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Abstract. An investor faced with a contingent claim may eliminate risk by
(super-) hedging in a financial market. As this is often quite expensive, we study
partial hedges which require less capital and reduce the risk. In a previous paper
we determined quantile hedges which succeed with maximal probability, given a
capital constraint. Here we look for strategies which minimize the shortfall risk
defined as the expectation of the shortfall weighted by some loss function. The
resulting efficient hedges allow the investor to interpolate in a systematic way
between the extremes of no hedge and a perfect (super-) hedge, depending on
the accepted level of shortfall risk.
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1 Introduction

In a complete financial market a given contingent claim can be replicated by a
self-financing trading strategy, and the cost of replication defines the price of the
claim. In incomplete financial markets one can still stay on the safe side by using
a "superhedging” strategy; cf. [EIQ (1995)] and [K (1997)]. But from a practical
point of view the cost of superhedging is often too high. Also perfect (super-)
hedging takes away the opportunity of making a profit together with the risk of
a loss.
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Suppose that the investor is unwilling to put up the initial amount of capital
required by a perfect (super-) hedge and is ready to accept some risk. What is
the optimal "partial hedge” which can be achieved with a given smaller amount
of capital? In order to make this question precise we need a criterion expressing
the investor’s attitude towards the shortfall risk. In [FL (1999)] we introduced
strategies of "quantile hedging” which maximize the probability that a hedge
is successful. In that case the investor applies a dynamic version of the static
Value at Risk concept. Just as the static VaR approach, the dynamic concept of
quantile hedging does not take into account the size of the shortfall but only the
probability of its occurrence.

In this paper we describe the investor’s attitude towards the shortfall in terms
of a loss functionl. Convexity ofl corresponds to risk aversion. The shortfall
risk is defined as the expectation of the shortfall weighted by the loss function.
Our aim is to minimize this shortfall risk, given some capital constraint. Instead
we could prescribe a bound on the shortfall risk and minimize the cost. In other
words, we are looking for hedges which are efficient with respect to the partial
ordering defined by the shortfall risk and the initial capital. These efficient hedges
allow the investor to interpolate in a systematic way between the extremes of a
perfect hedge (no chance of making a profit) and no hedge (full risk of shortfall,
full chance of profit) depending on the accepted level of shortfall risk.

In the special cask(x) = xP for p > 1, our approach can be viewed as a
dynamic version of static risk analysis in terms of lower partial moments; see,
e.g., [F (1977)], [Ba (1978)], [BaL (1977)], [HR (1989)]. A systematic analysis
of "coherent” measures of risk in a static setting is given in [ADEH (1999)]
where coherence is defined in terms of monotonicity, homogeneity, and trans-
lation invariance with respect to adding amounts of the riskless asset. But from
the individual investor’s point of view, it seems to make sense to relax these
requirements to monotonicity and convexity, and in this case risk measures of
the type considered above with a convex loss functiappear; see [L (1999)].

We begin in Sect.2 by defining our optimization problem for a given con-
tingent claimH in a general semimartingale setting. Existence and essential
uniqueness of the solution is shown in Sect. 3. The optimal strategy consists in
(super-) hedging a suitable modified clatth= pH wherep is some “random-
ized test” taking values in [@]. In the special casg(x) = x, where we simply
minimize the expected shortfall, we can construct the optimalidst applying
the Neyman Pearson lemma in direct analogy to the case of quantile hedging;
see Sect. 4 and [FL (1999)]. In this case, the resulting chittypically has the
form of a knock-out option.

For a general convex loss functibrihe problem becomes more involved. In
Sect. 5 we consider the complete case where the equivalent martingale measure
is unique. Using a method of [Ka (1959)], we show how the construction of the
optimal testg can again be reduced to an application of the Neyman Pearson
lemma. Typically the resulting claifi has a smoother structure than the knock-
out options which occur in the case of quantile hedging and in the case of a
linear loss function.
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In particular we consider the case of lower partial moments| (.= xP.
Thus we introduce a scale for the attitude towards riskpAscreases from 1 to
oo, the efficient hedges interpolate smoothly between the knock-out option and a
shifted claimH = (H —c)*. If H is a call, therH is a call at higher strike whose
arbitrage-free price equals the given initial capital. In Sect. 5.4 we also consider
the case < 1 where risk-averse behavior is replaced by risk-seeking behavior.
As appetite for risk increases amddecreases from 1 to 0, the corresponding
efficient hedges converge to the knock-out option which appears in the case of
quantile hedging. Thus quantile hedging corresponds to the bottom-end of our
scale.

Alternatively we can use methods of convex duality. In Sect.7 we use a
variant of the methods of [CK (1999)] and of [KS (1997)] in order to describe
the structure of the solution in the general case. In the incomplete case we rely
on the basic duality theorem in [KS (1997)]. Even in the complete case, these
methods provide additional information on the qualitative properties of the value
function of our problem. In the linear cadéx) = x and in a model driven
by Brownian motion, similar results including constraints on the strategies and
margin requirements appear in [CK (1999)] and [C (1998)]. In [P (1998)] convex
duality methods are applied in a discrete time setting W) = xP.

In order to illustrate our approach we compute in Sect. 6 the efficient hedges
for a call option in the standard case of a geometric Brownian motion with known
volatility and for the loss functior (x) = xP. While in the case of quantile
hedging the optimal strategy consists in replicating the option “knocked out”
above a certain threshold, the option is “knocked in” above some threshold if
we minimize the expected shortfall, i.e., in the case 1. In the case > 1 of
risk aversion, the modified options are no longer “knocked out/in” but exhibit
continuous payoffs. Finally in Sect.8 we study an incomplete extension of the
model where volatility is subject to a random jump.

It is a pleasure to thank Ja&k Cvitant, Freddy Delbaen and Paul Embrechts
for stimulating discussions.

