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Abstract. An investor faced with a contingent claim may eliminate risk by
(super-) hedging in a financial market. As this is often quite expensive, we study
partial hedges which require less capital and reduce the risk. In a previous paper
we determined quantile hedges which succeed with maximal probability, given a
capital constraint. Here we look for strategies which minimize the shortfall risk
defined as the expectation of the shortfall weighted by some loss function. The
resulting efficient hedges allow the investor to interpolate in a systematic way
between the extremes of no hedge and a perfect (super-) hedge, depending on
the accepted level of shortfall risk.
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1 Introduction

In a complete financial market a given contingent claim can be replicated by a
self-financing trading strategy, and the cost of replication defines the price of the
claim. In incomplete financial markets one can still stay on the safe side by using
a ”superhedging” strategy; cf. [ElQ (1995)] and [K (1997)]. But from a practical
point of view the cost of superhedging is often too high. Also perfect (super-)
hedging takes away the opportunity of making a profit together with the risk of
a loss.
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Suppose that the investor is unwilling to put up the initial amount of capital
required by a perfect (super-) hedge and is ready to accept some risk. What is
the optimal ”partial hedge” which can be achieved with a given smaller amount
of capital? In order to make this question precise we need a criterion expressing
the investor’s attitude towards the shortfall risk. In [FL (1999)] we introduced
strategies of ”quantile hedging” which maximize the probability that a hedge
is successful. In that case the investor applies a dynamic version of the static
Value at Risk concept. Just as the static VaR approach, the dynamic concept of
quantile hedging does not take into account the size of the shortfall but only the
probability of its occurrence.

In this paper we describe the investor’s attitude towards the shortfall in terms
of a loss functionl . Convexity of l corresponds to risk aversion. The shortfall
risk is defined as the expectation of the shortfall weighted by the loss function.
Our aim is to minimize this shortfall risk, given some capital constraint. Instead
we could prescribe a bound on the shortfall risk and minimize the cost. In other
words, we are looking for hedges which are efficient with respect to the partial
ordering defined by the shortfall risk and the initial capital. These efficient hedges
allow the investor to interpolate in a systematic way between the extremes of a
perfect hedge (no chance of making a profit) and no hedge (full risk of shortfall,
full chance of profit) depending on the accepted level of shortfall risk.

In the special casel (x) = xp for p ≥ 1, our approach can be viewed as a
dynamic version of static risk analysis in terms of lower partial moments; see,
e.g., [F (1977)], [Ba (1978)], [BaL (1977)], [HR (1989)]. A systematic analysis
of ”coherent” measures of risk in a static setting is given in [ADEH (1999)]
where coherence is defined in terms of monotonicity, homogeneity, and trans-
lation invariance with respect to adding amounts of the riskless asset. But from
the individual investor’s point of view, it seems to make sense to relax these
requirements to monotonicity and convexity, and in this case risk measures of
the type considered above with a convex loss functionl appear; see [L (1999)].

We begin in Sect. 2 by defining our optimization problem for a given con-
tingent claim H in a general semimartingale setting. Existence and essential
uniqueness of the solution is shown in Sect. 3. The optimal strategy consists in
(super-) hedging a suitable modified claim̃H = ϕ̃H whereϕ̃ is some “random-
ized test” taking values in [0, 1]. In the special casel (x) = x, where we simply
minimize the expected shortfall, we can construct the optimal testϕ̃ by applying
the Neyman Pearson lemma in direct analogy to the case of quantile hedging;
see Sect. 4 and [FL (1999)]. In this case, the resulting claimH̃ typically has the
form of a knock-out option.

For a general convex loss functionl the problem becomes more involved. In
Sect. 5 we consider the complete case where the equivalent martingale measure
is unique. Using a method of [Ka (1959)], we show how the construction of the
optimal testϕ̃ can again be reduced to an application of the Neyman Pearson
lemma. Typically the resulting claim̃H has a smoother structure than the knock-
out options which occur in the case of quantile hedging and in the case of a
linear loss function.
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In particular we consider the case of lower partial moments, i.e.l (x) = xp.
Thus we introduce a scale for the attitude towards risk. Asp increases from 1 to
∞, the efficient hedges interpolate smoothly between the knock-out option and a
shifted claimH̃ = (H −c)+. If H is a call, thenH̃ is a call at higher strike whose
arbitrage-free price equals the given initial capital. In Sect. 5.4 we also consider
the casep < 1 where risk-averse behavior is replaced by risk-seeking behavior.
As appetite for risk increases andp decreases from 1 to 0, the corresponding
efficient hedges converge to the knock-out option which appears in the case of
quantile hedging. Thus quantile hedging corresponds to the bottom-end of our
scale.

Alternatively we can use methods of convex duality. In Sect. 7 we use a
variant of the methods of [CK (1999)] and of [KS (1997)] in order to describe
the structure of the solution in the general case. In the incomplete case we rely
on the basic duality theorem in [KS (1997)]. Even in the complete case, these
methods provide additional information on the qualitative properties of the value
function of our problem. In the linear casel (x) = x and in a model driven
by Brownian motion, similar results including constraints on the strategies and
margin requirements appear in [CK (1999)] and [C (1998)]. In [P (1998)] convex
duality methods are applied in a discrete time setting withl (x) = xp.

In order to illustrate our approach we compute in Sect. 6 the efficient hedges
for a call option in the standard case of a geometric Brownian motion with known
volatility and for the loss functionl (x) = xp. While in the case of quantile
hedging the optimal strategy consists in replicating the option “knocked out”
above a certain threshold, the option is “knocked in” above some threshold if
we minimize the expected shortfall, i.e., in the casep = 1. In the casep > 1 of
risk aversion, the modified options are no longer “knocked out/in” but exhibit
continuous payoffs. Finally in Sect. 8 we study an incomplete extension of the
model where volatility is subject to a random jump.

It is a pleasure to thank Jackša Cvitaníc, Freddy Delbaen and Paul Embrechts
for stimulating discussions.

2 Formulation of the problem

The discounted price process of the underlying asset is described as a semimartin-
gale X = (Xt )t∈[0,T] on a probability space (Ω, F , P) with filtration (Ft )t∈[0,T] .
For simplicity we assume thatF0 is trivial. Let P denote the set of equivalent
martingale measures. We assume absence of arbitrage in the sense thatP /= ∅.

A self-financing strategy is given by an initial capitalV0 ≥ 0 and by a
predictable processξ such that the resulting value process

Vt = V0 +
∫ t

0
ξsdXs ∀t ∈ [0, T] (2.1)

is well defined. A strategy (V0, ξ) is calledadmissibleif the corresponding value
processV satisfies
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Vt ≥ 0 ∀t ∈ [0, T] , P − a.s. (2.2)

Consider a contingent claim given by aFT -measurable, nonnegative random
variableH . We assume

U0 = sup
P∗∈P

E∗[H ] < ∞ , (2.3)

whereE∗ denotes expectation with respect toP∗. The valueU0 is the smallest
amount V0 such that there exists an admissible strategy (V0, ξ) whose value
process satisfiesVT ≥ H P − a.s. This is well known in the complete case
where the equivalent martingale measureP∗ is unique, and whereU0 = E∗[H ]
is the unique arbitrage-free price of the contingent claimH . For the general case
see, e.g., [ElQ (1995)], [Kr (1996)], [FKab (1998)].

