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Abstract. Let Xq(t), - - -, X,(t) be n geometric Brownian motions, possibly cor-
related. We study the optimal stopping problem: Find a stopping tifne oo
such that

SUPE ™ {X4(r) = Xa(r) =+ = Xa(r) | =E X{Xa(r) = Xolr) - = Xa(r) |

the sup being taken all over all finite stopping timesandE * denotes the
expectation whenX;(0), - - -, Xn(0)) =X = (X1, - -, %y). Forn = 2 this problem

was solved by McDonald and Siegel, but they did not state the precise conditions
for their result. We give a new proof of their solution fior= 2 using variational
inequalities and we solve the-dimensional case when the parameters satisfy
certain (additional) conditions.
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1 Introduction

Let Xy (t), Xa(t), - - -, Xn(t) be stochastic processes modelling the pricasadsets,
for example stocks. As is customary let us assume thakttseare geometric
Brownian motions, possibly correlated, of the form
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dXa(t) = by Xa(t)dt + Xy (t)[0aadBy(t) + - - - + qundBa(t)];  X1(0) =xq

dXn(t) = by Xn(t)dt + X, (t) [indBl(t) toeet andl?m(t)]: Xn(0) =Xy,

(1.1)
where B(t) = (Ba(t),- - -, Bn(t)) is n-dimensional Brownian motion anki, g
are constants.
If we put
G = (%1,%2,- -, qn) €R" (1.2)
then the solutions of these equations can be written
1
Xi(t) = x exp{(b — Ean t+q -B(t)}, (1.3)

where
& = Q101+ Gi2Gi2+ - +GnGn =G - ; 1<i,j<n (1.4)
where- denotes the usual dot productliy.

Suppose thaF (t) = X,(t) + - - - + Xy (t) represents the capital at tinhghat a
person or a firm can use to make an irreversible investment in a project, whose
value at timet is Xy(t). The optimal time for making such a transaction will be
the stopping timer* < oo satisfying

EX{e [Xa(r) = Xe(r") = -+ = Xa(r)] }
= sgp]E X{ef“ [X1(T) = Xo(7) — - - - — Xn(7)] } ,  (1.5)

whereE * denotes the expectation w.r.t the 18 of X(t) = (X1(t), - - -, Xa(t))
starting atx. Herep > 0 is a constant modelling the sum of the discounting
exponent and the risk aversion of the investor. We may also regasl the
equilibrium expected rate of return on the investment opportunity. For a more
detailed discussion of the application of this problem to financial decision making,
we refer to McDonald and Siegel [1].

Note thate=#'X;(t) is again a geometric Brownian motion, but with re-
placed by

bi=b —p; 1<i<n. (1.6)

Therefore we can, without loss of generality, assume phat0 in (1.5). In the
casen = 2 this problem was solved by McDonald and Siegel [1]. The solution
(for n = 2) is the following: The optimal time* is given by

7 =inf{t > 0;Xq(t) > pXa(t)}, 1.7)

where

= (1.8)

and
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_1  bi-by 1 bi—b, \2 2(p—by)
2 (Q1—QZ)2+\/(2 (Q1—q2)2) )2 (1.9)

In other words, if we define theontinuation region Dby

D ={x;Q*(r* > 0) > 0} (1.10)
and thestopping set Sy
S={x;7"=0 as. Q} (1.12)
then
D ={(x, %) € R} Xg < pixz} (1.12)
and
S={(x1,%) ERE; X1 > pxe}. (1.13)

However, they did not state all the conditions needed for the validity of their
result. As we shall see below, there are cases when the McDonald-Siegel solution
does not hold.

