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Abstract
We study the structure and properties of an infinite-activity CGMY Lévy process X

with given skewness S and kurtosis K of X1, without a Brownian component, but
allowing a drift component. The jump part of such a process is specified by the Lévy
density which is Ce−Mx/x1+Y for x > 0 and Ce−G|x|/|x|1+Y for x < 0. A main find-
ing is that the quantity R = S2/K plays a major role, and that the class of CGMY
processes can be parametrised by the mean E[X1], the variance Var[X1], S, K and Y ,
where Y varies in [0, Ymax(R)) with Ymax(R) = (2−3R)/(1−R). Limit theorems for
X are given in various settings, with particular attention to X approaching a Brownian
motion with drift, corresponding to the Black–Scholes model; for this, sufficient con-
ditions in a general Lévy process setup are that K → 0 or, in the spectrally positive
case, that S → 0. Implications for moment fitting of log-return data are discussed.
The paper also exploits the structure of spectrally positive CGMY processes as expo-
nential tiltings (Esscher transforms) of stable processes, with the purpose of providing
simple formulas for the log-return density f (x), short derivations of its asymptotic
form, and quick algorithms for simulation and maximum likelihood estimation.

Keywords Cumulant · Functional limit theorem · Log-return distribution ·
Exponentially tilted stable distribution · Moment method · Wasserstein distance
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1 Introduction

Lévy models in finance have evolved for the purpose of mitigating some of the short-
comings of the Black–Scholes model. Here the assumption is that the price of a finan-
cial asset evolves as a geometric Brownian motion eX , where Xt = mt + σWt , with
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W being a standard Brownian motion. Thus the log-returns over a period of length h

are i.i.d. and follow a normal distribution with mean mh and variance σ 2h for some
m and σ 2. Some of the problems with this model are that it does not accommodate
jumps in the asset price, as occurring for example at a market crash, and that observed
log-returns often have a shape different from the normal. Specific differences from
the Black–Scholes model are heavier tails and a sharper mode, often argued to be
tantamount to a kurtosis larger than that of the normal distribution, and some degree
of asymmetry, for which the skewness is the most naive quantitative measure. All of
these drawbacks can potentially be avoided when using a Lévy model.

Some classical expositions of the theory and applications of Lévy models in fi-
nance are Cont and Tankov [15] and Schoutens [50]. For the general theory of Lévy
processes, see Sato [48], Bertoin [8] and Kyprianou [33]. A Lévy process X has a
decomposition as

Xt = mt + ωWt + Jt , (1.1)

where mt is a linear drift, W a standard Brownian motion and J a pure jump process.
We are particularly interested in the jump component and therefore consider only pro-
cesses with ω = 0 in the following. The main characteristic of such a jump process
is its Lévy measure ν, which with a few exceptions we throughout assume abso-
lutely continuous with density n(x) ≥ 0. Properties of ν are

∫
{|x|>ε} ν(dx) < ∞ and

∫
{|x|≤ε} x

2ν(dx) < ∞ for some (and then all) ε > 0. The process is said to have finite

activity if λ = ∫
R

ν(dx) < ∞ and is then a compound Poisson process with Poisson
rate λ and density n(x)/λ of the jumps. The sample paths of J are of finite variation
if and only if

∫
{|x|≤ε} xν(dx) < ∞. The picture is roughly that jumps in [x, x + dx)

occur at the rate n(x)dx. In the infinite-activity case, J is not completely specified
by n(x), but involves an additional condition, which in the present paper we take as
the form of the so-called Lévy exponent or cumulant function logE[esJ1] (see also
Sect. 4). The process is called spectrally positive or negative if n(x) ≡ 0 for x < 0
resp. x > 0; otherwise, we refer to it as two-sided. For the financial interpretation,
we assume the time scale is chosen such that X1 = m + J1 is the log-return (daily or
whatever).

For a process of the form (1.1), the kth cumulant κk is defined as the kth deriva-
tive of κ(s) = logE[esX1] at s = 0. Here κ1 = E[X1] and κ2 = Var[X1]. The first n

cumulants are in one-to-one correspondence with the first n moments of X1; see e.g.
Asmussen and Bladt [4] for a survey and a new representation in terms of matrix
exponentials. The normalised cumulants are κ∗

k = κk/κ
k/2
2 , k = 2,3,4, . . . In partic-

ular, if Z = (X1 −E[X1])/(Var[X1])1/2, then S = κ∗
3 = E[Z3] is the skewness and

K = κ∗
4 = E[Z4] − 3 the kurtosis, sometimes also called excess kurtosis, measuring

the deviations from the Black–Scholes model. Indeed, for a Lévy process, K ≥ 0 with
equality if and only if X is a Brownian motion with drift.

