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Abstract
Objectives The aim of this study was to evaluate the sealing
ability and morphological microstructure of Biodentine in
comparison to ProRoot mineral trioxide aggregate (MTA) af-
ter storage in an acidic environment.
Materials and methods Biodentine and ProRoot MTA were
prepared and packed into the canal lumen of dentin disks.
Twenty specimens of each material were further randomly
divided into two groups according to the storage media: group
A: materials with saline as storage medium; group B: mate-
rials with citric acid buffered at pH 5.4 as storage medium.
The sealing ability was evaluated at 1, 3, 6, and 24 h and 1 or
3 months, using a fluid transport model for quantitative

analysis of endodontic microleakage. The morphological mi-
crostructures of the materials were also evaluated using scan-
ning electron microscopy.
Results During the first 24 h,MTA showed greater fluid trans-
port values than Biodentine in both environments. At the 3-
month measurement, when the materials were stored in saline,
MTA showed greater ability to prevent fluid movement than
Biodentine (p<0.0001). However, when the materials were
stored in an acidic environment, no statistical significant dif-
ference was found after 3 months. After storage in saline, both
materials showed an uneven crystalline surface with similar
hexagonal crystals. The microstructure of Biodentine changed
after exposure to citric acid, showing a relatively smooth sur-
face with more spheroidal crystals.
Conclusions The exposure to an acidic environment, within
the limits of this study, seems to result in morphological
changes of Biodentine in a different manner than MTA.
MTA shows good ability to prevent fluid movement over
time, in both environments. The ability of Biodentine to pre-
vent fluid movement over time was enhanced in the acidic
environment.
Clinical relevance The findings of the present study could
imply that both materials are indicated for use in an acidic
environment.
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Introduction

Mineral trioxide aggregate (MTA) has attracted considerable
attention because of its excellent biocompatibility, sealing
ability, and antimicrobial properties [1, 2]. Although it was
initially introduced as a material for repair of root perforations
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[3], today it is used in vital pulp therapy [4, 5], as a root-end
filling material [6], as an apical plug in open apex non-vital
teeth [7, 8], for the treatment of dentine hypersensitivity [9],
and in regenerative endodontic therapy [10, 11]. However,
there are also some disadvantages associated with the use of
MTA including long setting time, difficult handling, possibil-
ity of staining of tooth structure, and high cost [1, 12, 13].
Recently, a new calcium silicate-based restorative cement,
Biodentine (Septodont, Saint Maur des Fosses, France), was
introduced. It is a fast-setting restorative material recommend-
ed as a dentin substitute that can be used in the same applica-
tions as MTA [14].

An important factor for successful endodontic treatment is the
sealing ability of the filling material [15]. An ideal material
should provide a tight seal. The sealing ability of MTA was
investigated in different leakage studies in vitro, using dye or
fluid transport methods [6, 16–24]. However, the microleakage
of Biodentine has not been adequately evaluated.

The environment in which a material is maintained could
affect the marginal adaption with dentin, the microleakage, as
well as the microstructure and surface morphology of the ma-
terial [25–27]. It has been reported that variations in the pH of
host tissues, because of pre-existing inflammation at the time
of placement, could affect the physical and chemical proper-
ties of these materials [28–31]. It has also been pointed out
that surface hardness of MTAwas impaired in an acidic envi-
ronment [30]. Another study reported that MTA surfaces ex-
hibited higher surface roughness in the presence of an acidic
environment [32]. However, there are limited data about the
effect of low pH on Biodentine [33].

The aim of this study was to evaluate the sealing ability of
Biodentine in comparison to MTA, after exposure to an acidic
environment, with the use of a fluid transport model for quan-
titative analysis of microleakage. In addition, scanning elec-
tron microscopy (SEM) was performed in order to investigate
the morphological microstructure of the materials in the pres-
ence of an acidic environment.