In 1992 Olsen and Stensland [3] studied the generdimensional problem
(1.5). They proved that, under certain conditions, the stopping sebntainsa
halfspace:

SO {(Xe, -, %) €RY Xg > puaoXo + -+ - + puan¥n } (1.14)
wherepq; are the McDonald-Siegel barriers for the 2-dimensional problem

SUpE % [e7?(Xu(7) = X (7))]; 2<j <n. (1.15)

They ask if we actually have equality in (1.14) and they perform some numerical
calculations which support such a conjecture in some special cases. A discussion
of the problem in some other cases can be found in [4].

One can assume that the capiiglt) of the firm follows itself a geometric
Brownian motion as McDonald and Siegel did [1]. But in today’s world, many
firms build one factory in one country with vald&(t) and another factory in
another country with valuXz(t). These factories are managed independently to
certain extent. In this situation it should be more appropriate to assumg{that
and Xs(t) follow geometric Brownian motions respectively than to assume that
F(t) = Xo(t) + X3(t) follows geometric Brownian motion.

The purpose of this paper is twofold:

First, we give a short and rigorous mathematical proof of the McDonald-
Siegel result, based on variational inequalities. Second, we considen-the
dimensional case and prove that, at least in some cases, the continuation region
has the same simple form as McDonald and Siegel founa for2.

This paper is organized as follows: In Sect. 2 we state a sufficient variational
inequality condition for our optimal stopping problem. In Sect. 3 we apply this to
the 2-dimensional case and prove, under given conditions, the McDonald-Siegel
result. We also give examples to show that the result can fail if our conditions
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are not satisfied. Then in Sect.4 we discuss the gemethinensional case.

We prove a partial converse of the result of [3] mentioned above: The stopping
region is alwayscontainedin some halfspace. Under additional assumptions we
then show that the two halfspaces are the same, thereby obtaining an explicit
description of the stopping region.

2 A variational inequality

In this section we formulate sufficient variational inequalities for our problem
(1.5). In the following we letX(t) = (Xi(t),- - -, Xn(t)) be the process defined
in (1.1) and we letA denote the generator of thedldiffusion X(t). Then A
coincides orCZ(R%) with a second order semielliptic partial differential operator
L (see (3.6) in the next section). Define

g(xl""7xn)=X1_X2_"'_Xn; x:(x17...7xn)eR2_

Then problem (1.5) has the form:
Find &(x) and 7* = 7*(X, w) < oo such that

P(x) = supE *[g(X(7)] = E *[g(X(7"))] . (2.1)

The following result holds in a much more general context, but for simplicity we
only state the version which is relevant to our problem. A proof can be found in
[2, Theorem 10.18].

Theorem 2.1 ( Sufficient variational inequalities)
a) Suppose we can find a functign R? — R such that

¢ € CY(RY) 2.2)
and
P(x) > g(x) VxeR]. (2.3)
Define
D ={x € R}; ¢(x) > g(x)} (the continuation region (2.4)
Suppose .
E X[/O xop(X(t))dt] =0 Vx € R]. (2.5)

Moreover, suppose the following:

¢ € C%([R" \ 6D) and the second order derivatives pfare locally (2.6)
bounded neatD,

Lo <0 for x e RI\D, (2.7)

the family{¢(X(7))},c% is uniformly integrable w.r.t. @ for all

x € D, where.%% is the set of all bounded stopping times< 7 (2.8)
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and
0D is a Lipschitz surface. (2.9)
Then
$(x) > E *[g(X(r))] for all stopping times 7 . (2.10)
b) If, in addition we also have
Lp=0 for xeD (2.11)
and
7p = inf{t > 0;X(t) €D} <o as. Q for xeRY, (2.12)
then
o(xX)=P(x) and 7* =71p is optimal (2.13)

3 The 2-dimensional case

We now apply the result of the previous section to discuss the case when there
are only two types of stocks involved(t) and Xx(t). Even in this case there
are many different types of values of the parameters involved. We will not try
to cover all possibilities, but limit ourselves to these ranges of parameters values
that appear reasonable from the point of view of our economic interpretation.
First of all, we will assume, as in [1], that the combining discounting/risk
aversion rate is greater than the average relative growth tatef each of the
stock prices. This means that, if we repldgeby b as in (1.6) we should have

bi=b —p<0; 1<i<2. (3.1)
To make it easier to keep track of the signs of the quantities involved we put
p=-b; 1<i<2, (3.2)
and then our 2-dimensional problem gets the form

