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1 Introduction

It is well known that in an incomplete market there are several equivalent martin-
gale measures and that perfect hedging is not always possible. In this situation,
one way to price options is to choose a particular equivalent martingale measure,
for example the F̈ollmer-Schweizer minimal probability [17], the canonical mar-
tingale measure which minimizes the relative entropy with respect to the original
probability measure [23], or as in [9], the equivalent martingale measure associ-
ated with a utility function. In all these cases, the price is a viable price, i.e., it
does not induce any arbitrage opportunities; however, there is no consensus on
the choice of this martingale measure.

Another approach is to determine the range of prices compatible with no
arbitrage or the minimal super-replication strategy. However, as shown by El
Karoui and Quenez [15, 16], when the dynamics of the stock price are driven by
a Wiener process or by Kramkov [20], in a general semi-martingale framework,
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these two approaches are closely related: the supremum of the possible prices is
equal to the minimum initial value of an admissible self-financing strategy that
super-replicates the contingent claim.

When the incompleteness arises from stochastic volatility and/or portfolio
constraints, the minimal price needed to super-replicate a given contingent claim
is studied in [3, 8, 18, 19] among others. Eberlein and Jacod [11] showed the
absence of non-trivial bounds on European claim prices in a model where prices
are driven by a purely discontinuous Levy process with unbounded jumps.

In this paper we address the problem of the range of viable prices for mixed
diffusion dynamics. As in the above mentioned papers, the upper bound is proved
to be a trivial one : for example, the minimal strategy to hedge a European call is
a long position in the underlying asset. On the contrary, our work shows that the
lower bound is not a trivial one, but the corresponding Black-Scholes function
evaluated at the current stock price.

2 The model

Consider a financial market where a riskless asset, with deterministic return rate
r , and a risky asset are traded up to a fixed horizonT.

Let (Ω,F ,P) be a probability space and let (Ft ) be a right-continuous
filtration, which includes allP negligible sets inF .

The dynamics of the riskless asset’s priceB are given by

dB(t) = B(t)r (t) dt, B(0) = 1 ;

whereas that of the risky asset’s priceS are

dS(t) = S(t−)[bt dt + σ(t ,St )dW(t) + φ(t ,St−)dM (t)] , S(0) = x > 0 . (2.1)

HereW is an (Ft )-Brownian motion andM is the compensated (Ft )-martingale
associated with an (Ft )-Poisson processN with deterministic intensityλ, i.e.

Mt = Nt −
∫ t

0
λ(s)ds. It is well known that, in this setting,W and M are

independent ([25], chap. V, ex. 4.25).
The following hypotheses will be upposed to hold through’out the paper:

Hypotheses H1
• The interest rater and the jump intensityλ are assumed to be non-negative de-
terministic bounded functions, and the appreciation rate processb to be bounded
and (Ft )-predictable.
• The functionσ : [0,T] × (0,∞) → R is supposed to be continuous in (t , x),
and Ḧolder continuous inx ∈ [0,∞[ uniformly in t ∈ [0,T], and bounded

0< m ≤ σ(t , x) ≤ M .

• Assume moreover thatρ(t , x)
def
=

∂

∂x
(xσ(t , x)) is continuous in (t , x) and

Lipschitz in x ∈ [0,∞[ uniformly in t ∈ [0,T].
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• The functionφ : [0,T] × (0,∞) →] − 1,∞[ is supposed to be bounded and
bounded away from 0 and−1 (0 < m ≤ |φ(t , x)| ≤ M , φ(t , x) ≥ ε > −1),
continuous in (t , x), and Lipschitz inx ∈ [0,∞[ uniformly in t ∈ [0,T].
• We suppose thatFt is the usual augmentation ofσ(Ws,Ms ; s ≤ t). This
implies that (Ft ) is the augmented filtration ofσ(Ss ; s ≤ t) which is generated
by the prices.

In particular, under these hypotheses, there exists a unique solution to the
equation (2.1) which is strictly positive and can be written in the form

S(t) = x exp

(∫ t

0
bs ds

)
E (σW)(t) E (φM )(t) .