As in the discussion of quantile hedging in [FL (1999)], we now ask what
can be done if the investor is unwilling or unable to put up the initial capital
U0. What is the best hedge the investor can achieve with a given smaller amount
Ṽ0 < U0? In [FL (1999)] we took as our optimality criterion the probability
that the hedge is successful. In other words, we were looking for an admissible
strategy (V0, ξ) which minimizes the probability of a shortfallP[VT ≤ H ] under
the constraintV0 ≤ Ṽ0.

In this paper we want to control thesize of the shortfall (H − VT )+, not
only the probability that some shortfall occurs. To this end we introduce a loss
function l which describes the investor’s attitude with respect to the shortfall. We
assume thatl is an increasing convex function defined on [0,∞), with l (0) = 0.
We further assume that

E[l (H )] < ∞. (2.4)

Definition 2.1 The shortfall risk is defined as the expectation

E[l ((H − VT )+)] (2.5)

of the shortfall weighted by the loss function l .

Our aim is to find an admissible strategy (V0, ξ) which minimizes the shortfall
risk while not using more capital thañV0. Thus we consider the optimization
problem

E[l ((H − VT )+)] = E

[
l

((
H − V0 −

∫ T

0
ξsdXs

)+)]
= min (2.6)

under the constraint
V0 ≤ Ṽ0. (2.7)

In Sect. 7.1 we show how this optimization problem can be reformulated in terms
of maximizing the expectation of a suitable state-dependent utility function.

Remark 2.1Instead of minimizing the shortfall risk under a cost constraint, we
could fix a bound on the shortfall risk and minimize the cost. The results in
Sect. 7 show that both versions of the problem are in fact equivalent.
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Remark 2.2A typical example of a loss function isl (x) = xp for somep ≥ 1.
This approach to measuring risk by lower partial moments is well known
in the economics literature, see, e.g., [F (1977)], [Ba (1978)], [BaL (1977)],
[HR (1989)]. In [F (1977)] a mean-risk dominance model for distributions of
returns is considered. Risk consists in falling short of a specified target return
t and it is measured by a partial moment belowt . Thus the risk of a random
variableX with distributionµ is given by

E[((t − X)+)p] =
∫ t

−∞
(t − x)pµ(dx).

As pointed out in [F (1977)], mean-risk dominance is congruent with maximizing
expected utility for a utility function of the form

U (x) = x − const ((t − x)+)p .

Note thatU is linear (i.e. risk-neutral) above the target return and concave (i.e.
risk-averse) below the target return.
There are several aspects in which we move beyond this setting. We consider
a dynamic instead of a static problem and we allow for general loss functions.
Moreover our investor is faced with a contingent claim instead of a fixed target
return, i.e. the investor aims at a random target.

3 The optimal hedge

Let us reduce our problem to the search for an elementϕ̃ in the class

R = {ϕ : Ω −→ [0, 1] | ϕ FT -measurable}
of “randomized tests” which solves the following optimization problem.

Proposition 3.1 There exists a solutioñϕ ∈ R to the problem

min
ϕ∈R

E[l ((1 − ϕ)H )] (3.1)

under the constraint
sup

P∗∈P

E∗[ϕH ] ≤ Ṽ0 . (3.2)

If l is strictly convex, then any two solutions coincide P− a.s. on {H > 0}.

Proof. 1) Let R0 consist of those elements ofR that satisfy (3.2). Let (ϕn) be
a minimizing sequence for (3.1) inR0. Using Lemma A.1.1. in [DS (1994)] we
can choose functions̃ϕn ∈ R0 belonging to the convex hull of{ϕn, ϕn+1, ...}
such that (̃ϕn) convergesP− a.s. to somẽϕ ∈ R. Sincel (H ) ∈ L1(P) we can
use dominated convergence to conclude that

E[l ((1 − ϕ̃n)H )] −→ E[l ((1 − ϕ̃)H )] = min .
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On the other hand

E∗ [ϕ̃H
] ≤ lim inf E∗ [ϕ̃nH

] ≤ Ṽ0 ∀P∗ ∈ P

by Fatou’s lemma. Thus̃ϕ ∈ R0.
2) Let ϕ̃ be a solution. For anyϕ ∈ R0 and forε ∈ [0, 1] we define

ϕε = (1 − ε)ϕ̃ + εϕ .

By the convexity ofl we get

E[l ((1 − ϕε)H )] ≤ (1 − ε)E[l ((1 − ϕ̃)H )] + εE[l ((1 − ϕ)H )] .

If l is strictly convex, then the inequality is strict if

P[{ϕ /= ϕ̃} ∩ {H > 0}] > 0 .

ut
Let ϕ̃ be the solution to the problem defined by (3.1) and (3.2). Without loss

of generality we assume
ϕ̃ = 1 on{H = 0} . (3.3)

Let us introduce the modified claim

H̃ = ϕ̃H , (3.4)

and let us definẽU as a right-continuous version of the process

Ũt = ess.sup
P∗∈P

E∗[ϕ̃H | Ft ] . (3.5)

Ũ is a P -supermartingale, i.e. a supermartingale with respect to any equivalent
martingale measureP∗ ∈ P . We can now apply the optional decomposition
theorem, see [Kr (1996)], [FKab (1998)]. Thus there exists an admissible strategy
(Ṽ0, ξ̃) and an increasing optional processC̃ with C̃0 = 0 such that

Ũt = Ṽ0 +
∫ t

0
ξ̃dX − C̃t , (3.6)

Remark 3.1In the complete case where the equivalent martingale measure is
unique, (̃V0, ξ̃) is simply the duplicating strategy for the modified claim̃H = ϕ̃H ,
i.e.

E∗ [ϕ̃H | Ft
]

= Ṽ0 +
∫ t

0
ξ̃dX ∀t ∈ [0, T] , P − a.s. (3.7)

Definition 3.1 For any admissible strategy(V0, ξ) we define the corresponding
success ratio as

ϕ(V0,ξ) = 1{VT≥H } +
VT

H
1{VT<H }. (3.8)
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Theorem 3.2 The strategy(Ṽ0, ξ̃) determined by the optional decomposition (3.6)
of the modified claim̃H = ϕ̃H solves the optimization problem (2.6), (2.7). Its
success ratio coincides P− a.s. with ϕ̃.

Proof. 1) Let (V0, ξ) be any admissible strategy withV0 ≤ Ṽ0, and denote byϕ
the corresponding success ratio. SinceϕH = VT ∧ H the shortfall takes the form

(H − VT )+ = H − VT ∧ H = (1 − ϕ)H . (3.9)

For anyP∗ ∈ P the corresponding value process is a supermartingale underP∗

and so we get

E∗[ϕH ] ≤ E∗[VT ] ≤ V0 ≤ Ṽ0.

Thus the success ratio satisfies the constraints (3.2) and so we have

E[l ((H − VT )+)] = E[l ((1 − ϕ)H )] ≥ E[l ((1 − ϕ̃)H )] (3.10)

sinceϕ̃ is optimal for the problem defined by (3.1) and (3.2).
2) The strategy (̃V0, ξ̃) is admissible since the corresponding value process

satisfies

Ṽt ≥ Ṽt − C̃t = ess.sup
P∗∈P

E∗[ϕ̃H | Ft ] ≥ 0.

