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1 Introduction

It is well known that in an incomplete market there are several equivalent martin-
gale measures and that perfect hedging is not always possible. In this situation,
one way to price options is to choose a particular equivalent martingale measure,
for example the Bllmer-Schweizer minimal probability [17], the canonical mar-
tingale measure which minimizes the relative entropy with respect to the original
probability measure [23], or as in [9], the equivalent martingale measure associ-
ated with a utility function. In all these cases, the price is a viable price, i.e., it
does not induce any arbitrage opportunities; however, there is no consensus on
the choice of this martingale measure.

Another approach is to determine the range of prices compatible with no
arbitrage or the minimal super-replication strategy. However, as shown by El
Karoui and Quenez [15, 16], when the dynamics of the stock price are driven by
a Wiener process or by Kramkov [20], in a general semi-martingale framework,
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these two approaches are closely related: the supremum of the possible prices is
equal to the minimum initial value of an admissible self-financing strategy that
super-replicates the contingent claim.

When the incompleteness arises from stochastic volatility and/or portfolio
constraints, the minimal price needed to super-replicate a given contingent claim
is studied in [3, 8, 18, 19] among others. Eberlein and Jacod [11] showed the
absence of non-trivial bounds on European claim prices in a model where prices
are driven by a purely discontinuous Levy process with unbounded jumps.

In this paper we address the problem of the range of viable prices for mixed
diffusion dynamics. As in the above mentioned papers, the upper bound is proved
to be a trivial one : for example, the minimal strategy to hedge a European call is
a long position in the underlying asset. On the contrary, our work shows that the
lower bound is not a trivial one, but the corresponding Black-Scholes function
evaluated at the current stock price.

2 The model

Consider a financial market where a riskless asset, with deterministic return rate
r, and a risky asset are traded up to a fixed horizon

Let (£2,.7,P) be a probability space and letq) be a right-continuous
filtration, which includes alP negligible sets in7 .

The dynamics of the riskless asset’s prigare given by

dB(t) =B(t)r(t)dt, B(0)=1;
whereas that of the risky asset’s priSeare
dS(t) = S(t_)[bedt + o(t, S)dW(t) + o(t, S_)dM ()], S(O)=x > 0. (2.1)
HereW is an (%)-Brownian motion and is the compensated®)-martingale
associated with an%)-Poisson procesbl with deterministic intensity, i.e.
M = N — /t A(s)ds. It is well known that, in this settingyéand M are

0
independent ([25], chap. V, ex. 4.25).
The following hypotheses will be upposed to hold through’out the paper:

Hypotheses H1

e The interest rate and the jump intensity. are assumed to be non-negative de-
terministic bounded functions, and the appreciation rate prdrcés$e bounded
and (#%)-predictable.

e The functions : [0, T] x (0,00) — R is supposed to be continuous in X),
and Hdlder continuous irx € [0, oo[ uniformly int € [0, T], and bounded

O<m<oo(t,x) <M.

e Assume moreover thab(t, x) e %(xa(t,x)) is continuous in t;x) and
Lipschitz inx € [0, oo[ uniformly in t € [0, T].
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e The functiong : [0, T] x (0,00) —] — 1, oo[ is supposed to be bounded and
bounded away from 0 andl (0 < m < |¢(t,x)] < M, ¢(t,x) > e > —1),
continuous in {; x), and Lipschitz inx € [0, oo[ uniformly in t € [0, T].

e We suppose thatf is the usual augmentation ef(Ws, Ms; s < t). This
implies that (%) is the augmented filtration af(S;; s < t) which is generated
by the prices.

In particular, under these hypotheses, there exists a unique solution to the
equation (2.1) which is strictly positive and can be written in the form

S(t) = x exp (/t bs ds) &S (e W)(t) £ (pM)(1) .
0

Here the Doleans-Dade exponentials areRhmartingales defined by

& (oW)(t) exp( /O t o(s, S)dW(s) — % /O t a¥(s, Ss)d5>

't
exp( /O N+ (s, S) M (8)

7 (oM)()
t
- /0 A4S, S) — In(L+ (s, )] ds)

We shall often use the following expression for the &ois-Dade martingale

ot ot
Z(GM)(D) = exp ( [ @+ ots. s nane - [ aeote.s) ds) .