Problem 3.1 Find &(xg, X2) and 7* such that

D(x1, %) = SUPE 7 [Xy(7) — Xo(7)] = E ™ [Xo(7") = Xo(77)],  (3.3)

where
{ dXq(t) = —peXa(t)dt + Xa(t) [0a20By(t) + 0u20Bo(t)] 5 X1(0) =X
(3.4)
dXo(t) = —p2Xa(t)dt + Xo(t) [021dBy (t) + 0220Bo(t)] 5 X2(0) =X
with
pL>0, p>0. (3.5)
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HereE "2 denotes the expectation with respect to the @ of the process
X(t) = (Xa(t), Xo(t)) starting at Xa, x2).

The I diffusion X; has a generatoh which on Co(R?) coincides with the
differential operatot given by

1 o%f o%f 9%f
Lf (X1, %) = > [a.]_leaixf + 2a12X1X26Tm + azzxfaixzz]
of of 2(m?2
_plxlafxl - szza—Xz, for f € C4R?), (3.6)

where, with the notation of (1.2),

aq1 = 0fy + 05 = of (3.7
A2 = Qu1l1 + Q12022 = Qs - 02 (3.8)
and
a2 =05 + 05 =0 . (3.9)
In view of Theorem 2.1 we try to find a functiap of this form
Y(x1,%2); X1 < pXe
D(X1, %2) = (3.10)
g(X1,X2) ;X1 > piXo,

whereg(xg, X2) = X1 — Xo. Herep > 0 is a constant and(xz, X2) is a function,

both to be determined. By Theorem 2.1 we can conclude ¢hat® and that

D = {(x1,%2) ; X1 < ux2} if we can findy and o such that the following (3.11)-
(3.16) hold:

1 € C3(D) and Li)(x,%) =0 when x4 < uxo, (3.12)
P(X, %) = g(%1,%2)  when x3 = Xz, (3.12)
Vi(Xg, %) = Vg(Xg, X2) when X3 = uXz, (3.13)
Lg(x1,%) <0 when X3 > uXa, (3.14)
(X1, X2) > g(X1,%2) when X3 < pXo, (3.15)
the family
()} ez With 7 =inf{t > 0;Xu(t) > puXe(®)}  (3.16)

is uniformly integrable w.r.tQ* for all x € D, where. %5 is the set of all bounded
stopping timesr < 7p.
As a candidate fot) we try

P(Xe, X2) = Cxxy (3.17)

for suitable values of the constar@s> 0 and\ > 0.
To find the possible values of (and subsequentl€) we put
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— 1—-A
f (X1, %) = X%

and compute, using (3.6)

Lf (X1, X2)
1
=5 [ar @A — L)% 2% + 281X (1 — A)x 1
+apoXZ(1 — N(=X% A = poxadx) T T — poxa(1 — A)xx;
1 1
= x5+ (o2~ P = 5MA e (3.18)
where
Y =12 = a1 — 2812+ a2 = (1 — 92)? > 0. (3.19)
Note that

v>0 forall ¢; and
(3.20)

7=0&01=01 & Oi2=02-
We conclude thakf (x;,x2) = 0 for some, and then for allx{, x,) if and only if
) satisfies the equation

1 1
EVAZ 2= pr— 5\ =P =0. (3.21)

The solutions of this equation are

L3v+tp—pat \/(%wpl— P2)>+29p2] if 4 >0
= (3.22)

P2 H —
o if v=0.