The most popular jump parts of X in finance are the normal inverse Gaussian
(NIG) process, the generalised hyperbolic (GH) process, the Meixner process, the
CGMY process and the variance gamma (VG) process. The present paper concen-



Role of skewness and kurtosis in CGMY models 385

trates on the CGMY model where

n(x) =
⎧
⎨

⎩

C 1
x1+Y e−Mx for x > 0,

C 1
|x|1+Y e−G|x| for x < 0

(1.2)

and

κ(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C	(−Y)((M − s)Y − MY + (G + s)Y − GY ) + sm, Y �= 0,1,

C((M − s) log(M − s) − M logM

+(G + s) log(G + s) − G logG) + sm, Y = 1,

−C log(1 − s/M) − C log(1 + s/G) + sm, Y = 0,

(1.3)

where −∞ < Y < 2 (see Sect. 4 for remarks on the special role played by Y = 0 or
Y = 1). This process has finite activity for Y < 0, finite variation for 0 ≤ Y < 1 and
infinite variation for 1 ≤ Y < 2. The central purpose is to shed light on the relation of
the skewness S and the kurtosis K to other features of the process. For such purposes,
the mean κ1 and the variance κ2 are essentially dummy quantities since they just
represent location and scale. The main two features of X we study are (A) how to
express the parameters in terms of cumulants, and (B) giving conditions in terms of
cumulants in order that X is close to a BM with drift. The motivation for studying
both (A) and (B) comes from numerous statements in the financial literature in the
spirit that S accounts for asymmetry and K for a sharper mode and heavier tails than
for the Black–Scholes model.

Our main result related to question (A) is the following. Define

R = S2

K
= κ2

3

κ2κ4
, Ymax(R) = 2 − 3R

1 − R
. (1.4)

Theorem 1.1 Given constants κ̊2 > 0, κ̊3 > 0, κ̊4 > 0, an infinite-activity two-sided
CGMY process X with given rate parameter Y and cumulants κk = κ̊k , k = 2,3,4,
exists if and only if R̊ = κ̊2

3 /(κ̊2κ̊4) ≤ 2/3 and 0 ≤ Y < Ymax(R̊). In that case, the
parameters C,G,M are unique and given by the expressions stated in Theorem 8.2
in Sect. 8.

The most obvious interpretation of Theorems 1.1 and 8.2 is that κ̊2, κ̊3, κ̊4 are the
empirical cumulants of a data set, say a series of log-returns. The result then tells
us how to fit a CGMY process matching cumulants and in particular skewness and
kurtosis; this leaves open the choice of Y , and we return to this below in topic (E).
The reason that we omit fitting the empirical mean is that this can simply be done by
a subsequent appropriate choice of m in (1.1), as is standard at least in the NIG and
Meixner cases. However, κ̊2 = κ2, κ̊3 = κ3, κ̊4 = κ4 could also be cumulants 2–4 of
a given CGMY process. The result then describes how to reconstruct the parameters
C,G,M in terms of these cumulants and Y .

The basic equations κk = κ̊k , k = 2,3,4, mean that

κ̊k = C	(Y − k)
(
MY−k + (−1)kGY−k

)
, k = 2,3,4. (1.5)
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Numerically, one could of course treat this as a 4-dimensional fixed point problem
(Küchler and Tappe [32, Sect. 6] study a similar 6-dimensional problem for a gener-
alised tempered stable process). In contrast, an analytic solution of (1.5) appears at
first sight a complicated task. One difficulty is that there are four unknowns, but only
three equations, so that there may well be more than one solution. Another is that R̊

does not reduce in any promising way. Our approach is to note that the problem is
easy for the spectrally positive case where the relevant equations are (1.5) with the
G-terms deleted. These equations are treated in Sect. 6, and the analysis determines
in a rather straightforward way what goes on in the non-skewed case S = 0, studied in
Sect. 7. In contrast, the case S �= 0 is more tricky and treated in Sect. 8. The approach
is a careful study of the structure of X as difference between positive and negative
jumps introducing π2, the fraction of κ2 coming from positive jumps, as auxiliary
unknown. We show that π2 is the solution of a transcendental equation of the form
ϕY (π2) = A for a fairly well-behaved ϕY and a constant A depending on Y and R.
Given π2, there are then simple expressions for C,G,M in terms of κ2,R,K,Y .

Concerning question (B), one has the following general result. Write

μ = E[X1], σ 2 = κ2 = Var[X1], (X∗
t )t≥0 = (

(Xt − μt)/σ
)
t≥0.

