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Abstract. Let X1(t), · · ·, Xn(t) be n geometric Brownian motions, possibly cor-
related. We study the optimal stopping problem: Find a stopping timeτ∗ < ∞
such that

sup
τ

E
x
{

X1(τ ) − X2(τ ) − · · · − Xn(τ )
}

= E
x
{

X1(τ∗) − X2(τ∗) − · · · − Xn(τ∗)
}
,

the sup being taken all over all finite stopping timesτ , and E
x denotes the

expectation when (X1(0), · · · ,Xn(0)) = x = (x1, · · · , xn). For n = 2 this problem
was solved by McDonald and Siegel, but they did not state the precise conditions
for their result. We give a new proof of their solution forn = 2 using variational
inequalities and we solve then-dimensional case when the parameters satisfy
certain (additional) conditions.
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1 Introduction

Let X1(t), X2(t), · · ·, Xn(t) be stochastic processes modelling the prices ofn assets,
for example stocks. As is customary let us assume that theXi ’s are geometric
Brownian motions, possibly correlated, of the form
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


dX1(t) = b1X1(t)dt + X1(t)
[
q11dB1(t) + · · · + q1ndBn(t)

]
; X1(0) = x1

...

dXn(t) = bnXn(t)dt + Xn(t)
[
qn1dB1(t) + · · · + qnndBn(t)

]
; Xn(0) = xn ,

(1.1)
where B(t) = (B1(t), · · · ,Bn(t)) is n-dimensional Brownian motion andbi , qij

are constants.
If we put

qi = (qi 1,qi 2, · · · ,qin ) ∈ R
n (1.2)

then the solutions of these equations can be written

Xi (t) = xi exp{(bi − 1
2

aii )t + qi · B(t)} , (1.3)

where
aij = qi 1qj 1 + qi 2qj 2 + · · · + qinqjn = qi · qj ; 1 ≤ i , j ≤ n (1.4)

where· denotes the usual dot product inR
n.

Suppose thatF (t) = X2(t) + · · · + Xn(t) represents the capital at timet that a
person or a firm can use to make an irreversible investment in a project, whose
value at timet is X1(t). The optimal time for making such a transaction will be
the stopping timeτ∗ < ∞ satisfying

E
x
{

e−ρτ∗[
X1(τ∗) − X2(τ∗) − · · · − Xn(τ∗)

]}
= sup

τ
E

x
{

e−ρτ
[
X1(τ ) − X2(τ ) − · · · − Xn(τ )

]}
, (1.5)

whereE
x denotes the expectation w.r.t the lawQx of X(t) = (X1(t), · · · ,Xn(t))

starting atx. Here ρ > 0 is a constant modelling the sum of the discounting
exponent and the risk aversion of the investor. We may also regardρ as the
equilibrium expected rate of return on the investment opportunity. For a more
detailed discussion of the application of this problem to financial decision making,
we refer to McDonald and Siegel [1].

Note thate−ρt Xi (t) is again a geometric Brownian motion, but withbi re-
placed by

b̂i = bi − ρ ; 1 ≤ i ≤ n . (1.6)

Therefore we can, without loss of generality, assume thatρ = 0 in (1.5). In the
casen = 2 this problem was solved by McDonald and Siegel [1]. The solution
(for n = 2) is the following: The optimal timeτ∗ is given by

τ∗ = inf {t > 0;X1(t) ≥ µX2(t)} , (1.7)

where

µ =
λ

λ− 1
(1.8)

and
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λ =
1
2

− b1 − b2

(q1 − q2)2
+

√(1
2

− b1 − b2

(q1 − q2)2

)2
+

2(ρ− b2)
(q1 − q2)2

. (1.9)

In other words, if we define thecontinuation region Dby

D = {x; Qx(τ∗ > 0)> 0} (1.10)

and thestopping set Sby

S = {x; τ∗ = 0 a.s. Qx} (1.11)

then
D = {(x1, x2) ∈ R

2
+; x1 < µx2} (1.12)

and
S = {(x1, x2) ∈ R

2
+; x1 ≥ µx2}. (1.13)

However, they did not state all the conditions needed for the validity of their
result. As we shall see below, there are cases when the McDonald-Siegel solution
does not hold.