Since we need to have > 0 we must require
p2>py if y=0. (3.23)

From now on we choose the plus sign in (3.22) and let

%[%7+pl—p2+\/(%y+p1—p2)2+27p2} if v>0

A=
pzp_zpl if v=0 andpz > p1.
(3.24)
For this value of\ put
P(x1,%2) = Cx*x;~*  for some constant C . (3.25)

The requirement (3.12) then gives
Cx)™3 ™ =X — % forall x>0,

or
Cur=p—1. (3.26)
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The requirement (3.13) gives

CAu)* 3 =1 and C(1— \)(ux)*x, * = -1

ie.
Cxrt=1 and C(A—M\pt=-1. (3.27)
The three equations in (3.26) and (3.27) have the unique solution
A _1,0x (1-a
nE— and C_/\(/\—l) (3.28)

Since we need to havye > 0 andC > 0 it is necessary to check that> 1:
(i) If v =0 andp, > ps, this is clear from (3.24).
(i) If v > 0 we see that

1 1
A>1 & p1+\/(27+p1—p2)2+27p2>27+pz

1
© pr+ 2p1\/(27 P~ P22 + 272

1 1
+(§’Y +p1 — P2)* + 2P > Z’Yz +9pz +p3

1
& Z2pi+oyt 2\/(27 +p1— P2)? + 29Pp2 > 22 (3.29)

Now \/(%7 +p1— P2)? +2yp; > |37+ Pp1 — P2|, SO by checking the two cases

a) Jy+p1—pP2>0
b) 37+pL—P2<0
separately, we verify that (3.29) always holds. We conclude that we always have

A>1, (3.30)

when \ is defined by (3.24).
We proceed to check the requirement (3.14): Since

Lg(X1,X2) = —p1X1 + pP2Xa ,
we see that

Lg(x1,%) <0 iff x> %Xz
1

Therefore (3.14) leads to the condition that
P2 (3.31)
P1
To verify this inequality, note that from (3.18) we have
20— 1) - @A\ — 1)+ 8\ — 1)~ pA+p) — 1) =0

or
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1 A
(5311 —ap+ 5322))\ —Piy gt = 0
or \ \
P JA
— =1+ >1.
A—1 p 2py
Sincep = 125 this proves that (3.31), and hence (3.14) holds.

Next We check the requirement (3.15): Define

)\ 1—

- A .
h(Xg, X2) = (X1, X2) — g(X1, X2) = CX{' %™~ — X +X2; X, %2 > 0.

Then we have from (3.12) that
h(Xl,Xz) =0 if x= X2 .

Moreover oh
—=CX T —1=0 iff ==y,
15)¢ X1 2 X2 H
Slnce — —1 asx; — 0, we must hav%L < 0 for all x; < ux; and therefore
h(xl,xz) > 0 for Xy < uxg. This proves that (3.15) holds.
The requirement (3.16) now follows easily from (3.17) and the definition of
D:
Note that ifr < 75 thenX(r) € D and therefore

X1(7)
Xa(7)

So if 7 €.%% andr > 1 satisfies—p, + 5 a22(r — 1)< 0 then

X () = C(S52) Xo(7) < Cp*Xa(7). (3.32)

EX[¢(X)'] < CTuE *[Xo(r)']

< C'U™YE [{r[(—p2 — %3-12)7_ +021B1(7) + Go2Ba(7)] }

A

IN

C'UXE [{rI(~p2 + S0ar — D))

: exp{—%r @o7 + 12181 (7) + 1q22B2(7) }]
< C'UE [eXp{—%rzazzT"'rQZlBl(T)+rQZZBZ(T)}]
< Cluxg,

where we have used that
M; := exp{—%rzazzt +1021Ba(t) + r22B2(t)] }
is a martingale. Therefore, if is chosen such that

1<r<1+a—p2 if ap>0 (@A<rifay=0),
22

then
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suB]E X[p(X(1))'] < o0
TED

and henceg{y(X(7))},c% is uniformly integrable. Thus (3.16) is verified.