Moments of prices

For anya € R, an easy computation gives
t
[SH)]2 = x2&(acW) & (paM ), exp B / a(a — 1)o?(s, Ss)ds}
0

t t
xexp[a /0 bsds] expl /0 AS)[0a(s, S) — ad(s, )] ds (2.2)

whereg, = (1+¢)2 — 1. From this we see that, for amy> 0, and anyt € [0, T]
E(S&(t)) is finite.

3 Risk-neutral probability measures set

Recall that a probability) on the spacef,.7 , (%), P) is called an equivalent
martingale measure if it is equivalent to the original probablﬁtyindtif, under

Q the discounted price proceR({)S(t),t > 0), whereR(t) = exp—/ r(s)ds,

is a martingale. We shall restrict our attention to martingale meagsures such that
the Radon-Nikodym density.{ = 3—8 |#,0<t <T)is aP-square integrable
martingale over the time interval [T], i.e., SURc[o 1] E[(Lt)?] < oco.
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Proposition 3.1. The se” of equivalent martingales measures with a P-square

. o - PY
integrable density is the set of probability measuréssich thatC:j—P =L7(t)

T
where D(t) LWV(t) LYN(t) is the product of the Doleans-Dade martingales

LWl = 2 W) -exp[/ edW(S) — 2 / J2ds]

LN@) = #(M)) —exp[/ In(1 +1)dN(s) / A(9)eds]

In these formulae, the two predictable processeand~ are linked by
by —r(t) +o(t,S-) +AMO)S(t, S-)n =0, dP®dt.as.  (3.1)

and L is assumed to be a P-square integrable strictly positive martingale. In
particular, we assume that the procesgsatisfieg1 +~) > 0, dP ® dt a.s..

Proof. This result is now well known and can be found in [4, 6, 24] among
others. The proof follows from the fact that the denditymust be a strictly
positive P-martingale. Then using the predictable representation theorem for the
pair W, M), it can be written in the form

diL(t) = L(t- )[4 dW(t) +dM(t)]

where (),~) are predictable processes. It remains to choose the pair) (so
that the procesRSLis a P-martingale; this leads, usingdls lemma, to formula
(3.1). In particular, ify is a constant greater thanl, P” belongs toZ'. O

The termsyy and « are respectively the risk premium associated with the
Brownian risk and the jump risk. On the contrary to the Brownian risk premium,
the range of possible values fer does not depend on the coefficients of the
model and that is why we take it as a parameter. For example,0 is not
always a possible choice for the Brownian risk.

In order to price a European call in a mixed model with constant coefficients,
Merton [22] choses the particular martingale measure associatedywith and

b—
=
associated with a zero jump risk prem|um Uné&&rthe intensity ofN remains
inchanged while \(W°(t) = W(t) + / bs — 1S

Brownian motion independent of. 68

In the sequel, we denote Hy the set of the predictable processesuch that
L™ is a P-square integrable strictly positive martingale. Unéer, the process
W? defined as

r .
. We shall therefore call Merton’s measure the martingale medure

ds,t > 0) becomes a standard

w(t) € w(r) - / b ds

is a Brownian motion and17(t) e M (t) — / A(S)ys ds is a martingale.
0
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The price process may be written in terms\V@f andM” in the form
dS(t) = S(t-)[r ()dt + o(t, S)AW?(t) + o(t, S-)dM 7 (t)]

and it satisfies
R()S(t) =x& (eW7)(t) £ (M 7)(1) .

The moments of§ underP” may be computed using the same method as in
(2.2) where\(s) is replaced by\(s)(1 ++s) andb by r.

In the case where is a deterministic function, the Poisson procékdas
a deterministicP” intensity equal to\(t)(1 +~(t)), the martingaleM” has the
predictable representation property and is independeWt af This is no longer
the case when depends oW and the pair\V”, M ?) can fail to be independent
as it is easily seen in the case= Ly,~o whereE” (W, (M,")?) # 0.

In what follows, we denote by the subset of” consisting of the probability
measure®” associated with a constant jump-risk premignior anyy € 7" the
martingalesW” andM 7 are P7-independent and the proceSss a P7-Markov
process.

