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Abstract
We investigate the asymptotics of ruin probabilities when the company invests its
reserve in a risky asset with a regime-switching price. We assume that the asset price
is a conditional geometric Brownian motion with parameters modulated by a Markov
process with a finite number of states. Using techniques from implicit renewal theory,
we obtain the rate of convergence to zero of the ruin probabilities as the initial capital
tends to infinity.
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1 Introduction

Models where an insurance company invests its reserve (or a part of it) in risky assets
constitute an important class currently under extensive study. Considering a single
risky asset is justified by the common practice of investing in a market portfolio or
in an index (a fund which simulates an index like the DAX or the S&P500), which
is an economically reasonable strategy. Since insurance contracts usually are of a
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long duration and the return may depend e.g. on the business cycles of the economy,
models with regime switching are now more and more popular. The main question
addressed here is the rate of decay of the ruin probability as the initial reserve tends
to infinity.

In this note, we extend the recent result of Ellanskaya and Kabanov [9], established
for a model with characteristics of the asset price depending on a telegraph process,
i.e., on a Markov process with two states, 0 and 1. In the present paper, we study the
case where the characteristics depend on an ergodic Markov process θ with a finite
number of states, as was suggested in Di Masi et al. [7]. When θt = k, the asset price
evolves as a geometric Brownian motion with drift ak and volatility σk . It is well
known, see e.g. Frolova et al. [11], Kabanov and Pergamenshchikov [15], Kabanov
and Pukhlyakov [17], Eberlein et al. [8], that in the case of a single regime, i.e., when
the price process is the classic geometric Brownian motion with drift a and volatility
σ , the ruin probability decreases to zero, as the initial capital u tends to infinity, with
the rate u−β , where β := 2a/σ 2 − 1, provided that β > 0. In [9], it was shown that
in a model with two regimes, 0 and 1, the ruin probabilities decrease with a rate
u−β , where β is a number between the values βk := 2ak/σ

2
k − 1, k = 0,1, which are

assumed to be strictly positive. This β is the root of an algebraic equation of third
order and does not depend on the initial value of θ .

In the present paper, we extend the above result to the case where the number of
states of the hidden Markov process θ is K ≥ 2. It turns out that, provided all βk > 0,
k = 0, . . . ,K − 1, the rate of convergence to zero of the ruin probabilities, depending
in general on the initial state i, is determined by the root γi > 0 of the cumulant
generating function of the log-price process at the first return time of θ to the state i.
It is worth noting that the switching by a telegraph signal is rather specific: the latter
returns to the initial state after the second jump, while for a general Markov process,
the return may happen after an arbitrary number of jumps.

Although the main idea is again based on implicit renewal theory, it turns out that
the analysis of the considered model is much more complicated and the calculation of
the rate parameter, depending in general on the initial state, is not so straightforward.
We hope that the results of this paper elucidate challenging problems of estimation
of ruin probabilities for other stochastic volatility models.

2 The model

Let (�,F ,F = (Ft )t∈R+ ,P) be a stochastic basis with a Wiener process W = (Wt),
a Poisson random measure π(dt, dx) on R+ ×R with mean π̃(dt, dx) = �(dx)dt ,
and a piecewise constant right-continuous Markov process θ = (θt ). For the latter,
we assume that it takes values in the finite set 	 := {0,1, . . . ,K − 1}, has the K × K

transition intensity matrix 
 = (λjk) with communicating states, and the initial value
θ0 = i (so that θ = θi , where the superscript i as usual denotes the starting value of
the process). The σ -algebras generated by W , π and θ are independent.

Recall that λjj = −∑
k �=j λjk and λi := −λii > 0 for each i.

Let Tn denote the successive jump times of the Poisson process N = (Nt )t∈R+
with Nt := π([0, t],R), and let τn be the successive jumps of θ with the convention
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T0 = 0 and τ0 = 0. Recall that the lengths of the intervals between the consecutive
jump times of θ are independent exponentially distributed random variables.

The reserve X = Xu of an insurance company evolves not only due to the busi-
ness activity part, described as in the classical Cramér–Lundberg model, but also due
to some risky investments. We assume that the reserve is fully invested in a risky
asset whose price S is a conditional geometric Brownian motion, given the Markov
process θ . That is, S is given by a so-called hidden Markov model with

dSt = St (aθt dt + σθt dWt), S0 = 1,

where ak ∈R, σk > 0, k = 0, . . . ,K − 1. In this case, X is of the form

Xt = u +
∫ t

0
XsdRs + dPt , (2.1)

where dRt = aθt dt + σθt dWt = dSt/St , that is, R is the relative price process, and

Pt = ct +
∫ t

0

∫

R

xπ(dt, dx) = ct + x ∗ πt . (2.2)

So the reserve evolution is described by the process (Xu, θ) = (Xu,i, θ i), where u > 0
is the initial capital and i is the initial regime, i.e., the initial value of θ .

We assume that the process P is not increasing (otherwise ruin never happens).
We work assuming that �(R) < ∞. In this case, �(dx) = α1F1(dx)+α2F2(dx),

where F1(dx) is a probability measure on (−∞,0) and F2(dx) is a probability mea-
sure on (0,∞). This means that the integral with respect to � represents the dif-
ference of two independent compound Poisson processes with intensities α1, α2 with
negative and positive jumps, whose absolute values have the distributions F1(dx) and
F2(dx), respectively.

The hypothesis that the parameters of the business process P are also Markov
modulated is economically reasonable; see the Cox models in Grandell [13, Chap. 4]
and, for a more general setting with risky investments, in Behme and Sideris [4].
To make the presentation more transparent, we do not assume this and leave this
generalisation, which is mathematically not significant, to the reader (one only needs
to adjust the proofs of Lemmas 4.4 and 5.1).

The solution of the linear equation (2.1) can be represented as

Xu
t = Et (R)(u − Yt ) = eVt (u − Yt ), (2.3)

where

Yt := −
∫

[0,t]
E−1

s (R)dPs = −
∫

[0,t]
e−Vs dPs = −e−V · Pt ,

the stochastic exponential Et (R) is equal to St , and the log-price process V = lnE(R)

admits the stochastic differential

dVs = σθs dWs + (
aθs − (1/2)σ 2

θs

)
ds, V0 = 0.
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Of course, S, R, Y and V depend on i (we omitted the superscript i in the above
formulas).

