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Abstract
This note is a complement to the paper (Stoch. Process. Appl. 144:72–84, 2022) by
Eberlein, Kabanov and Schmidt on the asymptotics of the ruin probability in a Sparre
Andersen non-life insurance model with investments into a risky asset whose price
follows a geometric Lévy process. Using techniques from the theory of semi-Markov
processes, we extend the result of (Eberlein, Kabanov and Schmidt in Stoch. Process.
Appl. 144:72–84, 2022) to the case of annuities and models with two-sided jumps.
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1 Introduction

In the classical Sparre Andersen model of an insurance company, the numbers of
claims form a renewal process; see Grandell [5, Chap. 3]. In recent studies, see
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Albrecher et al. [1], Eberlein et al. [3] and references therein, this model was en-
riched by the assumption that the capital reserve of the insurance company is fully
invested in a risky asset whose price evolves as a geometric Lévy process. In [3],
Eberlein, Kabanov and Schmidt considered the non-life insurance version of such a
model. It was shown that under rather mild hypotheses on the business process, the
asymptotic behaviour of the (ultimate) ruin probability is essentially the same as in
a Cramér–Lundberg model with risky investments. Namely, the ruin probability de-
cays, up to a multiplicative constant, as the function u−β when the initial capital u

tends to infinity. The decay rate β depends only on the characteristics of the price
process. The method of analysis in [3] is based heavily on the assumption that the
risk process has only downward jumps and therefore crosses the level zero only by
a jump. This specific feature allows a straightforward reduction to a discrete-time
Markovian framework.

The approach of [3] left as an open question whether similar results also hold
in the case of upward jumps. This is a feature of the annuity model, where the
risk process can cross the level zero in a continuous way. In a less popular model
with two-sided jumps, the crossing may happen in both ways. Of course, a posi-
tive answer is expected also for the mentioned two models; this was already estab-
lished for the Cramér–Lundberg models with investments analysed by Kabanov and
Pergamenshchikov [6] and Kabanov and Pukhlyakov [8] as well as in very general
Lévy Ornstein–Uhlenbeck models introduced and studied by Paulsen using the tech-
niques based on the paper by Goldie [4]; see Paulsen [9, 10], Paulsen and Gjessing
[11] and the more recent paper by Kabanov and Pergamenshchikov [7].

Our note, being a complement to the study [3], gives a positive answer for the
renewal model in its annuity version, with positive jumps, as well as for the renewal
model without restriction on the sign of the jumps. The key contribution lies in con-
structing a “bridge” between the ruin problem and implicit renewal theory to exploit
results of the latter on the tail behaviour of solutions of affine distributional equations.
Our technique uses an embedding of a scalar continuous-time semi-Markov process
into a two-dimensional Markov process by adding a “clock” component measuring
the time elapsed after the last arrival; see Sects. 3 and 4, and in particular Lemmas
3.1 and 4.5.

In the paper, we use standard notations of stochastic calculus and concepts dis-
cussed in detail in Kabanov and Pergamenshchikov [7] and Eberlein et al. [3].

2 The model

The Sparre Andersen model with risky investments considered here contains two
ingredients. The first is the price process S = (St )t≥0 of a risky financial asset, usually
interpreted as a market index. We assume that it is of the form S = E(R), where E
is the stochastic exponential, R = (Rt )t≥0 with R0 = 0 is a Lévy process with Lévy
triplet (a, σ 2,�) and such that �((−∞,−1]) = 0. The latter condition ensures for
the jumps that �R > −1, and hence for the price that S > 0. In that case, S = eV ,
where V = lnS is again a Lévy process which can be given by the formula

Vt = at − 1

2
σ 2t + σWt + h ∗ (μ − ν)t + (

ln(1 + x) − h
) ∗ μt ,
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where h(x) = xI{|x|≤1} for x ∈ R. The Lévy triplet of V is (aV , σ 2,�V ) with

aV = a − σ 2

2
+ �

(
h
(

ln(1 + x)
) − h

)

and �V = �ϕ−1 with ϕ(x) = ln(1 + x) for x > −1. We assume that R is non-
deterministic, that is, at least one of the parameters σ 2 or � is not zero.