In 1992 Olsen and Stensland [3] studied the generaln-dimensional problem
(1.5). They proved that, under certain conditions, the stopping setS containsa
halfspace:

S ⊇ {(x1, · · · , xn) ∈ R
n
+; x1 ≥ µ12x2 + · · · + µ1nxn} (1.14)

whereµ1j are the McDonald-Siegel barriers for the 2-dimensional problem

sup
τ

E
x1,xj

[
e−ρ

(
X1(τ ) − Xj (τ )

)]
; 2 ≤ j ≤ n . (1.15)

They ask if we actually have equality in (1.14) and they perform some numerical
calculations which support such a conjecture in some special cases. A discussion
of the problem in some other cases can be found in [4].

One can assume that the capitalF (t) of the firm follows itself a geometric
Brownian motion as McDonald and Siegel did [1]. But in today’s world, many
firms build one factory in one country with valueX2(t) and another factory in
another country with valueX3(t). These factories are managed independently to
certain extent. In this situation it should be more appropriate to assume thatX2(t)
and X3(t) follow geometric Brownian motions respectively than to assume that
F (t) = X2(t) + X3(t) follows geometric Brownian motion.

The purpose of this paper is twofold:
First, we give a short and rigorous mathematical proof of the McDonald-

Siegel result, based on variational inequalities. Second, we consider then-
dimensional case and prove that, at least in some cases, the continuation region
has the same simple form as McDonald and Siegel found forn = 2.

This paper is organized as follows: In Sect. 2 we state a sufficient variational
inequality condition for our optimal stopping problem. In Sect. 3 we apply this to
the 2-dimensional case and prove, under given conditions, the McDonald-Siegel
result. We also give examples to show that the result can fail if our conditions
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are not satisfied. Then in Sect. 4 we discuss the generaln-dimensional case.
We prove a partial converse of the result of [3] mentioned above: The stopping
region is alwayscontainedin some halfspace. Under additional assumptions we
then show that the two halfspaces are the same, thereby obtaining an explicit
description of the stopping region.

2 A variational inequality

In this section we formulate sufficient variational inequalities for our problem
(1.5). In the following we letX(t) = (X1(t), · · · ,Xn(t)) be the process defined
in (1.1) and we letA denote the generator of the Itô diffusion X(t). Then A
coincides onC2

0 (Rn
+) with a second order semielliptic partial differential operator

L (see (3.6) in the next section). Define

g(x1, · · · , xn) = x1 − x2 − · · · − xn ; x = (x1, · · · , xn) ∈ R
n
+ .

Then problem (1.5) has the form:
Find Φ(x) andτ∗ = τ∗(x, ω) < ∞ such that

Φ(x) = sup
τ

E
x [g(X(τ ))] = E

x [g(X(τ∗))] . (2.1)

The following result holds in a much more general context, but for simplicity we
only state the version which is relevant to our problem. A proof can be found in
[2, Theorem 10.18].

Theorem 2.1 ( Sufficient variational inequalities)
a) Suppose we can find a functionφ : R

n
+ → R such that

φ ∈ C1(Rn
+) (2.2)

and
φ(x) ≥ g(x) ∀ x ∈ R

n
+ . (2.3)

Define
D = {x ∈ R

n
+ ;φ(x) > g(x)} (the continuation region) . (2.4)

Suppose

E
x[ ∫ ∞

0
χ∂D (X(t))dt

]
= 0 ∀ x ∈ R

n
+ . (2.5)

Moreover, suppose the following:

φ ∈ C2(Rn
+ \ ∂D) and the second order derivatives ofφ are locally (2.6)

bounded near∂D ,

Lφ ≤ 0 for x ∈ R
n
+ \ D̄ , (2.7)

the family{φ(X(τ ))}τ∈TD
is uniformly integrable w.r.t. Qx for all

x ∈ D , whereTD is the set of all bounded stopping timesτ ≤ τD
(2.8)
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and
∂D is a Lipschitz surface. (2.9)

Then

φ(x) ≥ E
x[g(X(τ ))

]
for all stopping times τ . (2.10)

b) If, in addition we also have

Lφ = 0 for x ∈ D (2.11)

and

τD := inf{t > 0 ;X(t) 6∈ D} < ∞ a.s. Qx for x ∈ R
n
+ , (2.12)

then
φ(x) = Φ(x) and τ∗ = τD is optimal. (2.13)

3 The 2-dimensional case

We now apply the result of the previous section to discuss the case when there
are only two types of stocks involved,X1(t) and X2(t). Even in this case there
are many different types of values of the parameters involved. We will not try
to cover all possibilities, but limit ourselves to these ranges of parameters values
that appear reasonable from the point of view of our economic interpretation.