2 Formulation of the problem

The discounted price process of the underlying asset is described as a semimartin-
gale X = (X)epo, 1] ON a probability spacef{,.7, P) with filtration (Z%)co,1]-
For simplicity we assume tha; is trivial. Let & denote the set of equivalent
martingale measures. We assume absence of arbitrage in the sense #éat

A self-financing strategy is given by an initial capitdp) > 0 and by a
predictable process such that the resulting value process

t
vt:vo+/ £dX% Wt €[0,T] 2.1)
0

is well defined. A strategy, &) is calledadmissiblef the corresponding value
processV satisfies
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Vi>0 Vvtel0,T], P-—as. (2.2)

Consider a contingent claim given byZg -measurable, nonnegative random
variableH. We assume

Up= sup E*[H] < o0 , (2.3)
P*e»r

whereE* denotes expectation with respectR6. The valueUg is the smallest
amountVy such that there exists an admissible stratedy,{) whose value
process satisfiesr > H P — a.s. This is well known in the complete case
where the equivalent martingale measireis unique, and wher&ly = E*[H]
is the unique arbitrage-free price of the contingent cleimFor the general case
see, e.g., [EIQ (1995)], [Kr (1996)], [FKab (1998)].

As in the discussion of quantile hedging in [FL (1999)], we now ask what
can be done if the investor is unwilling or unable to put up the initial capital
Uo. What is the best hedge the investor can achieve with a given smaller amount
Vo < Ug? In [FL (1999)] we took as our optimality criterion the probability
that the hedge is successful. In other words, we were looking for an admissible
strategy Vo, &) which minimizes the probability of a shortféf[Vy < H] under
the constrain¥Vy < V.

In this paper we want to control theize of the shortfall H — V1)*, not
only the probability that some shortfall occurs. To this end we introduce a loss
functionl which describes the investor’s attitude with respect to the shortfall. We
assume thalt is an increasing convex function defined ond@), with [(0) = 0.

We further assume that
E[I(H)] < co. (2.4)

Definition 2.1 The shortfall risk is defined as the expectation
E[I((H — Vr)")] (2.5)
of the shortfall weighted by the loss function |.

Our aim is to find an admissible strategs(¢) which minimizes the shortfall
risk while not using more capital thav,. Thus we consider the optimization
problem

T +
ENH - Vo)) =E ll ((H o /0 gsdxs> )1 —min (2.6)

under the constraint N
Vo < Vo. 2.7

In Sect. 7.1 we show how this optimization problem can be reformulated in terms
of maximizing the expectation of a suitable state-dependent utility function.

Remark 2.1linstead of minimizing the shortfall risk under a cost constraint, we
could fix a bound on the shortfall risk and minimize the cost. The results in
Sect. 7 show that both versions of the problem are in fact equivalent.
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Remark 2.2A typical example of a loss function igx) = xP for somep > 1.

This approach to measuring risk by lower partial moments is well known
in the economics literature, see, e.g., [F (1977)], [Ba (1978)], [BaL (1977)],
[HR (1989)]. In [F (1977)] a mean-risk dominance model for distributions of
returns is considered. Risk consists in falling short of a specified target return
t and it is measured by a partial moment belowlhus the risk of a random
variable X with distribution z is given by

t
EL(t — X)*)°] = / (t — x)P ().

As pointed out in [F (1977)], mean-risk dominance is congruent with maximizing
expected utility for a utility function of the form

U (x) =x — const((t — x)")P .

Note thatU is linear (i.e. risk-neutral) above the target return and concave (i.e.
risk-averse) below the target return.

There are several aspects in which we move beyond this setting. We consider
a dynamic instead of a static problem and we allow for general loss functions.
Moreover our investor is faced with a contingent claim instead of a fixed target
return, i.e. the investor aims at a random target.

3 The optimal hedge

Let us reduce our problem to the search for an elengeint the class
F={p: 2 —[0,1] | ¢ .FA-measurable
of “randomized tests” which solves the following optimization problem.

Proposition 3.1 There exists a solutio@ € .72 to the problem

min E[I((1 — ¢)H)] (3.1)
pES
under the constraint N
sup E*[peH] < Vg . 3.2
Prep

If | is strictly convex, then any two solutions coincide-Ra.s. on {H > 0}.

Proof. 1) Let. 72, consist of those elements of that satisfy (3.2). Let£,,) be
a minimizing sequence for (3.1) i#2y. Using Lemma A.1.1. in [DS (1994)] we
can choose functiong, € .72, belonging to the convex hull ofen, @n+1, ...}
such that §&,) convergesP — a.s. to somes € .22. Sincel (H) € L(P) we can
use dominated convergence to conclude that

E[1((X = @n)H)] — E[I((1 - $)H)] = min.
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On the other hand
E*[pH] <IminfE* [paH] < Vo YP* €

by Fatou’s lemma. Thu® € .%2.
2) Let ¢ be a solution. For any € .72¢ and fore € [0, 1] we define

pe=(L—e)p+ep.

By the convexity ofl we get

E[N(1 - @)H)] < 1 - o)E[(A - @H)] + E[I((1 - p)H)] .

If | is strictly convex, then the inequality is strict if

Pi{p#@}n{H >0}]>0.
u]

Let ¢ be the solution to the problem defined by (3.1) and (3.2). Without loss
of generality we assume
g=1lon{H =0} . (3.3)

Let us introduce the modified claim
H=¢gH , (3.4)
and let us defindJ as a right-continuous version of the process

U = esssupE*[gH |.7] . (3.5)
Pxez

U is a#’-supermartingale, i.e. a supermartingale with respect to any equivalent
martingale measur®* € &. We can now apply the optional decomposition
theorem, see [Kr (1996)], [FKab (1998)]. Thus there exists an admissible strategy
(Vo,f) and an increasing optional proce8swith Cy = 0 such that

U, = / gdx — & | (3.6)

Remark 3.1In the complete case where the equivalent martingale measure is
unique, o, 5) is simply the duplicating strategy for the modified clafin= gH
ie.

t
E*[¢H |.A] :\70+/ &dX vtel0,T], P-—as. (3.7)
0
Definition 3.1 For any admissible strategfVo, &) we define the corresponding
success ratio as

Vr
OMVo.8) = LpvrsHy + Wl{VT<H}- (3.8)
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Theorem 3.2 The strq}eg;((/o, 5) determined by the optional decomposition (3.6)
of the modified claimtH = pH solves the optimization problem (2.6), (2.7). Its
success ratio coincides P a.s. with .

Proof. 1) Let (Vo, &) be any admissible strategy wilty < Vo, and denote by
the corresponding success ratio. Sigdé = V1 AH the shortfall takes the form

(H—-Vr)*=H —Vr AH = (1— p)H. (3.9)

For anyP* € & the corresponding value process is a supermartingale Wider
and so we get

E*[pH] < E*[Vr] < Vo < Vo
Thus the success ratio satisfies the constraints (3.2) and so we have
E[I((H —Vr))] = E[I((X - p)H)] > E[I((1 ~ §H)] (3.10)
sincey ' is optimal for the problem defined by (3.1) and (3.2).