The second ingredient is the “business process”. It is a compound renewal process
P = (Pt )t≥0 independent of S. Classically, it can be written in the form

Pt = ct +
Nt∑

i=1

ξi,

where N = (Nt )t≥0 is a counting renewal process with the interarrival times (lengths
of the inter-jump intervals) Ui := Ti − Ti−1, i ≥ 1, forming an i.i.d. sequence inde-
pendent of the i.i.d. sequence of random variables ξi = �PTi

, i ≥ 1, with the common
law Fξ with Fξ ({0}) = 0. In the sequel, a “generic” random variable with that law is
denoted by ξ . As usual, T0 := 0. The common law of Ui , i ≥ 1, is denoted by F and
we use the same character for its distribution function.

The risk process X = Xu, u > 0, is defined as the solution of the non-homogene-
ous linear stochastic equation

Xt = u +
∫ t

0
Xs−dRs + Pt .

The ruin probability is the function of the initial capital 	(u) := P[τu < ∞], where
τu := inf{t : Xu

t ≤ 0}.
The cases of major interest are c > 0 and ξi < 0, i ≥ 1 (the non-life insurance

model considered in [3]), and c < 0 and ξi > 0 (an annuities payments model). The
latter case which is studied here is often interpreted as a model of a venture company
paying salaries and selling innovations. The case where Fξ charges both half-axes is
also mathematically interesting, see e.g. Albrecher et al. [1], and we study it also.

If c ≥ 0 and ξ > 0, ruin never happens. This case is excluded from our considera-
tions as well as the trivial case c < 0 and ξ ≤ 0, where ruin happens for sure.

Standing assumption The cumulant-generating function H(q) := ln E[e−qVT1 ] of
the random variable VT1 has a root β > 0 not lying on the boundary of the effec-
tive domain of H . That is, if int (domH) = (q, q̄), there is a unique root β ∈ (0, q̄).

We are looking for conditions under which

0 < lim inf
u→∞ uβ	(u) ≤ lim sup

u→∞
uβ	(u) < ∞. (2.1)

The paper [3] treats the case of non-life insurance. We formulate its main result in a
more transparent form.



890 Y. Kabanov, P. Promyslov

Theorem 2.1 ([3, Theorem 2.3]) Suppose that the drift coefficient c ≥ 0, the law Fξ

is concentrated on (−∞,0), E[|ξ |β ] < ∞ and E[eεT1 ] < ∞ for some ε > 0. Then
(2.1) holds if at least one of the following conditions is fulfilled:

1) σ �= 0 or ξ is unbounded from below.
2a) �((−1,0)) > 0 and �((0,∞)) > 0.
2b) �((−1,0)) = 0 and �(h) = ∞.
2c) �((0,∞)) = 0 and �(|h|) = ∞.
2d) �((−∞,0)) = 0, 0 < �(h) < ∞ and F((0, t)) > 0 for every t > 0.
2e) �((0,∞)) = 0, 0 < �(|h|) < ∞ and F((0, t)) > 0 for every t > 0.

In the above formulation, a function f in the argument of the measure � means
its integral with respect to this measure, i.e., �(f ) = ∫

R
f (x)�(dx).

The proof in [3] used heavily the assumption that the business process has a posi-
tive drift and negative claims, corresponding to the non-life insurance setting. In that
case, ruin may happen only at an instant of a jump, and therefore one needs to moni-
tor the risk process only at T1, T2 and so on. Such a reduction to a discrete-time ruin
model does not work if ξi > 0.

In our paper, we consider an annuity model of the Sparre Andersen type, where
ruin occurs because of exhausting resources and the risk process reaches zero in a
continuous way. The main result can be formulated as follows.

Theorem 2.2 Suppose that the drift c < 0, the law Fξ is concentrated on (0,∞),
E[ξβ ] < ∞ and E[eεT1 ] < ∞ for some ε > 0. Then (2.1) holds if at least one of the
following conditions is fulfilled:

1) σ �= 0.
2a) �((−1,0)) > 0 and �((0,∞)) > 0.
2b) �((−1,0)) = 0 and �(h) = ∞.
2c) �((0,∞)) = 0 and �(|h|) = ∞.
2d) �((−1,0)) = 0, 0 < �(h) < ∞ and F((t,∞)) > 0 for every t > 0.
2e) �((0,∞)) = 0, 0 < �(|h|) < ∞ and F((t,∞)) > 0 for every t > 0.

For the mixed case, we have the following result.