4 Range of prices

Let ¢ be a European contingent claim, i.e. a non-negative random variable in
L%(£2,.7,P). A t-time viable priceV 7(t) for the contingent claing is defined

as the conditional expectation (with respect to the informatigh of the dis-

counted contingent claim under the martingale-meagurei.e., R(t)V(t) o

E"(R(T) ¢ 7).

The determination of the range of viable prices, i.e., the explicit form of the
interval Jinf,er V7(t), sup,c - V7 (t)[ is studied in [11] for European claims, in
the case where the underlying asset is a purely discontinuous process.

We give here, in a more general framework, a study based on the convexity of
the Black-Scholes price using the simple arguments of El Karoui et al. [13, 14].
The crux of the matter is the convexity, with respect to the stock price, of the
Black-Scholes function. This assumption is satisfied under some hypotheses on
the pay-off function.

In order to obtain this convexity property, we restrict our attention to the
case wherel = h(Sr) for some convex functiom having bounded one sided
derivatives.

4.1 The “call’ case

Definition. For a given convex functioh, we define the corresponding Black-
Scholes functionZZ(t, x) by

R(t).7(t,x) = E(R(T)h(Xr) [X =X) , FZ(T,x) = h(x)

when the dynamics ok are given by
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dX = X (r (t)dt + o(t, X;) dW) , Xo = X. (4.1)

Hereo(t, x) is the same function as in (2.1). In the case wheftex) = o(t) is
a deterministic function of time only, the Black-Scholes function is known to be
given by

R(T)
R(t)

XR(T)

T, X) = RO

E | h( exp[Z(t)U — ézz(t)])}

-
whereU is a standard normal random variable anié(t) = / o?(s)ds.
t

Under the hypotheses enandh, the Black-Scholes functioﬁ/ is convex

27 ) <c.
Consider the operator®” and A defined onC%? functions by
- o o Loy
L), x) = it (t,x)+rxax(t,x)+ 2x o“(t, x) (t X)

Af (¢, X)

f(t, (L +o(t,x))x) —f(t,x) — o(t,x)x a—x(t,x).

Here, the Black-Scholes functiof# satisfiesZ (R 77)(t, x) =

Hypothesis H2
A convex functionh satisfies the hypothesis2 if 0 < h(x) < x, h(0) =0 and
if the function g defined byg(x) = x — h(x) is bounded.

As an example, we have the European call, whepe = (x — K)*.

Theorem 4.1. Let PY € ¢/ and V?(t) be the associated viable price process

defined by R)V 7 (t) = R(T)E"(h(Sr)|-%). Then,

1. The hedging error caused by jumps is givenay# (s, x). More precisely,
R(OVT(t) = R(t).7Z(t,3) +.72/

T
where.22] = E” [/ R(S)(1 +s)A(S)A.FZ (s, Ss)ds|.%].

t
2. Any viable price is bounded below by the Black-Scholes function, evaluated at
the underlying asset value i.e.,

FE,S)<VIM), Yy el

3. If moreover h satisfies the hypothest any viable price is bounded above
by the underlying asset value
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Proof. Let S be the solution of (2.1) and suppose th#t is C12. (Otherwise,
apply It©’'s lemma for convex functions, see e.g. [25]p'$t formula for mixed
processes gives

R(T).7(T, Sr)
= R().7#(,S)

«f " [£RANES) +RONS 6 + DA (5, )] ds
t
T o
+ [ RO (5.5)S (05 SIW () + 65, S JIM(S)
t

+ / ! R(S)AF(s, S )dM(s) (4.2)
t

From E"(S?) < VE[(L{)? E(S?), the boundedness of the Delta and the
existence of the moments of price, the stochastic integrals on the right-hand side
of (4.2) areP7-martingales. The Black-Scholes equation givé$R.77](s, X) =
0. Taking theP” conditional expectation with respect tg then leads to

E"(R(Mh(S)|-7)
RO-7Z(t,S)

+EY </T R(S)A(S)(s + AT (S, ) dS|.%> .
t

E"(R(T).7(T, Sr)|.A)

The lower bound of the interval of viable prices follows from the convexity of
F(t,-) which implies thatA.Z7Z(t,x) > 0. The upper bound is a trivial one
from the hypothesis thdt(x) < x and theP” martingale property of the process
RS. O

The convexity of the set of equivalent martingale measure implies that the
mapy — E7Y(BR(T)) is convex and, therefore, continuous. Consequently, the
range of prices is an interval.

