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Abstract
A risk analyst assesses potential financial losses based on multiple sources of in-
formation. Often, the assessment does not only depend on the specification of the
loss random variable, but also on various economic scenarios. Motivated by this ob-
servation, we design a unified axiomatic framework for risk evaluation principles
which quantify jointly a loss random variable and a set of plausible probabilities.
We call such an evaluation principle a generalised risk measure. We present a series
of relevant theoretical results. The worst-case, coherent and robust generalised risk
measures are characterised via different sets of intuitive axioms. We establish the
equivalence between a few natural forms of law-invariance in our framework, and
the technical subtlety therein reveals a sharp contrast between our framework and
the traditional one. Moreover, coherence and strong law-invariance are derived from
a combination of other conditions, which provides additional support for coherent
risk measures such as expected shortfall over value-at-risk, a relevant issue for risk
management practice.
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1 Introduction

Risk measures are widely used in both financial regulation and economic decisions.
Since the seminal work of Artzner et al. [2], risk measures are commonly defined as
functionals on a space of random variables or, with the assumption of law-invariance,
on the set of their distribution functions. The most popular risk measures are value-
at-risk (VaR) and expected shortfall (ES); see Artzner et al. [2] and Föllmer and
Schied [17, Chap. 4] for the classic theory of risk measures, and documents from the
Basel Committee on Banking Supervision (BCBS), e.g. BCBS [3, Chap. MAR10],
for regulatory practice in banking.

In this paper, we propose a novel framework for measures of risk under uncer-
tainty. Let us first explain our motivation. We take market risk as our primary exam-
ple, although our discussions naturally apply to many other types of risks. A portfolio
is associated with a future loss random variable X representing the portfolio risk. The
loss X has two important practical aspects: the specification and the modelling.

1) The specification refers to how X is defined in terms of the underlying risk fac-
tors (e.g. asset prices, exchange rates, credit scores, volatilities, etc). More precisely,
X is the financial loss (or gain) from holding assets, derivatives or other investments
in the portfolio. Mathematically, the specification of X is represented by a function
X : � → R which maps each state of the future financial world (each element of the
sample space �) into a realised loss.

2) The modelling refers to the statistical assessment of the likelihood and the
severity of a loss X. The modelling of X is usually summarised by a distribution,
or a collection of distributions in case of model uncertainty, under some estimated or
hypothetical (e.g. in stress testing) probability measures P ∈ P , where P is the set of
probability measures on the sample space �.

In the classic framework of Artzner et al. [2], a risk measure ρ is defined on a
set X of random variables, and the risk value ρ(X) is thereby determined by the
specification of X. The modelling of X is, however, implicit in this setting: if a prob-
ability P is assumed available, then the distribution of X under P is determined by its
specification.

There is a visible gap in the classic setting ρ : X → R. In practice, neither
X nor P is fixed in general. A change in X means adjusting positions via trading
financial securities. A change in P means an update of the modelling, estimation and
calibration of the random world. In financial practice, both X and P evolve on a daily
basis for a trading desk; yet they are modified daily for very different reasons.

For another concrete example, suppose that a regulator specifies a risk measure
(e.g. ES at the level 0.975 as in BCBS [3]), and two firms assess the risk of the same
portfolio separately. Due to different modelling and data processing techniques used
by the two firms, their reported ES values are typically not the same. However, the
loss random variable X from the portfolio is the same for both firms. Therefore, the
risk measure should not be only determined by the specification of X, but also by the
modelling information. In practice, modelling is always subject to uncertainty (called
ambiguity in decision theory). Even in the simple estimation of a parametric model,
the plausible models are not unique; see Gilboa and Schmeidler [19] for a classic
treatment of ambiguity.
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Fig. 1 A stylised procedure for risk assessment practice

Motivated by the above observations, we propose a new framework of risk mea-
sures taking into account both the specification and the modelling of random losses.
We choose a set of probability measures instead of a single probability measure as
the input for the modelling component. Formally, we introduce generalised risk mea-
sures � : X × 2P → [−∞,∞] which have two input arguments: a random variable
X ∈ X representing the specification of the loss, and a set Q ⊆ P of probability mea-
sures representing the modelling of the random world; each probability measure in P
is called a scenario. Our framework includes the traditional law-invariant risk mea-
sures as a special case when Q is a pre-specified singleton. When Q is fixed but not a
singleton, our generalised risk measures include the scenario-based risk measures of
Wang and Ziegel [31]. The framework also incorporates other complicated decision
criteria addressing model uncertainty in the literature, which will be discussed later.

We take the perspective of a regulator who designs a regulatory capital assessment
scheme that must be complied with by financial institutions. Financial institutions (or
their trading desks) can choose their portfolio positions with losses X ∈ X , and sub-
ject to passing regulatory backtests for statistical prudence, they can also choose their
internal models Q ⊆ P . The generalised risk measure is crucial to the design of the
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capital assessment procedure, because it acts on portfolios and models from financial
institutions and computes regulatory capital requirements. Therefore, our theoreti-
cal framework closely resembles the regulatory practice in the fundamental review
of the trading book (FRTB) of BCBS [3]; see Wang and Ziegel [31] for discussions
on the risk assessment practice of FRTB, and Cambou and Filipović [4] for model
and scenario aggregation methods in solvency assessment. It is important to note that
the input scenario set Q does not necessarily contain the decision maker’s subjective
probability governing the random world, because most models are simplifications or
approximations, as argued by Cerreia-Vioglio et al. [6].

Figure 1 illustrates a stylised risk assessment procedure, reflecting many of the
above considerations. There are four roles: regulator (external), risk analyst (internal),
portfolio manager (internal) and model risk manager (internal). In Fig. 1, except for
the regulator’s actions, the other actions are changing dynamically on a daily (or
similar) basis, making it clear that one should take both Q and X as inputs and allow
them to vary in a unified framework.

1.1 Contribution and structure of the paper

As explained above, in the literature on the axiomatic theory of risk measures, one
often first designs axioms to identify desirable risk measures without model uncer-
tainty and then puts model uncertainty into the model as an exogenous object. This
approach, although easy to apply, is unsatisfactory from a decision-theoretic point
of view as it does not identify desirable axioms for risk measures when model un-
certainty is taken as input. One of our main contributions is to provide an axiomatic
framework of generalised risk measures which allows us to consider properties on
both the model uncertainty and the random losses, thus addressing this practical issue
for the first time. The rigorous mathematical formulation of generalised risk measures
is laid out in Sect. 2.

Since generalised risk measures are defined as mappings from X × 2P to the
(extended) real line, the mathematical structure is much more complicated than that
of traditional risk measures. We establish several relevant theoretical results related to
this new framework. In Sect. 3, we obtain an axiomatic characterisation of worst-case
generalised risk measures via some simple properties (Theorem 3.1). The worst-case
generalised risk measures are the most practical and they appear extensively in the
literature on risk measure and optimisation.

Law-invariance is a crucial property that connects loss random variables to statis-
tical models. In the traditional framework, law-invariant risk measures can be equiv-
alently expressed as functionals on a space of distributions; this is no longer true
in our generalised framework. We provide three different forms of law-invariance
which reflect different considerations: strong law-invariance, loss law-invariance, and
scenario law-invariance; see Sect. 4 for details. In general, the three notions of law-
invariance are not equivalent and reflect very different modelling considerations. In-
deed, if strong law-invariance is assumed, our framework can be converted to the tra-
ditional setting without many mathematical difficulties. However, in practice, strong
law-invariance may not be desirable, and technical complications arise when it has
to be weakened. In Sect. 4, we show an equivalence between strong law-invariance
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and a combination of two weaker versions of law-invariance under mild conditions
(Theorem 4.3). Moreover, we express worst-case generalised risk measures with var-
ious kinds of law-invariance as functions defined on distributions (Proposition 4.6).
Therefore, from traditional law-invariant risk measures defined on distributions, we
can easily construct generalised risk measures satisfying certain desirable properties.