Materials and methods

Specimens’ preparation

Dentin disks from anterior bovine teeth were horizontally sec-
tioned into 3-mm-thick slices, and the canal space of each
dentin slice was enlarged to 2.6 mm in diameter, using a stan-
dardized cylindrical bur in a drilling machine with standard-
ized vertical motion. Biodentine (Septodont, Saint Maur des
Fosses, France) and white ProRoot MTA (Dentsply Tulsa
Dental Specialties, Memphis, TN) were prepared according
to the manufacturers’ instructions and compacted into the lu-
men of the dentin disks, using, for Biodentine, the plastic
filling instrument provided by the manufacturer and, for

MTA, a BL-S Kondenser 60/120 (B&L Biotech USA, Inc.)
and paper points. Twenty specimens of each material were
further divided into two groups according to the storage me-
dia: group A: materials with saline (Pharmex S.A.
Pharmaceuticals, Greece) as storage medium; group B: mate-
rials with citric acid buffered at pH 5.4 as storage medium.
The preparation of citric acid was carried out at the Laboratory
of Mineralogy, Petrology and Economic Geology, School of
Mining and Metallurgical Engineering, National Technical
University of Athens. The storage of the specimens was for
24 h in contact with a saline- or citric acid-soaked piece of
gauze in 37 °C, before the first fluid movement measurement.

In the positive control group (n=5), no material was used.
In the negative control group (n=5), a 3-mm-thick MTA api-
cal plug was placed and then the entire surface was covered by
two coats of nail varnish.

Fluid movement measurements

The specimens were fitted in the fluid transport device and mea-
surements were recorded at 1, 3, 6, and 24 h and 1 or 3 months,
by the method described previously by Wu et al. [18]. The root
specimens were attached to a plastic tube and the connections
were coated with composite resin. A second rubber tube was
attached to this plastic tube, and the tube was filled with deion-
ized water on either side of the specimen. The end of the system
was connected to a 20-μL glass capillary tube 170 mm long
(Haak, Waller-Graf & Co., Werlheim, Germany). All connec-
tions were closed tightly by twisting pieces of stainless steel wire.
An air bubble was introduced through the open end of the glass
capillary. Finally, a headspace pressure of 60 kPa (0.6 atm) was
applied. The same examiner assessed visually the movement of
the air bubble. The fluidmovement wasmeasured using the fluid
transport model, and the fluid transport results (F, Flow) were
expressed inmicroliter per hour and divided into three categories:
(1) F=0 μL/h (no fluid movement—NF), (2) 0<F<20 μL/h
(slight fluid movement—SF), and (3) F>20 μL/h (gross fluid
movement—GF).

Following the assessment at 24 h, the specimens were de-
tached from the measuring apparatus and they were kept in
37 °C and 100 % humidity between measurements.

Scanning electron microscope analysis

For the morphological evaluation, five new specimens for
each group were prepared as described above and kept under
the same storage conditions. The surface structural organiza-
tion of each specimen was examined through a scanning elec-
tron microscopy (SEM) approach. Samples were attached on
aluminum stubs wet and uncoated and were immediately an-
alyzed in low-vacuummode (between 1 to 30 Pa) to minimize
any changes caused to the sample materials, such as stress
induced by the quick loss of humidity from the samples.
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Low vacuum was also used to eliminate charging after the
samples have dried. The scanning electron microscope is a
Jeol 6380LV (JEOL Ltd., USA), which was operated at
15 kV, a working distance of 20 mm, and a beam current of
about 1 nA. The specimens were examined systematically and
representative images of each area were obtained.

Statistical analysis

The Kruskal-Wallis test was used to investigate the impact of
each material-storage combination fluid transport values ver-
sus time assessment. Additionally, post hoc analysis with the
use of Mann-WhitneyU test was applied for the evaluation of
the differences in transport fluid values in the different groups
of the study. The Friedman test was also used for comparison
between the repeated fluid transport measures. Also, post hoc
analysis with the use of Wilcoxon signed rank test was per-
formed for assessing the differences between time points. All
reported probability values (p values) were compared to a
significant level of 5 %. The analyses of coded data were
carried out using IBM SPSS software version 21.0.