First of all, we will assume, as in [1], that the combining discounting/risk
aversion rateρ is greater than the average relative growth ratebi of each of the
stock prices. This means that, if we replacebi by b̂i as in (1.6) we should have

b̂i = bi − ρ < 0 ; 1 ≤ i ≤ 2 . (3.1)

To make it easier to keep track of the signs of the quantities involved we put

pi = −b̂i ; 1 ≤ i ≤ 2 , (3.2)

and then our 2-dimensional problem gets the form

Problem 3.1 Find Φ(x1, x2) andτ∗ such that

Φ(x1, x2) = sup
τ

E
x1,x2

[
X1(τ ) − X2(τ )

]
= E

x1,x2
[
X1(τ∗) − X2(τ∗)

]
, (3.3)

where


dX1(t) = −p1X1(t)dt + X1(t)
[
q11dB1(t) + q12dB2(t)

]
; X1(0) = x1

dX2(t) = −p2X2(t)dt + X2(t)
[
q21dB1(t) + q22dB2(t)

]
; X2(0) = x2

(3.4)

with
p1 > 0 , p2 > 0 . (3.5)
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HereE
x1,x2 denotes the expectation with respect to the lawQx1,x2 of the process

X(t) = (X1(t),X2(t)) starting at (x1, x2).
The Itô diffusion Xt has a generatorA which on C0(R2) coincides with the

differential operatorL given by

Lf (x1, x2) =
1
2

[
a11x2

1
∂2f

∂x2
1

+ 2a12x1x2
∂2f
∂x1x2

+ a22x2
1
∂2f

∂x2
2

]
−p1x1

∂f
∂x1

− p2x2
∂f
∂x2

, for f ∈ C2(R2) , (3.6)

where, with the notation of (1.2),

a11 = q2
11 + q2

12 = q2
1 (3.7)

a12 = q11q21 + q12q22 = q1 · q2 (3.8)

and
a22 = q2

21 + q2
22 = q2

2 . (3.9)

In view of Theorem 2.1 we try to find a functionφ of this form

φ(x1, x2) =



ψ(x1, x2) ; x1 < µx2

g(x1, x2) ; x1 ≥ µx2,
(3.10)

whereg(x1, x2) = x1 − x2. Hereµ > 0 is a constant andψ(x1, x2) is a function,
both to be determined. By Theorem 2.1 we can conclude thatφ = Φ and that
D = {(x1, x2) ; x1 < µx2} if we can findψ andµ such that the following (3.11)-
(3.16) hold:

ψ ∈ C2(D) and Lψ(x1, x2) = 0 when x1 < µx2 , (3.11)

ψ(x1, x2) = g(x1, x2) when x1 = µx2 , (3.12)

∇ψ(x1, x2) = ∇g(x1, x2) when x1 = µx2 , (3.13)

Lg(x1, x2) ≤ 0 when x1 > µx2 , (3.14)

ψ(x1, x2) > g(x1, x2) when x1 < µx2 , (3.15)

the family

{ψ(Xτ )}τ∈TD
with τD = inf{t > 0 ;X1(t) ≥ µX2(t)} (3.16)

is uniformly integrable w.r.t.Qx for all x ∈ D , whereTD is the set of all bounded
stopping timesτ ≤ τD .