2) The strategy\?o,f) is admissible since the corresponding value process
satisfies

Vi > Vi — € = esssupE*[¢H |.%] > 0.
P*e>’

Its success ratig, ¢ satisfies
CdH =Vr AH>GH P—as. on {H >0},

hence

ei.HH =¢H P —as. on {H >0}

due to (3.10). Moreover we have
Pdy=P=1 on {H=0},
and so the success ratio coincides.s. withp. In particular we have
(H —Vr)"=(1-@H

due to (3.9). Thus the inequality (3.10) shows that the stratﬁ!g;fl solves the
optimization problem defined by (2.6) and (2.7). a
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4 Minimizing the expected shortfall

In this section we consider the case of a linear loss fundtfgh= x. Thus we
want to minimize the expected shortfall

E[(H —V1)] (4.1)

under the constraint N
Vo < V. 4.2)

Theorem 3.2 shows that this is equivalent to the optimization problem
E[pH] = max (4.3)

under the constraint that € .72 satisfies

sup E*[¢H] < Vo. (4.4)
P e
This takes the form
/son = max (4.5)
under the constraints
/<de* < o(P*) =V/E*[H] VP* e, (4.6)

where the measuregd andQ* are defined by
dQ _ H dQ* _ H
dP ~ E[H] ~ dP* E*[H] "

Thus the solutiorp; is identified as the optimal randomized test in a problem of
testing the compound hypothesis

{Q* [P* € 7}

parametrized by the class of equivalent martingale measures against the simple
alternativeQ, where the significance level varies with the paramé&ere =,
see, e.g., [W (1985)].

In the complete case the Neyman-Pearson lemma provides an explicit solu-
tion:

Proposition 4.1 Assume thap” = {P*}. Then the optimal randomized test €
72 is given by
P1= L ey Yl e 41

é:inf{a

where

/ HdP* < \70} (4.8)
{ dP >a}

dP*

and
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Vo—f{%%} HdP*
v = —
f{ @ -5} HdP

daPF

(4.9)

in the case that P[{ &2 =&} N{H > 0}] > 0. If P*[{ & =&} n{H > 0}] =0,
then@; reduces to the indicator function of the success{%‘éﬁ > a}.

Proof. The optimal test of the simple hypothe€§)sagainst the simple alternative
Q* is described by the Neyman-Pearson lemma in term@ ahdQ*; cf., e.g.,
[W (1985)]. If we rewrite it in terms o andP*, it takes the form (4.7). O

5 Explicit solution in the complete case

In this section we assume that the equivalent martingale me&suiseuniquely
determined, and we denote by
. _ dp*
P ap
the corresponding Radon-Nikodym derivative. We assume that our loss function
satisfied € C(0, c0), and that the derivativi is strictly increasing with’(0+) =
0 andl’(o0) = co. Let

| =)t

denote the inverse function of.

5.1 Structure of the modified claim

By proposition 3.1 the solutiop of our optimization problem exists, and it is
unique on{H > 0} sincel is strictly convex. On{H = 0} we setp = 1. The
following theorem provides the explicit structure ©of

Theorem 5.1 The solutiony to the optimization problem (3.1), (3.2) is given by

(5:1—(|(|C_|p)/\1) on{H > 0}, (5.1)
where the constant c is determined by the condition
E*[pH]= Vo . (5.2)

Proof. We use the method of Karlin [Ka (1959)] in order to reduce the compu-
tation of ¢ to an application of the Neyman-Pearson lemma.
1) Fory € .72 we define

pe=(l—e)ptep.
Let F,, denote the convex function defined on 1pvia

Fo(e) = E[I((1 — @)H].
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Applying monotone convergence separately{gn> ¢} and on{y < @} we
see that the derivative;(0+) exists and satisfies

FLO0H) =E['(1 - PH)(E - 9H] .

The optimality ofy means that for any € .2 the corresponding convex function
F, on [0, 1] assumes its minimum in = 0. This is equivalent to

F,(0+)>0 VYpe.22,

i.e., to
E['(1-@H)PH] > E[I'(1 - @H)pH] Vo .72 . (5.3)
2) If we define probability measure3, Q* on {H > 0} by
dQ _ / dQ* _
i constl’' (1 —@)H)H | prri constH

then (5.3) becomes the problem of testing the hypoth@sémainst the alterna-
tive Q* at the levelo = Vp/E*[H]. The Neyman-Pearson lemma describes the
structure of the optimal test in terms of the likelihood ratio

;—g* = constl’((1 — )H )%
where the constant is determined from the level condition. On the set
{dQ/dQ" <c} ={I"(1—P)H)/p" < c} (5.4)
the optimal test is zero. On the set
{dQ/dQ™ > ¢} = {l'((1 - §)H)/p" > c} (5.5)

the optimal test should be equal to one. Notice however @fa) = 1 implies
I'((2 — @(w))H)/p* = 0 due tol’(0) = 0, a contradiction. Thus we have< 1

on {H > 0}. In the ordinary Neyman-Pearson situation there is no restriction on
the values on the set

{dQ/dQ" =c} ={I"((1 - §)H)/p" = c} (5.6)

except compliance with the level condition. In our situation, however, we have
to choosep on this set such that

Q—-o)H =1(cp*) (5.7)

in order to be consistent.
3) Define
@e=1—(I(cp*)/H A1) (5.8)
on {H > 0}. Note thatl (cp*) goes from O too a.s. on{H > 0} asc goes

from 0 to co sincel’(0) = 0 andl’(c0) = co. Thusp.H goes fromH to 0 a.s.
on {H > 0} asc goes from 0 toco. ConsequentlfE*[pcH] goes fromE*[H]
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to 0 by dominated convergence. Sincés continuousE*[¢cH] is continuous
in ¢ by dominated convergence. Hence we can finel (0, co) such that

E*[pcH] = Vo < E*[H].
For thisc we define
P = pc.

