be considered prior
to use. In this way, the inherent bias of a test system selected
to investigate a given issue can be minimized.

Fusobacterium nucleatum

Fusobacterium nucleatum, a gram-negative obligate anaero-
bic rod, plays a major role in periodontal biofilm formation as
a bridge between early and late colonizers [49]. Fluorescence
in situ hybridization (FISH) shows F. nucleatum in only 12-h-
old biofilms [50]. The species is divided into four subspecies:
nucleatum, polymorphum, animalis, and fusiforme. A fifth
subspecies, vincentii, was recently reclassified and now be-
longs to the subspecies fusiforme [51]. Our mock communi-
ties contained F. nucleatum subsp. nucleatum. While all three
kits were accurate without exception, the strain was not de-
tected using the PCR primers. These results underscore the
primers’ high specificity for the subspecies fusiforme, as indi-
cated in the original publications [27]. Jervøe-Storm et al. [8]
and Verner et al. [52] showed that, compared with the cultiva-
tion method, detection reliability using real-time PCR varies
from pathogen to pathogen. In their studies, F. nucleatum
could not be distinguished from close relatives in the culturing
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Table 5 Agreement, sensitivity, and specificity of test kits and PCR primers (mock community as reference standard)

 ID Selected Bacteria ParoCheck®20 micro-IDent®plus11 Carpegen® Perio PCR Primer

Sensi�vity (%) 100,00 100,00 100,00 (0.00)

Specificity (%) 100,00 100,00 100,00 100,00

Kappa 1,00 1,00 1,00 *
p-value 0,00 0,00 0,00 *
Sensi�vity (%) i.c. i.c. i.c. i.c.

Specificity (%) 100,00 100,00 100,00 86,00

Kappa * * * *
p-value * * * *
Sensi�vity (%) 100,00 - - -
Specificity (%) 100,00 - - -
Kappa 1,00 n.a. n.a. n.a.
p-value 0,00 n.a. n.a. n.a.
Sensi�vity (%) 100,00 100,00 - -

Specificity (%) 100,00 100,00 - -

Kappa 1,00 1,00 n.a n.a.
p-value 0,00 0,00 n.a. n.a.
Sensi�vity (%) 100,00 100,00 100,00 100,00

Specificity (%) 100,00 100,00 100,00 100,00

Kappa 1,00 1,00 1,00 1,00

p-value 0,00 0,00 0,00 0,00

Sensi�vity (%) 100,00 100,00 - 100,00
Specificity (%) 57,00 100,00 - 57,00
Kappa 0,57 1,00 n.a. 0,57
p-value 0,07 0,00 n.a. 0,07
Sensi�vity (%) 100,00 100,00 - 100,00

Specificity (%) 100,00 100,00 - 100,00

Kappa 1,00 1,00 n.a. 1,00

p-value 0,00 0,00 n.a. 0,00
Sensi�vity (%) 100,00 - - 100,00

Specificity (%) 100,00 - - 100,00

Kappa 1,00 n.a. n.a. 1,00
p-value 0,00 n.a. n.a. 0,00
Sensi�vity (%) 100,00 - - -

Specificity (%) 100,00 - - -

Kappa 1,00 n.a. n.a. n.a.
p-value 0,00 n.a. n.a. n.a.
Sensi�vity (%) 100,00 - - -

Specificity (%) 100,00 - - -

Kappa 1,00 n.a. n.a. n.a.

p-value 0,00 n.a. n.a. n.a.

Aggrega�bacter 
ac�nomycetemcomitans

B

E

D

A
Fusobacterium 
nucleatum

Prevotella intermedia           
not included in the mock 
a�er re-evalua�on

Prevotella nigrescens             
included in the mock        
a�er re- evalua�on 

Parvimonas micra

Eikenella corrodens

Campylobacter 
rectus/showae

Streptococcus mutans**

Streptococcus mi�s 
group

Veillonella parvula

J

G

I

C

F

Interpretation of Kappa: <0.0 poor (no agreement), 0.0–0.2 slight agreement, 0.21–0.4 fair agreement,
0.41–0.6 moderate agreement, 0.61–0.8 substantial agreement, 0.81–1.0 almost perfect agreement

n.a. not applicable (not included in the kit), i.c. incalculable (not included in reference standard)

*All samples rendered negative results

**Included in Strepotococcus gordonii group
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experiments, yielding poor agreement for this species. The use
of well-defined mock communities and the fact that commer-
cial kits do not differentiate among subspecies explain their
consistent agreement in our study.