Its success ratioϕ(Ṽ0,ξ̃) satisfies

ϕ(Ṽ0,ξ̃)H = ṼT ∧ H ≥ ϕ̃H P − a.s. on {H > 0},

hence

ϕ(Ṽ0,ξ̃)H = ϕ̃H P − a.s. on {H > 0}

due to (3.10). Moreover we have

ϕ(Ṽ0,ξ̃) = ϕ̃ = 1 on {H = 0} ,

and so the success ratio coincidesP-a.s. withϕ̃. In particular we have

(H − ṼT )+ = (1 − ϕ̃)H

due to (3.9). Thus the inequality (3.10) shows that the strategy (Ṽ0, ξ̃) solves the
optimization problem defined by (2.6) and (2.7). ut
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4 Minimizing the expected shortfall

In this section we consider the case of a linear loss functionl (x) = x. Thus we
want to minimize the expected shortfall

E[(H − VT )+] (4.1)

under the constraint
V0 ≤ Ṽ0. (4.2)

Theorem 3.2 shows that this is equivalent to the optimization problem

E[ϕH ] = max (4.3)

under the constraint thatϕ ∈ R satisfies

sup
P∗∈P

E∗[ϕH ] ≤ Ṽ0. (4.4)

This takes the form ∫
ϕdQ = max (4.5)

under the constraints∫
ϕdQ∗ ≤ α(P∗) = Ṽ0/E∗[H ] ∀P∗ ∈ P , (4.6)

where the measuresQ andQ∗ are defined by

dQ
dP

=
H

E[H ]
,

dQ∗

dP∗ =
H

E∗[H ]
.

Thus the solutioñϕ1 is identified as the optimal randomized test in a problem of
testing the compound hypothesis

{Q∗ | P∗ ∈ P }
parametrized by the class of equivalent martingale measures against the simple
alternativeQ, where the significance level varies with the parameterP∗ ∈ P ,
see, e.g., [W (1985)].

In the complete case the Neyman-Pearson lemma provides an explicit solu-
tion:

Proposition 4.1 Assume thatP = {P∗}. Then the optimal randomized testϕ̃1 ∈
R is given by

ϕ̃1 = 1{ dP
dP∗ >ã} + γ1{ dP

dP∗ =ã} (4.7)

where

ã = inf

{
a

∣∣∣∣∣
∫
{ dP

dP∗ >a}
HdP∗ ≤ Ṽ0

}
(4.8)

and
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γ =
Ṽ0 − ∫{ dP

dP∗ >ã} HdP∗∫
{ dP

dP∗ =ã} HdP∗ , (4.9)

in the case that P∗[{ dP
dP∗ = ã}∩{H > 0}] > 0. If P∗[{ dP

dP∗ = ã}∩{H > 0}] = 0,
thenϕ̃1 reduces to the indicator function of the success set{ dP

dP∗ > ã}.

Proof. The optimal test of the simple hypothesisQ against the simple alternative
Q∗ is described by the Neyman-Pearson lemma in terms ofQ andQ∗; cf., e.g.,
[W (1985)]. If we rewrite it in terms ofP andP∗, it takes the form (4.7). ut

5 Explicit solution in the complete case

In this section we assume that the equivalent martingale measureP∗ is uniquely
determined, and we denote by

ρ∗ =
dP∗

dP
the corresponding Radon-Nikodym derivative. We assume that our loss function
satisfiesl ∈ C1(0,∞), and that the derivativel ′ is strictly increasing withl ′(0+) =
0 andl ′(∞) = ∞. Let

I = (l ′)−1

denote the inverse function ofl ′.

5.1 Structure of the modified claim

By proposition 3.1 the solutioñϕ of our optimization problem exists, and it is
unique on{H > 0} since l is strictly convex. On{H = 0} we setϕ̃ = 1. The
following theorem provides the explicit structure ofϕ̃.

Theorem 5.1 The solutionϕ̃ to the optimization problem (3.1), (3.2) is given by

ϕ̃ = 1 −
(

I (cρ∗)
H

∧ 1

)
on {H > 0}, (5.1)

where the constant c is determined by the condition

E∗[ϕ̃H ] = V̄0 . (5.2)

Proof. We use the method of Karlin [Ka (1959)] in order to reduce the compu-
tation of ϕ̃ to an application of the Neyman-Pearson lemma.

1) For ϕ ∈ R we define

ϕε = (1 − ε)ϕ̃ + εϕ .

Let Fϕ denote the convex function defined on [0, 1] via

Fϕ(ε) = E[l ((1 − ϕε)H ].
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Applying monotone convergence separately on{ϕ > ϕ̃} and on{ϕ < ϕ̃} we
see that the derivativeF ′

ϕ(0+) exists and satisfies

F ′
ϕ(0+) = E[l ′((1 − ϕ̃)H )(ϕ̃ − ϕ)H ] .

The optimality ofϕ̃ means that for anyϕ ∈ R the corresponding convex function
Fϕ on [0, 1] assumes its minimum inλ = 0. This is equivalent to

F ′
ϕ(0+) ≥ 0 ∀ϕ ∈ R ,

i.e., to
E[l ′((1 − ϕ̃)H )ϕ̃H ] ≥ E[l ′((1 − ϕ̃)H )ϕH ] ∀ϕ ∈ R . (5.3)

2) If we define probability measuresQ, Q∗ on {H > 0} by

dQ
dP

= constl ′((1 − ϕ̃)H )H ,
dQ∗

dP∗ = constH

then (5.3) becomes the problem of testing the hypothesisQ against the alterna-
tive Q∗ at the levelα = Ṽ0/E∗[H ]. The Neyman-Pearson lemma describes the
structure of the optimal test in terms of the likelihood ratio

dQ
dQ∗ = constl ′((1 − ϕ̃)H )

dP
dP∗

where the constantc is determined from the level condition. On the set

{dQ/dQ∗ < c} = {l ′((1 − ϕ̃)H )/ρ∗ < c} (5.4)

the optimal test is zero. On the set

{dQ/dQ∗ > c} = {l ′((1 − ϕ̃)H )/ρ∗ > c} (5.5)

the optimal test should be equal to one. Notice however thatϕ̃(ω) = 1 implies
l ′((1 − ϕ̃(ω))H )/ρ∗ = 0 due tol ′(0) = 0, a contradiction. Thus we havẽϕ < 1
on {H > 0}. In the ordinary Neyman-Pearson situation there is no restriction on
the values on the set

{dQ/dQ∗ = c} = {l ′((1 − ϕ̃)H )/ρ∗ = c} (5.6)

except compliance with the level condition. In our situation, however, we have
to chooseϕ̃ on this set such that

(1 − ϕ̃)H = I (cρ∗) (5.7)

in order to be consistent.
3) Define

ϕc = 1 − (I (cρ∗)/H ∧ 1
)

(5.8)

on {H > 0}. Note thatI (cρ∗) goes from 0 to∞ a.s. on{H > 0} as c goes
from 0 to ∞ since l ′(0) = 0 andl ′(∞) = ∞. ThusϕcH goes fromH to 0 a.s.
on {H > 0} asc goes from 0 to∞. ConsequentlyE∗[ϕcH ] goes fromE∗[H ]
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to 0 by dominated convergence. SinceI is continuous,E∗[ϕcH ] is continuous
in c by dominated convergence. Hence we can findc ∈ (0,∞) such that

E∗[ϕcH ] = Ṽ0 < E∗[H ].

For thisc we define

ϕ̃ = ϕc.