As a candidate forψ we try

ψ(x1, x2) = Cxλ
1 x1−λ

2 (3.17)

for suitable values of the constantsC > 0 andλ > 0.
To find the possible values ofλ (and subsequentlyC) we put
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f (x1, x2) = xλ
1 x1−λ

2

and compute, using (3.6)

Lf (x1, x2)

=
1
2

[
a11x2

1λ(λ− 1)xλ−2
1 x1−λ

2 + 2a12x1x2λ(1 − λ)xλ−1
1 x−λ

2

+a22x2
2 (1 − λ)(−λ)xλ

1 x−λ−1
2

] − p1x1λxλ−1
1 x1−λ

2 − p2x2(1 − λ)xλ
1 x−λ

2

= xλ
1 x1−λ

2

[1
2
γλ2 + (p2 − p1 − 1

2
γ)λ− p2

]
, (3.18)

where
γ = γ12 = a11 − 2a12 + a22 = (q1 − q2)2 ≥ 0 . (3.19)

Note that 

γ ≥ 0 for all qij and

γ = 0 ⇔ q11 = q21 & q12 = q22 .
(3.20)

We conclude thatLf (x1, x2) = 0 for some, and then for all, (x1, x2) if and only if
λ satisfies the equation

1
2
γλ2 + (p2 − p1 − 1

2
γ)λ− p2 = 0 . (3.21)

The solutions of this equation are

λ =




1
γ

[
1
2γ + p1 − p2 ±

√
( 1

2γ + p1 − p2)2 + 2γp2
]

if γ > 0

p2

p2−p1
if γ = 0.

(3.22)

Since we need to haveλ > 0 we must require

p2 > p1 if γ = 0 . (3.23)

From now on we choose the plus sign in (3.22) and let

λ =




1
γ

[
1
2γ + p1 − p2 +

√
( 1

2γ + p1 − p2)2 + 2γp2
]

if γ > 0

p2

p2−p1
if γ = 0 andp2 > p1.

(3.24)
For this value ofλ put

ψ(x1, x2) = Cxλ
1 x1−λ

2 for some constant C . (3.25)

The requirement (3.12) then gives

C(µx2)λx1−λ
2 = µx2 − x2 for all x2 > 0 ,

or
Cµλ = µ− 1 . (3.26)
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The requirement (3.13) gives

Cλ(µx2)λ−1x1−λ
2 = 1 and C(1 − λ)(µx2)λx−λ

2 = −1

i.e.
Cλµλ−1 = 1 and C(1 − λ)µλ = −1 . (3.27)

The three equations in (3.26) and (3.27) have the unique solution

µ =
λ

λ− 1
and C =

1
λ

( λ

λ− 1

)1−λ
. (3.28)

Since we need to haveµ > 0 andC > 0 it is necessary to check thatλ > 1:
(i) If γ = 0 andp2 > p1, this is clear from (3.24).
(ii) If γ > 0 we see that

λ > 1 ⇔ p1 +

√
(
1
2
γ + p1 − p2)2 + 2γp2 >

1
2
γ + p2

⇔ p2
1 + 2p1

√
(
1
2
γ + p1 − p2)2 + 2γp2

+(
1
2
γ + p1 − p2)2 + 2γp2 >

1
4
γ2 + γp2 + p2

2

⇔ 2p1 + γ + 2

√
(
1
2
γ + p1 − p2)2 + 2γp2 > 2p2 (3.29)

Now
√

( 1
2γ + p1 − p2)2 + 2γp2 > | 1

2γ + p1 − p2|, so by checking the two cases

a) 1
2γ + p1 − p2 ≥ 0

b) 1
2γ + p1 − p2 < 0

separately, we verify that (3.29) always holds. We conclude that we always have

λ > 1 , (3.30)

whenλ is defined by (3.24).
We proceed to check the requirement (3.14): Since

Lg(x1, x2) = −p1x1 + p2x2 ,

we see that
Lg(x1, x2) ≤ 0 iff x1 ≥ p2

p1
x2 .

Therefore (3.14) leads to the condition that

p2

p1
≤ µ . (3.31)

To verify this inequality, note that from (3.18) we have

1
2

a11λ(λ− 1) − a12λ(λ− 1) +
1
2

a22λ(λ− 1) − p1λ + p2(λ− 1) = 0

or
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(1
2

a11 − a12 +
1
2

a22
)
λ− p1

λ

λ− 1
+ p2 = 0

or
λ

λ− 1
· p1

p2
= 1 +

γλ

2p2
≥ 1 .