Let τu,i := inf{t > 0 : X
u,i
t ≤ 0} be the instant of ruin corresponding to the

initial capital u and the initial regime i. Then �i(u) := P[τu,i < ∞] is the ruin
probability and �i(u) := 1 − �i(u) is the survival probability. It is clear that
τu,i = inf{t ≥ 0 : Y i

t ≥ u}.
The constant parameter values a = 0, σ = 0 correspond to the Cramér–Lundberg

setup where X
u,i
t = u + Pt and the compound Poisson process P is usually written

in the form

Pt = ct −
Nt∑

k=1

ξk.

In the case of non-life insurance, the jumps are negative, i.e., ξk ≥ 0, c > 0 (i.e.,
F2 = 0). The case ξk ≤ 0, c < 0 (i.e., F1 = 0) corresponds to the model of life in-
surance or annuity payments (sometimes referred to as the dual model). Models with
both kinds of jumps are mathematically more difficult and less frequent in the liter-
ature; but see e.g. Albrecher et al. [1], Kabanov and Pukhlyakov [17] and the ref-
erences therein. For these classical models with a positive average trend and “non-
heavy” tail of F , the Lundberg inequality says that the ruin probability decreases ex-
ponentially fast as the initial reserve u tends to infinity. For exponentially distributed
claims, the ruin probability can be computed explicitly; see Asmussen and Albrecher
[2, Chap. IV.3b] or Grandell [13, Sect. 1.1].

For models with risky investments, the situation is radically different. For example,
for a model with exponentially distributed jumps and the price of the risky asset
given by a geometric Brownian motion with drift coefficient a and volatility σ > 0,
the ruin probability, as a function of the initial capital u, decreases as Cu1−2a/σ 2

if 2a/σ 2 − 1 > 0. If 2a/σ 2 − 1 ≤ 0, ruin happens almost surely; see Frolova et al.
[11], Kabanov and Pergamenshchikov [15], Pergamenshchikov and Zeitouni [23] and
Kabanov and Pukhlyakov [17].

To formulate our result for a model where the volatility and drift are modulated by
a finite-state Markov process, we assume throughout the paper except Sect. 7 that

βj := 2aj /σ
2
j − 1 > 0, j = 0, . . . ,K − 1,

(in other words, β∗ := minj βj > 0). See a comment on this hypothesis in Sect. 8.

Let υi
1 := inf{t > 0 : θi

t− �= i, θ i
t = i} be the first return time of the (continuous-

time) Markov process θ = θi to its initial state i. We consider further the consecutive
return times defined recursively by

υi
k := inf{t > υi

k−1 : θi
t− �= i, θ i

t = i}, k = 2, . . .

Recalling that V also depends on i, we introduce the random variable Mi1 := e
−V

υi
1

and define the moment-generating function ϒi :R+ → R̄+ := R+ ∪ {∞} with

ϒi(q) := E[Mq

i1] = E
[

exp

(
1

2
q

∫ υi
1

0
σ 2

θt
(q − βθt )dt

)]

.
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Proposition 2.1 The function ϒi is strictly convex, continuous, and there is a unique
γi > 0 such that ϒi(γi) = 1.

Note that one can characterise γi also as the strictly positive root of the cumulant

generating function Hi(q) := ln E[e−qV
υi

1 ], which is strictly convex and continuous.
Postponing the proof of Proposition 2.1 to the next section, we formulate our main

result.

Theorem 2.2 Fix the initial value i and suppose that �(|x|γi ) := ∫ |x|γi �(dx) < ∞.
Then

0 < lim inf
u→∞ uγi �i(u) ≤ lim sup

u→∞
uγi �i(u) < ∞.

Remark 2.3 In the case where θ is a telegraph signal, i.e., a two-state Markov process,
the values γ0 and γ1 coincide (see Eberlein et al. [9]). In the general case considered
here, γi may depend on the initial value i. To alleviate the formulas, we fix the
initial value i = 0 and omit the index i = 0 when this does not lead to ambiguity.

The proof of Theorem 2.2 is based on implicit renewal theory. Namely, we deduce
it from Theorem 2.4 below which is the Kesten–Goldie theorem, see Goldie [12,
Theorem 4.1], combined with a statement on strict positivity of C+ due to Guivarc’h
and Le Page [14] (for a simpler proof of the latter, see Buraczewski and Damek [6],
and an extended discussion in Kabanov and Pergamenshchikov [16]).

Theorem 2.4 Suppose that the pair of random variables (M,Q) is such that M > 0,
the law of lnM is non-arithmetic, and for some γ > 0,

E[Mγ ] = 1, E[Mγ (lnM)+] < ∞, E[|Q|γ ] < ∞.

Let the random variable Z be independent of (M,Q) and have the same law as
Q + MZ. Then

lim
u→∞ uγ P[Z > u] = C+ < ∞,

lim
u→∞ uγ P[Z < −u)] = C− < ∞,

where C+ + C− > 0. If the random variable Z is unbounded from above, then
C+ > 0.

We apply Theorem 2.4 with Q = Q1 := −e−V · Pυ1 , M = M1 := e−Vυ1 and
Z := Y∞. First, we check that its conditions are fulfilled under the chosen constraints
for the model specification. We proceed as follows. The existence of γ such that
ϒ(q) := E[Mγ

1 ] = 1 with E[Mγ+ε

1 ] < ∞ for some ε > 0 is shown in Proposition
2.1; the crucial part of its proof is Lemma 3.1 on the continuity of ϒ . Clearly, the law
of the random variable lnM1 is not arithmetic. We verify that Q1 ∈ Lγ (�) in Sect. 4,
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which turns out to be the most technical part. To prove the existence of the limit Y∞
with the needed properties, we observe that

Yυn = −
n∑

k=1

k−1∏

j=1

e
−(Vυj

−Vυj−1 )
∫

(υk−1,υk]
e
−(Vs−Vυk−1 )

dPs.