Thenϕ̃ satisfies the consistency condition (5.7) on the set in (5.6). On the set in
(5.4) we have

1 − ϕ̃ < I (cρ∗)/H ,

and this impliesϕ̃ = 0 by the definition (5.8) of̃ϕ = ϕc. Thus ϕ̃ is the optimal
Neyman-Pearson test described in 2). ut

Remark 5.1Notice that the solutioñϕ is a function ofH andρ. If both H and
ρ happen to be functions of the final stock priceXT , then ϕ̃ is also a function
of XT . This will be the case in the explicit computations for the Black-Scholes
model below.

Remark 5.2Suppose that the objective measureP already happens to be the
martingale measureP∗, i.e. ρ∗ = 1. Then the modified claim takes the simple
form

ϕ̃H = H − (I (c) ∧ H ) = (H − I (c))+. (5.9)

If H is a call, thenϕ̃H is again a call (XT − K̃ )+at the higher strikẽK = K + I (c).

5.2 Lower partial moments

Let us consider the special case

l (x) =
xp

p

for some p > 1. Thus we want to minimize a lower partial moment of the
differenceVT − H . As a special case of Theorem 5.1 we obtain the following
result:

Proposition 5.2 The optimal hedge consists in hedging the modified claim

ϕpH = H − cp(ρ∗)
1

p−1 ∧ H (5.10)

where the constant cp is determined such that

E∗[ϕpH ] = Ṽ0. (5.11)
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5.3 Increasing risk-aversion

Let us now consider the limitp → ∞ corresponding to ever increasing risk-
aversion with respect to large losses.

Proposition 5.3 i) For p → ∞ the modified claimϕpH converges to(H − c)+

almost surely and in L1(P∗), where c is the unique constant that satisfies

E∗[c ∧ H ] = E∗[H ] − Ṽ0. (5.12)

ii) If H is a call at strike K , then the limit for p→ ∞ is again a call at the higher
strike K̃ = K + c which corresponds to the Black-Scholes priceṼ0:

E∗ [(XT − K̃ )+
]

= Ṽ0. (5.13)

Proof. 1) It is straightforward to see that the constantc in (5.12) is uniquely
defined. We now show that limp→∞ cp = c. To this end consider a subsequence
cpn with limn cpn = c̄ ∈ [0,∞]. Then

cpn (ρ∗)
1

pn−1 ∧ H → c̄ ∧ H a.s.

because

(ρ∗)
1

pn−1 → 1 a.s.

By dominated convergence we conclude that

E∗
[
cpn (ρ∗)

1
pn−1 ∧ H

]
→ E∗[c̄ ∧ H ].

Thus we must have

E∗[c̄ ∧ H ] = E∗[H ] − Ṽ0

due to (5.11), hence ¯c = c sincec is unique. Applying this argument to the limit
inferior and to the limit superior, we see that lim infcp = c = lim supcp, hence
lim cp = c as claimed.

2) From 1) it follows that

cp(ρ∗)
1

p−1 ∧ H → c ∧ H a.s. ,

hence

ϕpH = H − cp(ρ∗)
1

p−1 ∧ H → H − c ∧ H = (H − c)+

both almost surely and inL1(P∗) (by dominated convergence sinceH ∈ L1(P∗)
due to our assumption (2.3)). ut
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5.4 Risk-taking and quantile hedging

In this section we assume that our investor, instead of being a standard risk-
averse agent, is in fact inclined to take risk. In our setting this corresponds to a
concave rather than a convex loss function. Hence letk : [0,∞) → [0,∞) be
increasing and strictly concave withk(0) = 0.

Our basic optimization problem is still the same:

E
[
k((H − VT )+)

]
= min (5.14)

under the constraint
V0 ≤ Ṽ0 (5.15)

As before this is equivalent to findingϕ ∈ R such that

E[k((1 − ϕ)H )] = min (5.16)

under the constraint
E∗[ϕH ] ≤ Ṽ0 (5.17)

It is straightforward to see that a solutioñϕ exists and that̃ϕ is extremal on the
set{H > 0}.

From the concavity ofk and fromk(0) = 0 the following inequality is im-
mediate:

E[k((1 − ϕ)H )] ≥ E[k(H )] − E[ϕk(H )]. (5.18)

But minimizing the lower bound in (5.18) can be done by a direct application
of Neyman-Pearson because it is equivalent to maximizingEQ[ϕ] under the
constraintEQ∗ [ϕ] ≤ Ṽ0/E∗[H ] where the measuresQ, Q∗ are defined bydQ =
constk(H ) dP anddQ∗ = constH dP∗.

To avoid technicalities we only sketch the case where no randomization is
needed; for details and proofs see [L (1999)]. In this case the optimal Neyman-
Pearson test

ϕ̃ = 1{k(H )>aHρ∗} (5.19)

is simply an indicator function where the constanta is determined by the con-
straint. Hencẽϕ minimizes the lower bound in (5.18). But for this̃ϕ (5.18) holds
in fact as an equality. Thus̃ϕ must be the optimal solution to our optimization
problem (5.16), (5.17).

Now let us consider lower partial moments again, i.e.k(x) = xp for some
0 < p < 1. Then the set{k(H ) > apH ρ∗} ∪ {H = 0} takes the form{1 >
apH 1−pρ∗}, and the optimal solution is given by

ϕp = 1{1>apH 1−pρ∗} , (5.20)

if we assume for simplicity that no randomization is needed, i.e.E∗[ϕpH ] = Ṽ0.
Let us also assume that there is a unique constant ˜a such thatE∗[ϕ0H ] = Ṽ0

whereϕ0 denotes the indicator function of the set{1 > ãHρ∗}. The following
proposition shows that quantile hedging, as introduced in [FL (1999)], appears
as the limiting strategy with minimal shortfall risk asp decreases to zero.
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Proposition 5.4 For p → 0 the solutionϕp in (5.20) converges to the solution
ϕ0 in the case of quantile hedging, both almost surely and in L1(P∗).

Proof. Let apn → a∗ be a convergent subsequence. FromH 1−pn → H it follows
that

1{1>apn H 1−pn ρ∗} → 1{1>a∗H ρ∗} a.s.

Due to assumption (2.3) we can apply the dominated convergence theorem to
conclude that

E∗[H 1{1>apn H 1−pn ρ∗}] → E∗[H 1{1>a∗H ρ∗}] ,

and this implies
E∗[H 1{1>a∗H ρ∗}] = Ṽ0.

From the uniqueness of ˜a it follows that a∗ = ã. Applying this argument to the
limit superior and inferior respectively we see that limap = ã. Consequently

ϕp = 1{1>apH 1−pρ∗} → 1{1>ãHρ∗} = ϕ0

both a.s. and inL1(P∗). ut
In an analogous manner one can establish the following proposition

Proposition 5.5 For p ↗ 1 the solutionϕp in (5.20) converges to the solution
ϕ̃1 in the linear case (cf. Proposition 4.1), both almost surely and in L1(P∗).

6 Computations in the Black-Scholes model

In the standard Black-Scholes model with constant volatilityσ > 0 the underlying
discounted price process is given by a geometric Brownian motion

dXt = Xt (σdWt + mdt)

with initial value X0 = x0, whereW is a Wiener process underP and m is a
constant. We assume thatm > 0. The unique equivalent martingale measureP∗

is given by

dP∗

dP
= ρ∗ = exp

(
−m

σ
WT − 1

2

(m
σ

)2
T

)
= constX−α

T

where we set
α =

m
σ2

.