To establish that the viable prices of the cldifsr) span the whole interval
174, ), /,S[, we may (and will) restrict our attention to the case of a constant
jump risk premium.

Theorem 4.2. 1. The lower bound of the range of prices is the Black and Scholes
function evaluated at the unerlying asset's pridem.,_,_1 V7 (t) = .7 (t, ).

2. If moreover h satisfies hypothedi, the upper bound is the trivial one:
lim, 400 V(1) = S.

Proof. If ~ is a constant, the price proceSsis a Markov process undd?”.
Therefore, it suffices to prove the lemma for 0.

When~ goes to—1, the intensity of the Poisson process goes to zero, therefore
there are, at least intuitively, no more jumps and the viable price converges to
the Black-Scholes function. This argument can be made precise as follows. From
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the inequality|A.7Z(t,x)| < 2xMC whereM is the bound for the size of the
jumps ¢, it follows that

0

IN

E[ /0 ! R(S)A(S)(y + AF (s, S5) ds]

IN

.
2C (v + 1M / AS)EY(R(S)S,) ds
0

T
2xC(7+1)M/ A(s)ds
0

Thus, the proof is complete because the right-hand side converges a.s. to 0 when
~ goes to—1.

The proof is somewhat more difficult for the upper bound. When the intensity
goes to infinity, there are more and more jumps and the Brownian motion has
no effect. Furthermore, the procelsks is a martingale and jumps very quickly
above and below/,. It is then nearly impossible to see these jumps and it seems
that the process stays at the initial point. This point of view is made precise in
the following lemma.

Lemma 4.3. For anyn > 0, P'[&(¢MY)r > n] tends to O wheny goes to
infinity.

Proof. From the Markov inequality, it suffices to check tHat [%’(QSM ’Y)T)a}
converges to zero, faa > 0. Using the same computation as in (2.2), it can be
shown that, fory constant

]
[£ (@M TK]® < # (#aM7)r exp(l+7) /O ASF (5. S)ds

whereF (s, x) = (1 +¢(s,X))? — ag(s, x) — 1.
For 1—a > 0, from the hypothesigs| > m, some elementary computations
on the functionF lead toF (s, x) < k where

k=[(1+m)®— (L+am)] V[(L—m)® —(1—am)] <O.

T
ThereforeE” ([PE’(qu ’Y)T]a) < exp[(1 +fy)k/ A(s)ds] goes to 0 wheny goes
0

to infinity and the result follows . |

We now return to the proof of theorem (4.2); from hypotheld@swe get

E7[R(MN(S)] E7[R(T)Sr] — E7[R(T)g(Sr)]
x —E7[R(T)g(Sr)] = x — R(ME[G(x& (¢M 7)7]

where G(x) = E[g(XR(T)1# (cW)1)] is a continuous bounded function. The
convergence oE7(G(x& (¢M 7)) towards 0 asy goes to infinity follows from
the boundness and continuity GX.
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4.2 The put case

Hypothesis H3:
A function g satisfies the hypothesi43 if ¢ is a convex bounded function having
bounded one sided derivatives and iKQy(x) < g(0).

Under this hypothesis the Black-Scholes functigift, x) associated with the
contingent claimy(Sr) is convex w.r.tx and, following our method, we obtain

R(t)Z (t,S) < EY(R(My(Sr)|7A) < R(T)g(0)

As above, the viable prices span the whole interval.

4.3 Substrategy

Our proof provides an explicit substrategy. Suppose that a self-financing portfolio

is built on the “Delta” of Black-Scholes, i.e. by investina%i—g(t, S) in the risky
asset. The valué/(t) of this portfolio satisfies

X4 x4
(St (1, S)ds

dII(t) = (1) - 8

The tracking error is defined &t) €' 11(t) — . 7(t, S).