Using the abbreviations

Qk := −
∫

(υk−1,υk]
e
−(Vs−Vυk−1 )

dPs, Mj := e
−(Vυj

−Vυj−1 )
,

we rewrite the above identity in a more transparent form as

Yυn = Q1 + M1Q2 + M1M2Q3 + · · · + M1 · · ·Mn−1Qn. (2.4)

Note that the random variables υk −υk−1, that is, the lengths of the intervals between
the successive returns to the initial state, form an i.i.d. sequence. The random vari-
ables (Qk,Mk) all have the same law and are for each k independent of the σ -algebra
σ {(M1,Q1), . . . , (Mk−1,Qk−1)}. With these observations, the arguments are rather
standard and given in Sect. 5. We conclude the proof of the theorem by establishing
the bounds Ḡ(u) ≤ �i(u) ≤ CḠ(u), with Ḡi(u) = P[Y∞ > u] and a constant C > 0,
in Lemma 6.1.

3 Properties of the moment-generating function: the proof of
Proposition 2.1

Recall that τn are the times of consecutive jumps of θ , that is, τ0 := 0,

τn := inf{t > τn−1 : θt− �= θt }, n ≥ 1.

We introduce the imbedded Markov chain ϑn := θτn , n = 0,1, . . . , with transition
probabilities Pk� = λk�/λk , k �= �, and Pkk = 0. Then � := inf{j ≥ 2 : ϑj = 0} is
the first return time of the (discrete-time) Markov chain ϑ to the starting point 0 and
υ1 = τ� .

Put

Z
j
t := σjWt + (aj − σ 2

j /2)t = σjWt + (1/2)σ 2
j βj t.

The random variable M1 admits the representation

M1 =
∑

k≥2

∑

i1 �=0,i2 �=0,...,ik=0

I{ϑ1=i1,ϑ2=i2,...,ϑk=ik}e−ζ 0
1 e−ζ

i1
2 · · · e−ζ

ik−1
k ,

where

ζ 0
1 := Z0

τ1
− Z0

τ0
, ζ

i1
2 := Zi1

τ2
− Zi1

τ1
, . . . , ζ

ik−1
k := Z

ik−1
τk

− Z
ik−1
τk−1 .
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The conditional law of the random variables ζ 0
1 ,. . . ,ζ ik−1

k given ϑ1 = i1, ϑ2 = i2,
. . . , ϑk = ik is the same as the unconditional law of independent random variables
ζ̃ 0

1 ,. . . ,ζ̃ ik−1
k , where for any m, we have L(ζ̃

j
m) = L(σjWτ + (1/2)σ 2

j βj τ ) with an
exponential random variable τ with parameter λj independent of the Wiener process
W . It follows that

ϒ(q) := E[Mq

1 ]
=

∑

k≥2

∑

i1 �=0,i2 �=0,...,ik=0

P0i1Pi1i2 · · ·Pik−10f0(q)fi1(q) · · ·fik−1(q), (3.1)

where

fj (q) = E[e−qζ̃
j
m ] = λj E

[∫ ∞

0
e
−q(σj Wt+(1/2)σ 2

j βj t)
e−λj t dt

]

= λj

λj + (1/2)σ 2
j q(βj − q)

,

if the denominator is positive, and fj (q) = ∞ otherwise.
Clearly, fj (q) < ∞ if q ∈ [0, rj ), fj (q) = ∞ if q ∈ [rj ,∞), and fj (rj−) = ∞,

where rj is the positive root of the equation

q2 − βjq − 2λjσ
−2
j = 0,

that is, rj = r(λj ,βj , σj ) with

r(λ,β,σ ) := β/2 +
√

β2/4 + 2λσ−2. (3.2)

Note that the formula (3.1) can be written in a shorter form

ϒ(q) = E
[ ∞∑

k=2

f0(q)fϑ1(q) · · ·fϑk−1(q)I{�≥k,ϑk=0}
]

. (3.3)

If q ≤ β∗ := minj βj , then all fj (q) ≤ 1 and ϒ(q) is dominated by the probability
of return of θ to the starting point 0, that is, [0, β∗] ⊆ domϒ . Also, fj (β∗/2) < 1 for
all j , and therefore ϒ(β∗/2) < 1. Since we assume that any state of θ can be reached
from any other state, we have domϒ ⊆ [0, r), where

r := inf{q ≥ 0 : ϒ(q) = ∞} ≤ r∗ := min
j

rj .

More precise information is given by the following lemma.

Lemma 3.1 We have domϒ = [0, r) and limq↑r ϒ(q) = ∞ (which means that the
function ϒ : R+ → R̄+ is continuous).
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Proof To explain the idea, let us first consider the case K = 3. Regrouping terms in
the formula (3.1) according to 4 pairs “exit from 0 to �, return back from m”, we get
the representation

ϒ(q) = (
P0,1f0(q)P1,0f1(q) + P0,2f0(q)P2,0f2(q)

+ P0,1P1,2P2,0f0(q)f1(q)f2(q) + P0,2P2,1P1,0f0(q)f2(q)f1(q)
)

×
∞∑

k=0

(
P1,2f1(q)P2,1f2(q)

)k
.

Note that if P1,2f1(q)P2,1f2(q) < 1, then

∞∑

k=0

(
P1,2f1(q)P2,1f2(q)

)k = 1

1 − P1,2f1(q)P2,1f2(q)
;

otherwise the above sum is equal to infinity. Thus ϒ is a product of two continuous
functions with values in R̄+, hence has the same property, and the result follows.

For a model with an arbitrary K , we get the continuity of ϒ from a continuity
result for more general functions. Let us consider a subset A ⊆ {0,1, . . . ,K − 1}. For
i, k /∈ A, we denote by �A

ik the set formed by the vectors (i, k) and (i, i1, i2, . . . , im, k),
ij ∈ A, j = 1, . . . ,m, m ≥ 1. The elements of �A

ik are interpreted as cuts of sample
paths of the Markov chain entering A from the state i, evolving in A, and leaving A

to the state k.
Putting hi,j (q) = Pi,j fi(q) with the natural convention 0 · ∞ = 0, we associate

with elements of �A
ik the continuous functions q �→ hi,k(q) and

q �→ hi,i1(q)hi1,i2(q) · · ·him−1,im(q)him,k(q), m ≥ 1,

with values in R̄+ and consider the sum over �A
ik of all these functions,

UA
ik : q �→

∑
hi,i1(q)hi1,i2(q) · · ·him−1,im(q)him,k(q).