The processW∗ defined by

W∗
t = Wt +

m
σ

t

is a Brownian motion underP∗.
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A European callH = (XT − K )+ can be hedged perfectly if we provide the
initial capital

H0 = E∗[H ] = x0Φ(d+) − KΦ(d−) ,

where

d±(x0, K ) =
ln x0 − ln K

σ
√

T
± 1

2
σ
√

T

andΦ denotes the distribution function of the standard normal distribution. Sup-
pose we want to use only an initial capitalṼ0 which is smaller than the Black-
Scholes priceH0. Under this constraint we want to minimize the shortfall risk
E[l ((H − VT )+)] where l is a given loss function satisfying the assumptions of
Sect. 2. We know that the optimal strategy consists in hedging the modified op-
tion ϕ̃H where ϕ̃ solves the optimization problem defined by (3.1), (3.2). We
will work out the solution explicitly in the case of lower partial moments.

6.1 Lower partial moments

We know from (5.1) that the modified claim is given by

ϕ̃pH = (XT − K )+ −
[

c
1

p−1 X
−α
p−1

T ∧ (XT − K )+

]
. (6.1)

Sincec
1

p−1 x
−α
p−1 is convex and decreasing, there is at most one point of intersec-

tion L with (x − K )+. So we get

ϕ̃pH =

[
XT − K − L

α
p−1 (L − K )X

−α
p−1

T

]
1{XT≥L} (6.2)

= fp(XT )

where
fp(x) =

[
x − K − L

α
p−1 (L − K )x

−α
p−1

]
1{x≥L} . (6.3)

Let τ = T − t . Consider the conditional expectation

Vt = E∗[ϕ̃pH | Ft ] (6.4)

= E∗
[

fp

(
Xt exp

[
σ
(
W∗

T − W∗
t

)− 1
2
σ2(T − t)

]) ∣∣∣Ft

]
= Fp(t , Xt )

where the functionFp is given by

Fp(t , x) =
∫ ∞

−∞
fp

(
x exp

[
σ
√

τy − 1
2
σ2τ

])
exp

(
−1

2
y2

)
dy√
2π

=
∫ ∞

−d−(x,L)

(
x exp[σ

√
τy − 1

2
σ2τ ] − K

)
exp

(
−1

2
y2

)
dy√
2π



132 H. F̈ollmer, P. Leukert

−
(

L
x

) α
p−1

(L − K ) ×

×
∫ ∞

−d−(x,L)
exp

[
− α

p − 1

(
σ
√

τy +
1
2
σ2τ

)]
exp

(
−1

2
y2

)
dy√
2π

= xΦ (d+(x, L)) − KΦ
(
d−(x, L)

)− L
α

p−1 (L − K )

x
α

p−1

× exp

[
1
2
σ2τ

α

p − 1
(

α

p − 1
+ 1)

]
Φ

(
d−(x, L) − ασ

√
τ

p − 1

)
. (6.5)

The constantL is determined by the equation

Ṽ0 = E∗ [ϕ̃pH
]

= Fp(0, x0) . (6.6)

The strategy is obtained from this by differentiation:

ξp(t , x) =
∂

∂x
Fp(t , x) = Φ

(
ln x − ln L

σ
√

τ
+

1
2
σ
√

τ

)
+

α

p − 1
L

α
p−1 (L − K )

x
α

p−1 +1

× exp

[
1
2
σ2τ

α

p − 1

(
α

p − 1
+ 1

)]
×Φ

(
ln x − ln L

σ
√

τ
− σ

√
τ

(
α

p − 1
+

1
2

))
. (6.7)

Remark 6.1As shown in Sect. 5.3 the limit forp → ∞ is again a call option
with a strikeK̃ corresponding to the Black-Scholes priceṼ0:

ϕ̃∞H = (XT − K̃ )+ (6.8)

whereK̃ is such that

Ṽ0 = E∗[(XT − K̃ )+] (6.9)

= x0Φ

(
ln x0 − ln K̃

σ
√

τ
+

1
2
σ
√

τ

)
− K̃Φ

(
ln x0 − ln K̃

σ
√

τ
− 1

2
σ
√

τ

)
.

6.2 The linear case

In the casel (x) = x Proposition 4.1 shows that we have to knock out the option
outside the success set

A = {dP/dP∗ > ã} = {Xα
T > c′} = {XT > c} , (6.10)

where the constantc is determined by the equation
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Ṽ0 = E∗[H 1A] (6.11)

= x0Φ

(
ln x0 − ln c

σ
√

T
+

1
2
σ
√

T

)
− KΦ

(
ln x0 − ln c

σ
√

T
− 1

2
σ
√

T

)
.

Thus we have to hedge the modified claim

ϕ̃1H = H 1{XT>c} = (XT − c)+ + (c − K )1{XT>c} . (6.12)

The conditional expectations are of the form

E∗[ϕ̃1H | Ft ] = F1(t , Xt ) (6.13)

where

F1(t , x) = xΦ

(
ln x − ln c

σ
√

τ
+

1
2
σ
√

τ

)
− KΦ

(
ln x − ln c

σ
√

τ
− 1

2
σ
√

τ

)
. (6.14)

By differentiation we obtain the hedging strategy:

ξ1(t , Xt ) = Φ

(
ln Xt − ln c

σ
√

τ
+

1
2
σ
√

τ

)

+
c − K√

2πcσ
√

τ exp(1
8σ2τ )

(
c
Xt

) ln Xt −ln c

2σ2(T−T)
+ 1

2

. (6.15)

6.3 The case of risk-taking

For p < 1 the optimal hedge consists in replicating the knock-out optionH 1Ap

where
Ap =

{
Xα

T ≥ ap
(
(XT − K )+

)1−p
}

,

see (5.20). Let us illustrate this result in the caseα < 1. For p = 1 the call is
hedged for values in [0, K ] ∪ [c,∞), see (6.10). As soon asp drops below 1
both thresholds move up, i.e. the success set takes the form

Ap = {XT ∈ [0, bp] ∪ [cp,∞)} (6.16)

with K < bp < cp < ∞. As p decreases to the level 1− α, the upper threshold
cp goes to∞ and the lower thresholdbp increases to the valueb which is
determined by the capital constraint

E∗ [(XT − K )+1{XT≤b}
]

= Ṽ0 . (6.17)

The resulting knock-out optioñH = (XT − K )+1{XT≤b} is the optimal hedge for
any valuep ∈ (0, 1 − α], and it is exactly the knock-out option which appears
in the case of quantile hedging.

In the caseα ≥ 1 the optimal hedge in the quantile case is of the form

(XT − K )+1{XT≤b}∪{XT≥c}.

In accordance with Proposition 5.4, the thresholdsb andc appear as decreasing
limits of the corresponding thresholdsbp andcp asp goes to zero.
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6.4 Illustrations

Figure 1 illustrates the modified claims and strategies determined above and
compare them to the Black-Scholes (perfect) hedging strategy. The parameters
are chosen as

K = 110 T = 0.25 x0 = 100
m = 0.08 σ = 0.3 t = 0.1

The resulting Black-Scholes price isH0 = 2.5, but we choose to provide only an
amountṼ0 = 1 of initial capital.

Different attitudes towards shortfall risk are reflected in different shapes of
the modified claims and of the resulting hedging strategies; see [F (1977)] for a
discussion of the microeconomic aspects of such a risk analysis. Fig. 1 shows
the modified claims and strategies for five values of the risk parameterp.