In Sect. 5, we focus on coherent generalised risk measures, which are analogues
to the coherent traditional risk measures of Artzner et al. [2], and characterise the
simplest form (expectation-type) in Theorem 5.1. Moreover, we propose the notion of
ambiguity sensitivity and establish an equivalence between strong law-invariance and
a combination of a weaker law-invariance and ambiguity sensitivity (Theorem 5.3).
In addition, together with a few simple properties, the combination of the weaker
law-invariance and ambiguity sensitivity implies coherence, which supports coherent
risk measures in the traditional framework from a completely novel perspective.

In Sect. 6, we discuss some connections of our framework to decision theory.
In particular, we characterise the multi-prior expected utility of Gilboa and Schmei-
dler [19] with several properties (Proposition 6.2) and obtain an axiomatic character-
isation for robust generalised risk measures (Proposition 6.3). The latter are closely
related to the variational preferences of Maccheroni et al. [24]. Section 7 contains
further discussions and remarks. The proofs of all theorems and propositions are in
the Appendix.

1.2 Connections to other frameworks in the literature

Our framework is in sharp contrast to the existing ones in the literature on risk
management. We have already discussed the difference between our framework and
the classic frameworks of risk measures (see Artzner et al. [2] and Föllmer and
Schied [17, Chap. 4]) or preferences (see Wakker [29, Chap. 8] for a comprehensive
treatment) which are all defined on X . The setting of scenario-based risk measures of
Wang and Ziegel [31] is also motivated by the regulatory framework of BCBS [3] and
aims to understand uncertainty in risk measures, but is mathematically quite different.
Scenario-based risk measures are mappings on X determined by the distributions of
the random losses under a collection of pre-specified scenarios. Since the scenarios
are fixed, the key question of how a risk measure reacts when scenarios change is left
unaddressed. As such, the mathematical results in this paper have no overlap with
Wang and Ziegel [31].

Model uncertainty is an important topic in economic decision theory. In the clas-
sic setting of Anscombe and Aumann [1], a risk (called a lottery) is represented by
a collection of possible distributions, whereas in our framework, the input consists
of a random variable and a collection of probability measures, which interact with
each other. There are many recent developments in this stream of literature which fo-
cus on the characterisation of preferences under uncertainty via some axioms. For a
non-exclusive list, we mention the multi-prior expected utility of Gilboa and Schmei-
dler [19], the multiplier preferences of Hansen and Sargent [20], the smooth ambi-
guity preference of Klibanoff et al. [22], the variational preference of Maccheroni
et al. [24] and the model misspecification preference of Cerreia-Vioglio et al. [6].
They can be formulated as examples of our framework, as will be illustrated in
Example 6.1.
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Some conceptual frameworks in decision theory reflect similar considerations to-
wards risk and uncertainty as ours. In particular, Cerreia-Vioglio et al. [6] studied
preferences under model misspecification, and their set of structured models corre-
sponds to our set Q of scenarios. An earlier work closely related to our framework
is Gajdos et al. [18], where the authors studied preferences defined on the outcome
mapping (an act) and the set of possible probabilities; thus conceptual similarity is
clear. Nevertheless, since the main context of our work is financial risk assessment
instead of decision making, the axioms and properties considered in this paper, as
well as technical results and their implications, are completely different from [18]
and [6].

In the operations research literature, Delage et al. [8] recently investigated a model
for decision making with and without uncertainty and analysed the conditions un-
der which random decisions are strictly better than deterministic ones. Model uncer-
tainty also widely appears in robust optimisation; see El Ghaoui et al. [13], Zhu and
Fukushima [33] and Zymler et al. [34] for optimising risk measures under uncertainty.
In the above literature, model uncertainty is generally pre-specified and regarded as
an objective fact, whereas we study the properties of risk measures taking model
uncertainty as an input argument that can vary over all possible choices.

2 A framework for measures of risk and uncertainty

2.1 Notation

We begin by stating some notation used throughout. Let (�,F) be a measurable
space and P the class of atomless probability measures defined on F . Recall that a
probability measure P on (�,F) is atomless if there exists a uniform random vari-
able on (�,F , P ). The set of all subsets of P is denoted by 2P . Let X be the space
of bounded random variables and M the set of compactly supported distributions on

R. For X, Y ∈ X and P,Q ∈ P , we write X|P d= Y |Q if the distribution of X under
P is identical to that of Y under Q. We denote by FX|P ∈ M the distribution of X

under P . For an increasing set function ν : F → R with ν[∅] = 0, the Choquet
integral (e.g. Föllmer and Schied [17, Definition 4.76]) with respect to ν is defined as

∫
X dν :=

∫ 0

−∞
(ν[X ≥ x] − ν[�]) dx +

∫ ∞

0
ν[X ≥ x] dx, X ∈ X .

We note in the following example that the same random variable X can be continu-
ously distributed under one atomless probability measure P and discretely distributed
under another atomless probability measure Q. Working with atomless probabil-
ity measures allows us to study continuously distributed as well as discrete random
variables in a unified framework.

Example 2.1 Consider (�,F) = ([0, 1]2,B([0, 1]2)), where B is the Borel-σ -alge-
bra. Let P = λ × λ and Q = δ1 × λ, where λ is Lebesgue measure on [0, 1] and
δ1 is the point mass at 1. Note that both P , Q are atomless probability measures.
Let X(s, t) = s for (s, t) ∈ [0, 1]2. The distribution of X is under P the uniform
distribution on [0, 1] and under Q the point mass at 1.
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2.2 A new and generalised framework for risk measures

Traditionally, risk measures as in Artzner et al. [2] and Föllmer and Schied [17,
Chap. 4] are mappings from X to R. We call them traditional risk measures. Note that
a traditional risk measure does not require the specification of a probability measure
unless we additionally assume law-invariance; this is further discussed in Sect. 4.

In the new framework that we work with in this paper, the input of a risk measure
is a combination of the loss X and a set Q of possible probability measures that
represents the best knowledge of the underlying random nature. To distinguish from
the traditional setting, we refer to these functionals as generalised risk measures.

Definition 2.2 A generalised risk measure is a mapping � : X ×2P → [−∞,+∞].
It is called standard if �(s|Q) = s for all s ∈ R and Q ⊆ P . A single-scenario risk
measure is a mapping � : X × P → [−∞,+∞].

Clearly, a single-scenario risk measure is precisely a generalised risk measure with
its second argument confined to singletons of scenarios. For a singleton {P } ⊆ P ,
we use the simpler notation �(X|P) := �(X|{P }). For any fixed P , the mapping
X �→ �(X|P) is a risk measure in the traditional sense. Besides, we use the notation
�(X|Q) instead of �(X,Q) to emphasise the different roles of X ∈ X and Q ∈ 2P .

The requirement of standardisation reflects the consideration that for any fixed
constant s, �(s|Q) does not depend on the input scenarios Q. The range of � is
chosen as [−∞,+∞] in our general framework to allow the greatest generality. In
practical applications, one may restrict the range to be R or (−∞,+∞].

Generalised risk measures are much more complicated as a mathematical object
than traditional risk measures since their input includes both a random loss X and a
set Q of probability measures. Below we collect some basic properties to consider
for a generalised risk measure �.

(A1) Uncertainty aversion: �(X|Q) ≤ �(X|R) for all X ∈ X and Q ⊆ R ⊆ P .
(A2) Scenario monotonicity: �(X|Q) ≤ �(Y |Q) if �(X|P) ≤ �(Y |P) for all

P ∈ Q.
(A3) Scenario upper bound: �(X|Q) ≤ supP∈Q �(X|P) for all X ∈ X and

Q ⊆ P .
Property (A1) means that the evaluation of a risk weakly increases if model un-

certainty increases, and this reflects an aversion to model uncertainty. Property (A2)
means that if under each possible scenario, X is evaluated to be less risky than Y ,
then the overall evaluation of the risk of X should not be more than that of Y . Prop-
erty (A3) means that the overall evaluation of X is not more extreme than that of X

evaluated under the worst-case scenario.
Properties (A2) and (A3) are quite natural and are satisfied by most examples

of generalised risk measures in their various disguises in the risk management and
decision theory literature; we discuss some of them later.