Theorem 2.3 Suppose that the drift c ∈ R, the law Fξ charges both half-lines
(−∞,0) and (0,∞), E[|ξ |β ] < ∞ and E[eεT1] < ∞ for some ε > 0. Then (2.1)
holds if at least one of the following conditions is fulfilled:

1) σ �= 0 or |ξ | is unbounded.
2a) �((−1,0)) > 0 and �((0,∞)) > 0.
2b) �((−1,0)) = 0 and �(h) = ∞.
2c) �((0,∞)) = 0 and �(|h|) = ∞.
2d) �((−1,0)) = 0, 0 < �(h) < ∞, and F((t,∞)) > 0 for every t > 0 in the

case c < 0, or Fξ ((0, ε)) > 0 for every ε > 0 in the case c ≥ 0.
2e) �((0,∞)) = 0, 0 < �(|h|) < ∞, and F((t,∞)) > 0 for every t > 0 in the

case c < 0, or Fξ ((0, ε)) > 0 for every ε > 0 in the case c ≥ 0.
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3 The clock process

The annuity and the mixed setting require a different approach inspired by the theory
of semi-Markov processes. Namely, we consider the business process P as one com-
ponent of the two-dimensional Markov process (P,D), where the second component
D = Dr is a “clock”, i.e., a process measuring the time elapsed after the instant of the
last claim. We assume that for r > 0, the law of U1 = T1 may be different from the
common law of the further interarrival times; so at the instant zero, a portion r > 0 of
the interarrival time is already elapsed. This feature admits obvious justifications, e.g.
the venture company may change the governance when a project is still in progress.

Here and throughout the paper, we use the superscript r to emphasize that the
law of a random variable or a process depends on r ≥ 0, skipping usually r = 0. The
reserve process is denoted by Xu,r , the ruin time by τu,r := inf{t ≥ 0 : X

u,r
t } and the

ruin probability by 	r(u) := P[τu,r < ∞].
Formally, the “clock” Dr = (Dr

t ) is a process with the initial value Dr
0 = r ,

Dr
t = r + t on the interval [0, T1), and Dr

t := t − T r
n on all other interarrival inter-

vals [T r
n , T r

n+1), n ≥ 1. That is, the “clock” restarts from zero at each instant T r
n . We

denote by F r the law of the first interarrival time T r
1 = T r

1 − T0. In accordance with
our convention, F 0 = F . Alternatively, Dr can be represented as the solution of the
linear equation

Dr
t = r + t −

∫

[0,t]
Dr

s−dNs.

We assume that the distribution functions satisfy F r(t) ≥ F(t) for all t to reflect
the fact that a part of the interarrival time already elapsed.

Recall that the assumed independence of P r and R implies that the joint quadratic
characteristic [P r,R] is zero and that the reserve process Xu,r can be written in the
form, resembling the Cauchy formula for solutions of linear differential equations,

X
u,r
t = eVt (u − Y r

t ),

where

Y r
t := −

∫

(0,t]
E−1

s− (R)dP r
s = −

∫

(0,t]
e−Vs−dP r

s .

The strict positivity of the process E(R) = eV implies that the ruin time is

τu,r := inf{t ≥ 0 : X
u,r
t ≤ 0} = inf{t ≥ 0 : Y r

t ≥ u}.
The crucial element of our study is the following result.

Lemma 3.1 Suppose that Y r
t → Y r∞ almost surely as t → ∞, where Y r∞ is a finite

random variable such that Ḡ(u, r) := P[Y r∞ > u] > 0 for every u ∈ R and r ≥ 0. If
Ḡ∗ := infq≥0 Ḡ(0, q) > 0, then

Ḡ(u, r) ≤ 	r(u) = Ḡ(u, r)

E[Ḡ(X
u,r
τu,r ,D

r
τu,r )|τu,r < ∞] ≤ 1

Ḡ∗
Ḡ(u, r).
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Proof Let τ be an arbitrary stopping time with respect to the filtration (FP,D,R
t ). As

we assume that the finite limit Y r∞ exists, the random variable

Y r
τ,∞ :=

{
− limN→∞

∫
(τ,τ+N ] e−(Vs−−Vτ )dP r

s , τ < ∞,

0, τ = ∞,

is well defined. On the set {τ < ∞},
Y r

τ,∞ = eVτ (Y r∞ − Y r
τ ) = Xu,r

τ + eVτ (Y r∞ − u). (3.1)

Let ζ be an FP,D,R
τ -measurable random variable. Using the strong Markov property,

we get that

P[Y r
τ,∞ > ζ, τ < ∞] = E[Ḡ(ζ,Dr

τ )I{τ<∞}]. (3.2)

Noting that 	r(u) = P[τu,r < ∞] ≥ P[Y r∞ > u] > 0, we deduce from (3.1) and (3.2)
that