In each graph on the left, the thin line shows the original call while the thick
line shows the modified claim. Correspondingly, the thin line in the graphs on
the right shows the Black-Scholes perfect hedging strategy att = 0.1 while the
thick line shows the efficient hedging strategy. The graphs at the bottom show
how quantile hedging appears as one extreme on the scale of attitudes towards
risk, corresponding to the valuep = 0. The next graphs illustrate risk seeking
behaviour with valuep = 0.85. The graphs in the middle correspond to the risk
neutral casep = 1. The graphs forp = 1.1 illustrate the case of risk aversion
p > 1. In this case the modified options are continuous, as opposed to the
knock-in option forp = 1 and to the knock-out option of quantile hedging (see
[FL (1999)]). Thus, some undesirable features arising in the hedging of knock-
in/out options (see e.g. [W (1998)]) are avoided. The graphs at the top show that
for p → ∞ the modified claim becomes again a call, but now at a higher strike.

For the same set of parameters and in the casep = 2, Fig. 2 shows the shortfall
risk as a function of the given hedging capital. The shape of the “efficient frontier”
is indeed typical as we show in the following section. In particular the shortfall
risk function is always strictly decreasing and strictly convex, and under mild
conditions it has derivative−∞ in 0. Thus, an initial small amount of capital
allocated to hedging takes already away a large part of the shortfall risk. Using
more and more capital becomes less and less effective.

The graphs illustrate how the efficient hedging strategies constructed above
allow the investor to interpolate in a systematic way between the extremes of a
perfect hedge (no chance of making a profit) and no hedge (full risk of shortfall,
full chance of a profit), depending on the investor’s appetite for risk.

7 Convex duality methods

Convex duality is a well established tool in mathematical finance, see e.g.
[K (1997)]. In this section we briefly show how convex duality methods may
be used as an alternative to the reduction to the Neyman Pearson lemma in solv-
ing our problem. Additionally this approach reveals some qualitative features
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of the value function, i.e. the shortfall risk as a function of the initial capital
employed. This value function describes the efficient frontier in our problem of
balancing cost and shortfall risk. We only sketch the basic steps in this approach;
for detailed proofs see [L (1999)].

For the case of minimizing the expected shortfall in a diffusion model the
convex duality approach has been worked out in [CK (1999)] and in [C (1998)]
under additional constraints on the strategies. In a discrete time setting the case
of lower partial moments is treated in [P (1998)]. In our approach we com-
bine the basic duality result from [KS (1997)] with the technique of considering
state-dependent Legendre transforms which is used in [CK (1999)], [C (1998)]
and[P (1998)].

7.1 State-dependent utility

In the initial formulation of our optimization problem we want to minimize the
shortfall risk given an amount of initial capital which we now callz. In other
words we are looking for a random variableZ (corresponding to the terminal
wealth resulting from an admissible strategy) such that

E[l ((H − Z)+)] = min (7.1)

under the capital constraint

sup
P∗∈P

E∗[Z ] ≤ z . (7.2)

Let us reformulate the problem in terms of maximizing expected utility. To this
end we introduce the state-dependent utility function

Ul (z, ω) = l (H (ω)) − l ((H (ω) − z)+) (7.3)

Then the problem (7.1), (7.2) is equivalent to
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E[Ul (Z(ω), ω)] = max (7.4)

under the constraint
sup

P∗∈P

E∗[Z ] ≤ z . (7.5)

For later purposes we generalize the problem as follows. Let us consider
a general state-dependent utility functionU (z, ω) which is non-decreasing and
concave inz, strictly concave on [0, H (ω)] and satisfiesU (., ω) ∈ C1(0, H (ω)).
We also assume that

− ∞ < E[U (0, .)] and E[U (H , .)] < ∞. (7.6)

As in the usual optimization of expected utility the inverse of marginal utility
plays a central role. In our case the inverse

I (y, ω) = inf{z ∈ [0, H (ω)] | U ′(z, ω) < y}
is state dependent. We use the convention thatI (y, ω) = ∞ if U ′(H (ω), ω) ≥ y.
We need the stochastic conjugate

V (y, ω) = max
0≤z≤H (ω)

(U (z, ω) − zy) (7.7)

= U (I (y, ω) ∧ H (ω), ω) − y(I (y, ω) ∧ H (ω))

of U . The functionV (., ω) is non-increasing and convex iny, strictly convex on
[U ′(H (ω), ω), U ′(0, ω)], and differentiable with derivative

V ′(y, ω) = −(I (y, ω) ∧ H (ω)). (7.8)

7.2 Complete case

In this section we consider the complete case where the equivalent martingale
measure is unique. In this context we define the value function

u(z) = sup{E[U (Z , .)] | 0 ≤ Z ≤ H andE∗[Z ] ≤ z} . (7.9)

We can then express the solution in terms ofI via convex duality methods.
In particular we recover the solution from Sect. 5 forU = Ul . In addition we
obtain qualitative properties of the value functionu. These properties will be
used in our discussion of a volatility jump in Sect. 8.

Theorem 7.1 1) For each z≤ E∗[H ] there is a unique solutioñZ such that
u(z) = E[U (Z̃ , .)]. It takes the form

Z̃(ω) = I (y(z)ρ∗(ω), ω) ∧ H (ω) (7.10)

where y(z) is the solution of

E∗[I (y(z)ρ∗(ω), ω) ∧ H (ω)] = z . (7.11)
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2) The conjugate function

v(y) = max
z≥0

(u(z) − zy) (7.12)

of u is given by
v(y) = E[V (yρ∗(ω), ω] , (7.13)

where
V (y, ω) = U (I (y, ω) ∧ H (ω)) − y(I (y, ω) ∧ H (ω)) . (7.14)

Conversely we have
u(z) = min

y≥0
(v(y) + yz). (7.15)

3) The value function u is strictly increasing and strictly concave on[0, E∗[H ]] ,
and belongs toC 1(0, E∗[H ]). Its (right) derivative on[0, E∗[H ]) is given by

u′(z+) = y(z) (7.16)

4) In particular we have
u′(0+) = +∞ , (7.17)

if ∞ = y1 = inf{y ≥ 0 | v(y) = E[U (0, .)]}, and this is the case if

ess.sup
U ′(0, .)

ρ∗ 1{H >0} = ∞. (7.18)

The proof is similar to maximization of expected utility except that, as in
[CK (1999)], [C (1998)], [P (1998)], one has to use stochastic instead of deter-
ministic conjugates; for a detailed proof see [L (1999)].

Remark 7.1In the Black-Scholes model the sufficient condition (7.18) is always
satisfied if the driftm is positive.

7.3 Incomplete case

The incomplete case involves a fundamental duality which is shown in full gen-
erality in [KS (1997)]. Let

Z(z) =

{
Z = (Zt ) ≥ 0 | Zt = z +

∫ t

0
ξdX , ξ admissible

}
denote the class of possible value processes for admissible strategies starting with
initial capital z. Let

C (z) = {g ∈ L0 | 0 ≤ g ≤ ZT for someZ ∈ Z(z)}
denote the set of claims attainable with initial capitalz. Consider the set of
supermartingale densities
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Y (y) = {Y ≥ 0 | Y0 = y andZY supermartingale∀Z ∈ Z(1)}.

and define

D (y) = {h ∈ L0 | 0 ≤ h ≤ YT for someY ∈ Y (y)} .