Property (A1) is more specialised as it leads to worst-case risk evaluation or de-
cision making (Theorem 3.1 below) axiomatised in decision theory by Gilboa and
Schmeidler [19]. This property is not satisfied in models where uncertainty is aggre-
gated in some form of averaging, such as taking a weighted average of risk evalu-
ates as the average ES of Wang and Ziegel [31] or the smooth ambiguity model of
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Klibanoff et al. [22]. Indeed, if a new scenario P is added to an existing collection Q
of scenarios and a random loss X is considered safe under P , then it may be desirable
in risk management practice to reduce the assessment of riskiness of X by including
P , that is, �(X|{Q, P }) < �(X|Q), violating (A1).

In decision theory, after a proper translation between the two frameworks, the pref-
erential version of (A2) appears in Cerreia-Vioglio et al. [6] as Q-separability, and
(A1) is genuinely weaker than monotonicity in model ambiguity of [6] on preferences.
For a fixed set Q of scenarios, (A1) and (A2) are respectively similar to ambiguity
aversion and ambiguity monotonicity in Delage et al. [8], which are formulated for
distributions rather than random variables.

2.3 Examples: VaR and ES

We first give a few examples in this section, and more will be discussed later. The two
popular traditional risk measures in banking and insurance are value-at-risk (VaR)
and expected shortfall (ES); see Embrechts et al. [15] for a review. Both risk measures
in the classic formulation are defined with a fixed scenario P ∈ P , and allowing P to
vary, we can treat them as single-scenario risk measures in Definition 2.2. For a level
α ∈ (0, 1], the VaR under P is defined as

VaRα(X|P) = inf{x ∈ R : P [X ≤ x] ≥ α}, X ∈ X ,

and the ES under P is defined as

ESα(X|P) = 1

1 − α

∫ 1

α

VaRβ(X|P) dβ, X ∈ X .

We first show some properties of VaR and ES in our setting. These properties
follow from existing properties of VaR and ES with a fixed P , but the concavity or
convexity with respect to scenarios is not formally studied in the literature since our
framework is new.

Proposition 2.3 For any fixed level α ∈ (0, 1), the single-scenario risk measure
(X, P ) �→ ESα(X|P) is convex in X and concave in P , while (X, P ) �→ VaRα(X|P)

is neither convex nor concave in X or P .

Remark 2.4 The statement that (X, P ) �→ VaRα(X|P) is neither convex nor concave
in X or P may fail if P is an atomic probability measure. For instance, if P is a dis-
crete measure with probability mass 1/n on n points, then VaRα( · |P) = ESα( · |P)

for α > 1 − 1/n, making the statement false. Recall that we work with atomless
probability measures throughout.

Building on the single-scenario VaR and ES, we can define generalised risk
measures such as worst-case VaR and worst-case ES via

VaRα(X|Q) := sup
P∈Q

VaRα(X|P),

ESα(X|Q) := sup
P∈Q

ESα(X|P), (X,Q) ∈ X × 2P .
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We refer to El Ghaoui et al. [13] for optimisation of the worst-case VaR, Zhu and
Fukushima [33] for optimisation of the worst-case ES, and Wang and Ziegel [31] for
their theoretical properties. The worst-case VaR and worst-case ES are both standard
and satisfy (A1)–(A3).

For a given fixed Q ⊆ P , several other examples of ES and VaR with aggregated
scenarios, such as averages (with respect to a pre-specified measure over Q) and
inf-convolutions (for a finite Q), are also considered by Wang and Ziegel [31] and
Castagnoli et al. [5]. For instance, we can define an average ES by

(X,Q) �→
∫
Q

ESα(X|Q) dμQ(Q), (2.1)

where μQ is a measure over Q for each Q ⊆ P . The average ES in (2.1) is standard
and satisfies (A2) and (A3); it does not satisfy (A1) in general. We remark that al-
though sharing many common forms and examples, our framework is fundamentally
different from the existing ones in the literature, as it is crucial for a generalised risk
measure to use Q as an input variable instead of a pre-specified collection.

3 Worst-case generalised risk measures

In this section, we present our first theoretical result, a characterisation of generalised
risk measures satisfying (A1) as the supremum of risk measures in the traditional
sense. This allows us to apply many results on traditional risk measures to generalised
risk measures.

Theorem 3.1 Fix a generalised risk measure � : X × 2P → R.
(i) Suppose that � is standard. Then � satisfies (A1) and (A2) if and only if it

admits a representation as

�(X|Q) = sup
P∈Q

�(X|P), (X,Q) ∈ X × 2P . (3.1)

(ii) The mapping � satisfies (A1) and (A3) if and only if it admits a representa-
tion (3.1).

Using Theorem 3.1, we can pin down the forms of possible generalised risk mea-
sures by specifying properties on the simpler object �(X|P) for X ∈ X and P ∈ P .
Theorem 3.1 is a general functional form of the specific preferential characterisation
treated in Cerreia-Vioglio et al. [6, Theorem 2].

Definition 3.2 For a given generalised risk measure �, the single-scenario risk mea-
sure (X, P ) �→ �(X|P), X ∈ X , P ∈ P , is called the core of �.

By Theorem 3.1, the cores correspond via (3.1) one-to-one to standard generalised
risk measures that satisfy (A1) and (A2). Note that in general, the core of � does not
determine � on X × 2P if the conditions in Theorem 3.1 are not satisfied.
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In case (3.1) holds, we say that the core � on X × P induces the generalised risk
measure � on X × 2P . Many results in this paper are stated for cores instead of the
generalised risk measure. Nevertheless, when we speak of cores, we do not need to
assume the worst-case form (3.1) or any of (A1)–(A3).

Some simple examples for worst-case generalised risk measures are collected
below, and they appear in forms similar to those in the classic theory of risk measures.

Example 3.3 (i) The expectation core

�(X|P) = E
P [X], (X, P ) ∈ X × P,

induces the generalised risk measure

�(X|Q) = sup
P∈Q

E
P [X], (X,Q) ∈ X × 2P .

For a fixed Q, �( · |Q) is the robust representation of a traditional coherent risk
measure of Artzner et al. [2]. This class of risk measures is the most studied in the
literature, and we pay special attention to it in Sect. 5.

(ii) Let γ : P → R be a non-constant function on P . The penalised-mean core

�(X|P) = E
P [X] − γ (P ), (X, P ) ∈ X × P,

induces the generalised risk measure

�(X|Q) = sup
P∈Q

(
E

P [X] − γ (P )
)
, (X,Q) ∈ X × 2P .

For a fixed Q, �( · |Q) is the robust representation of a traditional convex risk
measure of Föllmer and Schied [17, Theorem 4.16].

(iii) For α ∈ (0, 1), the VaR core (X, P ) �→ VaRα(X|P) induces the worst-case
VaR in Sect. 2.3.

(iv) For α ∈ (0, 1), the ES core (X, P ) �→ ESα(X|P) induces the worst-case ES
in Sect. 2.3.

4 Three formulations of law-invariance

For a given P , the functional X �→ �(X|P) is a traditional risk measure and proper-
ties can be imposed for it. A more interesting and non-trivial question is the interplay
between X and P for the core �, which we address below. Since P ∈ P is interpreted
as a scenario for us to generate a statistical model for the loss X, the evaluation of the
risk should depend on the distribution of X. Motivated by this consideration, we can
consider three forms of law-invariance for the generalised risk measure � or its core:

(B1) Strong law-invariance: �(X|P) = �(Y |Q) for X, Y ∈ X and P,Q ∈ P
with X|P d= Y |Q.

(B2) Loss law-invariance: �(X|P) = �(Y |P) for X, Y ∈ X and P ∈ P with

X|P d= Y |P .
(B3) Scenario law-invariance: �(X|P) = �(X|Q) for X ∈ X and P,Q ∈ P

with X|P d= X|Q.
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Remark 4.1 In this paper, all properties (Ax) reflect how � reacts to Q, all properties
(Bx) reflect how � reacts to the distributions of the risk, all properties (Cx) reflect
consideration for � in terms of a traditional risk measure, all properties (Dx) are
relevant to a mapping defined on the set P of measures, and all properties (Ex) reflect
consideration on decision-theoretic preference.

Clearly, (B1) is stronger than both (B2) and (B3). Each of (B1)–(B3) reflects the
consideration that the probability measure P in �(X|P) is used to model the distri-
bution of the loss X. More precisely, (B1) is an agreement of risk assessment for the
same distribution across different scenarios and different losses, whereas (B2) only
yields the agreement for each particular scenario, and (B3) only yields the agreement
for each particular loss. The following example shows that (B1)–(B3) are genuinely
different concepts.