Then satisfies the consistency condition (5.7) on the set in (5.6). On the set in
(5.4) we have

1-G<I(cp)H
and this impliesp = 0 by the definition (5.8) ofs = ¢¢. Thusg is the optimal
Neyman-Pearson test described in 2). a

Remark 5.1Notice that the solutiorp is a function ofH andp. If both H and

p happen to be functions of the final stock pri¥e, theng is also a function

of Xr. This will be the case in the explicit computations for the Black-Scholes
model below.

Remark 5.2Suppose that the objective measiealready happens to be the
martingale measurf*, i.e. p* = 1. Then the modified claim takes the simple
form

GH=H—((QAH)=H — 1) (5.9)
If H is a call, thenzH is again a callX —K)*at the higher striké& = K +1 (c).

5.2 Lower partial moments

Let us consider the special case

xP
| =
(x) o

for somep > 1. Thus we want to minimize a lower partial moment of the
differenceVy — H. As a special case of Theorem5.1 we obtain the following
result:
Proposition 5.2 The optimal hedge consists in hedging the modified claim

woH =H —cy(p")7 1 A H (5.10)

where the constanty,ds determined such that

E*[¢pH] = V. (5.11)



128 H. Fllmer, P. Leukert
5.3 Increasing risk-aversion

Let us now consider the limip — oo corresponding to ever increasing risk-
aversion with respect to large losses.

Proposition 5.3 i) For p — oo the modified claimp,H converges tqH — c)*
almost surely and in }{(P*), where ¢ is the unique constant that satisfies

E*[cAH]=E*[H] - Vo. (5.12)

i) If H is a call at strike K, then the limit for p— oo is again a call at the higher
strike K = K + ¢ which corresponds to the Black-Scholes pNge

E* [(Xr — K)'] = V. (5.13)

Proof. 1) It is straightforward to see that the constanin (5.12) is uniquely
defined. We now show that lign, ¢, = ¢. To this end consider a subsequence
Cp, With lim, ¢y, =€ € [0, 00]. Then

cpn(,o*)pn%1 AH —=CAH as.
because
(p*)pn%1 —1 as.

By dominated convergence we conclude that
E* [y, (p")m 1 A H} S E*[CAH].
Thus we must have
E*[CAH]=E*[H] -V

due to (5.11), hence = ¢ sincec is unique. Applying this argument to the limit
inferior and to the limit superior, we see that limgf= c = limsupc,, hence
limc, = c as claimed.

2) From 1) it follows that

cp(p*)rzTll AH —-cAH as.,

hence
¢pH =H — Gy(p")™1 AH = H —cAH =(H —¢)*

both almost surely and in*(P*) (by dominated convergence singec L1(P*)
due to our assumption (2.3)). O
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5.4 Risk-taking and quantile hedging

In this section we assume that our investor, instead of being a standard risk-
averse agent, is in fact inclined to take risk. In our setting this corresponds to a
concave rather than a convex loss function. Hence I1e{0, co) — [0, c0) be
increasing and strictly concave wik{0) = 0.

Our basic optimization problem is still the same:

E [k((H — V1)) = min (5.14)
under the constraint N
Vo < Vo (5.15)
As before this is equivalent to finding € .72 such that
E[K((1— ¢)H)] = min (5.16)
under the constraint B
E*[¢H] < Vo (5.17)
It is straightforward to see that a solutignexists and thap is extremal on the

set{H > 0}.
From the concavity ok and fromk(0) = O the following inequality is im-
mediate:
E[k((1 - ©)H)] = E[k(H)] — E[¢k(H)]. (5.18)

But minimizing the lower bound in (5.18) can be done by a direct application
of Neyman-Pearson because it is equivalent to maximi&gf,] under the
constraintEq-[¢] < \70/E*[H] where the measure@, Q* are defined bydQ =
constk(H) dP anddQ* = constH dP*.

To avoid technicalities we only sketch the case where no randomization is
needed; for details and proofs see [L (1999)]. In this case the optimal Neyman-
Pearson test

© = LikH)>aHp*} (5.19)
is simply an indicator function where the constanis determined by the con-
straint. Hences minimizes the lower bound in (5.18). But for this(5.18) holds
in fact as an equality. Thug must be the optimal solution to our optimization
problem (5.16), (5.17).

Now let us consider lower partial moments again, k&) = xP for some
0 < p < 1. Then the sefk(H) > a,Hp*} U {H = 0} takes the form{1 >
a,H1Pp*}, and the optimal solution is given by

©p = 1{1>apH1—Pp*} ) (520)

if we assume for simplicity that no randomization is neededH:gp,H] = Vo.

Let us also assume that there is a unique constanich thate *[oH ] = Vo
wheregg denotes the indicator function of the st > &H p*}. The following
proposition shows that quantile hedging, as introduced in [FL (1999)], appears
as the limiting strategy with minimal shortfall risk @sdecreases to zero.
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Proposition 5.4 For p — 0 the solutiony, in (5.20) converges to the solution
o in the case of quantile hedging, both almost surely and*{{PL).

Proof. Let a,, — a* be a convergent subsequence. FigdT™ — H it follows
that

1{1>aan1—pnp*} — 1{l>a*Hp*} a.s.

Due to assumption (2.3) we can apply the dominated convergence theorem to
conclude that

E*[HLsa, nimpy] = E [Hlpsarmp)]

and this implies
E*[H1{1>aH,3] = Vo

From the uniqueness @f it follows thata* = &. Applying this argument to the
limit superior and inferior respectively we see that fign= &. Consequently

¢p = Liasanirpy = 1{1>5Hp*} = ¥o
both a.s. and in}(P*). ]
In an analogous manner one can establish the following proposition

Proposition 5.5 For p * 1 the solutiony, in (5.20) converges to the solution
@1 in the linear case (cf. Proposition 4.1), both almost surely and*PL).