Since fj < 1 on the interval (0, β∗), also UA
ik < 1 on this interval. We show by

induction that UA
ik : R+ → R̄+ is a continuous function with UA

ik(0) ≤ 1. Since

ϒ = U
A\{0}
00 , this gives the assertion of the lemma.

The idea of the proof consists in representing UA
ik as a sum of a finite number

of positive continuous functions using an appropriate partition of �A
ik . Namely, for

i1 ∈ A and n ≥ 0, we define the sets �
i1,0
ik := {(i, k)},

�
i1,n
ik := {i} × �

A\{i1}
i1,i1

× · · · × �
A\{i1}
i1,i1

× �
A\{i1}
i1,k

, n ≥ 1,

composed by the vectors with the first component i, followed by n ≥ 0 blocks formed
by vectors from �

A\{i1}
i1,i1

, and completed by vectors from �
A\{i1}
i1,k

. Clearly, the count-
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able family �
i1,n
ik , i1 ∈ A, n ≥ 0, is a partition of �A

ik and

UA
ik(q) = hi,k(q) +

∑

i1∈A

hi,i1(q)U
A\{i1}
i1k

(q)

∞∑

n=0

(
U

A\{i1}
i1i1

(q)
)n

. (3.4)

The result is then obvious when A is a singleton, i.e., |A| = 1. Supposing that the
assertion is already proved for the case where |A| = K1 − 1, we consider the case
where |A| = K1. By the induction hypothesis, U

A\{i1}
i1m

: R+ → R̄+ is a continuous
function for every i1 ∈ A, m /∈ A \ {i1}. The result follows from (3.4) and the formula
for the geometric series. �

The strictly convex function ϒ is less than or equal to 1 on [0, β∗], finite on [0, r)

and tends to infinity at r . Hence there is a unique γ ∈ (β∗, r∗) such that ϒ(γ ) = 1.
Moreover, ϒ(γ + ε) < ∞ for some ε > 0.

4 Integrability of Q1

We start the study of the integrability properties of Q1 with a general lemma involving
parameters β,σ > 0 and an exponential random variable τ independent of W with
parameter λ > 0.

Lemma 4.1 Let 0 < q < r(λ,β,σ ), where r(λ,β,σ ) is given by (3.2). Then

C(q,λ,β,σ ) := E
[(∫ τ

0
e−(σWs+(1/2)σ 2βs)ds

)q]

< ∞.

Proof Put W
(σβ/2)
s := Ws + (1/2)σβs. Take ρ,ρ′ > 1 such that 1/ρ + 1/ρ′ = 1 and

ρq < r(λ,β,σ ). Dominating the integrand by its supremum and using the Hölder
inequality, we get that

C(q,λ,β,σ ) ≤ E
[
τq sup

s≤τ
e−σqW

(σβ/2)
s

]
≤ (E[τqρ′ ])1/ρ′(

E
[

sup
s≤τ

e−σρqW
(σβ/2)
s

])1/ρ

.

Since an exponential random variable has moments of any order, the first factor on
the right-hand side is finite. According to Borodin and Salminen [5, Eq. (1.2.1) in
Chap. 2],

E
[

sup
s≤τ

e−σρqW
(σβ/2)
s

]
= E

[
e−σρq infs≤τ W

(σβ/2)
s

] = r(λ,β,σ )

r(λ,β,σ ) − ρq
< ∞.

The lemma is proved. �

Note that the condition ϒ(q) < ∞ holds only for

q < r ≤ r∗ := min
j

r(λj , βj , σj ),

and the above lemma implies the following useful result.
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Corollary 4.2 If ϒ(q) < ∞, then C∗(q) := maxj C(q,λj ,βj , σj ) < ∞.

Lemma 4.3 Let q > 0 be such that ϒ(q) < ∞. Then

E
[∫ υ1

0
e−qVs ds

]

< ∞, E
[(∫ υ1

0
e−Vs ds

)q]

< ∞. (4.1)

Proof Let τ be a random variable exponentially distributed with parameter λ > 0 and
W a Wiener process independent of τ . Then

E
[∫ τ

0
e−q(σWs+(1/2)σ 2βs)ds

]

=
∫ ∞

0
P[s ≤ τ ]E[e−q(σWs+(1/2)σ 2βs)]ds

=
∫ ∞

0
e−(λ+(1/2)σ 2q(β−q))sds

= 1

λ + (1/2)σ 2q(β − q)
,

if the denominator on the right-hand side is strictly greater than zero, and infinity
otherwise.

Using conditioning with respect to Fk−1 = σ(ϑ1, . . . , ϑk−1) and the Markov prop-
erty, we get from (3.3) with the abbreviation f̄k(q) := f0(q)fϑ1(q) · · ·fϑk−1(q),
k ≥ 1, that

ϒ(q) =
∞∑

k=2

E[f̄k(q)I{�≥k,ϑk=0}]

=
∞∑

k=2

E
[
f̄k(q)I{�≥k}E[I{ϑk=0}|Fk−1]

]

= E
[ ∞∑

k=2

f̄k(q)I{�≥k}E[I{ϑk=0}|ϑk−1]
]

≥ p∗E
[ ∞∑

k=2

f̄k(q)I{�≥k}
]

,

where p∗ > 0 is the minimum of the values Pj,0 different from zero. Note that

�∑

j=2

f̄j (q) =
∞∑

j=2

I{�=j}
j∑

k=2

f̄k(q) =
∞∑

k=2

f̄k(q)

∞∑

j=k

I{�=j} =
∞∑

k=2

f̄k(q)I{�≥k}.