Example 4.2 (i) The cores in Examples 3.3 (i), (iii) and (iv) are strongly law-invariant.
(ii) The core in Example 3.3 (ii) is loss law-invariant, but in general not scenario

law-invariant.
(iii) Let β : X → R be a non-constant function on X . The core

�(X|P) = E
P [X] − β(X), (X, P ) ∈ X × P,

is scenario law-invariant, but in general not loss law-invariant.

Since (B1) implies both (B2) and (B3), one may wonder whether (B2) and (B3)
jointly imply (B1), which turns out to be a tricky question. In other words, we aim
to show from (B2) and (B3) that �(X|P) = �(Y |Q) holds for P,Q ∈ P and

X, Y ∈ X satisfying X|P d= Y |Q. Denote by F the distribution of X under P ,
which is the same as that of Y under Q. If there exists Z ∈ X which has the
distribution F under both P and Q, then we have the desired chain of equalities
�(X|P) = �(Z|P) = �(Z|Q) = �(Y |Q). Unfortunately, the existence of such a
Z depends on the specification of P , Q and cannot be expected in general; this prob-
lem is non-trivial and has been studied in detail by Shen et al. [27]. In the result
below, we show that under the extra assumption that the measurable space (�,F) is
standard Borel (i.e., isomorphic to the Borel space on [0, 1]), it is possible to find an
intermediate measure R and two random variables Z,W ∈ X such that the chain of
equalities

X|P d= Z|P d= Z|R d= W |R d= W |Q d= Y |Q
holds, and this gives the desired statement �(X|P) = �(Y |Q) needed for (B1).

Theorem 4.3 For a core �, (B1) implies both (B2) and (B3). If (�,F) is standard
Borel, then (B2) and (B3) together are equivalent to (B1).

Remark 4.4 If (�,F) is not standard Borel, it remains unclear whether the equiva-
lence (B2+B3) ⇔ (B1) holds. For applications in finance and risk management, it is
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typically sufficient to use a standard Borel space because one can construct count-
ably many independent Brownian motions on the corresponding probability space.
The assumption of a standard Borel space is used in some classic literature on risk
measures, e.g. Delbaen [9] and Jouini et al. [21].

Loss law-invariance (B2) seems to be always desirable to assume in practice, be-
cause if two random losses X and Y share the same distribution under a chosen sce-
nario P of interest, then it is natural to assign the same risk value to these two losses.
For a fixed collection Q ∈ 2P , this property defines the Q-based risk measure of
Wang and Ziegel [31]. On the other hand, it may not always be desirable to assume
(B3); although two scenarios may give the same distribution of a loss X, the riskiness
may not be understood as the same, as illustrated by the following example.

Example 4.5 Let P represent a good and Q an adverse economic scenario (e.g.
COVID-19). Assume that the distribution of X is the same under P and Q, which
means that X is independent of the particular economic factor which generates P

and Q. The values �(X|P) and �(X|Q) quantify the riskiness of X when P respec-
tively Q is the chosen scenario. Since P describes a better economy, the risk manager
may think that X is more acceptable in this situation, leading to �(X|P) < �(X|Q).
For instance, the core in Example 3.3 (ii), the robust representation of convex risk
measures, reflects this consideration, and it is not scenario law-invariant.

Next, we collect some representation results based on (A1), (A3) and (B1)–(B3).
Recall that M is the set of compactly supported distributions on R. Throughout, we
define

� = {ψ : M → [−∞,+∞]}.
Each mapping ψ ∈ � represents a traditional law-invariant risk measure treated as a
functional on M instead of on X .

Proposition 4.6 Let � be a generalised risk measure.
(i) The mapping � satisfies (A1), (A3) and (B1) if and only if there exists ψ ∈ �

such that

�(X|Q) = sup
P∈Q

ψ(FX|P ), (X,Q) ∈ X × 2P .

(ii) The mapping � satisfies (A1), (A3) and (B2) if and only if there exists
{ψP : P ∈ P} ⊆ � such that

�(X|Q) = sup
P∈Q

ψP (FX|P ), (X,Q) ∈ X × 2P .

(iii) The mapping � satisfies (A1), (A3) and (B3) if and only if there exists
{ψX : X ∈ X } ⊆ � such that

�(X|Q) = sup
P∈Q

ψX(FX|P ), (X,Q) ∈ X × 2P .
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5 Coherent generalised risk measures

In this section, we pay special attention to the most important class of traditional
risk measures, namely coherent risk measures of Artzner et al. [2]. We first provide
a characterisation for a generalised risk measure to have the form of coherent risk
measures in Example 3.3, and then discuss a few additional properties specific to our
setting.

5.1 A characterisation for coherent risk measures

We give a simple characterisation of the coherent risk measures in Example 3.3 (i).
Coherent risk measures including ES (for a fixed scenario) are the most studied class
of risk measures in the finance and engineering literature. We first list some properties
of traditional risk measures of Artzner et al. [2] and Föllmer and Schied [17, Chap. 4].
These properties are formulated for the traditional risk measure X �→ �(X|Q) on X
for each fixed Q ⊆ P , and we denote this by �Q.

(C1) Monotonicity: �Q(X) ≤ �Q(Y ) for all X, Y ∈ X with X ≤ Y .
(C2) Cash-additivity: �Q(X + m) = �Q(X) + m for all X ∈ X and m ∈ R.
(C3) Positive homogeneity: �Q(λX) = λ�Q(X) for all λ > 0 and X ∈ X .
(C4) Subadditivity: �Q(X + Y) ≤ �Q(X) + �Q(Y ) for all X, Y ∈ X .

Following the terminology for traditional risk measures, a generalised risk measure
� is monetary if it satisfies (C1) and (C2), and coherent if it satisfies (C1)–(C4). We
further state a strong property imposed on the cores.

(C0) Additivity of the core: �(X + Y |P) = �(X|P) + �(Y |P) for all X, Y ∈ X
and P ∈ P .
The property (C0) will be a key property to pin down the form of coherent traditional
risk measures.

Theorem 5.1 A standard generalised risk measure � satisfies (A1), (A2), (B2), (C1)
and (C0) if and only if it is uniquely given by

�(X|Q) = sup
P∈Q

E
P [X], (X,Q) ∈ X × 2P . (5.1)

Moreover, � in (5.1) satisfies (C2)–(C4).

The most important property used in Theorem 5.1 is the additivity of the core (C0),
which may be seen as quite strong. As a primary example of coherent risk measures
of the form (5.1) in financial practice, the Chicago Mercantile Exchange (CME) uses
(5.1) to determine margin requirements for a portfolio of instruments; see McNeil et
al. [25, Sect. 2.3]. In the CME approach, under each fixed scenario, the risk factors
move in a particular deterministic way and hence the portfolio loss assessment is
additive; thus (C0) is natural in this context.

5.2 Ambiguity sensitivity and comonotonically additive risk measures

As we have seen from Example 4.2, strong law-invariance (B1) is genuinely stronger
than the weaker notions of (B2) and (B3). In the following result, we connect weak
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and strong law invariance via an additional property which is related to the core of
the generalised risk measure �.

(B4) Ambiguity sensitivity: For all X ∈ X , P,Q ∈ P and λ ∈ [0, 1], we have
�(X|λP + (1 − λ)Q) ≥ λ�(X|P) + (1 − λ)�(X|Q). Moreover,

�
(
1A

∣∣λP + (1 − λ)Q
) = λ�(1A|P) + (1 − λ)�(1A|Q)

for all A ∈ F such that P [A] = Q[A].
The first statement of (B4) intuitively means that due to ambiguity on the dis-

tribution of X, the risk of X under a mixture is larger than the mixture of its risks
under P and Q; this is the concavity in P in Proposition 2.3. For instance, a random
variable X which is constant under both P and Q may be random (Bernoulli) under
λP + (1 − λ)Q, and hence its risk should be larger under the mixture than under
the individual scenarios. Regarding the second statement of (B4), if the probability
measures P and Q agree on how likely an event A is, then there is no ambiguity on A

and its risk under a mixture should be simply the mixture of its risks under P and Q.
Another explanation is provided in the following example.