Here the Doleans-Dade exponentials are theP-martingales defined by

E (σW)(t) = exp

(∫ t

0
σ(s,Ss)dW(s) − 1

2

∫ t

0
σ2(s,Ss)ds

)
E (φM )(t) = exp

(∫ t

0
ln(1 +φ(s,Ss−)) dM (s)

−
∫ t

0
λ(s)[φ(s,Ss) − ln(1 +φ(s,Ss))] ds

)
We shall often use the following expression for the Doléans-Dade martingale

E (φM )(t) = exp

(∫ t

0
ln(1 +φ(s,Ss−)) dN(s) −

∫ t

0
λ(s)φ(s,Ss) ds

)
.

Moments of prices

For anya ∈ R, an easy computation gives

[S(t)]a = xaE (aσW)t E (φaM )t exp

[
1
2

∫ t

0
a(a − 1)σ2(s,Ss)ds

]
× exp

[
a
∫ t

0
bsds

]
exp[

∫ t

0
λ(s)[φa(s,Ss) − aφ(s,Ss))] ds (2.2)

whereφa = (1 +φ)a −1. From this we see that, for anya > 0, and anyt ∈ [0,T]
E(Sa(t)) is finite.

3 Risk-neutral probability measures set

Recall that a probabilityQ on the space (Ω,F , (Ft ),P) is called an equivalent
martingale measure if it is equivalent to the original probabilityP and if, under

Q the discounted price process (R(t)S(t), t ≥ 0), whereR(t) = exp−
∫ t

0
r (s) ds,

is a martingale. We shall restrict our attention to martingale measures such that

the Radon-Nikodym density (Lt =
dQ
dP

|Ft
,0 ≤ t ≤ T) is a P-square integrable

martingale over the time interval [0,T], i.e., supt∈[0,T] E[(Lt )2] < ∞.
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Proposition 3.1. The setQ of equivalent martingales measures with a P-square

integrable density is the set of probability measures Pγ such that
dPγ

dP

∣∣∣∣
Ft

= Lγ(t)

where Lγ(t)
def
= LγW(t) LγN (t) is the product of the Doleans-Dade martingales

LγW(t) = E (ψW)(t) = exp[
∫ t

0
ψsdW(s) − 1

2

∫ t

0
ψ2

sds]

LγN (t) = E (γM )(t) = exp[
∫ t

0
ln(1 +γs)dN(s) −

∫ t

0
λ(s)γsds]

In these formulae, the two predictable processesψ andγ are linked by

bt − r (t) + σ(t ,St−)ψt + λ(t)φ(t ,St−)γt = 0 , dP ⊗ dt. a.s. (3.1)

and Lγ is assumed to be a P-square integrable strictly positive martingale. In
particular, we assume that the processγ satisfies(1 +γt ) > 0, dP ⊗ dt a.s. .

Proof. This result is now well known and can be found in [4, 6, 24] among
others. The proof follows from the fact that the densityL must be a strictly
positiveP-martingale. Then using the predictable representation theorem for the
pair (W,M ), it can be written in the form

dL(t) = L(t−)[ψt dW(t) + γt dM (t)]

where (ψ, γ) are predictable processes. It remains to choose the pair (ψ, γ) so
that the processRSLis a P-martingale; this leads, using Itô’s lemma, to formula
(3.1). In particular, ifγ is a constant greater than−1, Pγ belongs toQ . ut

The termsψ and γ are respectively the risk premium associated with the
Brownian risk and the jump risk. On the contrary to the Brownian risk premium,
the range of possible values forγ does not depend on the coefficients of the
model and that is why we take it as a parameter. For example,ψ = 0 is not
always a possible choice for the Brownian risk.

In order to price a European call in a mixed model with constant coefficients,
Merton [22] choses the particular martingale measure associated withγ = 0 and

ψ =
b − r
σ

. We shall therefore call Merton’s measure the martingale measureP0

associated with a zero jump risk premium. UnderP0 the intensity ofN remains

inchanged while (W0(t) = W(t) +
∫ t

0

bs − r (s)
σ(s,Ss)

ds, t ≥ 0) becomes a standard

Brownian motion independent ofN .
In the sequel, we denote byΓ the set of the predictable processesγ such that

Lγ is a P-square integrable strictly positive martingale. UnderPγ , the process
Wγ defined as

Wγ(t)
def
= W(t) −

∫ t

0
ψs ds

is a Brownian motion andM γ(t)
def
= M (t) −

∫ t

0
λ(s)γs ds is a martingale.
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The price process may be written in terms ofWγ andM γ in the form

dS(t) = S(t−)[r (t)dt + σ(t ,St )dWγ(t) + φ(t ,St−)dMγ(t)]

and it satisfies
R(t)S(t) = xE (σWγ)(t) E (φM γ)(t) .