Ḡ(u, r) = P[Y r∞ > u,τu,r < ∞]
= P[Y r

τu,r ,∞ > X
u,r
τu,r , τ

u,r < ∞]
= P[τu,r < ∞]E[Ḡ(X

u,r
τu,r ,D

r
τu,r )|τu,r < ∞]

≥ P[τu,r < ∞]E[Ḡ(0,Dr
τu,r )|τu,r < ∞]

≥ P[τu,r < ∞] inf
q≥0

Ḡ(0, q)

and get the result. �

In view of Lemma 3.1, the proof of the main theorems is reduced to establish-
ing the existence of finite limits Y r∞ and finding the asymptotics of the tail of their
distributions. One needs also to check that infq≥0 Ḡ(0, q) > 0.

4 The existence of the limit Y r∞

Let us introduce the notations

Qr
k := −

∫

(T r
k−1,T

r
k ]

e
−(Vs−−VT r

k−1
)
dP r

s , Mr
k := e

−(VT r
k
−VT r

k−1
)
. (4.1)

First, we recall several results from [3]. In the following result, H is the cumulant-
generating function of the random variable VT1 satisfying the standing assumption.

Lemma 4.1 ([3, Lemma 2.1]) Let T > 0 be a random variable independent of R.
Suppose that E[eεT ] < ∞ for some ε > 0. Let β ∈ (0, q̄) be the (unique) root of the
equation H(q) = 0. If q ∈ [β, q̄) is such that H(q) ≤ ε/2, then

E
[

sup
s≤T

e−qVs

]
< ∞.
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Corollary 4.2 Suppose that E[eεT1 ] < ∞ for some ε > 0. Let

Q̂1 := sup
t≤T1

∣∣∣∣

∫

[0,t]
e−Vs−dPs

∣∣∣∣.

If E[|ξ1|β ] < ∞, then E[Q̂β
1 ] < ∞.

Although the assertion in Corollary 4.2 is a bit more general than Eberlein et al. [3,
Corollary 2.2], the proof is exactly the same. Note also that it does not depend on the
signs of c or ξ1 and needs only the integrability of |ξ1|β . It implies in particular that
E[|Q1|β ] < ∞.

Lemma 4.3 Suppose that E[eεT1 ] < ∞ and E[|ξ1|β∧ε∧1] < ∞ for some ε > 0. Then
Yt → Y∞ almost surely as t → ∞, where Y∞ is a finite random variable.

Proof The convergence a.s. of the sequence (YTn) to a finite random variable Y∞
has been proved in [3, Lemma 4.1], as has the fact that ρ := E[Mp

1 ] < 1 for any
p ∈ (0, β ∧ ε ∧ 1).

Put In := (Tn−1, Tn] and

�n := sup
v∈In

∣∣∣∣

∫

(Tn−1,v]
e−Vs−dPs

∣∣∣∣ =
n−1∏

i=1

Mi sup
v∈In

∣∣∣∣

∫

(Tn−1,v]
e
−(Vs−−VTn−1 )

dPs

∣∣∣∣.

By virtue of the Borel–Cantelli lemma, to get the announced result, it is sufficient to
show that for every δ > 0,

∞∑

n=1

P[�n ≥ δ] < ∞.

But this is true because the Chebyshev inequality and Corollary 4.2 imply that we
have P[�n ≥ δ] ≤ δ−pρnE[Q̂p

1 ]. �

Lemma 4.4 For each r ≥ 0, the finite limit Y r∞ exists a.s. and admits the representa-
tion

Y r∞ = Qr
1 + Mr

1 Ỹ r∞,

where

Qr
1 := −

∫

[0,T r
1 ]

e−Vs−dP r
s , Mr

1 := e
−VT r

1 ,

(Qr
1,M

r
1) and Ỹ r∞ are independent, and the laws of Ỹ r∞ and Y∞ coincide.
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Proof Note that

Y r
T r

n
= −

∫

[0,T r
1 ]

e−Vs−dP r
s −

n∑

k=2

e
VT r

k−1

∫

(T r
k−1,T

r
k ]

e
−(Vs−−VT r

k−1
)
dP r

s

= Qr
1 + Mr

1

(
Qr

2 +
n∑

k=3

Mr
2 · · ·Mr

k−1Q
r
k

)
,

where the random variable in the parentheses is independent of (Qr
1,M

r
1) and has the

same distribution as YTn−1 := Y 0
Tn−1

. By Lemma 4.3, the sequence (Y r
T r

n
) converges

a.s. to Y r∞ as n → ∞, and the same arguments as above allow us to conclude that Y r
t

also converges a.s. as t → ∞. �

Lemma 4.5 Suppose that Y∞ is unbounded from above. If c < 0, then

inf
q≥0

Ḡ(0, q) ≥ E[Ḡ(ξ,0)] > 0.