Example 5.2 Assume that P is used by one risk analyst and Q by another. The man-
ager would like to use λP +(1−λ)Q, a mixture of P and Q, to reflect the knowledge
of both analysts. For simplicity, the random loss X is assumed to be the indicator of
a loss event A. If P and Q give different assessments of the probability of A, the
manager would be worried about the discrepancy in the models, and her final risk
assessment �(X|λP + (1 − λ)Q) is more than λ�(X|P) + (1 − λ)�(X|Q), the
weighted average of the two analysts’ assessments. On the other hand, if P and Q

give the same probability to A, there is no disagreement in predicting A. In this case,
her risk assessment of 1A is the same as the weighted average of the two analysts’
assessments.

Another property essential to our next characterisation result is comonotonic
additivity, which is intimately linked to Choquet integrals; see e.g. Wang et al. [30].

(C5) Comonotonic additivity: �Q(X + Y) = �Q(X) + �Q(Y ) for all X, Y ∈ X
which are comonotonic.
Recall that two random variables X and Y are called comonotonic if they satisfy
(X(ω) − X(ω′))(Y (ω) − Y(ω′)) ≥ 0 for all (ω, ω′) ∈ � × �.

The following result characterises loss law-invariant risk measures with ambigu-
ity sensitivity: they turn out to be strongly law-invariant risk measures without this
assumption. The proof is quite technical and relies on Lyapunov’s convexity theorem
as well as a few characterisation results on Choquet integrals in Wang et al. [30]. It is
important to note that when we say the core satisfies some properties (C1)–(C5), this
means that it satisfies these properties as a traditional risk measure.

Theorem 5.3 For a core �, the following are equivalent:
(i) The mapping � is loss law-invariant, ambiguity sensitive, monetary and

comonotonically additive, i.e., � satisfies (B2), (B4), (C1), (C2) and (C5).
(ii) The mapping � is strongly law-invariant, coherent and comonotonically

additive, i.e., � satisfies (B1) and (C1)–(C5).
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(iii) There exists an increasing concave function h : [0, 1] → [0, 1] such that
h(0) = 0 = 1 − h(1) and

�(X|P) =
∫

X d(h ◦ P), (X, P ) ∈ X × P . (5.2)

There has been an extensive debate in both academia and industry on whether
subadditivity (C4) proposed by Artzner et al. [2] is a good criterion for risk mea-
sures used in regulatory practice, as (C4) is the key property which distinguishes
VaR and ES; see Embrechts et al. [14], Embrechts et al. [16] and the references
therein. By Theorem 5.3, from the perspective of multiple models, we can obtain
(C4) by using ambiguity sensitivity (B4). Hence our framework and results offer a
novel decision-theoretic reason to support coherent risk measures (in particular, ES
over VaR) without directly assuming subadditivity (C4).

6 Connection to decision theory

In this section, we discuss the connection of our generalised risk measures to classic
notions in decision theory, as model uncertainty has been dealt with extensively in
the decision-theoretic literature and traditional risk measures are intimately linked to
decision preferences in various forms; see e.g. Drapeau and Kupper [11]. We first
present a list of decision-theoretic criteria as examples for our framework, followed
by characterisation results of two classic notions: the multi-prior expected utility of
Gilboa and Schmeidler [19] and the variational preferences of Maccheroni et al. [24].

6.1 Examples of generalised risk measures in decision theory

Our framework includes many criteria in decision theory as typical examples. Al-
though the considerations of these criteria are different from our paper, the following
examples show the generality of our framework.

Example 6.1 (i) The multi-prior expected utility of Gilboa and Schmeidler [19] has a
numerical representation

�(X|Q) = u−1
(

min
P∈Q

E
P [u(X)]

)
,

where u is a strictly increasing utility function.
(ii) The variational preference of Maccheroni et al. [24] has a numerical represen-

tation

�(X|Q) = min
P∈Q

(
E

P [u(X)] − γ (P )
)
,

where u is a strictly increasing utility function and γ : P → [−∞,+∞) is a
penalty function. The multiplier preferences of Hansen and Sargent [20] correspond
to a special choice of γ which is the Kullback–Leibler divergence from a reference
scenario.
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(iii) Let Q ⊆ P be pre-specified and μ a probability measure on Q. The smooth
ambiguity preference of Klibanoff et al. [22] has a numerical representation

�(X|Q) = φ−1
( ∫

Q
φ
(
u−1(

E
P [u(X)])) dμ(P )

)
,

where u is a strictly increasing utility function and φ a strictly increasing function.
Note that in this formulation, μ needs to be specified together with Q and hence
should be considered as an input of � in our framework; see Sect. 7 for more
discussion on this.

(iv) The imprecise information preference of Gajdos et al. [18] has a numerical
representation

�(X|Q) = u−1
(

min
P∈φ(Q)

E
P [u(X)]

)
,

where u is a strictly increasing utility function and φ a selecting function (assumed
to exist) reflecting the decision maker’s attitude to imprecision.

(v) The model misspecification preference of Cerreia-Vioglio et al. [6] has a
numerical representation

�(X|Q) = min
P∈P

(
E

P [u(X)] + min
Q∈Q

c(P,Q)
)
,

where u is a strictly increasing utility function and c a distance on the set of measures
which penalises the model misspecification.

6.2 Multi-prior expected utilities

Gilboa and Schmeidler [19] proposed the notion of multi-prior expected utility in
decision theory. Motivated by that, we consider a preference on X × S which is
represented by a total pre-order �, where S is the collection of all finite subsets of P .
For tractability, we consider S instead of 2P in this subsection. The decision is to
compare a risk and set of scenarios with another risk and set of scenarios. This setting
was studied by Gajdos et al. [18]. We denote by  the equivalence under �. As above,
we write (X, P ) if the set of scenarios has only one element P . For decisions among
(X1,Q1), (X2,Q2) ∈ X × S , we propose the following axioms similar to what we
have seen so far in this paper, but defined for preferences instead of generalised risk
measures.

(E1) Strong law-invariance: (X, P )  (Y,Q) for any P,Q ∈ P and X, Y ∈ X
satisfying X|P d= Y |Q.

(E2) Uncertainty aversion: (X,Q) � (X,R) for any X ∈ X and R,Q ∈ S with
R ⊆ Q.

(E3) Uncertainty bound: For any X ∈ X and Q ∈ S , there exists some P ∈ Q
such that (X, P ) � (X,Q).

(E4) Independence: for any P,Q ∈ P , any X, Y ∈ X satisfying X|Q d= Y |Q and
any α ∈ (0, 1), we have

(X, P ) � (Y, P ) ⇐⇒ (
X,αP + (1 − α)Q

) � (
Y, αP + (1 − α)Q

)
.
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(E5) Continuity: For any P,Q,R ∈ P and X ∈ X , if (X, P ) � (X,Q) � (X,R),
then there exists α ∈ [0, 1] such that (X, αP + (1 − α)R)  (X,Q).

Proposition 6.2 illustrates a decision-theoretic characterisation for the multi-prior
expected utility. The proof is based on Theorem 3.1 and the classic result of von
Neumann and Morgenstern [28, Chap. 3].

Proposition 6.2 A preference � on X × S satisfies (E1)–(E5) if and only if it is a
multi-prior expected utility, i.e., there exists a function u : R → R such that

(X1,Q1) � (X2,Q2) ⇐⇒ min
P∈Q1

E
P [u(X1)] ≤ min

P∈Q2

E
P [u(X2)]. (6.1)

The strong law-invariance (E1) which allows us to translate � to a preference
on the set of distributions on the real line is crucial for this representation result.
The properties (E2) and (E3) are reasonable for uncertainty-averse decision makers,
and they correspond to (A1) and (A3), respectively, in the framework of generalised
risk measures. The properties (E4) and (E5) correspond to the independence and
continuity axioms of von Neumann and Morgenstern [28, Chap. 3], respectively.