It follows that

E
[ �∑

j=2

f̄j (q)

]

= E
[ ∞∑

k=2

f̄k(q)I{�≥k}
]

≤ 1

p∗
ϒ(q).
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Since

E
[∫ υ1

0
e−qVs ds

]

= E
[ ∞∑

k=2

I{�=k}
k−1∑

j=0

e
−qVτj

∫ τj+1

τj

e
−q(Vs−Vτj

)
ds

]

= E
[ ∞∑

k=2

I{�=k}
k∑

j=1

f̄j (q)
1

λϑj−1

]

≤ 1

λ∗

(

f0(q) + E
[ �∑

j=2

f̄j (q)

])

,

where λ∗ := mini λi , we obtain from the above inequalities that

E
[∫ υ1

0
e−qVs ds

]

≤ f0(q)

λ∗
+ 1

λ∗p∗
ϒ(q) < ∞.

The first integrability property in (4.1) is proved.
To prove the second property in (4.1), we start with the case q ≤ 1. Using the

elementary inequality (
∑ |xi |)q ≤ ∑ |xi |q and Corollary 4.2, we get that

E
[(∫ υ1

0
e−Vs ds

)q]

≤ E
[ ∞∑

k=2

I{�=k}
k−1∑

j=0

e
−qVτj

(∫ τj+1

τj

e
−(Vs−Vτj

)
ds

)q]

= E
[ ∞∑

k=2

I{�=k}
k−1∑

j=0

f̄j (q)E
[(∫ τj+1

τj

e
−(Vs−Vτj

)
ds

)q]]

≤ C∗(q)E
[ ∞∑

k=2

I{�=k}
k−1∑

j=0

f̄j (q)

]

≤ C∗(q)

(

1 + f0(q) + E
[ �∑

k=2

f̄k(q)

])

≤ C∗(q)

(

1 + f0(q) + 1

p∗
ϒ(q)

)

< ∞.

Now let q > 1. Due to the continuity of ϒ , there exists q ′ > q such that ϒ(q ′) < ∞.
Applying first the Jensen inequality and then the Young inequality for products with
the conjugate exponents q ′/q and q ′/(q ′ − q), we get that

E
[(∫ υ1

0
e−Vs ds

)q]

≤ E
[∫ υ1

0
υ

q−1
1 e−qVs ds

]

≤ (1 − q/q ′)E[υq1
1 ] + (q/q ′)E

[∫ υ1

0
e−q ′Vs ds

]

,
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where q1 := (q −1)q ′/(q ′ −q). The expectation of the integral on the right-hand side
is finite by the first inequality in (4.1), applied with q ′. It remains to recall that the
first return time of the finite state Markov process θ has moments of any order.

For the reader’s convenience, we give the proof of the above fact. Take an ar-
bitrary m > 1 and denote by �j := τj − τj−1 the inter-jump times of the Markov
process θ . Recall that the conditional distribution of the vector (�1, . . . , �k) given
ϑ1 = i1, . . . , ϑk−1 = ik−1 is the same as the distribution of the vector (�̃1, . . . , �̃k)

with independent components having, respectively, exponential distributions with the
parameters λ0, λi1, . . . , λik−1 . Using the Hölder inequality (now for the sum) and this
fact, we get that

E[υm
1 ] = E

[( �∑

j=1

�j

)m]

≤ E
[

�m−1
�∑

j=1

�m
j

]

= E
[∑

k≥2

∑

i1 �=0,i2 �=0,...,ik=0

I{ϑ1=i1,...,ϑk−1=ik−1,ϑk=0}km−1
k∑

j=1

�m
j

]

= �(m + 1)E
[

�m−1
( �∑

j=1

1

λϑj−1

)m]

≤ �(m + 1)λ−m∗ E[�m],
where � is the Gamma function and λ∗ := minj λj . It remains to make a reference
to the fact that the first return time � for the Markov chain ϑ has moments of any
order; see e.g. Feller [10, Chap. XV, exercises 18–20]. �

The following lemma provides the required integrability property of Q1.

Lemma 4.4 Suppose that �(|x|γ ) := ∫ |x|γ �(dx) < ∞. Then E[|Q1|γ ] < ∞.

Proof 1) For γ ≤ 1, the inequality (|x| + |y|)γ ≤ |x|γ + |y|γ allows us to check sep-
arately the finiteness of the moments of the integral of e−V with respect to Lebesgue
measure (this is already done, see the second property in (4.1)) and of the integral
with respect to the jump component of the process P . The latter integral is just a
sum. Since the jump measure π(dt, dx) has the compensator π̃ (dt, dx) = �(dx)dt ,
we have

E[|e−V x ∗ πυ1 |γ ] ≤ E[e−γV |x|γ ∗ πυ1 ]
= E[e−γV |x|γ ∗ π̃υ1 ]

≤ �(|x|γ )E
[∫ υ1

0
e−γVs ds

]

< ∞

by the first property in (4.1).
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2) For γ > 1, we split the integrals using the elementary inequality

(|x| + |y|)γ ≤ 2γ−1(|x|γ + |y|γ ).

Because of the second property in (4.1), we need to consider only the integral with
respect to the jump component of P . Note that e−V |x| ∗ π̃υ1 < ∞. Then

E[(e−V |x| ∗ πυ1)
γ ] ≤ 2γ−1(E

[∣
∣e−V |x| ∗ (π − π̃ )υ1

∣
∣γ

] + E[(e−V |x| ∗ π̃υ1)
γ ]).

Due to the first property in (4.1),

E[(e−V |x| ∗ π̃υ1)
γ ] ≤ (

�(|x|))γ E
[(∫ υ1

0
e−Vs ds

)γ ]

< ∞.