The moments ofSt under Pγ may be computed using the same method as in
(2.2) whereλ(s) is replaced byλ(s)(1 +γs) andb by r .

In the case whereγ is a deterministic function, the Poisson processN has
a deterministicPγ intensity equal toλ(t)(1 + γ(t)), the martingaleM γ has the
predictable representation property and is independent ofWγ . This is no longer
the case whenγ depends onW and the pair (Wγ ,M γ) can fail to be independent
as it is easily seen in the caseγt = 11Wt >0 whereEγ(Wγ

t (M γ
t )2) /= 0.

In what follows, we denote byΥ the subset ofQ consisting of the probability
measuresPγ associated with a constant jump-risk premiumγ. For anyγ ∈ Υ the
martingalesWγ andM γ arePγ-independent and the processS is a Pγ-Markov
process.

4 Range of prices

Let ζ be a European contingent claim, i.e. a non-negative random variable in
L2(Ω,FT ,P). A t-time viable priceV γ(t) for the contingent claimζ is defined
as the conditional expectation (with respect to the informationFt ) of the dis-

counted contingent claim under the martingale-measurePγ , i.e., R(t)V γ(t)
def
=

Eγ(R(T) ζ|Ft ).
The determination of the range of viable prices, i.e., the explicit form of the

interval ] infγ∈Γ V γ(t) , supγ∈Γ V γ(t)[ is studied in [11] for European claims, in
the case where the underlying asset is a purely discontinuous process.

We give here, in a more general framework, a study based on the convexity of
the Black-Scholes price using the simple arguments of El Karoui et al. [13, 14].
The crux of the matter is the convexity, with respect to the stock price, of the
Black-Scholes function. This assumption is satisfied under some hypotheses on
the pay-off function.

In order to obtain this convexity property, we restrict our attention to the
case whereζ = h(ST ) for some convex functionh having bounded one sided
derivatives.

4.1 The “call” case

Definition. For a given convex functionh, we define the corresponding Black-
Scholes functionH (t , x) by

R(t)H (t , x) = E(R(T) h(XT ) |Xt = x) , H (T, x) = h(x)

when the dynamics ofX are given by
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dXt = Xt (r (t)dt + σ(t ,Xt ) dWt ) ,X0 = x. (4.1)

Hereσ(t , x) is the same function as in (2.1). In the case whereσ(t , x) = σ(t) is
a deterministic function of time only, the Black-Scholes function is known to be
given by

H (t , x) =
R(T)
R(t)

E

[
h(

xR(T)
R(t)

exp[Σ(t)U − 1
2
Σ2(t)] )

]

whereU is a standard normal random variable andΣ2(t) =
∫ T

t
σ2(s)ds.

Under the hypotheses onσ andh, the Black-Scholes functionH is convex

w.r.t. x, belongs toC1,2 [13] and its “Delta” is bounded :

∣∣∣∣∂H

∂x
(t , x)

∣∣∣∣ ≤ C .

Consider the operatorsL andΛ defined onC1,2 functions by

L (f )(t , x) =
∂f
∂t

(t , x) + rx
∂f
∂x

(t , x) +
1
2

x2σ2(t , x)
∂2f
∂x2

(t , x)

Λf (t , x) = f (t , (1 +φ(t , x)) x) − f (t , x) − φ(t , x)x
∂f
∂x

(t , x) .

Here, the Black-Scholes functionH satisfiesL (RH )(t , x) = 0.

Hypothesis H2
A convex functionh satisfies the hypothesisH2 if 0 ≤ h(x) ≤ x, h(0) = 0 and
if the functiong defined byg(x) = x − h(x) is bounded.

As an example, we have the European call, whereh(x) = (x − K )+.