6.3 Robust generalised risk measures

In addition to the worst-case generalised risk measure characterised in Theorem
3.1, another popular form of risk measures involving multiple probability measures
arises from the robust representation of convex risk measures as in Example 3.3
(ii). More precisely, a traditional convex risk measure ρ of Föllmer and Schied [17,
Theorem 4.16] takes the form, for some Q ⊆ P ,

ρ(X) = sup
P∈Q

(
E

P [X] − γ (P )
)
, X ∈ X , (6.2)

where γ : P → (−∞,+∞] is a penalty function. Moreover, the variational prefer-
ence of Maccheroni et al. [24] takes a similar form to (6.2) with the mean E

P replaced
by an expected utility; see Example 6.1 (ii). Note that in the setting of numerical rep-
resentation of preferences, a negative sign needs to be applied to a generalised risk
measure to transform it to a preference functional.

Inspired by (6.2) and the variational preferences of Maccheroni et al. [24], we
consider generalised risk measures with the form, for some ψ ∈ �,

�(X|Q) = sup
P∈Q

(
ψ(FX|P ) − γ (P )

)
, (X,Q) ∈ X × 2P . (6.3)

Clearly, if ψ is the mean functional, then (6.3) yields the traditional (convex) risk
measure (6.2) for a given Q. The generalised risk measure in (6.3) is loss law-
invariant (B2), but neither scenario law-invariant (B3) nor strongly law-invariant
(B1). In order to characterise (6.3), we further impose the following technical prop-
erty which says that the difference between the values of the core evaluated on P and
Q for identically distributed losses only depends on P and Q, but not on the random
loss.
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(B5) If X|P d= Y |Q and Z|P d= W |Q, then

�(X|P) − �(Y |Q) = �(Z|P) − �(W |Q).

Proposition 6.3 Let � be a generalised risk measure. Then � satisfies (A1), (A3),
(B2) and (B5) if and only if there exist a penalty function γ : P → R and some
ψ ∈ � such that the representation (6.3) holds.

Property (B5) can be roughly interpreted as saying that the magnitude of penali-
sation for a given scenario P is independent of the risky position X being evaluated.
This may be seen as a bit artificial. Our characterisation in Proposition 6.3 is mainly
motivated by the great popularity of the robust representation of convex risk mea-
sures and variational preferences, and we omit a detailed discussion of the economic
desirability or undesirability of (B5).

7 Concluding remarks

The new framework of generalised risk measures introduced in this paper allows a
unified formulation of measures of risk and uncertainty. Our results are only first
attempts to understand the new setting and many further questions arise, especially
regarding the interplay between the risk variable X and the uncertainty collection Q
for a generalised risk measure. Both new economic and mathematical questions arise
as the new functionals are by definition more sophisticated than traditionally studied
objects.

Worst-case generalised risk measures are characterised with a few axioms in The-
orem 3.1. Another popular way of handling model uncertainty is to use a weighted
average of risk evaluations. In the case of a finite collection Q, we can always use the
arithmetic average as risk evaluation, that is, generate � via its core by

�(X|Q) = 1

|Q|
∑
Q∈Q

�(X|Q).

Certainly, such a formulation does not satisfy (A1) but satisfies (A2) and (A3). In
general, to allow different weights and infinite collections, one needs to associate
each collection Q with a measure as in (2.1) or in the smooth ambiguity preference of
Klibanoff et al. [22] in Example 6.1 (iii). Such a measure can either be pre-specified
or treated as an input of �, thus slightly extending our framework.

We have studied several popular properties such as law-invariance, coherence and
comonotonic additivity, but many more properties in the new framework remain to
be explored as the literature on traditional risk measures is very rich. In particular, the
desirability of theoretical properties in risk management practice requires thorough
study, as they may have different interpretations from their traditional counterparts.
For instance, additivity of the core may be sensible in our framework (Theorem 5.1)
and nicely connects to the scenario-based margin calculation used by CME. However,
such a property is not desirable for traditional risk measures as it essentially forces
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the risk measure to collapse to the mean; see e.g. Liebrich and Munari [23] and Chen
et al. [7].

Finally, we mention that in some formulations of generalised risk measures, not
all choices of the input scenario Q are economically meaningful. In particular, for a
given penalty function γ on P , the core �(X|P) = E

P [X]−γ (P ) in Example 3.3 (ii)
or �(X|P) = E

P [u(X)] − γ (P ) in Example 6.1 (ii) is not meant to be used directly
with a single P ; the use of γ already implicitly implies that there is some level of
model uncertainty, and it is supposed to be coupled with the worst-case operation.
The value �(X|P) for a standalone P is thus difficult to interpret and should not be
used for decision making without properly specifying the uncertainty collection Q.
On the other hand, such a situation does not happen for instance in the worst-case
or average-type generalised risk measures based on traditional risk measures, such as
the worst-case ES.

Appendix: Proofs

Proof of Proposition 2.3 For a fixed P , convexity of ESα( · |P) is well known since
ESα( · |P) is a coherent risk measure; see e.g. Föllmer and Schied [17, Theorem
4.52]. Non-convexity and non-concavity of VaRα( · |P) are due to the fact that
VaRα( · |P) has a non-convex and non-concave distortion function; see e.g. Wang
et al. [30, Theorem 3]. For a fixed X, note that a mixture on scenarios leads to a mix-
ture of the distribution of X, that is, the distribution of X under λP + (1 − λ)Q is
λFX|P + (1 − λ)FX|Q. Thus concavity with respect to scenarios corresponds to mix-
ture concavity as studied in [30]. Again using [30, Theorem 3], ESα(X| · ) is concave
and VaRα(X| · ) is neither convex nor concave. �

Proof of Theorem 3.1 (i) The “if” statement can be directly checked since (3.1) satis-
fies (A1) and (A2) for a standard generalised risk measure. We show the “only if”
statement below. Using (A1), we have �(X|Q) ≥ �(X|P) for all P ∈ Q, which
implies “≥” in (3.1). Define sX = supP∈Q �(X|P). As sX is a constant random vari-
able under every P ∈ Q, we have �(X|P) ≤ sX = �(sX|P) for all P ∈ Q. Using
(A2), we have �(X|Q) ≤ �(sX|Q) = sX. Thus “≤” in (3.1) follows.

(ii) For the “only if” statement, (A1) gives the “≥” direction of (3.1) and (A3) the
“≤” direction of (3.1). The “if” statement is straightforward to check. �

Proof of Theorem 4.3 The first statement can be directly checked. For the second,
it suffices to show (B2+B3) ⇒ (B1). Take P,Q ∈ P and X, Y ∈ X such that

X|P d= Y |Q and denote this common distribution by F . As explained above, we
aim to show that �(X|P) = �(Y |Q).

Let P ′ = (P + Q)/2 which is a probability measure dominating both P and Q.
Since both (�,F , P ) and (�,F ,Q) are atomless, so is (�,F , P ′). Hence there exist
i.i.d. uniform [0, 1]-valued random variables U and V under P ′. Take an arbitrary
x ∈ (0, 1) and define the probability measure R as the regular conditional probability

R[A] = P ′[A|U = x], A ∈ F .
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Note that R is a well-defined probability measure since (�,F) is standard Borel (see
e.g. Durrett [12, Theorem 5.1.9]). It is clear that R is atomless since V is uniformly
distributed under R. Moreover, R and P ′ are mutually singular. Since P,Q � P ′,
we know that R and P are mutually singular, and so are R and Q. By Shen et al. [27,
Remark 3.13 and Theorem 3.17], there exists a random variable Z such that the dis-
tribution of Z is F under both P and R. Similarly, there exists a random variable W

such that the distribution of W is F under both Q and R. Therefore, we obtain the
chain of equalities

X|P d= Z|P d= Z|R d= W |R d= W |Q d= Y |Q,

which implies

�(X|P) = �(Z|P) = �(Z|R) = �(W |R) = �(W |Q) = �(Y |Q).

Hence � satisfies (B1). �

Proof of Proposition 4.6 For (i), an application of Theorem 3.1 shows that � satisfies
(A1) and (A3) if and only if

�(X|Q) = sup
P∈Q

�(X|P), (X,Q) ∈ X × 2P . (A.1)

It remains to show that � satisfies (B1) if and only if there exists a function ψ ∈ �

such that �(X|P) = ψ(FX|P ) for any (X, P ) ∈ X × P . The “if” statement can be
checked directly.