Theorem 1.2 Consider the whole class of Lévy processes X, and let S denote the
skewness, K the kurtosis of X. In order that X∗ ⇒ W in the Skorokhod space
D[0,∞), it is then sufficient that either (a) K → 0 or (b) each X is spectrally positive
and S → 0.

An equivalent formulation of (a) is that for a sequence (Xn) of Lévy processes
with kurtosis Kn of Xn, it is sufficient for X∗

n ⇒ W that Kn → 0. Similar remarks
apply to (b) and at other places in the paper.

The situation of the theorem, X∗ being close to W , is of particular interest in
finance, since then the given Lévy process model is close to the Black–Scholes model
Xt = μt + σWt . This indicates that at least for some problems like in-the-money
options, there is no need for the more sophisticated Lévy model and one could just
price by the much simpler BM machinery. Note also that convergence of skewness or
kurtosis or higher moments is not a necessary condition for X∗ ⇒ W – convergence
may still hold even if some uniform integrability fails. We shall see examples of this
in parts (b), (c) of Proposition 6.7.

Despite its simplicity, Theorem 1.2 does not seem to be all that well known. The
earliest reference for part (a) we are aware of is Arizmendi [2] where, however, the
setup and proof is extremely abstract. Part (a) also follows from Fomichov et al. [20,
Lemma 2.1] which, however, relies on rather intricate CLT bounds from Rio [42]. We
therefore give a much more elementary proof in the Appendix, which also applies to
prove the apparently new part (b). For some further relevant literature and relation to
the Wasserstein distance, see item 2) in Sect. 11.

We proceed to describe some further topics (C), (D), (E) of the paper.
(C) The R in (1.4) plays a fundamental role in view of Theorem 1.1. Concerning

its interpretation, one may note that whereas S and K are scale-invariant character-
istics of the distribution of X1, then R is also a time-invariant quantity: if S(t) and
K(t) are the skewness and kurtosis of Xt , then S(t) = S/t1/2 and K(t) = K/t , so
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that S(t)2/K(t) is independent of t . With this motivation, we review and extend in
Sect. 5 various inequalities related to R. In particular, we obtain R < 2/3 for the
CGMY process. These inequalities should be compared with R ≤ 1 for a general
Lévy process and R ≤ 3/4 for one with a completely monotone Lévy measure; for a
discussion of the relevance of complete monotonicity and its applications in a Lévy
process context, see e.g. Carr et al. [11], Jeannin and Pistorius [27], Hackmann and
Kutznetsov [24]. For an NIG process, R < 3/5, and in the Meixner case, R < 2/3;
see the Appendix. Note that an upper bound on R may be seen either as an upper
bound on |S| given K , or as a lower bound on K given S �= 0.

(D) is an observation relevant for computations: for the NIG and Meixner pro-
cesses, the density f (x) of X1 is explicit, at least to some degree, but for the CGMY
process, it is usually not considered to be available in closed form. Accordingly, the
numerical calculation of f (x) has been done by rather complicated methods; the most
widely used appears to be Fourier inversion, starting from Carr and Madan [13], Carr
et al. [11]. In Sect. 6, we point out some simple expressions for f (x) in terms of
stable densities f0(x). Such f0(x) are not explicit either, but given the availability of
software for stable distributions, the expressions allow a straightforward numerical
computation of f (x), an issue of relevance for example for pricing European options
or for maximum likelihood estimation. The basic fact is that a spectrally positive
CGMY process is an Esscher transform of a stable process. For exploitations of this
in a somewhat different vein, see e.g. Madan and Yor [34], Poirot and Tankov [40].

(E), outlined in Sect. 10, concerns the choice of Y in the fitting setting of Theo-
rems 1.1 and 8.2, an issue left open there. Essentially, we see this as an extra degree
of freedom compared to the NIG and Meixner processes, where κ1, κ2, S,K are in
one-to-one correspondence with the parameter sets. In contrast, a CGMY process al-
lowing m �= 0 with given κ1, κ2, S,K is over-parametrised since it has five parameters
C,G,M,Y,m rather than four. This freedom can be utilised to choose Y according
to specific features of financial interest, of which we discuss tail properties (relevant,
say, for pricing out-of-the-money options), higher order cumulants and finer path
properties (relevant, say, in a high-frequency context).

The rest of the paper is organised as follows. Section 2 contains values of cumu-
lants from various financial studies, guidelining what is the interesting range. Some
first remarks on limit theorems are in Sect. 3, and Sect. 4 gives some further relevant
preliminaries. Some concluding remarks are in Sect. 11. Finally, the Appendix con-
tains the proofs of the limit theorems and some supplements on the NIG and Meixner
models (for some of which we have no immediate reference).