Therefore, from Theorem 2.1a we conclude that if (3.23) holds, thendwith
given by (3.10), (3.17), (3.22) and (3.28) we have

P(x1,X2) > E 47 [Xy(7) — Xo(7)]  for all stopping timesr . (3.33)
In order to apply Theorem 2.1b the last requirement we have to check is that
D <oo as. Q% forall (x,X). (3.34)

Since the solution of (3.4) is

X(0) =X exp{(-p — 5t + GBI +aB0} 11 =12 (339)

we have that, withg; as in (3.7)-(3.9),

Xa(t X 1 1
) _x exp{(pz2 + 5822 — P1 — st + (du1 — G21)Ba(t) + (G12 — 022)Ba(t) } .
Xo(t) X 2 2
(3.36)
Using the law of iterated logarithm for Brownian motion, we see that
—  Xi(t)
| = 5. QXX
A X T &S O
when
1 1
P2+ 5822 >pt St (3.37)

We have now completed the proof of the following result, which is the main
result of [1]. Moreover, we have obtained precise conditions for its validity:

Theorem 3.2 ([1]) Let g = (gi1,0i2); 1 <i <2asin (1.2).
a) Assume that

27 OF P2>pi1. (3.38)
DefineA as in (3.24). Then > 1. Put
A 1 A—=1x
nE and C_A( )\ ) (3.39)
and let
Cxxy ™5 X < pXo
P(X1, %) = : (3.40)
Xy — X2, X1 2 pXo
Then
B(X1,%2) = E 72 [Xy(7) — Xp(7)] for all stopping times 7. (3.41)
In particular,

S D {(X1,%2); X1 > X} (3.42)
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where S is the stopping set (see (1.11)).
b) Assume, in addition to (3.38), that

=0 o pp+ %qﬁ >pp+ %qf. (3.43)
Theng is the solution ofp of Problem 3.1 and the optimal stopping timéis
7 =inf{t > 0;Xy(t) > uXo(t)} < o0 as. (3.44)
Hence
S = {(X1,X2); X1 > puXo} . (3.45)

We give some examples to show that if one of our conditions (3.38), (3.43) fails,
then the optimal stopping time* may not be of form (3.44).
Example 3.3 Consider the deterministic case
X]_(t) = Xlei()‘t , Xz(t) = X2€7ﬁt ,

whereq, § are constantsy > 3 > 0. In this case

p1=a, Q1=(Oa0)

p2=08, d2=(0,0)
and hencey; = g, and yet

P1>p2.

So (3.38) does not hold. In this case we find by direct computation

Sup{Xl(t) — X2(t)} = {0 XL <X
>0

X1—X ; X12X

which is different from the conclusion in Theorem 3.2.

Example 3.4 Let
dXa(t) = —aXay(t)dt, dXo(t) = —BXa(t)dt + Xa(t)dB

wherea > 0,0< < a— % andB; is 1-dimensional Brownian motion. Here
we have

p1=a, ql:(oao)
P2=03, G=(0,1).
Hence 1 1 1
PtS=0+5 <a=pitsal.
Hence (3.43) does not hold. In this case
Xu(t) _ X1(0) 1
%) - %(0) Pt B,
Therefore, ifr* is defined by (3.44), then

Qu* [T* = oo] >0

if X3 < uxg. So the conclusion of Theorem 3.2 does not hold.
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4 The general case

In this section first we introduce an order relation among the geometric Brownian
motions and then use it to obtain some new results for the general problem (1.5).