Now we prove the “only if” statement. For any F ∈ M, there exist a random
variable X ∈ X and a probability measure P ∈ P such that F is the distribution of
X under P . According to (B1), �(X|P) is the same for any selection of X and P .
Hence we define a functional ψ ∈ � via

ψ(F) = �(X|P), F ∈ M. (A.2)

Combining (A.1) and (A.2), we complete the proof of (i). One can prove (ii) and (iii)
similarly. �

Proof of Theorem 5.1 It is straightforward to check that the risk measure � defined
by (5.1) satisfies (A1), (A2), (B1), (C1)–(C4) and (C0). Next, we show that these
properties pin down (5.1). Using Theorem 3.1, it suffices to show that with (B2),
(C1) and (C0), the mapping X �→ �(X|P) must be the expectation under P . It is
a well-known result that a monotone, standard, law-invariant and additive functional
must be the mean; see e.g. Wang and Zitikis [32, proof of Lemma A.1]. Hence these
properties are enough to pin down (5.1). �

Proof of Theorem 5.3 First we show the equivalence (ii) ⇔ (iii). To show the direction
(ii) ⇒ (iii), based on (B2) and (C1)–(C5), for a fixed P ∈ P , we get by Wang et
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al. [30, Theorem 1, Lemma 2 and Theorem 3] that there exists an increasing concave
function hP : [0, 1] → [0, 1] with hP (0) = 0 = 1 − hP (1) such that

�(X|P) =
∫

X d(hP ◦ P), (X, P ) ∈ X × P . (A.3)

For every x ∈ [0, 1] and P,Q ∈ P , there exist A,B ∈ F with P [A] = Q[B] = x

by Delbaen [10, Theorem 1]. Strong law-invariance of � implies

�(1A|P) = �(1B |Q) = hP (P [A]) = hQ(Q[B]).

Thus hP (x) = hQ(x) for all x ∈ [0, 1]. This shows that hP does not depend on P ,
and writing h = hP , (A.3) leads to (5.2).

To show the direction (iii) ⇒ (ii), for fixed P ∈ P , using Wang et al. [30, The-
orem 3] yields that �( · |P) is subadditive. Monotonicity, cash-additivity, positive
homogeneity and comonotonic additivity follow from Föllmer and Schied [17, The-
orems 4.88 and 4.94]. Therefore � is coherent and comonotonically additive. Strong

law-invariance follows from the fact that X|P d= Y |Q implies

∫
X d(h ◦ P) =

∫ 0

−∞
(h ◦ P [X ≥ x] − 1) dx +

∫ ∞

0
h ◦ P [X ≥ x] dx

=
∫ 0

−∞
(h ◦ Q[Y ≥ x] − 1) dx +

∫ ∞

0
h ◦ Q[Y ≥ x] dx

=
∫

Y d(h ◦ Q).

Next we show (i) ⇔ (iii). To show (iii) ⇒ (i), as the other properties are straight-
forward to check, we only show ambiguity sensitivity. Because of the cash-additivity
of (5.2), it suffices to check it for X ≥ 0. For X ≥ 0 and P,Q ∈ P ,

�
(
X

∣∣λP + (1 − λ)Q
) =

∫
X d

(
h ◦ (

λP + (1 − λ)Q
))

=
∫ ∞

0
h
(
λP [X ≥ x] + (1 − λ)Q[X ≥ x]) dx

≥
∫ ∞

0

(
λ(h ◦ P)[X ≥ x] + (1 − λ)(h ◦ Q)[X ≥ x]) dx

= λ

∫
X d(h ◦ P) + (1 − λ)

∫
X d(h ◦ Q)

= λ�(X|P) + (1 − λ)�(X|Q).
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Moreover, for all A ∈ F and P ∈ P , we compute

�(1A|P) =
∫ ∞

0
h(P [1A ≥ x]) dx =

∫ 1

0
h(P [1A ≥ x]) dx

=
∫ 1

0
h(P [A]) dx = h(P [A]).

For all A ∈ F and P,Q ∈ P such that P [A] = Q[A], we have

�
(
1A

∣∣λP + (1 − λ)Q
) = h

((
λP + (1 − λ)Q

)[A]
)

= h(P [A])
= λh(P [A]) + (1 − λ)h(Q[A])
= λ�(1A|P) + (1 − λ)�(1A|Q).

To show (i) ⇒ (iii), by Wang et al. [30, Theorem 1 and Lemma 2], based on
(B2), (C1), (C2) and (C5), for a fixed P ∈ P , there exists an increasing function
hP : [0, 1] → [0, 1] with hP (0) = 0 = 1 − hP (1) such that

�(X|P) =
∫

X d(hP ◦ P), (X, P ) ∈ X × P .

Also note that hP (x) = �(1A|P) for all P ∈ P and A ∈ F with P [A] = x. Further,
note that for any P ∈ P and any t ∈ [0, 1],

�(1{U≤t}|P) =
∫

1{U≤t} d(hP ◦ P) = hP (t).

Lyapunov’s convexity theorem (Rudin [26, Theorem 5.5]) states that the set

R(P,Q) := {(P [A],Q[A]) : A ∈ F}
is closed and convex. Hence as (0, 0), (1, 1) ∈ R(P,Q), for every x ∈ [0, 1] and
P,Q ∈ P , there exists A ∈ F with P [A] = Q[A] = x. Hence the second condition
in (B4) implies

hλP+(1−λ)Q(x) = λhP (x) + (1 − λ)hQ(x). (A.4)

Assume P �= Q. There exists B ∈ F such that P [B] > Q[B], which also implies
P [Bc] < Q[Bc]. Therefore R(P,Q) contains at least one point above and one point
below the diagonal line. Using Lyapunov’s convexity theorem again, since

(0, 0), (1, 1), (P [B],Q[B]), (P [Bc],Q[Bc]) ∈ R(P,Q),

there exists for any ε ∈ (0, 1
2 ) a “rectangle” set in R(P,Q), i.e., there exists some

δ′ > 0 such that

{(x + δ, x − δ) : x ∈ (ε, 1 − ε), δ ∈ (−δ′, δ′)} ⊆ R(P,Q).
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Hence for any δ ∈ (0, δ′), for any x ∈ (ε, 1 − ε), there exists some Bδ ∈ F satisfying
P [Bδ] = x + δ and Q[Bδ] = x − δ. The first condition in (B4) further gives

hP/2+Q/2(x) = hP/2+Q/2

(
P [Bδ]

2
+ Q[Bδ]

2

)

≥ 1

2
hP (P [Bδ]) + 1

2
hQ(Q[Bδ]) = 1

2
hP (x + δ) + 1

2
hQ(x − δ).

It then follows from (A.4) that

hQ(x) − hQ(x − δ) ≥ hP (x + δ) − hP (x),

which implies

1

δ

(
hQ(x) − hQ(x − δ)

) ≥ 1

δ

(
hP (x + δ) − hP (x)

)
. (A.5)

By the symmetry of P and Q, for any x ∈ (ε, 1−ε) and δ ∈ (0, δ′) sufficiently small,
we similarly have

1

δ

(
hP (x) − hP (x − δ)

) ≥ 1

δ

(
hQ(x + δ) − hQ(x)

)
. (A.6)

For any x ∈ (ε, 1 − ε) and δ ∈ (0, δ′) sufficiently small, substituting x by x + δ in
(A.6), we have

1

δ

(
hP (x + δ) − hP (x)

) ≥ 1

δ

(
hQ(x + 2δ) − hQ(x + δ)

)
. (A.7)

Combining (A.5) and (A.7), for any x ∈ (ε, 1 − ε) and δ ∈ (0, δ′) sufficiently small,
we have

1

δ

(
hQ(x) − hQ(x − δ)

) ≥ 1

δ

(
hQ(x + 2δ) − hQ(x + δ)

)
,

which implies that hQ is concave on (ε, 1 − ε). As ε ∈ (0, 1
2 ) is arbitrary, we have

that hQ is concave on (0, 1). Concavity implies that hQ is absolutely continuous on
(0, 1). Similarly, hP is also concave and hence absolutely continuous on (0, 1).

Note that hP and hQ as increasing functions have derivatives almost everywhere.
Letting δ ↓ 0 in (A.5) gives

d

dx
hQ(x) ≥ d

dx
hP (x) for a.e. x ∈ (0, 1).