If c ∈ R and the distribution functions F r and F satisfy F r ≥ F , then

inf
q≥0

Ḡ(0, q) > 0.

Proof Using Lemma 4.4, we have

Ḡ(0, r) = P[Y r∞ > 0]
= P[Qr

1/M
r
1 + Ỹ r∞ > 0]

=
∫

R+
P
[
|c|eVt

∫

[0,t]
e−Vs ds − ξ1 + Ỹ r∞ > 0

]
FT r

1
(dt)

≥ P[Ỹ r∞ > ξ1]

=
∫

R+
P[Ỹ r∞ > x]Fξ (dx)

=
∫

R+
Ḡ(x,0)Fξ (dx) > 0

since Y∞ is unbounded. An inspection of the above proof reveals that it still works
with minor changes also for the case where c has an arbitrary sign and the law Fξ is
arbitrary.

Put ft := |ξ1| + |c|te2V ∗
t , where V ∗

t := sups≤t |Vs |. Then

|Qr
1|/Mr

1 ≤ |ξ1| + |c|eVT r
1

∫

[0,T r
1 ]

e−Vs ds ≤ fT r
1
.
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It follows that

Ḡ(0, r) = P[Ỹ r∞ > −Qr
1/M

r
1 ]

= E[Ḡ(−Qr
1/M

r
1 ,0)]

≥ E[Ḡ(|Qr
1|/Mr

1 ,0)]

≥ E
[∫

R+
Ḡ(ft ,0)F r(dt)

]

= −E
[∫

R+
F r(t)dḠ(ft ,0)

]

≥ −E
[∫

R+
F(t)dḠ(ft ,0)

]

≥ E
[∫

R+
Ḡ(ft ,0)F (dt)

]
> 0,

where we use the property F r ≥ F . Thus infr≥0 Ḡ(0, r) > 0. �

5 Tails of solutions of distributional equations

Like a number of results on the ruin with investments, the proof is based on implicit
renewal theory. As in [3], we use the following formulation combining several useful
facts; see Kabanov and Pergamenshchikov [7, Theorem A.6].

Theorem 5.1 Let M > 0 and Q be random variables such that for some β > 0,

E[Mβ ] = 1, E[Mβ (lnM)+] < ∞, E[|Q|β ] < ∞. (5.1)

Let Y∞ be the solution of the distributional equation Y∞
d= Q + MY∞ and define

Ḡ(u) := P[Y∞ > u]. Then lim supu→∞ uβḠ(u) < ∞. If the random variable Y∞ is
unbounded from above, then lim infu→∞ uβḠ(u) > 0.

In Sect. 3, we introduced a process Y = (Yt )t≥0. We proved that under the inte-
grability assumptions E[|ξ |β ] < ∞ and E[eεT1] < ∞ for some ε > 0, the process Y

has at infinity a finite limit Y∞. The random variable Y∞ solves the required distri-
butional equation with M = M1 and Q = Q1 given by (4.1) having the properties
(5.1). To apply Theorem 5.1 and get the claimed lower and upper bounds for the ruin
probabilities, it remains to check that the remaining hypotheses of Theorems 2.2 and
2.3 ensure that Y∞ is unbounded from above. We do this in the next section.

6 When is Y∞ unbounded from above?

The above question is studied in [3] for the non-life insurance case, i.e., when c < 0
and Fξ ((0,∞)) = 1. In the present paper, we provide sufficient conditions for the
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unboundedness from above for all new cases by using the techniques developed in
[3]. This is based on the following elementary observation: If f : X × Y →R is a
measurable function and the random variables η and ζ are independent and have the
laws Fη and Fζ , then the random variable f (η, ζ ) is unbounded from above provided
that there exists a measurable set X0 ⊆ X with Fη(X0) > 0 such that the random
variable f (x, ζ ) is unbounded from above for every x ∈ X0.

Let An := M1 · · ·Mn for n ≥ 1 with A0 := 1. A tractable sufficient condition is
given by the following result.

Lemma 6.1 ([3, Lemma 5.1]) If there exists n ≥ 1 such that the random variables
Q1 and (Q1 +· · ·+An−1Qn)/An are unbounded from above, then Y∞ is unbounded
from above.