Theorem 4.1. Let Pγ ∈ Q and Vγ(t) be the associated viable price process
defined by R(t)V γ(t) = R(T)Eγ(h(ST )|Ft ). Then,
1. The hedging error caused by jumps is given byΛH (s, x). More precisely,

R(t)V γ(t) = R(t) H (t ,St ) + R
γ
t

whereR
γ
t = Eγ

[∫ T

t
R(s)(1 +γs)λ(s)ΛH (s,Ss)ds|Ft

]
.

2. Any viable price is bounded below by the Black-Scholes function, evaluated at
the underlying asset value i.e.,

H (t ,St ) ≤ V γ(t) , ∀γ ∈ Γ.

3. If moreover h satisfies the hypothesesH2, any viable price is bounded above
by the underlying asset value

H (t ,St ) ≤ V γ(t) ≤ St , ∀γ ∈ Γ.
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Proof. Let S be the solution of (2.1) and suppose thatH is C1,2. (Otherwise,
apply Itô’s lemma for convex functions, see e.g. [25]). Itô’s formula for mixed
processes gives

R(T)H (T,ST )

= R(t)H (t ,St )

+
∫ T

t

[
L (RH )(s,Ss) + R(s)λ(s)(γs + 1)ΛH (s,Ss)

]
ds

+
∫ T

t
R(s)

∂H

∂x
(s,Ss− ) Ss− (σ(s,Ss)dWγ(s) + φ(s,Ss− )dMγ(s))

+
∫ T

t
R(s)ΛH (s,Ss− ) dMγ(s) (4.2)

From Eγ(S2
t ) ≤

√
E[(Lγ

t )2] E(S4
t ), the boundedness of the Delta and the

existence of the moments of price, the stochastic integrals on the right-hand side
of (4.2) arePγ-martingales. The Black-Scholes equation givesL [RH ](s, x) =
0. Taking thePγ conditional expectation with respect toFt then leads to

Eγ(R(T)H (T,ST )|Ft ) = Eγ(R(T)h(ST )|Ft )

= R(t)H (t ,St )

+Eγ

(∫ T

t
R(s)λ(s)(γs + 1)ΛH (s,Ss) ds|Ft

)
.

The lower bound of the interval of viable prices follows from the convexity of
H (t , ·) which implies thatΛH (t , x) ≥ 0. The upper bound is a trivial one
from the hypothesis thath(x) ≤ x and thePγ martingale property of the process
RS. ut

The convexity of the set of equivalent martingale measure implies that the
map γ → Eγ(BR(T)) is convex and, therefore, continuous. Consequently, the
range of prices is an interval.

To establish that the viable prices of the claimh(ST ) span the whole interval
]H (t ,St ), /,St [, we may (and will) restrict our attention to the case of a constant
jump risk premium.

Theorem 4.2. 1. The lower bound of the range of prices is the Black and Scholes
function evaluated at the unerlying asset’s price :limγ→−1 V γ(t) = H (t ,St ).
2. If moreover h satisfies hypothesisH2, the upper bound is the trivial one:
limγ→+∞ V γ(t) = St .

Proof. If γ is a constant, the price processS is a Markov process underPγ .
Therefore, it suffices to prove the lemma fort = 0.

Whenγ goes to−1, the intensity of the Poisson process goes to zero, therefore
there are, at least intuitively, no more jumps and the viable price converges to
the Black-Scholes function. This argument can be made precise as follows. From
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the inequality|ΛH (t , x)| ≤ 2xMC whereM is the bound for the size of the
jumpsφ, it follows that

0 ≤ Eγ [
∫ T

0
R(s)λ(s)(γ + 1)ΛH (s,Ss) ds]

≤ 2C(γ + 1)M
∫ T

0
λ(s)Eγ(R(s)Ss) ds

= 2xC(γ + 1)M
∫ T

0
λ(s) ds

Thus, the proof is complete because the right-hand side converges a.s. to 0 when
γ goes to−1.

The proof is somewhat more difficult for the upper bound. When the intensity
goes to infinity, there are more and more jumps and the Brownian motion has
no effect. Furthermore, the processM is a martingale and jumps very quickly
above and belowM0. It is then nearly impossible to see these jumps and it seems
that the process stays at the initial point. This point of view is made precise in
the following lemma.