Prevotella intermedia

Prevotella intermedia (formerly Bacteroides intermedius) is a
gram-negative obligate anaerobic rod that is often isolated
from oral cavities. Closely related species, P. intermedia and
P. nigrescens, can pose a challenge to differentiation, as re-
ported by previous culture experiments [8, 25, 52]. Since only
P. intermedia is associated with periodontal disease, reliable
differentiation is vitally important [53].

Parvimonas micra

Parvimonas micra (previously Peptostreptococcus micros or
Micromonas micros) occurs in pairs and short chains as gram-
positive obligate anaerobic cocci. As an orange complex
periodontopathogen, it is associated with most types of oral
infection such as periodontitis, endodontic and acute
dentoalveolar infections, pericoronitis, and advanced dental
caries [54, 55]. It also has been isolated from non-oral diseases,
primarily from soft-tissue abscesses and bite wounds but also in
the course of spondylodiscitis [56]. Recently, in a case control
study, P. micra was found to be the only microbial predictor of
periodontal parameters. P. micra is regarded as an important
periodontal pathogen warranting more attention [57].

Aggregatibacter actinomycetemcomitans

Comp a r e d w i t h o t h e r p e r i o d o n t o p a t h o g e n s ,
A. actinomycetemcomitans (previously Actinobacillus
actinomycetemcomitans) is reported to be less prevalent and
more heterogeneous. The genetic diversity and epidemiolog-
ical distribution of A. Actinomycetemcomitansis strains has
been frequently studied [58–62]. As a gram-negative faculta-
tive anaerobic subgingival biofilm former, some strains are
clearly associated with periodontal disease [25, 63, 64].
While serotype c is commensal in healthy populations, sero-
type a and b strains are associated with severe periodontitis. A.
actinomycetemcomitans strains exhibit a wide range of vari-
ability with regard to leukotoxin production. The specific JP2
clone, a highly leukotoxic strain, plays an important role in the
development of aggressive periodontitis in certain populations
[65–68]. Serotype d and e are rare in all populations. However,
there is still a lack of evidence about the infectious etiology of
destructive periodontal disease [69]. In the present study, A.
actinomycetemcomitans serotype b was included as reference
strain in the mock community. It was detected accurately in all
cases by the kits and PCR primers. Thus, when used as a refer-
ence standard, our mock communities result in a higher

specificity for this species than has ever been previously pub-
lished. The reported specificity levels range from 10 to 90 %
when real-time PCRwas compared with bacterial cultures as the
reference standard [70]. However, the kits and primer under
investigation claim to cover serotype a, b, and c and are therefore
unable to distinguish between the highly pathogenic genotype b
and the non-pathogenic genotype c. Future studies are needed to
test more highly specific primers in screening for A.
Actinomycetemcomitans strains of diverse pathogenicity.

Eikenella corrodens

Eikenella corrodens belongs to the Neisseriaceae family and
is frequently found in the oral cavity. It is one of the HACEK
bacteria (including: Haemophilus species, Aggregatibacter
species, Cardiobacterium hominis, Eikenella corrodens, and
Kingella species). This group of gram-negative facultative
anaerobic bacteria frequently colonizes the oropharynx.
E. corrodens has long been recognized as a cause of infective
endocarditis [71]. Additionally, it has been implicated as an
oral pathogen in Socransky’s green complex. The accentua-
tion of the green complex in periodontally diseased pockets
needs to be considered in antibiotic therapy. The false posi-
tives obtained from ParoCheck®Kit 20 and PCR primers
when Neisseria subflava—also belonging to the
Neisseriaceae family—was present in the mock communities,
indicates a specificity problem.

Capnocytophaga canimorsus

Capnocytophaga spp., gram-negative facultative anaerobes,
are present in habitats of the human oral cavity and some are
associated with periodontitis. They belong to Sokransky’s
green complex. To test specificity, C. canimorsus was added
to the mock communities. This strain is usually found in the
microbiota of canines [72]. The one marginally positive result
foundwith ParoCheck®Kit 20may reflect an unspecific prim-
er attachment due to the presence of C. canimorsus in the
respective samples.