Sinceµ = λ
λ−1 this proves that (3.31), and hence (3.14) holds.

Next we check the requirement (3.15): Define

h(x1, x2) = ψ(x1, x2) − g(x1, x2) = Cxλ
1 x1−λ

2 − x1 + x2 ; x1, x2 ≥ 0 .

Then we have from (3.12) that

h(x1, x2) = 0 if x1 = µx2 .

Moreover
∂h
∂x1

= Cλxλ−1
1 x1−λ

2 − 1 = 0 iff
x1

x2
= µ .

Since ∂h
∂x1

→ −1 asx1 → 0, we must have∂h
∂x1

< 0 for all x1 < µx2 and therefore
h(x1, x2) > 0 for x1 < µx2. This proves that (3.15) holds.

The requirement (3.16) now follows easily from (3.17) and the definition of
D :
Note that ifτ ≤ τD thenX(τ ) ∈ D̄ and therefore

ψ(X(τ )) = C
(X1(τ )

X2(τ )

)λ
X2(τ ) ≤ CµλX2(τ ) . (3.32)

So if τ ∈ TD and r > 1 satisfies−p2 + 1
2a22(r − 1)< 0 then

E
x [ψ(Xτ )r ] ≤ Crµr λ

E
x [X2(τ )r ]

≤ Crµr λxr
2E

[{r [(−p2 − 1
2

a12)τ + q21B1(τ ) + q22B2(τ )]}]
≤ Crµr λxr

2E
[{r [(−p2 +

1
2

a22(r − 1))τ}

· exp{−1
2

r 2a22τ + rq21B1(τ ) + rq22B2(τ )}]
≤ Crµr λxr

2E
[

exp{−1
2

r 2a22τ + rq21B1(τ ) + rq22B2(τ )}]
≤ Crµr λxr

2 ,

where we have used that

Mt := exp{−1
2

r 2a22t + rq21B1(t) + rq22B2(t)]}

is a martingale. Therefore, ifr is chosen such that

1< r < 1 +
2p2

a22
if a22 > 0 (1< r if a22 = 0) ,

then
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sup
τ∈TD

E
x [ψ(X(τ ))r ] < ∞

and hence{ψ(X(τ ))}τ∈TD
is uniformly integrable. Thus (3.16) is verified.

Therefore, from Theorem 2.1a we conclude that if (3.23) holds, then withφ
given by (3.10), (3.17), (3.22) and (3.28) we have

φ(x1, x2) ≥ E
x1,x2

[
X1(τ ) − X2(τ )

]
for all stopping timesτ . (3.33)

In order to apply Theorem 2.1b the last requirement we have to check is that

τD < ∞ a.s. Qx1,x2 for all (x1, x2) . (3.34)

Since the solution of (3.4) is

Xi (t) = xi exp{(−pi − 1
2

aii t + qi 1B1(t) + qi 2B2(t)} ; i = 1,2 (3.35)

we have that, withaij as in (3.7)-(3.9),

X1(t)
X2(t)

=
x1

x2
exp{(p2 +

1
2

a22 − p1 − 1
2

a11)t + (q11 − q21)B1(t) + (q12 − q22)B2(t)} .
(3.36)

Using the law of iterated logarithm for Brownian motion, we see that

lim
t→∞

X1(t)
X2(t)

= ∞ a.s. Qx1,x2

when

p2 +
1
2

a22 ≥ p1 +
1
2

a11 . (3.37)

We have now completed the proof of the following result, which is the main
result of [1]. Moreover, we have obtained precise conditions for its validity:

Theorem 3.2 ( [1]) Let qi = (qi 1,qi 2); 1 ≤ i ≤ 2 as in (1.2).
a) Assume that

q2 6= q1 or p2 > p1 . (3.38)

Defineλ as in (3.24). Thenλ > 1. Put

µ =
λ

λ− 1
and C =

1
λ

(λ− 1
λ

)λ−1
(3.39)

and let

φ(x1, x2) =




Cxλ
1 x1−λ

2 ; x1 < µx2

x1 − x2 ; x1 ≥ µx2

. (3.40)

Then

φ(x1, x2) ≥ E
x1,x2

[
X1(τ ) − X2(τ )

]
for all stopping times τ . (3.41)