Lemma 4.3. For any η > 0, Pγ [E (φM γ)T ≥ η] tends to 0 whenγ goes to
infinity.

Proof. From the Markov inequality, it suffices to check thatEγ
[
E (φM γ)T )a

]
converges to zero, fora > 0. Using the same computation as in (2.2), it can be
shown that, forγ constant

[E (φM γ)T ]a ≤ E (φaM γ)T exp(1 +γ)
∫ T

0
λ(s)F (s,Ss)ds

whereF (s, x) = (1 +φ(s, x))a − aφ(s, x) − 1.
For 1− a > 0, from the hypothesis|φ| > m, some elementary computations

on the functionF lead toF (s, x) ≤ k where

k = [(1 + m)a − (1 + am)] ∨ [(1 − m)a − (1 − am)] < 0 .

ThereforeEγ
(
[E (φM γ)T ]a

) ≤ exp[(1 +γ)k
∫ T

0
λ(s)ds] goes to 0 whenγ goes

to infinity and the result follows . ut
We now return to the proof of theorem (4.2); from hypothesesH2 we get

Eγ [R(T)h(ST )] = Eγ [R(T)ST ] − Eγ [R(T)g(ST )]

= x − Eγ [R(T)g(ST )] = x − R(T)Eγ [G(xE (φM γ)T ]

where G(x) = E[g(xR(T)−1E (σW)T )] is a continuous bounded function. The
convergence ofEγ(G(xE (φM γ)T ) towards 0 asγ goes to infinity follows from
the boundness and continuity ofG.
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4.2 The put case

Hypothesis H3:
A function g satisfies the hypothesisH3 if g is a convex bounded function having
bounded one sided derivatives and if 0≤ g(x) ≤ g(0).

Under this hypothesis the Black-Scholes functionG (t , x) associated with the
contingent claimg(ST ) is convex w.r.t.x and, following our method, we obtain

R(t)G (t ,St ) ≤ Eγ(R(T)g(ST )|Ft ) ≤ R(T)g(0)

As above, the viable prices span the whole interval.

4.3 Substrategy

Our proof provides an explicit substrategy. Suppose that a self-financing portfolio

is built on the “Delta” of Black-Scholes, i.e. by investing
∂H

∂x
(t ,St ) in the risky

asset. The valueΠ(t) of this portfolio satisfies

dΠ(t) = (Π(t) − St
∂H

∂x
(t ,St ))r (t)dt +

∂H

∂x
(t ,St )dSt

The tracking error is defined ase(t)
def
= Π(t) − H (t ,St ).

Theorem 4.4. The discounted tracking error(R(t)e(t), t ≥ 0) is a non-increasing
process

Proof. The tracking error satisfies

de(t) = −ΛH (t ,St ) dNt + r (t)e(t)dt .

ConsequentlyR(t)e(t) is a decreasing process. ut
It seems interesting to obtain some estimates for the expected value and the

variance of the error from the Black-Scholes hedging. Some easy computation
lead to Var(R(t)e(t)) ≤ Cx2K (t) whereK (t) = αt2eβt , α, β > 0.

4.4 Remarks and comments

1. Eberlein and Jacod [12] consider the case where the dynamics of the prices is
a general Ĺevy process. While restricting their attention to equivalent martingale
measures under which the underlying asset remains a Lévy process, they show
that the range of prices is included in the interval ]H (t ,St ), St [ using a different
method to ours.
2. Note that if E (σWγ) and E (φM γ) are independent processes, the con-
vexity of the Black-Scholes function and Jensen’s inequality lead easily to
a comparison of the viablePγ price and the Black-Scholes one. Indeed, let
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H (x)
def
= R(T)E[h(xR(T)−1E (σW)T )] be the price of the claim in a Black-

Scholes framework. Then, assuming thatH is a convex function, (see the needed
assumptions above)