6 Computations in the Black-Scholes model

In the standard Black-Scholes model with constant volatity O the underlying
discounted price process is given by a geometric Brownian motion

dX% = X (cdW + md)

with initial value Xy = %9, whereW is a Wiener process und& andm is a
constant. We assume thait > 0. The unigue equivalent martingale measBie
is given by

apP* m 1/my2_\ o
ap pr= exp(—UWT -5 (;) T) = constX;
where we set
-m
o = 0_2
The proces®V* defined by
W= W+
g

is a Brownian motion undeP*.
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A European calH = (X; — K)* can be hedged perfectly if we provide the
initial capital
Ho = E*[H] = %&(d+) — K&(d-) ,

where | nK 1
nxo—In
= 4 ZoVT

VT 2
and¢ denotes the distribution function of the standard normal distribution. Sup-
pose we want to use only an initial capid which is smaller than the Black-
Scholes priceHg. Under this constraint we want to minimize the shortfall risk
E[I((H — V1)*)] wherel is a given loss function satisfying the assumptions of
Sect. 2. We know that the optimal strategy consists in hedging the modified op-
tion gH where solves the optimization problem defined by (3.1), (3.2). We
will work out the solution explicitly in the case of lower partial moments.

d+ (%o, K) =

6.1 Lower partial moments

We know from (5.1) that the modified claim is given by
PpH =X — K)" — {c;vilXT”‘al AKXt — K)*} . (6.1)

Sinceci1x1 is convex and decreasing, there is at most one point of intersec-
tion L with (x — K)*. So we get

oH = [XT —K —LFi(L— K)XT’”] LxsLy (6.2)
= f(Xr)
where B
fo(X) = [x K — LAl — K)xm] Tyt - (6.3)
Let 7 =T —t. Consider the conditional expectation
Vi = E"[gpH | .A] (6.4)
= E* [fp <Xt exp |:O' (W; - V\/t*) - %O’z(T — t)}) 71}
= Fp(ta Xt)

where the functior, is given by

/ fo (x exp [a\ﬁy — ;O’ZT:|> exp <—;y2> %

/OO (x explovTy — %027] — K) exp (—;y’Z) dy

—d_(x,L)

Fp(t,x)

]
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()L()l(LK)x

* 1 2) dy
X exp|——— + exp| —= —
/_d(x,L) p{ p- (Ufy 27 Tﬂ p< 2y V2r

= x&(d(x, L)) — K (d_(x, L)) M
Xp-1
1, « ] ( ozaf)
X ex d_(x,L . (6.5
P 375+ 0| o (- % 65
The constant. is determined by the equation
Vo =E* [ZpH] = Fp(0,%0) - (6.6)

The strategy is obtained from this by differentiation:

G0 = SR =e (TR T
a Ll —K)

p— 1 Xﬁ+1

1, o« o)
<oty (521 )|

Xdﬁ(%“’ﬁ(pgl*;)) . (6.7)

Remark 6.1As shown in Sect. 5.3 the limit fop — oc is again a call option
with a strikeK corresponding to the Black-Scholes prigg

SooH = (X1 — K)* (6.8)
whereK is such that
Vo = E*[(Xr —K)"] (6.9)
_ Inxo—InK 1 Inxg—InK 1

6.2 The linear case

In the casd (x) = x Proposition4.1 shows that we have to knock out the option
outside the success set

A={dP/dP* > &} = {X& > ¢/} = {Xr > ¢}, (6.10)

where the constant is determined by the equation
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Vo = E*[H1a] (6.11)
Inxg—Inc 1 Inxg—Inc 1 )
= %P | ————=—+Z0VT ) K& ————= - Z0oVT]) .
o ( T 20 ) < oVT 27
Thus we have to hedge the modified claim
$1H =H1lpgoe = X — )"+ (€ — K)lpgsey - (6.12)
The conditional expectations are of the form
E*[p1iH | A] = Fi(t, %) (6.13)
where
Fi(t X) = x® Inx—Inc+}f K& Inx —Inc }f (6.14)
1\, - 0_\/? 20- T O'\/?' 20' T . .
By differentiation we obtain the hedging strategy:
InXi —Inc 1
= PR E——
atx) = o (e Zovr)
InXt—Inc , 1
c—K C\ 2020-7 2
+ — . 6.15
V2mco/T expGo?T) (Xt) ©19

6.3 The case of risk-taking

For p < 1 the optimal hedge consists in replicating the knock-out opitidn,

where L
Ao = {X¢ 2 a0 (% —K)) 7}
see (5.20). Let us illustrate this result in the case: 1. Forp = 1 the call is

hedged for values in [K] U [c, o), see (6.10). As soon gs drops below 1
both thresholds move up, i.e. the success set takes the form

AP = {XT S [0’ bp] U [va OO)} (616)

with K < by < ¢y < co. As p decreases to the level-la, the upper threshold
Cp goes toco and the lower threshold, increases to the valub which is
determined by the capital constraint

E* [(Xr — K)*" 1 <by] = Vo - (6.17)

The resulting knock-out optioRl = (Xr — K)"L¢x, <by is the optimal hedge for
any valuep € (0,1 — ], and it is exactly the knock-out option which appears
in the case of quantile hedging.

In the casex > 1 the optimal hedge in the quantile case is of the form

(Xt — K) Ly <biuxr >c}-

In accordance with Proposition 5.4, the threshdidsnd c appear as decreasing
limits of the corresponding thresholtls andc, asp goes to zero.
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6.4 lllustrations

Figure 1 illustrates the modified claims and strategies determined above and
compare them to the Black-Scholes (perfect) hedging strategy. The parameters
are chosen as

K=110 T =025 x =100

m=0.08 =03 t=01

The resulting Black-Scholes pricelity = 2.5, but we choose to provide only an
amountVo = 1 of initial capital.

Different attitudes towards shortfall risk are reflected in different shapes of
the modified claims and of the resulting hedging strategies; see [F (1977)] for a
discussion of the microeconomic aspects of such a risk analysis. Fig. 1 shows
the modified claims and strategies for five values of the risk pararpeter

In each graph on the left, the thin line shows the original call while the thick
line shows the modified claim. Correspondingly, the thin line in the graphs on
the right shows the Black-Scholes perfect hedging strategy=ad.1 while the
thick line shows the efficient hedging strategy. The graphs at the bottom show
how quantile hedging appears as one extreme on the scale of attitudes towards
risk, corresponding to the valye = 0. The next graphs illustrate risk seeking
behaviour with valug = 0.85. The graphs in the middle correspond to the risk
neutral casg = 1. The graphs fop = 1.1 illustrate the case of risk aversion
p > 1. In this case the modified options are continuous, as opposed to the
knock-in option forp = 1 and to the knock-out option of quantile hedging (see
[FL (1999)]). Thus, some undesirable features arising in the hedging of knock-
in/out options (see e.g. [W (1998)]) are avoided. The graphs at the top show that
for p — oo the modified claim becomes again a call, but now at a higher strike.