In particular,
S ⊇ {(x1, x2); x1 ≥ µx2} (3.42)
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where S is the stopping set (see (1.11)).
b) Assume, in addition to (3.38), that

q1 = q2 or p2 +
1
2

q2
2 ≥ p1 +

1
2

q2
1 . (3.43)

Thenφ is the solution ofΦ of Problem 3.1 and the optimal stopping timeτ∗ is

τ∗ = inf{t > 0 ;X1(t) ≥ µX2(t)} < ∞ a.s. (3.44)

Hence
S = {(x1, x2); x1 ≥ µx2} . (3.45)

We give some examples to show that if one of our conditions (3.38), (3.43) fails,
then the optimal stopping timeτ∗ may not be of form (3.44).

Example 3.3 Consider the deterministic case

X1(t) = x1e−αt , X2(t) = x2e−βt ,

whereα, β are constants,α > β > 0. In this case

p1 = α , q1 = (0,0)

p2 = β , q2 = (0,0)

and henceq1 = q2 and yet
p1 > p2 .

So (3.38) does not hold. In this case we find by direct computation

sup
t≥0

{X1(t) − X2(t)} =

{
0 ; x1 < x2

x1 − x2 ; x1 ≥ x2

which is different from the conclusion in Theorem 3.2.

Example 3.4 Let

dX1(t) = −αX1(t)dt , dX2(t) = −βX2(t)dt + X2(t)dBt

whereα > 0, 0< β < α − 1
2 and Bt is 1-dimensional Brownian motion. Here

we have
p1 = α , q1 = (0,0)

p2 = β , q2 = (0,1) .

Hence

p2 +
1
2

q2
2 = β +

1
2
< α = p1 +

1
2

q2
1 .

Hence (3.43) does not hold. In this case

X1(t)
X2(t)

=
X1(0)
X2(0)

exp
(
(−α + β +

1
2

)t − Bt
)
.

Therefore, ifτ∗ is defined by (3.44), then

Qx1,x2
[
τ∗ = ∞]

> 0

if x1 < µx2. So the conclusion of Theorem 3.2 does not hold.
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4 The general case

In this section first we introduce an order relation among the geometric Brownian
motions and then use it to obtain some new results for the general problem (1.5).

Definition 4.1 Let X(t) and Y(t), t ≥ 0 be two geometric Brownian motions. Let
A,C ∈ R be constants. We write

X ≤ AY + C or AY + C ≥ X (w.r.t. x1, x2) (4.1)

iff for any stopping timeτ < ∞ a.s. we have

E
x1,x2

[
X(τ )

] ≤ AE
x1,x2

[
Y(τ )

]
+ C . (4.2)

As in Sect. 2, we put

pi = −(bi − ρ) > 0 , 1 ≤ i ≤ n . (4.3)

Consider the following problem:

Problem 4.2 Find Φ(x1, x2, · · · , xn) andτ∗ < ∞ such that

Φ(x1, x2, · · · , xn) = sup
τ

E
x[X1(τ ) − X2(τ ) − · · · − Xn(τ )

]
= E

x[X1(τ∗) − X2(τ∗) · · · − Xn(τ∗)
]
, (4.4)

where x= (x1, x2, · · · , xn) and




dX1(t) = X1(t)
[ − p1dt + q1dB(t)

]
; X1(0) = x1

...

dXn(t) = Xn(t)
[ − pndt + qndB(t)

]
; Xn(0) = xn

(4.5)

with

p1 > 0 , · · · , pn > 0 . (4.6)

Here E
x denotes the expectation with respect to the lawQx of the process

X(t) = (X1(t), · · · ,Xn(t)) starting atx = (x1, · · · , xn) ∈ [0,∞)n.
In this general case it is hard to findΦ(x1, x2, · · · , xn). But it is possible to

deduce some information about the optimal stopping timeτ∗. From Theorem
2.1 we know thatτ∗ is typically given by the hitting time of some setS of R

n

(called the stopping set). We will prove thatS is contained in some halfspace.
Under some further conditions on the parameters, we identifyS explicitly. We
shall need the following
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Remark 4.3 It is easy to see that one can extend Theorem 3.2 to the case with
two geometric Brownian motions of the form

dXi (t) = −pi Xi (t)dt + Xi (t)
[
qi 1dB1(t) + · · · + qindBn(t)