H (x) = H [Eγ(xE (φM γ)T )] ≤ Eγ [H (xE (φM γ)T )] = R(T)Eγ(h(ST ))

where the last equality follows from the assumed independence betweenE (σWγ)
andE (φM γ) and the definition ofH .
3. As we have recalled, the convexity of the Black-Scholes function holds when
h is convex, under some assumptions on the dynamics of the prices. The reader
may refer to the thesis of Martini [21] for an exhaustive study of the convexity
of the Black-Scholes function.
4. The impact of jump size and jump risk can be made precise. Letγ be a fixed
constant parameter. Then, the viable price is a function of the underlying asset,
sayV γ(t) = V γ(t ,St ) whereV γ(t , x) depends onφ and on the other parameters
of the model. Pham [24] proves that the functionγ → V γ(t , x) is non-decreasing.
Bellamy [5] establishes that the functionφ → V γ(t , x) is non-increasing on the
interval ]− 1,0[ and non-decreasing onR+.
5. If h satisfiesH2, and if the upper bound belongs to the range of prices, i.e.,
there existsPγ such thatR(t)St = Eγ(R(T)h(ST )|Ft ), theng(ST ) = ST −h(ST ) is
hedgeable and bounded, the range of prices is a singleton andH (t ,St ) = h(St )
which implies thath(x) = x. It is tempting, but not true to extend this property
to any contingent claim. If a contingent claim is hedgeable, the upperbound is
reached, however, except in the case when this claim is bounded, this does not
imply that the range is a singleton, see e.g. Ansel and Stricker [2].

4.5 Generalisations

1. The result in theorem 4.2 holds under a more general dynamics for the jump
part. Suppose for example that the dynamics ofS are given by

dS(t) = S(t−)[bt dt + σ(t ,St )dW(t) +
∫

R

φ(t , y)ṽ(dt,dy)]

whereṽ(dt,dy) = v(dt,dy)−λ(t)m(dx)dt is the compensated jump martingale of
a homogeneous Poisson random measure, andσ, φ andh satisfy the hypotheses
H1 andH2 respectively.

The proof follows by analogy with the previous proof.
The setQ of equivalent martingales measures is the set of probability mea-

suresPγ such thatdPγ = Lγ
T dP where the processLγ

t satisfies the stochastic
differential equation

dLγ(t) = Lγ(t−)

(
ψ(t)dW(t) +

∫
R

γ(t , y)ṽ(dt,dy)

)
and where the processesψ andγ are related by the equation
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bt − r (t) + σ(t ,St )ψ(t) +
∫

R

λ(t)ϕ(t , y) (1 +γ(t , y)) m(dx) = 0 .

It suffices to check that

Eγ [R(T)h(ST )|Ft ] = R(t)H (t ,St ) + Eγ

[∫ T

t
R(s)λ(s)Λ̃H (s,Ss)ds|Ft

]
.

Here

Λ̃f (t , x)

=
∫

R

[
f (t , (1 +ϕ(t , y))x) − f (t , x) − xϕ(t , y)

∂f
∂x

(t , x)

]
(1 +γ(t , x)) m(dx)

and it is clear that̃ΛH (t , x) ≥ 0 as soon asH is a convex function ofx.

2. The same result extends also to the case where

dSt = St−

(
bt dt + σ(t ,St )dWt +

i =k∑
i =1

ϕi (t ,St−)dMi ,t

)

We shall not provide the proof here, since it uses the same ideas as in the previous
one.

3. Our results extend also to the case where the processN has a stochastic
bounded intensity under the historical probability measure. Actually, we used the
deterministic intensity assumption in order to establish that the local martingales
in (4.2) are martingales, which can be done in a general setting. It remains, in the
proof of the corresponding theorem and lemma, to restrict our attention to the set
of jump risk premiumγ for which the processesWγ andM γ remain independent

underPγ . This can be done with 1 +γt =
α

λt
with constant coefficientα varying

in ]0,∞[.

4. The same method applies for average contingent claims of the formζ =∫ T

0
h(s,Ss)ds for some functionh(s, ·) satisfying the hypothesisH2 or H3, see

Sect. 5.2 for the Asian case.