Lemma 6.1 usually works already with n = 1, but sometimes we need it with
n = 2. A short look at the expressions

Q1 = −c

∫ T1

0
e−Vs ds − e−VT1 ξ1, (6.1)

Q1/A1 = −ceVT1

∫ T1

0
e−Vs ds − ξ1, (6.2)

Q1/A2 + Q2/M2 = −ceVT2

∫ T2

0
e−Vs ds − ξ1e

VT2 −VT1 − ξ2

shows that Y∞ is unbounded from above when ξ is unbounded from below (of course,
the latter property is not fulfilled for the annuity model).

Using the above sufficient condition for unboundedness, we examine different
cases.

1) Let σ �= 0. In this case, the following lemma is helpful.

Lemma 6.2 Let W be a Wiener process and let K > 0, σ �= 0 and 0 ≤ s < t . Then the
random variables

ζ := KeσWt −
∫ t

0
eσWs ds, ζ̃ := Keσ(Wt−Ws) − eσWt

∫ t

0
eσWs ds

are unbounded from below and from above.

Proof The property that ζ and ζ̃ are unbounded from above has been proved in Eber-
lein et al. [3, Lemma 5.2]. The unboundedness from below can be established by
similar arguments. It is also clear that if K = 0, then ζ and ζ̃ are unbounded from
below. �

The process V̄ := V −σW is independent of the Wiener process W . If c < 0, then

Q1 ≥ |c| inf
s≤T1

e−V̄s

∫ T1

0
e−σWs ds − ξ1e

−V̄T1 e−σWT1 .



Ruin probabilities for a Sparre Andersen model with investments 897

By conditioning with respect to V̄ , ξ1, T1 and using Lemma 6.2, we get that Q1 is
unbounded from above. Since

Q1/A1 ≥ |c|eV̄T1 inf
s≤T1

e−V̄s eσWT1

∫ T1

0
e−σWs ds − ξ1,

we conclude in the same way that Q1/A1 is unbounded from above. If c ≥ 0,
then necessarily Fξ (−∞,0)) > 0 (recall that we exclude the case c ≥ 0, ξ > 0
where ruin is impossible). Lemma 6.2 implies that the random variables Q1 and
Q1/A2 + Q2/M2 are unbounded from above.

2) Now we study the case where σ = 0 and ξ is bounded from below. We treat
separately several subcases.

2a) Suppose first that �((−1,0)) > 0 and �((0,∞)) > 0. Fix ε > 0 such that
�((−1,−ε)) > 0 and �((ε,∞)) > 0 and put

V (1) := (
I{−1<x<−ε} ln(1 + x)

) ∗ μ + (
I{x>ε} ln(1 + x)

) ∗ μ.

Then the processes V (1) and V (2) := V − V (1) are independent.
Note that V (1) is the sum of two independent compound Poisson processes with

negative and positive jumps, respectively, and the absolute values of the jumps are
larger than some constant cε > 0.

Lemma 6.3 Let K > 0, t > 0. Then the random variable

ζ := Ke−V
(1)
t −

∫ t

0
e−V

(1)
s ds

is unbounded from above and from below, and the random variable

ζ̂ := e−V
(1)
t

∫ t

0
e−V

(1)
s ds

is unbounded from above.

Proof The arguments are simple and we explain only the idea. One can consider tra-
jectories where V (1) has a lot of negative jumps in a neighbourhood of zero while all
positive jumps are concentrated in a neighbourhood of t . Choosing suitable param-
eters and using the independence of the processes with positive and negative jumps,
we obtain that with a strictly positive probability, the first term in the definition of ζ

is arbitrarily close to zero while the integral is arbitrarily large. Thus ζ is unbounded
from below. Symmetric arguments lead to the conclusion that ζ is unbounded from
above.

For ζ̂ , fix an arbitrary N > 0. On a set of strictly positive probability, the process
V (1) has no positive jumps on [0, t], but V

(1)
1 ≤ −N . Thus ζ̂ ≥ eN t . �



898 Y. Kabanov, P. Promyslov

Let c < 0. Then we have from (6.1) and (6.2) the obvious bounds

Q1 ≥ |c| inf
s≤T1

e−V
(2)
s

∫ T1

0
e−V

(1)
s ds − ξ1e

−V̄
(2)
T1 e

−V
(1)
T1 ,

Q1/A1 ≥ |c|eV
(2)
T1 inf

s≤T1
e−V

(2)
s e

V
(1)
T1

∫ T1

0
e−V

(1)
s ds − ξ1.