]
;

Xi (0) = xi (4.7)

dXj (t) = −pj Xj (t)dt + Xj (t)
[
qj 1dB1(t) + · · · + qjndBn(t)

]
;

Xj (0) = xj . (4.8)

To handle such cases we define

akl =
n∑

m=1

qkmqlm = qk · ql ; 1 ≤ k, l ≤ n . (4.9)

For the case with the processes(Xi ,Xj ) of (4.7) we then put

γij = aii − 2aij + ajj = (qi − qj )
2 (4.10)

and similarly we letλ = λij , µ = µij , C = Cij be defined by the same formulas as
before, but with these new values of aij . Then the conclusions of Theorem 3.2 a
and b hold under the conditions

qi 6= qj or pj > pi (4.11)

for Theorem 3.2 a and the additional condition

qi = qj or pj +
1
2

q2
j > pi +

1
2

q2
i (4.12)

for Theorem 3.2 b.

Lemma 4.4 Fix 1 ≤ i , j ≤ n. Let Xi and Xj be as above and xi ≥ µij Kxj (K > 0
is constant). If Xi and Xj satisfy (4.11), then

Xi ≤ KXj + xi − Kxj . (4.13)

Proof. Let g(xi , xj ) := xi − xj and

φ(xi , xj ) =



ψ(xi , xj ) ; xi < µij xj

g(x1, x2) ; xi ≥ µij xj ,
(4.14)

whereψ(xi , xj ) is obtained exactly the same way as in Sect. 3 for the pairXi and
Xj . If Xi andXj satisfy (4.11), then by Theorem 3.2 a) we have

E
xi ,xj {Xi (τ ) − KXj (τ )} ≤ φ(xi ,Kxj )

= g(xi ,Kxj ) = xi − Kxj

for all stopping timesτ , sincexi ≥ µij Kxj . This proves the lemma.�

Let X0 be given by
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dX0(t) = X0(t){−p0dt + q0dB(t)} with X0(0) = 1 (4.15)

wherep0 > 0 andq0 = (q01, · · · ,q0n) ∈ R
n will be determined later.

We now extend our notation to include our auxiliary processX0. Denote by
µij the µ computed for the pair (Xi ,Xj ); for 0 ≤ i ≤ n, 0 ≤ j ≤ n. Namely,
define

λij =




1
γij

[
1
2γij + pi − pj +

√
( 1

2γij + pi − pj )2 + 2γij pj
]

if γij > 0

pj

pj −pi
if γij = 0 andpj > pi ,

(4.16)
where

γij = aii + ajj − 2aij = (qi − qj )
2 ; 0 ≤ i , j ≤ n . (4.17)

Then put

µij :=
λij

λij − 1
; 0 ≤ i , j ≤ n . (4.18)

If for i = 2, · · · ,n, (Xi ,X0) satisfies (4.11),i.e. qi 6= q0 or p0 > pi , then by
Lemma 4.4 we have

Xi ≤ Ki xi X0 + xi − Ki xi , i = 2, · · · ,n (4.19)

for any Ki satisfying
1 ≥ µi 0Ki . (4.20)

Thus

X1 − X2 − · · · − Xn ≥ X1 − [K2x2 + · · · + Knxn]X0 −
n∑

i =2

xi +
n∑

i =2

Ki xi . (4.21)

On the other hand, if both conditions (4.11) and (4.12) are satisfied for (X1,X0)
and if

X1(0) = x1 < µ10[K2x2 + · · · + Knxn] , (4.22)

then by Theorem 3.2 there is a stopping time ˜τ < ∞ a.s. such that

E
x1,1

[
X1(τ̃ ) − (K2x2 + · · · + Knxn)X0(τ̃ )

]
> x1 − K2x2 − · · · − Knxn . (4.23)

Combining (4.19) and (4.23), we have

E
x
{

X1(τ̃ ) − X2(τ̃ ) − · · · − Xn(τ̃ )
}
> x1 − x2 − · · · − xn.