By symmetry in P and Q, we have

d

dx
hP (x) ≥ d

dx
hQ(x) for a.e. x ∈ (0, 1),

which further implies that

d

dx
hP (x) = d

dx
hQ(x) for a.e. x ∈ (0, 1).
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Using the Newton–Leibniz formula, for any x ∈ (0, 1], we have

hP (1−) − hP (x) =
∫ 1

x

d

dt
hP (t) dt =

∫ 1

x

d

dt
hQ(t) dt = hQ(1−) − hQ(x). (A.8)

We proceed to prove that hP (1) = hP (1−) for any P ∈ P . It is clear that we have
hP (1) ≥ hP (1−) because hP is increasing. Write

h̃P (x) =
{

hP (x), x ∈ [0, 1),

hP (1−), x = 1.

Hence for any X ∈ X satisfying 0 ≤ X ≤ 1, we have

�(X|P) =
∫

X d(hP ◦ P)

=
∫

X d
(
(hP − h̃P ) ◦ P

) +
∫

X d(h̃P ◦ P)

= (
hP (1) − h̃P (1)

)
ess inf(X|P) +

∫
X d(h̃P ◦ P)

= (
hP (1) − h̃P (1)

)
ess inf(X|P) +

∫ 1

0
h̃P ◦ P [X ≥ x] dx

≤ (
hP (1) − h̃P (1)

)
ess inf(X|P) + h̃P (1). (A.9)

For any λ ∈ [0, 1], let X be a random variable satisfying X|P ∼ Bernoulli(λ). On
one hand, according to (A.9), we have

�(X|P) ≤ h̃P (1). (A.10)

On the other hand, we define two probability measures by Q[ · ] = P [ · |X = 0]
and R[ · ] = P [ · |X = 1]. Then P = (1 − λ)Q + λR and hence Q and R are
mutually singular with Q[X = 0] = 1 and R[X = 1] = 1. Hence �(X|Q) = 0 and
�(X|R) = 1. According to (B4), we have

�(X|P) ≥ (1 − λ)�(X|Q) + λ�(X|R) = λ. (A.11)

Combining (A.10) and (A.11), we have h̃P (1) ≥ λ for any λ ∈ [0, 1], which implies
that hP (1−) = h̃P (1) = 1 = hP (1).

Finally, combining with (A.8), we have hP = hQ on (0, 1]. Hence together with
hP (0) = hQ(0) = 0, we have hP = hQ. This shows that hP does not depend on P ,
and we write h = hP . As h is concave on (0, 1), h(1−) = h(1) and h(0+) ≥ h(0),
we know that h is concave on [0, 1]. Hence the proof of (5.2) is complete. �

Proof of Proposition 6.2 It is straightforward to check that the multi-prior expected
utility in (6.1) satisfies (E1)–(E5). Below, we deduce the representation (6.1) from
(E1)–(E5).
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By (E1), to compare (X, P ) with (Y,Q), it suffices to compare the distributions
FX|P and FY |Q as elements of M, the set of compactly supported distributions on R.
Hence the restriction of � to {(X, P ) : X ∈ X , P ∈ P} is described equivalently by
a binary relation �∗ on M via

(X, P ) � (Y,Q) ⇐⇒ FX|P �∗ FY |Q.

By letting FX|P = F , FY |P = G and FX|Q = FY |Q = H , we can translate (E4) into
the following property: For any F,G,H ∈ M and α ∈ (0, 1), we have

F �∗ G ⇐⇒ αF + (1 − α)H �∗ αG + (1 − α)H ;
this is the independence axiom of von Neumann and Morgenstern [28, Chap. 3]
on �∗. Similarly, (E5) can be translated into the continuity axiom of [28, Chap. 3]
on �∗. Using the von Neumann–Morgenstern utility theorem, there exists a function
u : R → R such that

(X, P ) � (Y,Q) ⇐⇒ FX|P �∗ FY |Q ⇐⇒ E
P [u(X)] ≤ E

Q[u(Y )]. (A.12)

Next we consider two general objects (X1,Q1) ∈ X × S and (X2,Q2) ∈ X × S .
First, by (E2) and (E3), there exist Q∗

1 ∈ Q1 and Q∗
2 ∈ Q2 such that

(Xi,Q
∗
i )  (Xi,Qi ), i = 1, 2.

Moreover, by (E2), we have (Xi,Q
∗
i )  (Xi,Qi ) � (Xi,Q) for all Q ∈ Qi . By

using (A.12), we have

E
Q∗

i [u(Xi)] ≤ E
Q[u(Xi)] for all Q ∈ Qi .

Thus EQ∗
i [u(Xi)] = minQ∈Qi

E
Q[u(Xi)] for i = 1, 2. Suppose that

E
Q∗

1 [u(X1)] ≤ E
Q∗

2 [u(X2)].
By using (A.12) again, we have

(X1,Q
∗
1) � (X2,Q) for all Q ∈ Q2.

Using (E3), this implies (X1,Q1)  (X1,Q
∗
1) � (X2,Q2). Exchanging the roles of

(X1,Q1) and (X2,Q2), we obtain that (6.1) holds true. �

Proof of Proposition 6.3 Proposition 4.6 shows that � satisfies (A1), (A3) and (B2) if
and only if there exists {ψP : P ∈ P} ⊆ � such that

�(X|Q) = sup
P∈Q

�(X|P), (X,Q) ∈ X × 2P ,

and

�(X|P) = ψP (FX|P ), (X, P ) ∈ X × P . (A.13)
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It remains to show that � satisfies (B5) if and only if there exist γ : P → (−∞,+∞]
and ψ ∈ � such that

�(X|P) = ψP (FX|P ) = ψ(FX|P ) − γ (P ), (X, P ) ∈ X × P . (A.14)

The “if” statement can be checked directly. Now we proceed to prove the “only if”
statement.

Assume (B5) holds. For any X, Y,Z,W ∈ X and P,Q ∈ P satisfying X|P d= Y |Q
and Z|P d= W |Q, we have ψP (FX|P ) − ψQ(FY |Q) = ψP (FZ|P ) − ψQ(FW |Q) ac-
cording to (A.13). Write F1 = FX|P = FY |Q and F2 = FZ|P = FW |Q. Hence for any
F1, F2 ∈ M and P,Q ∈ P , we have

ψP (F1) − ψQ(F1) = ψP (F2) − ψQ(F2),

which means that ψP (F) − ψQ(F) is a constant for any F ∈ M. That is, there exists
a functional g : P × P → R such that

ψP (F) − ψQ(F) = g(P,Q), P,Q ∈ P, F ∈ M.

Fix P ∈ P and set Q = δ0, the Dirac measure at zero. Then

ψP (F) = ψδ0(F ) + g(P, δ0), F ∈ M.

Define ψ( · ) = ψδ0( · ) and γ ( · ) = −g( · , δ0). We have

ψP (F) = ψ(F) − γ (P ), F ∈ M. (A.15)

Since (A.15) holds for any P ∈ P , we get

ψP (F) = ψ(F) − γ (P ), (P, F ) ∈ P × M.

For any X ∈ X and P ∈ P , we consider F = FX|P and hence have

�(X|P) = ψP (FX|P ) = ψ(FX|P ) − γ (P ), (X, P ) ∈ X × P,

which is exactly (A.14). �

Acknowledgements We are grateful to the review team, Camilo Garcia Trillos, Fabio Maccheroni, Andrea
Macrina and Thorsten Schmidt for comments which led to various improvements of the paper. YL grate-
fully acknowledges financial support from the research startup fund at The Chinese University of Hong
Kong, Shenzhen, and the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-
04054). RW acknowledges financial support from the Natural Sciences and Engineering Research Council
of Canada (RGPIN-2018-03823, RGPAS-2018-522590).

Declarations

Competing Interests The authors declare no competing interests.



Generalised risk measures 389

References

1. Anscombe, F.J., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205
(1963)

2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228
(1999)

3. BCBS: Minimum capital requirements for market risk. February 2019. Basel Committee on Banking
Supervision. Document d457, Basel: Bank for International Settlements (2019). Available online at
https://www.bis.org/bcbs/publ/d457.pdf
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