Definition 4.1 Let X(t) and Y(t), t > O be two geometric Brownian motions. Let
A, C € R be constants. We write

X<AY+C or AY+C > X (W.rt. X, X) (4.1)
iff for any stopping time- < oo a.s. we have
E 2 [X(r)] < AE**[Y(7)] +C. (4.2)
As in Sect. 2, we put
pi=—(bi —p)>0, 1<i<n. (4.3)
Consider the following problem:

Problem 4.2 Find &(xq, Xz, - - -, X;) and 7* < oo such that

D(X1, X2, %n) SUPE * [Xq(7) = Xo(7) — -+ — Xn(7)]

E X [Xo(7%) — Xo(77) -+ — Xa(79)] (4.4)
where x= (X1, %z, - -, %) and

dXq(t) = Xy (t) [ — prdt + oudB(t)];  X1(0) =%
(4.5)

dXa (t) = Xn(t) [ — pndt + gudB(t)] ;  Xa(0) =Xq

with
p1>0,---, pn>0. (4.6)

Here E * denotes the expectation with respect to the @ of the process
X(t) = (Xq(t), - -+, Xn(t)) starting atx = (X, - - -, X,) € [0, 00)".

In this general case it is hard to firB(x;, %o, - - -, X,). But it is possible to
deduce some information about the optimal stopping tirhe From Theorem
2.1 we know that* is typically given by the hitting time of some s8tof R"
(called the stopping s&t We will prove thatS is contained in some halfspace.
Under some further conditions on the parameters, we ideBtiéxplicitly. We
shall need the following
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Remark 4.3 It is easy to see that one can extend Theorem 3.2 to the case with
two geometric Brownian motions of the form

dX(t) = —piXi(t)dt+ X (t)[g1dBy(t) + - - - + Gn dBy (L) ];

Xi(0) =% (4.7)
dX(t) = —p X (t)dt+X (t)[g2dBy(t) + - +qndBa()];

X (0) = . (4.8)

To handle such cases we define

n
&=y CGlim =Ck-G; 1<kl<n. (4.9)

m=1

For the case with the process@s, X;) of (4.7) we then put
Vi =ai — 23 +ay = (g — q)° (4.10)

and similarly we letA = )i, 1 = pjj, C = Cjj be defined by the same formulas as
before, but with these new values gf &hen the conclusions of Theorem 3.2 a
and b hold under the conditions

g 70 or p >p (4.12)

for Theorem 3.2 a and the additional condition

1 1
G =0 or p+307>p+5q (4.12)
for Theorem 3.2 b.

Lemma 4.4 Fix 1 <i,j <n.LetX and X be as above and %> p;jKx (K >0
is constant). If Xand X satisfy (4.11), then

Xi <KX +x —Kx . (4.13)
Proof. Let g(xi, %) :== % — X and
P, %) s X < i X
9. %) = (4.14)
g(X1,X2) 5 X > i %,

where(x; , X ) is obtained exactly the same way as in Sect. 3 for the yaénd
X;. If X; andX; satisfy (4.11), then by Theorem 3.2 a) we have

ESS5{X (1) =KX (1)} < ¢(x,Kx)
g%, K¥) =% — KX

for all stopping timesr, sincex; > w; Kx . This proves the lemma.l

Let X be given by
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dXo(t) = Xo(t){—podt + qodB(t)} with Xp(0) =1 (4.15)

wherepy > 0 anddo = (Qo1, - - -, don) € R" will be determined later.

We now extend our notation to include our auxiliary proc¥ssDenote by
wij the o computed for the pairX,X;); for 0 <i < n, 0 <j < n. Namely,
define

S te - p +\/(%7ij +p—p)2+2yp | ify >0

)\ij = .
pj'ipi if v =0 andp; > pi,
(4.16)
where
i =@ +ay —2a = (g —q)°; 0<i,j<n. (4.17)
Then put
Nii ..
i 1=r[1; 0<i,j<n. (4.18)

If for i = 2,---,n, (X, Xp) satisfies (4.11)j.e. q # go or pp > pi, then by
Lemma 4.4 we have

XiSKiXiXO-FXi*KiXi? i:27"'7n (419)
for any K; satisfying
1> pioK; . (4.20)
Thus
n n
Xp—Xp— o= Xn > Xg — [KaXp + - +KnX]Xo — Y % + > Kix . (4.21)
i=2 i=2