Notice thatC (z) = zC (1) andD (y) = yD (1). For brevity let us denoteC (1)
simply by C andD (1) by D . We quote the following result :

Theorem 7.2 (Proposition 3.1 in [KS (1997)])
(i) C ,D are convex and solid subsets of L0

+ which are closed in the topology of
convergence in measure
(ii) C andD stand in bi-polar relation, i.e.

g ∈ C ⇔ E[gh] ≤ 1 ∀h ∈ D (7.19)

h ∈ D ⇔ E[gh] ≤ 1 ∀g ∈ C (7.20)

The value function for our problem is defined as

u(z) = sup
g∈C (z)

E[U (g ∧ H , .)] , z ∈ [0,∞). (7.21)

It is straightforward to see thatu is non-decreasing and concave. With the help
of the stochastic conjugateV we can then set up the dual problem

v(y) = inf
h∈D (y)

E[V (h(ω), ω)] (7.22)

= inf
h∈D

E[V (yh(ω), ω)].

It is again straightforward to see thatv is non-increasing and convex.
The full duality picture is described by the following theorem.

Theorem 7.3 1) For every y > 0 there is a solutioñh(y) ∈ D to the dual
problem

v(y) = inf
h∈D

E[V (yh(ω), ω)]. (7.23)

For any two solutions̃f , h̃

U ′(H , .) ∨ f̃ ∧ U ′(0, .) = U ′(H , .) ∨ h̃ ∧ U ′(0, .) P − a.s. on {H > 0}. (7.24)

2) v ∈ C1(0,∞) and

v′(y) = E
[
h̃(y)V ′(yh̃(y))

]
= −E

[
h̃(y)(I (yh̃(y)) ∧ H )

]
(7.25)

3) For 0 < z < U0 there is y(z) ≥ 0 such that

v′(y(z)) = −z. (7.26)
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and
g̃(z) = I (y(z)h̃(y(z))) ∧ H (7.27)

is the unique solution (≤ H ) to the optimization problem

u(z) = sup
g∈C (z)

E[U (g ∧ H , .)]. (7.28)

4) u andv are conjugates, i.e.

u(z) = min
y≥0

(v(y) + zy) (7.29)

v(y) = max
z≥0

(u(z) − zy) (7.30)

5) u is strictly increasing and strictly concave on[0, U0].
6) Assume that U′(H , .) = 0 on {H > 0}. Thenv is strictly convex on(0, y1)
where

y1 = inf{y ≥ 0 | v(y) = E[U (0, .)]} (7.31)

and u is in C1(0, U0) with
u′(z) = y(z). (7.32)

If in addition y1 = ∞, then
u′(0+) = +∞. (7.33)

Remark 7.2Since we know thatU ′(H , .) ≤ U ′(0, .), we have

(U ′(H , .) ∨ g) ∧ U ′(0, .) = U ′(H , .) ∨ (g ∧ U ′(0, .)) (7.34)

for any functiong. Thus there is no ambiguity in the expressionU ′(H , .) ∨ f̃ ∧
U ′(0, .) in (7.24).

Remark 7.3At first glance the formulae (7.25) forv′ and (7.27) forg̃ might
appear to depend on the choice of the solutionh̃. This is of course not so: For
any two solutionsf , h one has

E[f (I (yf ) ∧ H )] = E[h(I (yh) ∧ H )] (7.35)

and
I (yf ) ∧ H = I (yh) ∧ H P − a.s. (7.36)

Remark 7.4The conditionU ′(H , .) = 0 in 6) is always satisfied in our original
problem whereU = Ul for a convex loss function withl ′(0) = 0.

There is a difference in the assumptions of the above optimization problem
in comparison to [KS (1997)]. Conditions on the asymptotic elasticity are used
in [KS (1997)] to control the behavior for large values of the utility. In our
context any overshooting the goalH does no good. Consequently the conditions
of finiteness of the value function and on the asymptotic elasticity are replaced
by our conditions on the integrability ofU (H , .) andU (0, .).

As in [KS (1997)] the proof of the above theorem uses the fundamental
duality result Theorem 7.2. However the rest of our proof is more direct. It is
closer in spirit to the proofs in [P (1998)], [CK (1999)] and [C (1998)] - except
that we work in a general semi-martingale setting with a general state-dependent
utility function. The details are given in [L (1999)].
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8 Hedging of a volatility jump

As in [FL (1999)] we consider a geometric Brownian motion with positive drift
m where the volatility has a constant valueσ > 0 up to timet0 and then jumps
to a new constant valueη according to some distributionµ on (0,∞).

We use an explicit model (̄Ω, ¯
F , P̄) of the following form. PutΩ̄ = C [0, T]×

(0,∞) and for ω̄ = (ω, η) defineXt (ω) = X̄t (ω̄) = ω(t). We fix a timet0 ∈ (0, T)
and an initial valuex0 > 0. For eachη > 0 we define a time-dependent volatility
by σt (η) = σ for t < t0 and σt (η) = η for t ≥ t0. Let Pη denote the unique
probability measure onΩ = C [0, T] such that the process (Xt ) satisfies the
stochastic differential equation

dXt = Xt
(
mdt + σt (η)dWη

t

)
, X0 = x0

under Pη where Wη is a Wiener process underPη. The measurēP on Ω̄ is
defined byP̄(dω, dη) = µ(dη)Pη(dω). We denote by ¯

F the completion of the
natural productσ-field on Ω̄ underP̄ and by ( ¯

Ft )t ∈[0 ,T ] the right-continuous
complete filtration onΩ̄ generated by the processes (X̄t ) and (σt ). The projection
of P̄ on Ω is denoted byP and (Ft ) is the right-continuous complete filtration
on Ω generated by (Xt ).

Consider a European option of the formH = h(XT ) whereh is some non-
negative continuous function such that our integrability assumptions (2.3) and
(2.4) are satisfied. At timet0 the valueXt0 = x is observed and the new volatility
η is revealed. From this time on the option can be replicated perfectly using
the standard Black-Scholes hedging strategy in the complete modelPη. Let P∗

η

denote the unique equivalent martingale measure of this model. The required
initial capital is given by

vη(x) = E∗
η [h(XT ) | Xt0 = x] .

We set
v(x) = sup

η
vη(x) , (8.1)

where the supremum is taken over the support ofµ.
For t < t0 the valueη is still unknown. As in [FL (1999)] the capital required

for superhedging at timet is given by

Ut = E∗[v(Xt0) | Ft ] , (8.2)

whereP∗ denotes the common projection of all equivalent martingale measures
P̄∗ ≈ P̄ on (Ω, Ft0).

Remark 8.1If H is a call andµ has unbounded support, then we getv(x) = x,
henceUt = Xt for t < t0 and in particularU0 = x0. In this case the superhedg-
ing strategy is reduced to the following trivial procedure: Buy one unit of the
underlying asset at time 0 and hold it up to timet0. At that time the valueη is
revealed. Pay out the refundCt0 = Xt0 − vη(Xt0) and use the remaining capital
vη(Xt0) to implement a perfect hedge of the option.
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Let us now fix a loss functionl . Our aim is to minimize the shortfall risk
under the constraint that the initial capital is not larger than some fixed amount
Ṽ0 such that

0 < Ṽ0 < U0 . (8.3)

At time t0 let βη(z, x) denote the minimal shortfall risk that can be achieved
given the present statex = Xt0 and some capitalz ≥ 0 if the new volatility is
given byη, i.e.