Campylobacter rectus/showae

Campylobacter showae strains in the human gingival crevices
were first characterized and distinguished from C. rectus by
Etoh et al. [73]. In general, C. showae strains are catalase-
positive and resistant to nalidixic acid, while C. rectus strains
are catalase-negative and sensitive to that antibiotic. Macuch
and Tanner [74] suggested that C. showae may be associated
with periodontal disease and confirmed the relationship be-
tween C. rectus and diseased subgingival sites. C. rectus can
be used as a marker for periodontal disease progression [75].
Specificity testing against other more highly commensal
strains of this group, such as C. gracilis and C. concisus,
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was not part of the present study, but such strains could be
included in a future mock community.

Streptococcus mitis group and Streptococcus mutans

The Streptococcus mitis group (SMG) belongs to the viridans
Streptococci.These ubiquitous initial colonizers constitute a ma-
jority of the cultivable bacteria found in dental plaque [76]. The
Streptococcus mitis group comprises: S. mitis, S. sanguinis, S.
parasanguinis, S. gordonii, S. oralis, S. cristatus, S. infantis, S.
peroris, S. pneumoniae, and S. pseudopneumoniae.
ParoCheck®Kit 20 was the only kit to include S. mitis. The kit
promises detection of the entire S. mitis group as well as S.
gordonii, which is referred to as the Streptococcus gordonii
group and also comprises S. mutans. ParoCheck®Kit 20 detect-
ed S. mutans in the Streptococcus gordonii group with 100 %
specificity. S. mutans primers developed by Chen et al. also
showed comparable specificity [26]. micro-IDent®plus11 and
Carpegen® Perio Diagnostik exclude S. mutans from analy-
sis, regarding it as being related to caries and not to peri-
odontal desease. As Streptococcus spp. were shown to co-
aggregate in vivo with Veillonella spp., Fusobacterium
nucleatum and Actinomyces naeslundi, they can be assumed
to play a relevant role in periodontopathic biofilm [77].
Elevated S. mutans levels appear to correlate directly with
increased severity of periodontal disease among untreated el-
derly patients [78]. The subgingival area is a microbial hab-
itat not only for periopathogens but also for mutans strepto-
cocci, indicating a disturbed micro environment of the oral
cavity [9]. They also may be of importance in the develop-
ment of root caries in periodontitis patients [79]. However,
the detection of S. mutans in subgingival plaque, while hav-
ing no consequence for treating periodontal disease, might be
useful in answering specific research questions. Future studies
should provide insight not only into the diagnostic and ther-
apeutic value of periodontal test kits and primers but also into
their cost-effective application as preventive measures.

Veillonella parvula

Veillonella parvula, an anaerobic gram negative coccus
and lactate utilizer, is almost always found in association
with Streptococci. All are known as first colonizers on
clean tooth surfaces in the human mouth. These highly
prevalent representatives of the Firmicutes phylum are
characteristic of the microbial community associated with
common dental plaque and usually not associated with
oral infections [31, 80]. Due to the great abundance of
Firmicutes in oral biofilm, relative changes can be ob-
served easily and might deliver valuable information for
monitoring oral health and disease. In our study, V.
parvula was only included in ParoCheck®Kit 20, which
revealed accurate test results for all samples.

Commercial kits versus laboratory-developed PCR
primers

Despite some limitations, commercial kits proved to be useful
for obtaining information about the state, progression, and
therapeutic outcome of periodontal disease [36, 81, 82].
Non-invasive subgingival paper-point insertion allows DNA
to be collected at chairside within seconds. Paper points are
packed in sterile tubes and sent to specialized laboratories.
DNA extraction, preparation, and analysis are then performed
within 3 h. When compared with laboratory-developed
primers, the major advantage of the commercial kits is their
improved accuracy. In the case of A. actinomycetemcomitans,
however, it would be helpful if detection was limited to the
highly pathogenic genotype b, without detecting the non-
pathogenic genotype c. In the routine diagnostic laboratory, it
is preferable to use an IVD assay that bears the CE label and/or
is approved or cleared by the FDA. It is also advisable to employ
such kits in clinical research [40–48]. In this study, the protocol
for bacterial suspension andDNA extractionwas aimed to clear-
ly exceed the detection limit of 10E3 given for the commercial
kits. Further studies with a variation in study design are needed
to test the performance levels of the kits at the detection limit.
Carpegen® Perio Diagnostik in particular allows bacterial
counts based on real-time PCR, thus enabling quantitative com-
parisons. The present study, however, was restricted to the spe-
cific detection of selected pathogenic bacteria and excluded
quantification. The kit detects six representatives from the red,
orange, and green complexes, all of them highly associated with
periodontal disease. The other two kits tested in the present
study, in contrast, allow only semi-quantitative analyses based
on a DNA chip or DNA strip technology. On the other hand, the
latter cover a wider range of bacterial species. micro-
IDent®plus11 additionally includes representatives of the yel-
low complex, while ParoCheck®Kit 20 also covers species from
the purple and blue complexes. While these additions do not
necessarily improve diagnostic and therapeutic outcomes, they
can provide additional value in clinical investigations of oral
biofilm from healthy and deceased subjects.