For the same set of parameters and in the pas@, Fig. 2 shows the shortfall
risk as a function of the given hedging capital. The shape of the “efficient frontier”
is indeed typical as we show in the following section. In particular the shortfall
risk function is always strictly decreasing and strictly convex, and under mild
conditions it has derivative-co in 0. Thus, an initial small amount of capital
allocated to hedging takes already away a large part of the shortfall risk. Using
more and more capital becomes less and less effective.

The graphs illustrate how the efficient hedging strategies constructed above
allow the investor to interpolate in a systematic way between the extremes of a
perfect hedge (no chance of making a profit) and no hedge (full risk of shortfall,
full chance of a profit), depending on the investor’s appetite for risk.

7 Convex duality methods

Convex duality is a well established tool in mathematical finance, see e.qg.
[K (2997)]. In this section we briefly show how convex duality methods may
be used as an alternative to the reduction to the Neyman Pearson lemma in solv-
ing our problem. Additionally this approach reveals some qualitative features



Efficient hedging: Cost versus shortfall risk 135

60 1
P — o0
50 0.8
40
0.6
30
0.4
20
10 0.2
110 120 130 140 150 160 170 75 100 125 150 175 200
X X
p=11 60
1
50
%0 0.8
30 0.6
20 0.4
10 0.2
110 120 130 140 150 160 170 75 100 125 150 175 200
X X
p=1 60
50 1
40 0.8
30 0.6
20 0.4
10 0.2
110 120 130 140 150 160 170 75 100 125 150 175 200
X X
p= 0.85 60 1.4
50 1.2
1
40
0.8
30
0.6
20 0.4
10 0.2
110 120 130 140 150 160 170 75 100 125 150 175 200
X X
p=0 60 1
50 0.8
40 0.6
30 0.4
20 0.2
10
75 00 Ng__Jee 175 200

110 120 130 140 150 160 170 -0.2



136 H. Flimer, P. Leukert

60

50

40

30

20

10

0.5 1 1.5 2 2.5 3
Fig. 2.

of the value function, i.e. the shortfall risk as a function of the initial capital
employed. This value function describes the efficient frontier in our problem of
balancing cost and shortfall risk. We only sketch the basic steps in this approach;
for detailed proofs see [L (1999)].

For the case of minimizing the expected shortfall in a diffusion model the
convex duality approach has been worked out in [CK (1999)] and in [C (1998)]
under additional constraints on the strategies. In a discrete time setting the case
of lower partial moments is treated in [P (1998)]. In our approach we com-
bine the basic duality result from [KS (1997)] with the technique of considering
state-dependent Legendre transforms which is used in [CK (1999)], [C (1998)]
and[P (1998)].

7.1 State-dependent utility

In the initial formulation of our optimization problem we want to minimize the
shortfall risk given an amount of initial capital which we now callIn other
words we are looking for a random variabfe (corresponding to the terminal
wealth resulting from an admissible strategy) such that

E[I(H —Z)")] = min (7.1)
under the capital constraint

sup E*[Z] <z. (7.2)
Pre

Let us reformulate the problem in terms of maximizing expected utility. To this
end we introduce the state-dependent utility function

Ui(z,w) =I(H(@) — [ (H(w) — 2)") (7.3)

Then the problem (7.1), (7.2) is equivalent to
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E[U,(Z(w), w)] = max (7.4
under the constraint
sup E*[Z] <z. (7.5)
P*e»’

For later purposes we generalize the problem as follows. Let us consider
a general state-dependent utility functior(z, w) which is non-decreasing and
concave inz, strictly concave on [(H (w)] and satisfiedJ (.,w) € C*(0, H (w)).
We also assume that

— 00 < E[U(0,.)] and E[U(H,.)] < cc. (7.6)

As in the usual optimization of expected utility the inverse of marginal utility
plays a central role. In our case the inverse

I(y,w)=inf{z € [0,H(w)] | U'(z,w) <Y}

is state dependent. We use the convention thatw) = co if U’(H (w),w) > .
We need the stochastic conjugate

V(Y,w) max (U(z,w) —zy) (7.7)

0<z<H (w)

U(I(y,w) AH(W),w) = y(I (y,w) AH(w))

of U. The functionV (., w) is hon-increasing and convex yn strictly convex on
[U'(H(w),w), U’(0,w)], and differentiable with derivative

VIy,w) = =(I(y,w) AH (W) (7.8)

7.2 Complete case

In this section we consider the complete case where the equivalent martingale
measure is unigue. In this context we define the value function

u(z) =supfE[U(Z,.)] |0<Z <H andE*[Z] <Zz}. (7.9)

We can then express the solution in termd ofia convex duality methods.
In particular we recover the solution from Sect.5 for= U,. In addition we
obtain qualitative properties of the value functian These properties will be
used in our discussion of a volatility jump in Sect. 8.

Theorem 7.1 1) For each z< E*[H] there is a unique solutioZ such that
u(z) = E[U (Z,.)]. It takes the form

Z(w) = 1(y(2)p" (w),w) A H (w) (7.10)
where y(z) is the solution of

E*[l (y@)p"(w),w) AHW)] =2z . (7.11)
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2) The conjugate function

v(y) = max(u(z) - zy) (7.12)
of u is given by
v(y) =E[V(yp"(w),w] (7.13)
where
V{y,w)=U((y,w) AH(w)) —y((y,w) A\H(w)) . (7.14)
Conversely we have
u(z) = ryT1>ig(v(y) +yz). (7.15)

3) The value function u is strictly increasing and strictly concavd@mi*[H]],
and belongs tdz (0, E*[H]). Its (right) derivative o0, E*[H]) is given by

u'(z+) =y(2) (7.16)

4) In particular we have
u'(0+) =+ (7.17)
if oo =y; =inf{y > 0| v(y) = E[U (0, .)]}, and this is the case if

/
y -

esssupU /()(3 1H>0) = 0. (7.18)

The proof is similar to maximization of expected utility except that, as in
[CK (1999)], [C (1998)], [P (1998)], one has to use stochastic instead of deter-
ministic conjugates; for a detailed proof see [L (1999)].

Remark 7.1In the Black-Scholes model the sufficient condition (7.18) is always
satisfied if the driftm is positive.