Theorem 4.4. The discounted tracking errgR(t)e(t), t > 0) is a non-increasing
process

Proof. The tracking error satisfies
de(t) = —AFZ(t, S) dN +r (t)e(t)dt.
ConsequenthyR(t)e(t) is a decreasing process. a

It seems interesting to obtain some estimates for the expected value and the
variance of the error from the Black-Scholes hedging. Some easy computation
lead to VarR(t)e(t)) < Cx?K (t) whereK (t) = at?e%, a, 3 > 0.

4.4 Remarks and comments

1. Eberlein and Jacod [12] consider the case where the dynamics of the prices is
a general Bvy process. While restricting their attention to equivalent martingale
measures under which the underlying asset remainévg brocess, they show
that the range of prices is included in the interva®]t, S), S[ using a different
method to ours.

2. Note that if & (cW?) and & (¢M?) are independent processes, the con-
vexity of the Black-Scholes function and Jensen’s inequality lead easily to
a comparison of the viabl®” price and the Black-Scholes one. Indeed, let
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FH(X) o« R(T)E[h(XR(T)~1& (¢W)1)] be the price of the claim in a Black-
Scholes framework. Then, assuming that is a convex function, (see the needed
assumptions above)

FE00 = FE (R (@M ))] < EV[FE(xF (6M)7)] = RDE" (1(S1)

where the last equality follows from the assumed independence betival' )

and & (¢M 7) and the definition of77.

3. As we have recalled, the convexity of the Black-Scholes function holds when
h is convex, under some assumptions on the dynamics of the prices. The reader
may refer to the thesis of Martini [21] for an exhaustive study of the convexity
of the Black-Scholes function.

4. The impact of jump size and jump risk can be made precisexy et a fixed
constant parameter. Then, the viable price is a function of the underlying asset,
sayV7(t) =V (t, ) whereV7(t,x) depends o and on the other parameters

of the model. Pham [24] proves that the functipr V 7(t, X) is non-decreasing.
Bellamy [5] establishes that the functign— V7 (t, x) is non-increasing on the
interval ] — 1, 0[ and non-decreasing dR*.

5. If h satisfiesH2, and if the upper bound belongs to the range of prices, i.e.,
there exist®” such thaiR(t)S = E7(R(T)h(Sr)|.-%), theng(Sr) = St —h(Sr) is
hedgeable and bounded, the range of prices is a singletoé(id S) = h(S)

which implies thath(x) = x. It is tempting, but not true to extend this property

to any contingent claim. If a contingent claim is hedgeable, the upperbound is
reached, however, except in the case when this claim is bounded, this does not
imply that the range is a singleton, see e.g. Ansel and Stricker [2].

4.5 Generalisations

1. The result in theorem 4.2 holds under a more general dynamics for the jump
part. Suppose for example that the dynamicSdafre given by

dS(t) = S(t-)[brdt + o(t, S)dW(t) +/R¢(t,y)5(dt7dY)]

wherev(dt, dy) = v(dt, dy) — A(t)m(dx)dt is the compensated jump martingale of
a homogeneous Poisson random measure gandand h satisfy the hypotheses
H1 andH2 respectively.

The proof follows by analogy with the previous proof.

The set? of equivalent martingales measures is the set of probability mea-
suresP” such thatdP” = L dP where the procesk, satisfies the stochastic
differential equation

AL () = (1) (w(t)dvv(t) + [t dy))

and where the processésand~ are related by the equation
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B =) 0. S0+ [ ADPY) A+1(Ly) M) =0,
It suffices to check that
£ RIS = RO () + €7 | [ RO (5. 817
Here
Af (t,x)
= [ re@epttam - 160 - xS 0] @0 me

and it is clear thatl.7% (t,x) > 0 as soon as# is a convex function oK.

2. The same result extends also to the case where

i=k
ds=S- (ndt+a(t,3)dw +Y o (t,S)dMi,t>

i=1

We shall not provide the proof here, since it uses the same ideas as in the previous
one.

3. Our results extend also to the case where the probedms a stochastic
bounded intensity under the historical probability measure. Actually, we used the
deterministic intensity assumption in order to establish that the local martingales
in (4.2) are martingales, which can be done in a general setting. It remains, in the
proof of the corresponding theorem and lemma, to restrict our attention to the set
of jump risk premiumy for which the processe&” andM ” remain independent

underP?. This can be done with 1+ = )\g with constant coefficient varying
t
in ]0, oo[.