By conditioning with respect to the random variables V (2), T1, ξ1 which are indepen-
dent of V (1) and by using Lemma 6.3, we easily obtain that the random variables Q1
and Q1/A1 are unbounded from above. By Lemma 6.1, so is then Y∞.

Let c ≥ 0. The same arguments as in [3] show that Q1 and Q1/A2 + Q2/M2 are
unbounded from above on the non-null set {ξ1 < 0, ξ2 < 0}.

2b) We next consider the case where �((−1,0)) = 0 and �(h) = ∞. Here, we
use a decomposition of V depending on the choice of ε ∈ (0,1). Namely, we put

V ε := (I{x≤ε}h) ∗ (μ − ν) +
(
I{x≤ε}

(
ln(1 + x) − h

)) ∗ μ, (6.3)

Ṽ ε := (I{x>ε}h) ∗ (μ − ν) +
(
I{x>ε}

(
ln(1 + x) − h

)) ∗ μ. (6.4)

Note that Vt = at + V ε
t + Ṽ ε

t and

Ṽ ε = (
I{x>ε} ln(1 + x)

) ∗ μ − (I{x>ε}h) ∗ ν.

Lemma 6.4 Let K > 0, t > 0. Then the random variables

η :=
∫ t

0
e−Vs ds − Ke−Vt , η′ := eVt

∫ t

0
e−Vs ds

are unbounded from above.

Proof Without loss of generality, we assume for the Lévy triplet of R that a = 0.
Fix N > 0 and choose ε > 0 small enough to ensure that �(I{x>ε}h) ≥ N . Let
�ε := {sups≤t |V ε

s | ≤ 1}. Denote by J ε and J̄ ε the processes on the right-hand side
of (6.3). The first is a martingale with bounded jumps, the second is a decreasing
process. Using the Doob inequality and the elementary bound x − ln(1 + x) ≤ x2/2
for x > 0, as well as h(x) = x for |x| ≤ 1, we get that

P
[

sup
s≤t

|V ε
s | > 1

]
≤ P

[
sup
s≤t

|J ε
s | > 1/2

]
+ P[|J̄ ε

t | > 1/2]

≤ 2E
[

sup
s≤t

|J ε
s |

]
+ 2E[|J̄ ε

t |]

≤ 2
(
(I{x≤ε}h2) ∗ νt

)1/2 + (I{x≤ε}h2) ∗ νt −→ 0 as ε → 0.

Thus the set �ε is non-null for sufficiently small ε, and on this set

η ≥ 1

e

∫ t

0
e−Ṽ ε

s ds − Ke−Ṽ ε
t +1.
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On the intersection �ε ∩{(I{x>ε}h)∗μt/2 = 0, ln(1+ε)μ((t/2, t]×(ε,1]) ≥ Nt +1},
we have

η ≥ 1

e

∫ t/2

0
eNsds − Ke = 1

eN
(eNt/2 − 1) − Ke.

Due to the independence of V ε and Ṽ ε , this intersection is a non-null set. Since N is
arbitrary large, the required property of η holds.

The analysis of η′ follows along the same lines. At the first stage, we replace V by
Ṽ and compensate the linear decrease of V by a large number of positive jumps on
the second half of the interval [0, t]. �

Let c < 0. Then the random variables from (6.1) and (6.2),

Q1 = |c|
∫ T1

0
e−Vs ds − e−VT1 ξ1,

Q1/A1 = |c|eVT1

∫ T1

0
e−Vs ds − ξ1,

are unbounded from above by Lemma 6.4.
Let c ≥ 0. The same arguments as in [3] lead to the conclusion that Q1 and

Q1/A2 + Q2/M2 are unbounded from above on the non-null set {ξ1 < 0, ξ2 < 0}.
2c) The next case we consider is when �((0,∞)) = 0 and �(|h|) = ∞. First, let

c < 0. We use again a decomposition of V depending on the choice of ε ∈ (0,1). Put

V ε := (I{x≥−ε}h) ∗ (μ − ν) +
(
I{x≥−ε}

(
ln(1 + x) − h

)) ∗ μ,

Ṽ ε := (I{x<−ε}h) ∗ (μ − ν) +
(
I{x<−ε}

(
ln(1 + x) − h

)) ∗ μ,

L := (I{x<−ε} ln(1 + x)) ∗ μ and πε := �(I{x<−ε}|h|) ↑ ∞ as ε → 0. Then

Ṽ ε
t = (

I{x<−ε} ln(1 + x)
) ∗ μt − (I{x<−ε}h) ∗ ν = Lt + πεt.