7.3 Incomplete case

The incomplete case involves a fundamental duality which is shown in full gen-
erality in [KS (1997)]. Let

t
Z(z) = {Z =(Z)>0|z =2 +/ &x o, ¢ admissible}
0

denote the class of possible value processes for admissible strategies starting with
initial capital z. Let
“(@2)={gcL®|0<g < Z for someZ € Z(z)}

denote the set of claims attainable with initial capital Consider the set of
supermartingale densities
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Y (y)={Y >0]| Yo=Yy andZY supermartingal&’Z € Z(1)}.
and define
Z(y)={hcL’|0<h <Yy for someY € Z(y)} .

Notice thatZz'(z) = z# (1) andZ (y) = yZ (1). For brevity let us denot& (1)
simply by ¢ and Z (1) by . We quote the following result :

Theorem 7.2 (Proposition 3.1 in [KS (1997)])

(i) Z,& are convex and solid subsets df which are closed in the topology of
convergence in measure

(i) ¢ and & stand in bi-polar relation, i.e.

ge? ©E[gh] <1 Yhe o (7.19)
he & < E[ghl <1 VYge @ (7.20)

The value function for our problem is defined as

u(z)= sup E[U(gAH,)], ze]0,00). (7.21)
g€ (2)

It is straightforward to see that is non-decreasing and concave. With the help
of the stochastic conjugad we can then set up the dual problem

uly) = heigf(y)E[V(h(w)7w)] (7.22)
= inf E[V(yhw),w)].
hez

It is again straightforward to see thatis non-increasing and convex.
The full duality picture is described by the following theorem.

Theorem 7.3 1) For every y > 0 there is a solutiorﬁ(y) € & to the dual
problem
v(y) = inf E[V (yh(w), w)]. (7.23)
hez

For any two solutions , h

U'(H,)VvfAU'(0,)=U'(H,)vhAU’(0,) P—as.on{H >0}. (7.24)

2) v € C1(0, cc) and
E [Ay)V'(vh))]
~E [R)( R A H)] (7.25)

v'(y)

3) For 0 < z < Ug there is y(z) > 0 such that

v'(y(2)) = -z (7.26)
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and B
9(2) =1(y(@)h(y(2))) AH (7.27)
is the unique solutiong{ H) to the optimization problem
u(z) = sup E[U(gAH,)]. (7.28)
9€?(2)

4) u andv are conjugates, i.e.

u(z) = min(u(y) + zy) (7.29)
v(y) = maxu(z) - zy) (7.30)

5) u is strictly increasing and strictly concave h Ug].
6) Assume that {H,.) = 0on {H > 0}. Thenwvis strictly convex on(0, y1)
where

y1 =inf{y > 0] v(y) = E[U(0,.)]} (7.31)
and u is in C(0, Up) with
u'(z) = y(2). (7.32)
If in addition y = oo, then
u’(0+) = +o0. (7.33)
Remark 7.2Since we know that)’(H,.) < U’(0,.), we have
(U'H,)Vvg)AU'(0,)=U'(H,.) Vv (g AU’(0,.) (7.34)

for any functiong. Thus there is no ambiguity in the expressidi(H , .) vEA
u’(0,.) in (7.24).

Remark 7.3At first glance the formulae (7.25) far’ and (7.27) forg might
appear to depend on the choice of the solutiorThis is of course not so: For
any two solutiond , h one has

E[f (I (yf) AH)] = E[h(I (yh) AH)] (7.35)

and
I(yf)AH=1(yh)AH P —as. (7.36)

Remark 7.4The conditionU’(H,.) = 0 in 6) is always satisfied in our original
problem wherd) = U, for a convex loss function with'(0) = 0.

There is a difference in the assumptions of the above optimization problem
in comparison to [KS (1997)]. Conditions on the asymptotic elasticity are used
in [KS (1997)] to control the behavior for large values of the utility. In our
context any overshooting the gddl does no good. Consequently the conditions
of finiteness of the value function and on the asymptotic elasticity are replaced
by our conditions on the integrability & (H,.) andU (0, .).

As in [KS (1997)] the proof of the above theorem uses the fundamental
duality result Theorem 7.2. However the rest of our proof is more direct. It is
closer in spirit to the proofs in [P (1998)], [CK (1999)] and [C (1998)] - except
that we work in a general semi-martingale setting with a general state-dependent
utility function. The details are given in [L (1999)].
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8 Hedging of a volatility jump

As in [FL (1999)] we consider a geometric Brownian motion with positive drift
m where the volatility has a constant valae> 0 up to timety and then jumps
to a new constant valug according to some distribution on (0, 00).

We use an explicit model{,.7 , P) of the following form. Put2 = C[0, T] x
(0, o) and forw = (w, n) defineX;(w) = Xt(cE) w(t). We fix a timety € (0, T)
and an initial value > 0. For eachy > 0 we define a time-dependent volatility
by ot(n) = o for t < tg andoi(n) = n for t > to. Let P,, denote the unique
probability measure orf2 = C[0, T] such that the processX{) satisfies the
stochastic differential equation

dX = X (mdt+or()dW’) X0 =Xo

under P,, where W” is a Wiener process undét,. The measuré® on Q2 is
defined byP(dw dn) = p(dn)P,(dw). We denote by7 the completion of the
natural productr-field on {2 underP and by (7),@/ 71 the right-continuous
complete filtration on? generated by the processeg)(and ). The projection
of P on {2 is denoted byP and (%) is the right-continuous complete filtration
on {2 generated byX;).

Consider a European option of the foith = h(X7) whereh is some non-
negative continuous function such that our integrability assumptions (2.3) and
(2.4) are satisfied. At timg the valueX;, = x is observed and the new volatility
7n is revealed. From this time on the option can be replicated perfectly using
the standard Black-Scholes hedging strategy in the complete rigdélet P,
denote the unique equivalent martingale measure of this model. The required
initial capital is given by

v(x) = Ej[h(Xr) [ X =X] .

We set
v(X) = supv™(x) (8.1)

n
where the supremum is taken over the support.of

Fort < to the valuen is still unknown. As in [FL (1999)] the capital required
for superhedging at timeis given by

Ur = E*[o(%,) [ A (8.2)

whereP* denotes the common projection of all equivalent martingale measures
P*~P on (2, A,).