5 American and Asian cases

5.1 American case

The comparison result still holds for American claims.
If h satisfies the hypothesisH2, it can be proved that the American and the

European prices agree under anyPγ , see e.g. [13].
Let us now study the “put” case and assume that the pay-off functiong

satisfiesH3.
Let G Am,γ defined by
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R(t) G Am,γ(t) = ess supτ∈T (t,T)E
γ(R(τ )g(Sτ ) |Ft )

be the American viable price corresponding to the martingale measurePγ . Here,
T (t ,T) is the class of stopping times with values in the interval [t ,T]. Let
G Am be defined as the American- Black-Scholes function for an underlying
asset following (4.1), i.e.,

R(t)G Am(t ,Xt )
def
= ess supτ∈T (t,T)E(R(τ )g(Xτ ) |Xt )

Then, G Am(t , .) is a convex function [13]. Moreover, this function is smooth
before the exercice timeτ∗ and satisfiesL (RG Am) = 0 on this region.

Proposition 5.1. Let Pγ ∈ Q . Then,

G Am(t ,St ) ≤ G Am,γ(t) ≤ g(0)

The viable prices span the whole interval.

Proof. We prove the result fort = 0. Applying Itô’s formula toG Am(t ,St ) yields

R(t)G Am(t ,St ) = G Am(0,S0)

+
∫ t

0

[
L (RG Am)(s,Ss) + R(s)Ssλ(s)(1 +γs)ΛG Am(s,Ss)

]
ds + Zt

whereZ is a martingale. Using the convexity ofG Am and introducing the stop-
ping time

D
def
= inf{t | G Am(t ,St ) = g(St )}

it follows that

G γ(0) ≥ Eγ(R(D)g(SD )) ≥ G Am(0, x)

where we have used thatG γ(0) is the supremum over stopping times of
Eγ(R(τ )g(Sτ )). The general result (i.e. at timet) is now routine, see [13]. The
upper bound is obvious sinceR(t) ≤ 1.

Whenγ goes to−1, the viable prices converge to the Black-Scholes func-
tion evaluated atSt , a fact that has already been pointed out by Pham [24].
Whenγ goes to infinity, the exercise boundary tends tog(0). FromG Am,γ(t) ≥
Eγ(R(T)g(ST )) and using the same arguments as in the previous section, we ob-
tain the required limit. ut

Pham [24] has proved this result for a put option, under the restriction thatγ
is a deterministic parameter, using the maximum principle. American options in
a mixed model are intensively studied by Zhang [26], and Chesney [7] among
others. In these papers, the authors compute the value of the American option
under a particular martingale measure, such as Merton’s measure or the Föllmer-
Schweizer martingale measure.
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5.2 Asian options

In the Black-Scholes framework (4.1), the value of a fixed-strike Asian call is
defined to be

CAs
t

def
= E

[
R(T)
R(t)

(
1
T

∫ T

0
Xu du − K

)+

|Ft

]

Décamps and Koehl [1] have established that the value of an Asian claim is
given byCAs

t = X(t)A(t ,YX
t ) whereYX is determined in terms ofX as

YX
t

def
=

1
X(t)

(
1
T

∫ t

0
X(u) du − K

)
,

andA satisfies the partial derivative equation

∂A

∂t
+ (

1
T

− ry)
∂A

∂y
+

1
2
σ2y2 ∂

2A

∂y2
= 0

together with the terminal conditionA(T, y) = y+. Further, they proved the
convexity of the value of the Asian claim with respect to the underlying assetX.
Following our method, the convexity of the Asian price and Itô’s lemma lead to
the inequality

Eγ

(
e−rT (

1
T

∫ T

0
S(u) du − K )+|Ft

)
≥ St A(t ,YS

t )

whereYS is defined in terms ofS as above.

6 Conclusion

In incomplete markets driven by mixed diffusion, the range of prices is too large.
The non existence of non-trivial super hedging strategy seems to be a constant
fact. However, the lower bound proves that, one more time, the Black-Scholes
function satisfies some robustness condition. In recent works, many authors are
interested with modelling prices including jumps. More precise studies have to
be conducted, either to price the jump risk in an economically satisfying manner,
or to construct, as Dritschel and Protter [10], a complete model allowing for
jumps in the stock price dynamics.

Acknowledgements.We thank Robert Elliott and Julien Hugonnier for their kind assistance with the
English as well as for their comments and the two referees for their remarks on the first draft of this
paper.

Note added in proof: It is possible to show thatSt A(t , YS
t ) is the lower bound of the viable prices.

See [27].
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