This means that the set{
x1 ≥ µ10

[
K2x2 + · · · + Knxn

]}
contains the stopping setS of Problem 4.2. ChoosingKi = 1

µi 0
in (4.20) we

obtain
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Theorem 4.5 Assume that

qi 6= q0 or p0 > pi for 2 ≤ i ≤ n (4.24)

and

q1 = q0 or p0 +
1
2

q2
0 ≥ p1 +

1
2

q2
1 . (4.25)

Then

S ⊆
{

x1 ≥ µ10
[ 1
µ20

x2 + · · · +
1
µn0

xn
]}
. (4.26)

Conversely we have, as mentioned in the Introduction:

Theorem 4.6 [3] Suppose

q1 6= qj or pj > p1 for 2 ≤ j ≤ n . (4.27)

Then we have {
x1 ≥ µ12x2 + · · · + µ1nxn

}
⊆ S . (4.28)

Proof. Under the above condition (4.27) the argument in [3, Proposition 2] works.
�

Thus if we can findX0 such that fori = 2, · · · ,n we haveµ1iµi 0 ≤ µ10, then
we can conclude that the stopping set is (4.28). Namely, we obtain the following
theorem.

Theorem 4.7 Suppose (4.27) holds. Suppose there exist p0 > 0, q01, · · · ,q0n ∈ R

such that (4.24) and (4.25) hold and such that

µ1iµi 0 ≤ µ10 , i .e. λ10 ≤ λ1iλi 0

λ1i + λi 0 − 1
; i = 2, · · · ,n . (4.29)

Then
S =

{
x1 ≥ µ12x2 + · · · + µ1nxn

}
. (4.30)

The condition (4.29) seems a bit difficult to check in general. We illustrate the
condition by looking at some special cases.

First note thatλij defined in (4.16) can be written

λij =




1
2 + pi −pj

γij
+

√
( 1

2 + pi −pj

γij
)2 + 2pj

γij
if γij > 0

pj

pj −pi
if γij = 0 andpj > pi

(4.31)

where
γij = (qi − qj )

2 ; 0 ≤ i , j ≤ n . (4.32)

Supposep0 is chosen to be large compared topi andγij for i 6= 0. Then ifγi 0 > 0
we have
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λi 0 =
1
2

+
pi − p0

γi 0
+ |1

2
+

pi − p0

γi 0
| ·

√
1 +

2p0

γi 0( 1
2 + pi −p0

γi 0
)2

≈ 1
2

+
pi − p0

γi 0
+

( − 1
2

− pi − p0

γi 0

) · (
1 +

p0

γi 0( 1
2 + pi −p0

γi 0
)2

)
=

p0

γi 0
( p0−pi

γi 0
− 1

2

) =
p0

p0 − pi − 1
2γi 0

≈ 1 +
pi + 1

2γi 0

p0
. (4.33)

Substituting this in (4.29) we see that it suffices to have

1 +
p1 + 1

2γ10

p0
<

(1 + pi + 1
2 γi 0

p0
)λ1i

pi + 1
2 γi 0

p0
+ λ1i

for i = 2, · · · ,n (4.34)

or

p1 +
1
2
γ10 <

λ1i − 1
λ1i

(
pi +

1
2
γi 0

)
for i = 2, · · · ,n . (4.35)

Choosingq0 arbitrarily close toq1 we getγ10 = (q1 − q0)2 arbitrarily close to 0.
Therefore we get from (4.35) that it suffices to have

p1 <
λ1i − 1
λ1i

(
pi +

1
2

(qi − q1)2
)

; i = 2, · · · ,n . (4.36)

From the expression forλ1i we see that this inequality is satisfied ifp1 is small
enough.

We have proved :

Corollary 4.8 Suppose (4.27) and (4.36) hold. Then

S = {x1 ≥ µ12x2 + · · · + µ1nxn} .
We have proved that, under the conditions (4.27) and (4.29), the stopping set
S of the optimal stopping problem (1.5) has the simple form (4.30). It is not
clear to us how restrictive the condition (4.29) is, although Corollary 4.8 shows
that it is satisfied in some parameter domains. Nor is it clear how necessary the
condition (4.29) is. It seems natural to conjecture that the stopping set has the
form (4.30) in a wide generality of cases.
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