Let Is := e−V |x| ∗ (π − π̃ )s . According to the Novikov inequalities1 with α = 1, the
moment of order γ > 1 of the random variable I ∗

t := sups≤t |Is | admits the bound

E[I ∗γ
υ1

] ≤ Cγ,1
(
E[(e−V |x| ∗ π̃υ1)

γ ] + E[e−γV |x|γ ∗ π̃υ1 ]
)

≤ C′
γ,1E

[(∫ υ1

0
e−Vs ds

)γ ]

+ C′
γ,1E

[∫ υ1

0
e−γVs ds

]

,

where C′
γ,1 := Cγ,1(�(|x|))γ < ∞, C′′

γ,1 := Cγ,1�(|x|γ ) < ∞ due to our assump-
tion. But as we proved, both integrals on the right-hand side are finite. �

5 Study of the process Y

Lemma 5.1 The process Y has the following properties:
(i) Yt converges almost surely as t → ∞ to a finite random variable Y∞.
(ii) Y∞ = Q1 + M1Y1,∞ where Y1,∞ is a random variable independent of

(Q1,M1) and having the same law as Y∞.
(iii) Y∞ is unbounded from above.

Proof (i) Take p ∈ (0, γ ∧ 1). Then r := E[Mp

1 ] < 1, and E[|Q1|p] < ∞ by
Lemma 4.4. It follows that E[|Yυn+1 − Yυn |p] = E[Mp

1 · · ·Mp
n Q

p

n+1] = rnE[|Q1|p]
and therefore

E
[(∑

n≥0

|Yυn+1 − Yυn |
)p]

≤
∑

n≥0

E[|Yυn+1 − Yυn |p] < ∞.

Thus
∑

n |Yυn+1 − Yυn | < ∞ a.s., implying that Yυn converges a.s. to some finite
random variable we denote by Y∞.

Let Y ∗
t := sups≤t |Ys |. Then

E[Y ∗p
υ1

] ≤ cpE
[(∫ υ1

0
e−Vs ds

)p]

+ (
�(|x|))pE

[∫ υ1

0
e−pVs ds

]

< ∞.

1See Novikov [18] and a discussion in Kabanov and Pergamenshchikov [16].



890 Y. Kabanov, S. Pergamenshchikov

Put

�n = sup
v∈[υn,υn+1]

∣
∣
∣
∣

∫ v

υn

e−Vs dPs

∣
∣
∣
∣.

Then

E[�p
n ] = E

[

M
p

1 · · ·Mp
n sup

v∈[υn,υn+1]

∣
∣
∣
∣

∫ v

υn

e−(Vs−Vυn )dPs

∣
∣
∣
∣

p]

≤ rnE[Y ∗p
υ1

]

and therefore, for any ε > 0,

∑

n≥0

P[�n ≥ ε] ≤ e−p
∑

n≥0

E[�p
n ] < ∞.

By the Borel–Cantelli lemma, we obtain �n(ω) ≤ ε for all n ≥ n(ω) for all ω except
a nullset. This implies that Yt converges a.s. to the same limit as the sequence Yυn .

(ii) Rewriting (2.4) in the form

Yυn = Q1 + M1(Q2 + M2Q3 + · · · + M2 · · ·Mn−1Qn)

and observing that the sequence of random variables in parentheses converges almost
surely to a random variable with the same law as Y∞ and independent of (Q1,M1),
we get the assertion.

(iii) In view of (ii), it is sufficient to check that the set {Q1 ≥ N, M1 ≤ 1/N} is
non-null for any N ≥ 1. Recall that

Q1 = −e−V x ∗ πυ1 − c

∫ υ1

0
e−Vs ds,

where dVs = σθs dWs + (1/2)σ 2
θs

βθs ds. We consider several cases.
1) c < 0: Using conditioning with respect to θ , we may argue as if θ were de-

terministic, i.e., assuming that V is a process with a deterministic switching of
parameters and υ1 is just a number, say t > 0. On the set {T1 > υ1}, we have
Q1 = −c

∫ υ1
0 e−Vs ds. Since T1 is independent of W and of the set {T1 > υ1}, we

need to check only that the set

BN(t) :=
{

− c

∫ t

0
e−Vs ds ≥ N,e−Vt ≤ 1/N

}

is non-null. If θ has no jumps on [0, t], then Vs = σ0Ws + (1/2)σ 2
0 β0s on this in-

terval, and we get the Brownian bridge property using conditioning with respect to
Wt = x. Indeed, the conditional distribution of (Ws)s≤t given Wt = x is the same
as the (unconditional) distribution of the Brownian bridge Bx = (Bx)s≤t ending at
time t at the value x. The latter is a continuous Gaussian process. This implies that the
conditional distribution of the integral involved in BN(t) is unbounded from above.
Integrating over a suitable set with respect to the distribution of Wt shows that BN(t)

is non-null.
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In the case of several jumps of θ at the instants t1, . . . , tk , we can show that
the integral over the interval [0, t1] has unbounded conditional distribution given
(Wt1,Wt2 − Wt1, . . . ,Wt − Wtk ) = (xt1 , xt2, . . . xtk+1) and conclude by integrating
with respect to the distribution of the increments of W over a set [x,∞)k+1 for suf-
ficiently large x ∈ R+.

2) c ≥ 0: Put σ ∗ := maxj σj , κ∗ := maxj (1/2)σ 2
j βj , κ∗ := minj (1/2)σ 2

j βj . Let
δ > 0 and rN := (2Kσ ∗δ + lnN)/κ∗. The set

AN := {|Ws | < δ, ∀ s ≤ rN + 1} ∩ {rN ≤ υ1 ≤ rN + 1, � ≤ K}
is non-null. On this set, we have for all s ∈ [0, υ1] the bounds

−2Kσ ∗δ + κ∗rN ≤ Vs ≤ 2Kσ ∗δ + κ∗(rN + 1),

implying that

M1 = e−Vυ1 ≤ e2Kσ ∗δ−κ∗rN = 1/N

and

c

∫ υ1

0
e−Vs ds ≤ (c/N)(rN + 1) =: CN.

Since P is not an increasing process, �((−∞,0)) > 0. Hence the set
{
e−2Kσ ∗δ−κ∗(rN+1)|x|I{x<0} ∗ πrN ≥ CN + N, xI{x>0} ∗ πrN = 0

}

is non-null, and its intersection with AN is also non-null. But this intersection is a
subset of the set {Q1 ≥ N,M1 ≤ 1/N}. �

Remark 5.2 The statement of Lemma 5 (iii) can be also deduced from a much more
general result in Behme et al. [3, Theorem 4.1 (ii)].