βη(z, x) = min
{

Eη

[
l ((1 − ϕ)H ) | Xt0 = x

] | E∗
η

[
ϕH | Xt0 = x

] ≤ z , ϕ ∈ R
}

.
(8.4)

Further let uη(z, x) denote the value function of the corresponding complete
problem. In analogy to (7.3) it is related toβη(z, x) via

uη(z, x) = Eη[l (H ) | Xt0 = x] − βη(z, x). (8.5)

We know from Theorem 7.1 thatuη(., x) is non-decreasing and concave, strictly
increasing and strictly concave on the interval [0, E∗

η [H | Xt0 = x]]. Furthermore
it belongs toC 1(0, E∗

η [H | Xt0 = x]) and its (right) derivative equals

∂

∂z
uη(z, x) = yη(z, x) ,

whereyη(z, x) is the solution of

E∗
η [I (yη(z, x)ρ∗) ∧ H | Xt0 = x] = z .

Now we assume that the functionsβ andu defined by

β(z, x) =
∫

βη(z, x)µ(dη)

and

u(z, x) =
∫

uη(z, x)µ(dη)

are finite for allz, x. In the casel (x) = xp these conditions are satisfied if∫
exp

[p
2

(p + 1)η2T
]
µ(dη) < ∞ . (8.6)

The functionu has again the relevant properties of a state-dependent utility
function:

Lemma 8.1 The function u(., x) is non-decreasing, strictly increasing on[0, v(x)),
concave and strictly concave on[0, v(x)). Furthermore it belongs toC 1(0, v(x))
with derivative

∂

∂z
u(z, x) =

∫
∂

∂z
uη(z, x)µ(dη). (8.7)
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Proof. 1) It is straightforward to see thatu is non-decreasing and concave. Now
let 0 ≤ z < z′ < v(x). There exists a setA ⊂ (0,∞) with µ(A) > 0 and

E∗
η [H | Xt0 = x] ≥ z′ ∀η ∈ A.

Otherwise we would haveE∗
η [H | Xt0 = x] < z′ for µ-almost allη in contradic-

tion to z′ < v(x). Consequently we have for allη ∈ A

uη(z, x) < uη(z′, x)

and
uη(λz + (1 − λ)z′, x) > λuη(z, x) + (1 − λ)uη(z′, x).

As µ(A) > 0, this implies
u(z, x) < u(z′, x)

and
u(λz + (1 − λ)z′, x) > λu(z, x) + (1 − λ)u(z′, x).

2) We have

uη(z′, x) =
∫ z′

0

∂

∂z
uη(z, x)dz

by the properties ofuη and the fact thatuη(0, x) = 0. Because

∂

∂z
uη(z, x) = yη(z, x) ≥ 0,

we can apply Fubini’s theorem to conclude that

u(z′, x) =
∫

uη(z′, x)µ(dη)

=
∫ (∫ z′

0

∂

∂z
uη(z, x)dz

)
µ(dη)

=
∫ z′

0

(∫
∂

∂z
uη(z, x)µ(dη)

)
dz.

This shows thatu(., x) is differentiable on (0, v(x)) with derivative

∂

∂z
u(z, x) =

∫
∂

∂z
uη(z, x)µ(dη).

Since u is a concave function which is differentiable on the convex, open set
(0, v(x)), it is also continuously differentiable on this set. ut

Let ν resp.ν∗ denote the distribution ofXt0 underP resp.P∗. We define the
inverseJ (., x) of ∂

∂z u(., x) by

J (y, x) = inf

{
z ∈ [0, v(x)]

∣∣∣∣ ∂

∂z
u(z, x) =

∫
∂

∂z
uη(z, x)µ(dη) < y

}
with the convention thatJ (y, x) = ∞ if ∂

∂z u(v(x), x) ≥ y. We can now apply
again Theorem 7.1 to obtain the following proposition.
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Proposition 8.2 There exists a unique functioñf such that∫
u(f̃ (x), x)ν(dx) = sup

f

∫
u(f (x), x)ν(dx) (8.8)

where the supremum is taken over all measurable functions f≥ 0 on (0,∞) with∫
fdν∗ ≤ Ṽ0. (8.9)

The solution is of the form

f̃ (x) = J

(
c(Ṽ0)

dν∗

dν
(x), x

)
∧ v(x) , (8.10)

where c(Ṽ0) is the solution of∫
J

(
c(Ṽ0)

dν∗

dν
(x), x

)
∧ v(x) ν∗(dx) = Ṽ0 . (8.11)

Proof. It is easy to see that a function which maximizes the integral in (8.8)
must belong to the classC of all measurable functionsf ≥ 0 with

∫
fdν∗ = Ṽ0

and 0≤ f ≤ v. But then we are precisely in the situation of Theorem 7.1 if we
takev as the contingent claim,u(z, x) as the state-dependent utility function, and
consider (0,∞) with ν resp.ν∗ as the basic probability space. ut

Theorem 8.3 The following strategy is optimal:
i) Up to time t0 use the strategy which replicates the contingent claimf̃ (Xt0) where
f̃ is the solution to the optimization problem (8.8), (8.9).
ii) From time t0 on use the strategy which minimizes the shortfall risk under the
new volatilityη given the initial capital̃f (Xt0) (see Sect. 5).

Proof. Consider any admissible strategy (V0, ξ) with V0 ≤ Ṽ0 and denote byϕ
the corresponding succes ratio. The resulting value

Vt = V0 +
∫ t

0
ξsdXs

will be viewed as a random variable on (Ω, Ft0) for any t ≤ t0. We have

V0 ≤ Ṽ0 ,

and the conditional shortfall risk satisfies

Ē
[
l
(
(H̄ − VT )+

) | Ft0

]
= Ē

[
l
(
(1 − ϕ)H̄

) | Ft0

] ≥ β(Vt0, Xt0) .

This implies
Ē
[
l
(
(1 − ϕ)H̄

)] ≥ E
[
β
(
Vt0, Xt0

)]
. (8.12)

Let g be a measurable function such that

g(Xt0) = E
[
Vt0 | Xt0

]
P − a.s.
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Sinceβ(., x) is convex, (8.12) implies

Ē
[
l
(
(1 − ϕ)H̄

)] ≥ E
[
E
[
β(Vt0, Xt0) | Xt0

]] ≥ E
[
β
(
g(Xt0), Xt0

)]
(8.13)

via Jensen’s inequality for conditional expectations. Since

E
[
Vt0 | Xt0

]
= E∗ [Vt0 | Xt0

]
,

we have
E∗[g(Xt0)] = E∗[Vt0] ≤ V0 .

The optimality of f̃ with respect to (8.8) and the relation (8.5) now imply

E
[
β
(

f̃ (Xt0), Xt0

)]
≤ E

[
β
(
g(Xt0), Xt0

)]
.

Thus
Ē
[
l
(
(H̄ − VT )+

)] ≥ E
[
β
(

f̃ (Xt0), Xt0

)]
,

and this shows thatE[β(f̃ (Xt0), Xt0)] is a lower bound for the shortfall risk if the
initial cost is bounded bỹV0. But this bound is actually achieved if we use the
strategy described in the theorem. ut

Remark 8.2It is straightforward to iterate backwards the arguments of this sec-
tion and to treat the case where volatility jumps at finitely many time points.
This is based on Theorem 7.1 which shows that the value function in each step
inherits the regularity properties of the respective utility function.
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