Remark 8.1If H is a call andu has unbounded support, then we gét) = x
henceU; = X; for t < tg and in particulatUp = %o. In this case the superhedg-
ing strategy is reduced to the following trivial procedure: Buy one unit of the
underlying asset at time 0 and hold it up to tifge At that time the value; is
revealed. Pay out the refur@, = X;, — v"(X;,) and use the remaining capital
v"(X;,) to implement a perfect hedge of the option.
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Let us now fix a loss functioh. Our aim is to minimize the shortfall risk
under the constraint that the initial capital is not larger than some fixed amount
Vo such that

0< \70 < Ug. (8-3)
At time ty let 87(z,x) denote the minimal shortfall risk that can be achieved

given the present state = X;, and some capitat > 0 if the new volatility is
given byn, i.e.

B7(z,x) =min{E, [(A - p)H) | X, =x] | E; [pH | X, =x] <z, p € . 2}.

(8.4)
Further letu”(z,x) denote the value function of the corresponding complete
problem. In analogy to (7.3) it is related f&¥(z, x) via

u"(z,x) = E,[l(H) | X, =x] — 5"(z,). (8.5)

We know from Theorem 7.1 that”(., x) is non-decreasing and concave, strictly
increasing and strictly concave on the intervalHf[H | X, = x]]. Furthermore
it belongs toz"1(0, E,;[H [ X, =x]) and its (right) derivative equals

0
—y" =y
U@ =y,

wherey”(z, x) is the solution of
E 1"z, x)p") ANH [ X =X]=2Z.

Now we assume that the functiosandu defined by

B@@=/W@@MM)

and
wam=/hWmemn

are finite for allz, x. In the casd (x) = xP these conditions are satisfied if

/ exp| 5(p + 2T | ) < oo . (8.6)
The functionu has again the relevant properties of a state-dependent utility
function:

Lemma 8.1 The function (., X) is non-decreasing, strictly increasing fh v(x)),
concave and strictly concave ¢@, v(x)). Furthermore it belongs t& (0, v(x))
with derivative

%mLm:/ggmmemy 8.7)
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Proof. 1) It is straightforward to see thatis non-decreasing and concave. Now
let 0 < z < 2/ < v(x). There exists a sék C (0, co) with p(A) > 0 and

Ej[H [ X,=x]>2" VneA

Otherwise we would havg;[H | X, =X] < z’ for y-almost alln in contradic-
tion to z’ < v(x). Consequently we have for ajle A

u?(z,x) < u”(z’,x)

and
u?’(\z + (21— Nz, x) > Au"(z,x) + (1 — \u"(zZ’, x).

As p(A) > 0, this implies
u(z,x) < u(z’,x)

and
u(Az+ (1 — Nz, x) > Au(z,x) + (1 — Nu(z’, x).

2) We have

20
u”(z’,x) :/o 5u”(z,x)dz
by the properties ofi” and the fact that”(0, x) = 0. Because
0
— " = n >
57" (&X) =y"(z,x) 20,
we can apply Fubini’'s theorem to conclude that

u@@',x) = /u"(z’,x)u(dn)
([ tese) wo
/oZ/ (/;z“n(z’x)u(dn)) dz.

This shows that(., x) is differentiable on (Quv(x)) with derivative

9 uz,x) = / 9 iz, x)u(dn).

0z 0z
Sinceu is a concave function which is differentiable on the convex, open set
(0, v(x)), it is also continuously differentiable on this set. |

Let v resp.v* denote the distribution of;, underP resp.P*. We define the
inverseJ(.,x) of Zu(.,x) by

J(y,x) =inf {z € [0, v(X)] ’aazu(z,x) = / %u"(z,x)u(dn) < y}

with the convention thad (y,x) = oo if %u(v(x),x) > y. We can now apply
again Theorem 7.1 to obtain the following proposition.
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Proposition 8.2 There exists a unique functidnsuch that

/u(fN(x),x)u(dx) = sup/ u(f (x), x)r(dx) (8.8)
f
where the supremum is taken over all measurable functionfon (0, co) with
/fdu* < Vo. (8.9)
The solution is of the form
~ ~ dv*
f(x)=J [ c(Vo) 4 (x),x | Av(x), (8.10)
where ¢V) is the solution of
~  dv* . ~
/J (c(Vo) Ol(x)7x> Av(X) v*(dx) = Vo . (8.11)
1%

Proof. It is easy to see that a function which maximizes the integral in (8.8)
must belong to the class of all measurable functions > 0 with [ fdv* = Vo

and 0< f < wv. But then we are precisely in the situation of Theorem 7.1 if we
takev as the contingent clainuy(z, x) as the state-dependent utility function, and

consider (Qoo) with v resp.v* as the basic probability space. a

Theorem 8.3 The following strategy is optimal:

i) Up to time § use the strategy which replicates the contingent c%@ﬁo) where

f is the solution to the optimization problem (8.8), (8.9).

if) From time § on use the strategy which minimizes the shortfall risk under the
new volatilityr given the initial capitalf (X;,) (see Sect.5).

Proof. Consider any admissible strategyy(&) with Vo < Vo and denote byy
the corresponding succes ratio. The resulting value

Vi =Vo+/0t€sdxs
will be viewed as a random variable of2(7,) for anyt < to. We have
Vo < Vo,
and the conditional shortfall risk satisfies
E[((H-VD)") [ A& =E [ (L1~ H) | F] = 5V, %) -

This implies _ _
E[l (A—9)H)] = E[B(Vi, %0)] - (8.12)
Let g be a measurable function such that

g(xto) =E [V’[O | Xto] P —as.
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Since (., x) is convex, (8.12) implies
E[l (Q-¢)H)] > E [E [V, %0) | Xo]] = E [8 (90%): %)]  (8:13)
via Jensen’s inequality for conditional expectations. Since
E [Vi | Xeo] = E* [Vl | %)

we have
E*[9(X,)] = E*[Vi] < Vo .

The optimality off with respect to (8.8) and the relation (8.5) now imply

E 5 (0. % ) | < E [8 (906). X))

Thus _ _
E[l((H - Vv))] = E |8(F06). %) -

and this shows theE[ﬁ(FQ(to), Xi,)] is a lower bound for the shortfall risk if the
initial cost is bounded by,. But this bound is actually achieved if we use the
strategy described in the theorem. O

Remark 8.2lt is straightforward to iterate backwards the arguments of this sec-
tion and to treat the case where volatility jumps at finitely many time points.
This is based on Theorem 7.1 which shows that the value function in each step
inherits the regularity properties of the respective utility function.
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