4. The same method applies for average contingent claims of the {orm
T

h(s, S)ds for some functiom(s, -) satisfying the hypothesid2 or H3, see

0
Sect. 5.2 for the Asian case.

5 American and Asian cases
5.1 American case

The comparison result still holds for American claims.

If h satisfies the hypotheslid2, it can be proved that the American and the
European prices agree under &y, see e.g. [13].

Let us now study the “put” case and assume that the pay-off fungtion
satisfiesH3.

Let <A™ defined by
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R(t) "™ (t) = ess sup. ~.1)E”(R(Mg(S,) |77)

be the American viable price corresponding to the martingale me&3urdere,

7 (t,T) is the class of stopping times with values in the interdall]. Let
&AM pe defined as the American- Black-Scholes function for an underlying
asset following (4.1), i.e.,

, def
R(t)SA™(t, %) = ess sup. - 1E(RMg(X,) %)

Then, &AM(t,.) is a convex function [13]. Moreover, this function is smooth
before the exercice time* and satisfiesZ (R%A™) = 0 on this region.

Proposition 5.1. Let P” € . Then,
AN, ]) < CAM() < ¢(0)
The viable prices span the whole interval.

Proof. We prove the result for = 0. Applying I’s formula to<AM(t, S) yields
RZAM(t, S) = £A™(0, %)
t
+ [ [£RZAM(5,5) +ROSASL #1456, ) | ds+ 2
J0

whereZ is a martingale. Using the convexity & ™ and introducing the stop-
ping time
D Finf{t| £4"(,S) = 9(S)}
it follows that
%7(0) > E"(R(D)g(Sp)) = £ ™(0,x)

where we have used thadt7(0) is the supremum over stopping times of
E7(R(7)g(S;)). The general result (i.e. at tint¢ is now routine, see [13]. The
upper bound is obvious sind®(t) < 1.

When~ goes to—1, the viable prices converge to the Black-Scholes func-
tion evaluated a5, a fact that has already been pointed out by Pham [24].
When~ goes to infinity, the exercise boundary tendsg;(0). From &A™ (t) >
EY(R(T)g(Sr)) and using the same arguments as in the previous section, we ob-
tain the required limit. |

Pham [24] has proved this result for a put option, under the restrictionythat
is a deterministic parameter, using the maximum principle. American options in
a mixed model are intensively studied by Zhang [26], and Chesney [7] among
others. In these papers, the authors compute the value of the American option
under a particular martingale measure, such as Merton’s measure djllime
Schweizer martingale measure.
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5.2 Asian options

In the Black-Scholes framework (4.1), the value of a fixed-strike Asian call is

defined to be
+
As def @ 1/T _ 7
c® = ElR(t) T/, Xpdu—K | | A

Décamps and Koehl [1] have established that the value of an Asian claim is
given by CAS = X(t). 4(t, YX) whereY* is determined in terms oX as

Y d:ef% <_|:E/OtX(u)du—K>7

and. ¢ satisfies the partial derivative equation

o.¢ 1 0.t 1 , , %4 _

o TGy 7Y e

together with the terminal condition4(T,y) = y*. Further, they proved the
convexity of the value of the Asian claim with respect to the underlying aéset
Following our method, the convexity of the Asian price arfiidttemma lead to
the inequality

0% —IT 1 T +| o7 7 S
E (e (¢ [ stdu—x) |.ﬁ)zs.fé<t7vt)
0

whereY S is defined in terms o8 as above.

6 Conclusion

In incomplete markets driven by mixed diffusion, the range of prices is too large.
The non existence of non-trivial super hedging strategy seems to be a constant
fact. However, the lower bound proves that, one more time, the Black-Scholes
function satisfies some robustness condition. In recent works, many authors are
interested with modelling prices including jumps. More precise studies have to
be conducted, either to price the jump risk in an economically satisfying manner,
or to construct, as Dritschel and Protter [10], a complete model allowing for
jumps in the stock price dynamics.
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Note added in proof: It is possible to show thak. 4(t, Yts) is the lower bound of the viable prices.
See [27].
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