To prove that Q1 from (6.1) is unbounded from above, we argue as follows. As in the
previous subcase 2b), we reduce the problem to checking that the random variable

η̃ =
∫ t

0
e−Ṽ ε

s ds − Ke−Ṽ ε
t

is unbounded from above. Let t1 := t2/2, where t2 := 1/πε . Note that t2 ≤ t when
ε > 0 is sufficiently small. On the set {Lt = Lt1}, we have that

η̃ ≥ (t2 − t1)e
|Lt1 |e−πεt2 − KeLt1 e−πεt

= e|Lt1 |(1/(2eπε) − Kee−πεt
)

≥ e|Lt1 |/(4eπε)
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for sufficiently small ε. Since the random variable |Lt1 | is unbounded from above, so
is Q1.

On the set {Lt = 0, ξ1 ≤ K} which is non-null for any ε > 0 and sufficiently large
K , we have the bound

Q1/A1 ≥ (|c|/πε)(e
πεt − 1) − K.

It follows that Q1/A1 from (6.2) is unbounded from above.
The case c ≥ 0 is treated as in [3].
2d) Now consider the case where �((−∞,0)) = 0, 0 < �(h) < ∞, and

F((t,∞)) > 0 for every t > 0 when c < 0. In this subcase, we have Vt = Lt − bt ,
where Lt := ln(1 + x) ∗ μt is an increasing process and b := �(h) − a. Note that
b > 0 because otherwise we get a contradiction with the existence of β > 0 such that
ln E[e−βV1 ] = 0.

Take arbitrary N > 0. Let s > 0 be the solution of the equation

(|c|/b)(ebs − 1) = N.

Take K large enough to ensure that P[ξ ≤ K] > 0. Choose t > s such that we have
F((s, t)) > 0. On the non-null set

{Ls = 0, T1 ∈ (s, t), eLt−Ls ≥ Kebt , ξ < K},
we have that

Q1 ≥ (|c|/b)(ebs − 1) − ebt−Lt ξ ≥ N − 1.

Thus Q1 from (6.1) is unbounded from above.
To prove that Q1/A1 from (6.2) is unbounded from above, we take ε > 0

and K > 0 large enough such that F((t,∞)) > 0 and Fξ ((0,K)) > 0. Setting
cε := (|c|/b)(e−bε − e−2bε), we have on the non-null set

{
T1 > ε,LT1−ε = 0,LT1 ≥ ln

(
(N + K)/cε

)
, ξ < K

}

that

Q1/A1 ≥ (|c|/b)eLT1 e−bT1(eb(T1−ε) − 1) − ξ ≥ cεe
Lt − K ≥ N.

So by Lemma 6.1, Y∞ is unbounded from above.
If c ≥ 0, we proceed as in [3], using the assumption that Fξ charges any neigh-

bourhood of zero.
2e) Finally, we treat the case where �((0,∞)) = 0, 0 < �(|h|) < ∞, and

F((t,∞)) > 0 for every t > 0 when c < 0. We have again Vt = Lt − bt , but now
the jump process L is decreasing and the constant b < 0.

Fix N > 0. Let s, t > 0 be such that F((s, t)) > 0. On the non-null set

{T1 ∈ (s, t), |Ls/2| ≥ N,Ls/2 = Lt , ξ < e|Ls/2|},
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we have

Q1 ≥ |c|(T1/2)e|L(1/2)T1 |−|b|T1 − e|L(1/2)T1 |−|b|T1ξ ≥ |c|(s/2)eN−|b|t − 1.

Since N is arbitrary, Q1 from (6.1) is unbounded from above.
For any t > 0 and K > 0, on the non-null set {T1 ≥ t,Lt = 0, ξ ≤ K}, we have

Q1/A1 ≤ |c/b|(e|b|t − 1) − K.

Thus Q1/A1 from (6.2) is unbounded from above and we can use Lemma 6.1.
If c ≥ 0, we again proceed as in [3].

Remark 6.5 An anonymous referee attracted our attention to the book by Buraczewski
et al. [2] on affine distributional equation. Section 2.5 of this book is devoted to the
support of the law of Y∞. In particular, the assumptions of Theorem 2.5.5 (1) and
Lemma 2.5.7 (1) provide a sufficient condition for the unboundedness from above
of Y∞. This condition is formulated in terms of the coefficients of the distributional
equation that Y∞ satisfies. We leave here as an open question how to verify it from
our (or other) assumptions on the parameters of the model.
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