6 Bounds for the ruin probability

Lemma 6.1 For every u > 0,

Ḡi(u) ≤ �i(u) = Ḡi(u)

E[Ḡθ
τu,i

(0)|τu,i < ∞] ≤ Ḡi(u)

minj Ḡj (0)
, (6.1)

where Ḡi(u) := P[Y i∞ > u].

Proof Let τ be an arbitrary stopping time with respect to the filtration (FP,R,θ
t ). As

the finite limit Y i∞ exists, the random variable

Y i
τ,∞ :=

{
− limN→∞

∫
(τ,τ+N ] e−(Vs−Vτ )dPs, τ < ∞,

0, τ = ∞,
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is well defined. On the set {τ < ∞}, we have

Y i
τ,∞ = eVτ (Y i∞ − Y i

τ ) = Xu
τ + eVτ (Y i∞ − u). (6.2)

Let ξ be an FP,R,θ
τ -measurable random variable. Note that the conditional distribu-

tion of Y i
τ,∞ given (τ, ξ, θτ ) = (t, x, j) ∈ R+ ×R× {0,1, . . . ,K − 1} is the same as

the distribution of Y
j∞. It follows that

P[Y i
τ,∞ > ξ, τ < ∞, θτ = j ] = E[Ḡj (ξ)I{τ<∞,θτ =j}].

Thus if P[τ < ∞] > 0, then

P[Y i
τ,∞ > ξ, τ < ∞] = E[Ḡθτ (ξ)|τ < ∞]P[τ < ∞].

Noting that �i(u) := P[τu,i < ∞] ≥ P[Y i∞ > u] = Ḡi(u) > 0, we deduce from here
using (6.2) that

Ḡi(u) = P[Y i∞ > u, τu,i < ∞]
= P[Y i

τu,i ,∞ > X
u,i

τu,i , τ u,i < ∞]
= E[Ḡθ

τu,i
(X

u,i

τu,i )|τu,i < ∞]P[τu,i < ∞],
implying the equality in (6.1). Also, we have

E[Ḡθ
τu,i

(0)|τu,i < ∞] =
K−1∑

j=0

Ḡj (0)P[θτu,i = j |τu,i < ∞] ≥ min
j

Ḡj (0),

implying the result. �

Remark 6.2 The representation of the ruin probability in the form (6.1) goes back to
the seminal paper by Paulsen [19]. A more general result for a Markov-modulated risk
process can be found in the very recent paper by Behme and Sideris [4, Theorem 4.2].

7 Ruin with probability one

Assuming that β∗ := maxj βj is strictly negative, we give a sufficient condition under
which the ruin is imminent.

Theorem 7.1 Suppose that β∗< 0, �((−∞,0))>0 and there exists δ ∈ (0, |β∗| ∧ 1)

for which �(|x|δ) < ∞. Then �i(u) = 1 for any u > 0 and i.

Proof Put X̃n = X̃i
n := Xi

υn
. Note that (2.3) implies that the sequence (X̃n) satisfies

the difference equation

X̃n = AnX̃n−1 + Bn, n ≥ 1, X̃0 = u,
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where An := M−1
n := e

Vυn−Vυn−1 and

Bn := −M−1
n Qn =

∫

(υn−1,υn]
eVυn−Vs dPs.

According to Kabanov and Pergamenshchikov [16, Corollary 6.2], infn X̃n < 0 a.s. if
the ratio B1/A1 is unbounded from below and there is δ ∈ (0,1) such that E[Aδ

1] < 1
and E[|B1|δ] < ∞. By our assumption, the event that on a fixed finite interval, the
process P has arbitrarily many downward jumps of size larger than some ε > 0 and
no jumps upward is of strictly positive probability. Due to the independence of P and
(W, θ), this implies that −Q1 = B1/A1 is unbounded from below.

Noting that

f̃j (δ) := λj

λj + (1/2)σ 2
j δ(|βj | − δ)

< 1, (7.1)

we get that

E[Aδ
1] = E[eδVυ1 ] = E

[

eδVτ1

�∏

i=2

e
δ(Vτi

−Vτi−1 )

]

= E
[ �∑

i=2

f̃0(δ)f̃θ1(δ) · · ·fθi−1(δ)

]

< 1.

Finally, the property E[|B1|δ] < ∞ can be proved by the same arguments as in the
proof of Lemma 4.4 with γ and V replaced by δ and Vυ1 − V and the reference to
(4.1) replaced by the reference to (7.2) in Lemma 7.2 below. �

Lemma 7.2 Suppose that β∗ < 0. Then for any δ ∈ (0, |β∗|),

E
[∫ υ1

0
eδ(Vυ1−Vs )ds

]

< ∞, E
[(∫ υ1

0
e(Vυ1−Vs)ds

)δ]

< ∞. (7.2)

Proof The arguments are very similar to those for Lemma 4.3 and we only sketch
them. The only new feature is that we need to consider processes of the form
(VT − Vs)s∈[0,T ] rather than (Vs)s∈[0,T ]. The crucial observation is that the process
(WT − Ws)s∈[0,T ] in the reversed time s′ := T − s is a Wiener process.

First observe that

E
[∫ υ1

0
eδ(Vυ1−Vs)ds

]

= E
[ �∑

k=1

eδ(Vυ1−Vτk
)

∫ τk

τk−1

eδ(Vτk
−Vs)ds

]

.

Given a trajectory of θ , the exponential and the integral in each summand are condi-
tionally independent and their conditional expectations admit explicit expressions.
For the integral, it is 1/λϑk−1 f̃ϑk−1(δ), where f̃j is given in (7.1). Note that for
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δ ∈ (0, |β∗|), the conditional expectation of the integral is dominated by 1/λ∗, im-
plying that

E
[∫ υ1

0
eδ(Vυ1−Vs)ds

]

≤ 1

λ∗
E

[ �∑

k=1

eδ(Vτ� −Vτk
)

]

= 1

λ∗
E

[ �∑

k=1

�−1∏

n=k

e
δ(Vτn+1−Vτn )

]

= 1

λ∗
E

[ �∑

k=1

�−1∏

n=k

f̃θn(δ)

]

.