Results

Fluid movement measurements

The fluid transport results of the materials/storage combina-
tion at the different time intervals are shown in Table 1. At
each time interval, NF was recorded in the negative control

group, whereas in the positive control group, GF was
recorded.

Up to the 24-h measurement, MTA stored in saline as well
as in citric acid showed greater fluid transport values than
Biodentine (Table 2). However, at 24 h, the difference in the
fluid transport values of both materials was not statistically
significant in either storage medium (Table 2).

At the 3-month measurement, the MTA stored in saline
showed statistically significant greater ability to prevent fluid
movement than Biodentine in the same storage (p<0.0001).
However, when materials were stored in an acidic environ-
ment, no statistical significant difference was found at the 3-
month measurement (Table 2).

Biodentine stored in saline leaked more over time
(p<0.008), whereas the fluid movement values ofMTA stored
in saline were statistically significantly lower at the 3-month
interval when compared to the 24-h measurement (p<0.015)
(Table 3).

When the materials were stored in an acidic environment,
no statistical significant differences were found regarding their
ability to prevent fluid movement between the 24-h and the 3-
month measurements (Table 2).

SEM analysis

Representative surfaces of freshly mixed Biodentine and
MTA, as well as after storage in different environments, are
shown in Fig. 1. Freshly mixed Biodentine showed small and
more developed hexagonal crystal structure compared to
freshly mixed MTA (Fig. 1a, c). Both materials, after storage

Table 2 Fluid transport measures multiple comparisons between different material-storage combinations for each time point

t1 (1 h) t2 (3 h) t3 (6 h) t4 (24 h) t5 (1 month) t6 (3 months)

Biodentine-saline vs. MTA-saline p<0.002 p<0.035 p<0.009 NS NS p<0.0001

Biodentine-saline vs. biodentine-citric acid NS NS NS NS NS NS

MTA-saline vs. MTA-citric acid NS NS NS NS NS NS

Biodentine-citric acid vs. MTA-citric acid p<0.005 p<0.015 NS NS p<0.023 NS

Kruskal-Wallis test, post hoc Mann-Whitney U tests, p<0.05

NS not significant difference

Table 1 Number of root sections by material-storage combination and time point

Number of root sections

t1 (1 h) t2 (3 h) t3 (6 h) t4 (24 h) t5 (1 month) t6 (3 months)

Material-storage NF SF GF NF SF GF NF SF GF NF SF GF NF SF GF NF SF GF

Biodentine-saline 10 0 0 8 0 2 8 0 2 6 2 2 2 2 6 0 4 6

MTA-saline 2 2 6 2 2 6 0 6 4 0 6 4 6 2 2 6 4 0

Biodentine-citric acid 8 0 2 6 2 2 6 0 4 6 0 4 0 4 6 6 0 4

MTA-citric acid 0 4 6 0 4 6 0 4 6 0 6 4 4 4 2 4 4 2

NF no fluid movement, SF slight fluid movement, GF gross fluid movement
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in saline, showed an uneven crystalline surface with similar
hexagonal crystals (Fig. 1b, e). MTA stored in citric acid
showed similar microstructure as when stored in saline
(Fig. 1c). However, Biodentine stored in citric acid showed
a relatively smooth surface, which consisted of spheroidal
crystals without hexagonal plates. The crystallized structure,
which formed after exposure of Biodentine to citric acid, pre-
sented a cluster of globular crystalline with round-shaped
structure (Fig. 1f).

Discussion

The purpose of this study was to investigate the sealing ability,
as well as the microstructure of Biodentine, in comparison to
MTA, in two different environments that could mimic clinical
situations. Under certain clinical applications, these materials
are placed in an environment in which inflammation may be
present and the surface of the unset material may be exposed
to a low pH [34]. The materials were exposed to citric acid no
longer than 24 h, simulating the situation in which the

initiating factors of an inflammatory process are removed by
proper treatment.