On the other hand, if both conditions (4.11) and (4.12) are satisfied<foX{)
and if
Xj_(O) =X < /.Lj_o[KzXz +..-+ Kan] s (422)

then by Theorem 3.2 there is a stopping time: 5o a.s. such that
E 1 Xa(F) — (KoXe + -+ + Knx)Xo(7)]| > X1 = Kaxg — -+ = Koo . (4.23)
Combining (4.19) and (4.23), we have
E*{Xa(F) = XolF) =+ = XalP) } >0 =2 = = Ko,
This means that the set
{Xl > pao[KaXe + - - - + KnXg }

contains the stopping s& of Problem 4.2. Choosing(; = ﬁ in (4.20) we

obtain '
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Theorem 4.5 Assume that

g FQqo or po>p for 2<i<n (4.24)
and L .
Gi=Go OF Po+ 505 >PpL+ a7 (4.25)
Then
Sc {Xl > mo[ixz +ooo ixn]} : (4.26)
H20 Hno

Conversely we have, as mentioned in the Introduction:
Theorem 4.6 [3] Suppose
Qu7qg or p>py for 2<j <n. (4.27)

Then we have
{Xl > paoXp et Mlnxn} CS. (4.28)

Proof. Under the above condition (4.27) the argument in [3, Proposition 2] works.
O

Thus if we can findXg such that fori = 2, ---, n we haveus; pio < 10, then
we can conclude that the stopping set is (4.28). Namely, we obtain the following
theorem.

Theorem 4.7 Suppose (4.27) holds. Suppose there exist P, o1, - -, 0on € R
such that (4.24) and (4.25) hold and such that

. i Aig .
i tio < ie Ao ——F——; i=2---,n. 4.29
Hii o S H10, 10 S At ho—1 ( )
Then
S= {Xl > paXo + - +/t1an} . (4.30)

The condition (4.29) seems a bit difficult to check in general. We illustrate the
condition by looking at some special cases.

First note that\; defined in (4.16) can be written

% + P;ijpj (% + pi;ijpj )2+ ZTF;J' if v; >0
Aij = (4.31)
pj‘ipi if v =0 andp; > p;
where
v =@ —g)?; 0<i,j<n. (4.32)

Supposey is chosen to be large comparedaicand-y; fori # 0. Then ifyo > 0
we have
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1. p—Po_ 1 pi—po 2po
Nog = =+ +|=+ 1+ :
0 2 7o 2 Yo | nio(3 + P IR)2
1 pi—po 1 pi—po Po
~ -+ +(— = — (1t ——
2 o ( 2 o ) io(3 + L;iopo)z)
— Po - Po
’Yio(pogopi -3) Po—Pi — 370
4 L
~ 14P 7200 (4.33)
Po
Substituting this in (4.29) we see that it suffices to have
1
+1 1+ Pi+357io0 Ari
o Prtamo | P Mo =2,....n (4.34)
po Pi pzo'Ylo +>\li
of 1 A 1 1
i — -
pL+ 5710 < " (pi + Evio) for i=2---,n. (4.35)

Choosingqy arbitrarily close toq; we getyio = (g1 — do)? arbitrarily close to 0.
Therefore we get from (4.35) that it suffices to have

M pade @) =2 (@39)
From the expression fok;; we see that this inequality is satisfiedpif is small
enough.

We have proved :

p1 <

Corollary 4.8 Suppose (4.27) and (4.36) hold. Then
S={X1 > paXo+---+ X} -

We have proved that, under the conditions (4.27) and (4.29), the stopping set
S of the optimal stopping problem (1.5) has the simple form (4.30). It is not
clear to us how restrictive the condition (4.29) is, although Corollary 4.8 shows
that it is satisfied in some parameter domains. Nor is it clear how necessary the
condition (4.29) is. It seems natural to conjecture that the stopping set has the
form (4.30) in a wide generality of cases.
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