Compared with the three tested commercial kits, the previ-
ously published PCR primers showed less agreement for the
mock communities. In the case of F. nucleatum, the Bin-
house^ primers were obviously more specific to subtypes of
the respective periopathogen, resulting in Bpseudo^-negative
results. Primers were selected with the intention of embedding
them in microbiological screening to obtain scientific insights
useful in the risk assessment of periodontal disease. The re-
sults in this study apply primarily to the strains included in the
mock community. However, some bacteria not included in the
mock communities, such as P. gingivalis, T. denticola,
Capnocytophaga, and Lactobacillus fermentum, were none-
theless detected by primers. Due to the relevance for screening
procedures, such results were reported as false positives,
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considering that no false negatives can be reported for a spe-
cies or strain that is not part of the reference standard. These
bacteria should not have been detected at all, regardless of the
primers’ specificity level. Primer pairs as tested in this study
consequently present a twofold specificity problem: they ei-
ther (a) seem to be very specific to subtypes/strains and are
therefore limited to the purposes stated in the particular study
or (b) their specificity is so low that bacteria not present are
detected. These incorrect results highlight the difficulties in
primer development. Applied molecular assays for primer
composition and variable PCR conditions as extensively
discussed elsewhere represent possible sources of error. We
suggest validating primer pairs through prior testing using
mock communities. Such should comprise a great variety of
bacterial species, including species not present in the oral cav-
ity but elsewhere in (and on) the body to assure high accuracy.
Though more error-prone, the big advantage of Bin house^
primers is their taxonomic scope, which can be adjusted to
be highly specific by designing them in line with various
research or diagnostic purposes. Regardless of whether
Bhomemade^ or Binstant,^ it is obvious that the more specific
a primer is, the more accurately it will be able to resolve
bacterial lineages.

Mock communities

The mock communities used in the present study were
selected from the strains of bacteria that were available
at the research laboratory. A limitation of this study is
the fact that the bacteria selected did not include the full
array of strains potentially covered by the tested kits or
primers. However, A. actinomycetemcomitans serotype b
and yet little investigated representatives of the orange,
purple, green, and yellow complexes as described by
Socransky et al. could be tested in this study, while bac-
teria from the red complex have been studied extensively
elsewhere [18–21]. Strains were chosen from among those
in the laboratory stock that corresponded as closely as
possible to the detection profile claimed for the three com-
mercial kits and the primers. In addition, bacteria not cov-
ered by the kits or primers were also included in order to
test for general specificity. The goal in randomly mixing
the bacteria among the mock communities was to ensure
that the available strains were present in a variety of com-
binations and in varying proportions within the communi-
ties. Neither the dimension of pathogenicity of the selected
strains was a criterion for inclusion nor was there a focus
on increasing the number of detectable species. Rather,
this study was intended as the first one of its kind, criti-
cally examining the accuracy of three commercially avail-
able test kits and published primers against mock commu-
nities as a potential formal reference standard. As the
study shows, the approach can be easily standardized

and adapted for more comprehensive criteria to be applied
in future studies, such as equal distribution or a wider
assortment of strains.

Conclusion

Presenting a first comparison of three commercial kits and
laboratory-developed primer pairs with regard to effectiveness
in detecting periodontopathogens, we confirm that the com-
mercial kits used in this study are reliable tools for periodontal
diagnostics and therapy. Whereas the detection profile of kits
is fixed at a general specificity level, the design of primers can
be adjusted to differentiate between highly specific strains. In-
house primers are more error-prone and should be carefully
designed and tested prior to use. We suggest bacterial mock
communities be established as a reference standard for any
similar testing of kits and primers.
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