Due to the choice of β , we have f̃ ∗ := maxj f̃j (δ) < 1 and therefore

E
[ �∑

k=1

�−1∏

n=k

f̃θn(δ)

]

≤ E
[ �∑

k=1

(f̃ ∗)�−k

]

≤
∞∑

k=1

(f̃ ∗)k < ∞.

The first property in (7.2) is proved.
Let τ be an exponential random variable with parameter λ > 0. For any δ ∈ (0, r̃),

where

r̃ :=
√

2λ/σ 2 + β2/4 + |β|/2,

we have according to Borodin and Salminen [5, (1.1.1) in Chap. 2] that

C̃(δ, λ,β,σ ) := E
[
eδσ sups≤τ W

(σβ/2)
s

] = r̃

r̃ − δ
< ∞.

We get (as in Corollary 4.2) that for all k ≥ 1,

E
[(∫ τk

τk−1

eVτk
−Vs ds

)δ]

≤ C̃∗(δ)

with some constant C̃∗(δ) < ∞, and we complete the proof of the second property in
(7.2) as in Lemma 4.3. �

8 Comments and ramifications

As was observed by Paulsen [19] for the model where R and P are independent Lévy
processes, the asymptotic of the ruin probability is related to the tail behaviour of
the law of the integral Y∞ = −(1/S−) · P∞, where S = E(R). If Y∞ satisfies the

affine distributional equation Z
d= Q + MZ, then the tail behaviour can be obtained

via implicit renewal theory. In the Paulsen model, extensively studied in the papers
Paulsen [20, 21, 22], one can take M = 1/S1 and Q = −(1/S−) · P1. The function
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ϒ(q) := E[Mq ] has an explicit form; it can be expressed in terms of the Lévy triplets
of R.

Ellanskaya and Kabanov [9] considered a model with stochastic volatility (called
also a model with a hidden Markov process) supposing that S is a conditional geo-
metric Brownian motion with parameters depending on a two-state Markov process
θ and P is a compound Poisson process with drift. It was shown in [9] that the Y i∞
satisfy the affine distributional equations Zi d= Qi + MiZi , where Mi = e

−V i
τ2 and

Qi = −(1/Si−) · Pτ2 have distributions not depending on the initial value i of the
process θ . In [9], the function ϒ(q) := E[(Mi)q ] has an explicit form in terms of the
defined characteristics and does not depend on i.

The present paper extends the model of [9] to the case where the hidden finite-state
Markov process has all states communicating. This extension is non-trivial. Now Y i∞
satisfies the affine distributional equation Z

d= Qi + MiZ, where the distributions

of the random variables Mi = e
−V

υi
1 and Qi = −(1/S−) · Pυi

1
may depend on i.

The difficulty arises because in contrast to the two-state case, the moment-generating
function ϒi(q) := E[(Mi)q ] does not admit an explicit expression in terms of the
model specification, and its continuity properties and shape of the graph are not clear.

The contribution of the present paper consists in proving that if all parameters
βk are strictly positive, the function ϒ : R+ → R̄+ is continuous and there exists a
strictly positive root γi of the equation ϒi(q) = 1. The existence of such a root is the
crucial property. If the model has it, the other hypotheses of the Kesten–Goldie theo-
rem can be verified for a wider class of models than considered here. Our arguments
are based heavily on the assumption that all βk > 0. This is not necessary: the needed
root may exist even when some βk are negative. We show this in the following case
study for the model where θ is a telegraph process and ϒ has an explicit form.

Let us consider the model with a two-state Markov process θ as studied in [9].
Suppose first that σj �= 0 for j = 1,2. Then � = 2 and the convex continuous func-
tion ϒ :R+ → R̄+ admits, on its domain

domϒ = {q : λ01 + (1/2)σ 2
0 q(β0 − q) > 0, λ10 + (1/2)σ 2

1 q(β1 − q) > 0},
the explicit expression

ϒ(q) = ϒ̃(q) := λ01

λ01 + (1/2)σ 2
0 q(β0 − q)

λ10

λ10 + (1/2)σ 2
1 q(β1 − q)

.

Then

ϒ ′(0) = − σ 2
0

2λ01
β0 − σ 2

1

2λ10
β1.

The equation ϒ(q) = 1 has a root γ > 0 if and only if λ10σ 2
0 β0 + σ 2

1 λ01β1 > 0, and
in that case, this root coincides with the unique strictly positive root in domϒ of the
equation ϒ̃(q) = 1. Of course, the above inequality always holds if at least one of the
coefficients βk is strictly positive.
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Assuming σj > 0 allows us to work with the parameters βj := 2aj /σ
2
j − 1. A

model with risky investments where some of the σj are zero is of interest: one can
imagine that risky investments are prohibited in some states of the economy. To ex-
plain the situation, we consider again the model with a two-state process θ , supposing
that σ0 �= 0 and σ1 = 0.

Now the convex continuous function ϒ :R → R̄+ has the domain

domϒ = {q : λ01 + (1/2)σ 2
0 q(β0 − q) > 0, λ10 + a1q > 0},

on which it is given by the formula

ϒ(q) = λ01

λ01 + (1/2)σ 2
0 q(β0 − q)

λ10

λ10 + a1q
.

Then ϒ ′(0) = −σ 2
0 β0/(2λ01)− a1/λ

10, and the inequality ϒ ′(0) < 0 is equivalent to
the inequality

a1 > −σ 2
0 β0λ

10/(2λ01). (8.1)

If a1 = 0, then β0 > 0 and γ = β0 is the strictly positive root of the equation
ϒ(q) = 1. In the general case, the equation ϒ(q) = 1 on the set domϒ has the form

λ01

λ01 + (1/2)σ 2
0 q(β0 − q)

λ10

λ10 + a1q
= 1.

If a1 �= 0, then this equation can be written as

q2 + (λ10/a1 − β0)q − (β0λ
10/a1 + 2λ01/σ 2

0 ) = 0.

Under the assumption (8.1), the larger of the roots

γ ± = 1

2
(β0 − λ10/a1) ±

√
1

4
(β0 + λ10/a1)2 + 2λ01/σ 2

0

belongs to ϒ .
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