The methodology used in the present study was the fluid
transport model, which has been shown to give reliable quan-
titative results for the assessment of the sealing ability of cal-
cium silicate-based materials [2, 18]. Dentin disks from ante-
rior bovine teeth were used, as they could be considered an
appropriate substitute for human teeth in analogous studies
[35]. Although no direct comparison should be made about
the sealing ability of the materials in clinical conditions, the
fluid transport tests may provide pertinent information about
their properties.

After hydration of MTA powder, hydroxyapatite crystals
are developed and a hybrid layer between dentin and MTA is
formed [36]. The morphology of the hydroxyapatite crystals is
related to various factors including the environmental pH [37].
Literature has indicated that lower pH environments could
affect various physical and chemical properties of MTA
[28–31, 38]. It has been shown that the low pH of the sur-
rounding microenvironment affects the hydration reaction of
MTA [39] and that the more acidic the MTA solution during
the setting process, the more extensive is its porosity [30].

Fig. 1 Representative scanning electronmicrographs ofmaterials after storage in different environments. a FreshlymixedMTA, bMTA stored in saline,
c MTA stored in citric acid, d freshly mixed Biodentine, e Biodentine stored in saline, and f Biodentine stored in citric acid

Table 3 Fluid transport repeated
measures multiple comparisons
between time points for each
material-storage combination

Biodentine-saline MTA-saline Biodentine-citric acid MTA-citric acid

t4 (24 h) vs. t5 (1 month) p<0.023 NS p<0.023 NS

t4 (24 h) vs. t6 (3 month) p<0.008 p<0.015 NS NS

t5 (1 month) vs. t6 (3 month) NS NS p<0.023 NS

Friedman’s test, post hoc Wilcoxon signed rank tests, p<0.05

NS not significant difference

1538 Clin Oral Invest (2016) 20:1535–1540



Furthermore, Saghiri et al. [31] reported that the time needed
for leakage to occur was significantly shorter in samples
stored at lower pH values. In both studies [30, 31], specimens
were exposed to butyric acid with pH values of 4.4, 5.4, 6.4,
and 7.4 for 4 and 3 days, respectively. Lee et al. [39] also
reported that MTA crystals could dissolve in an environment
of pH 5 and result in an unstable structure. In the present study,
the materials were exposed for no longer than 24 h to citric
acid buffered at pH 5.4, which probably did not affect the
hydration behavior of MTA long term. In addition, various
types of acid may have different effects on the physical and
chemical properties of cements [40]. Lee et al. [39] did not
state the type of acid, and this lack of information could also
be one of the reasons for the different findings.

At the 3-month measurement, the MTA stored in saline
showed statistically significant greater ability to prevent fluid
movement than Biodentine in the same storage (p<0.0001).
However, when materials were stored in an acidic environ-
ment, no statistical significant difference was found at the 3-
month measurement (Table 2). The exposure of Biodentine to
the acidic environment enhanced the ability to prevent fluid
movement over time (Table 2). These results could be caused
by the alterations in the microstructure of Biodentine that were
also observed after the exposure of the material to the citric
acid (Fig. 1f). Although the precise explanation for these mor-
phologic differences is unknown, the acid etching seems to
result in morphologic changes of Biodentine in a different
manner than MTA, which are in agreement with the results
of Elnaghy [32]. These alterations of the properties of
Biodentine after storage in acidic environment should be fur-
ther studied before advocating the clinical application of
Biodentine successively in lower pH values. These in vitro
results are an indication about their potential capacity under
these experimental conditions.

Conclusion

The exposure to an acidic environment seems to result in
morphological changes of Biodentine in a different manner
than MTA. MTA shows good ability to prevent fluid move-
ment over time, in both environments. The ability of
Biodentine to prevent fluid movement over time was en-
hanced in the acidic environment. Based on the results of the
present study, it is not yet possible to make a clear recommen-
dation about the material to be used in an acidic environment.
These in vitro results are an indication about their potential
behavior, and further research should be undertaken to estab-
lish a correlation between the exposure to an acidic environ-
ment and the clinical performance of these materials.
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