2 Some data

Table 1 below contains some key quantities related to a small selection of financial
Lévy models in the literature (here R4 = κ2

4 /(κ2κ6), see also Sect. 5). Most of the
models have been fitted from historical data (series of log-returns), the few marked
by an ∗ by calibration, where one looks for parameters matching observed option
prices as well as possible. Calibration is not based on statistical principles, but has
the advantage of circumventing the problem that the issue of risk-neutrality is non-
trivial for Lévy processes. In fact, there exists an infinity of equivalent risk-neutral
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Table 1 Cumulants, etc., for a selection of models from the literature

σ = κ
1/2
2 S = κ∗

3 K = κ∗
4 κ∗

5 κ∗
6 R R4

E1 0.95 e−2 –0.110 7.17 – – 1.69 e−3 –

E2 1.19 e−2 –0.441 6.94 – – 2.80 e−2 –

E3 1.54 e−2 –0.554 5.78 – – 5.31 e−2 –

E4 1.57 e−2 –0.431 4.65 – – 3.40 e−2 –

E5 1.41 e−2 –0.358 5.35 – – 2.40 e−2 –

E6 1.43 e−2 –0.212 4.63 – – 9.71 e−3 –

N1 1.26 e−2 –0.171 3.36 –2.84 56.9 8.70 e−3 0.198

N2 2.08 e−2 –0.119 2.95 –1.75 43.7 4.81 e−3 0.199

N3 0.140 +0.276 4.73 +6.45 114 1.61 e−2 0.196

N1* 0.229 –2.21 10.6 –69.0 588 0.460 0.191

M1 1.60 e−2 +0.119 1.76 +0.831 2.45 8.01 e−3 0.249

M2 1.42 e−2 –0.482 2.51 –4.49 26.1 9.28 e−2 0.240

M3 3.23 e−2 +5.01 e−2 2.44 +0.489 23.8 0.103 e−3 0.250

M1* 0.226 –1.63 5.56 –23.2 96.5 0.480 0.320

C1 0.237 –4.66 e−2 8.31 e−2 –8.35 e−2 3.60 e−2 2.61 e−2 0.192

C2 0.125 –2.85 e−3 3.39 e−2 –3.36 e−2 4.23 e−2 2.39 e−2 0.270

C1* 0.319 –0.410 0.272 –1.03 0.227 0.618 0.267

C2* 0.448 –19.8 987 –2.67 e+3 8.43 e+6 0.398 0.116

versions and the choice among them is largely subjective. Some popular choices
are, however, around, in particular the Esscher transform (exponential tilting, cf.
Cont and Tankov [15, Chap. 9]) and the so-called mean-reversion, cf. Schoutens [50,
Sect. 6.2.2]. When calibrating, one instead considers the resulting fit to be the mar-
ket’s view of a risk-neutral model.

The models in Table 1 are:
E1–E6: empirical cumulants reported in Schoutens [50, Table 4.1] for some popu-

lar indices. E1 is S&P500 for the period 1970–2001, with the 19 October 1987 outlier
removed. E2–E6 all have period 1997–1999 and are S&P500, Nasdaq-Composite,
DAX, SMI and CAC-40;

N1–N3: NIG distributions fitted from historical data, Deutsche Bank in Ryd-
berg [46], Brent oil and SAP in Benth and Saltyte-Benth [7];

N1∗: an NIG distribution calibrated from S&P500 in Schoutens [50, Sect. 6.3];
M1–M3: Meixner distributions fitted from historical data, M1 = Nikkei 225 and

M2 = SMI from Schoutens [49] and M3 = Banco do Brasil from Fajardo Barbachan
and Pereira Coutinho [19];

M1∗: a Meixner distribution calibrated from S&P500 in Schoutens [50, Sect. 6.3];
C1–C2: CGMY distributions fitted from historical data, C1 = IBM and C2 = SPX

from Carr et al. [11].
C1∗–C2∗: calibrated CGMY distributions, C1∗ = spx0210 in Carr et al. [11] and

C2∗ = S&P500 in Schoutens [50, Sect. 6.3].
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The rough picture is that the skewness S is most often negative, i.e., substantial
losses are more likely than substantial gains. This effect is, however, much more
marked for calibrated models than for models based on historical data. In fact, large
values of R only occur for calibrated models.

3 Remarks on limit theorems

Most aspects of weak convergence in the standard J1-topology on the Skorokhod
space D[0,∞) simplify greatly for Lévy processes. In particular, since t = 1 is a
continuity point of X, convergence in distribution of X1 is in general a necessary con-
dition, but for Lévy processes it is also sufficient; cf. Kallenberg [28, Theorem 15.17].
In statements like “X converges to a gamma process” or X∗ ⇒ W (where W is stan-
dard Brownian motion), we understand convergence in one of these equivalent senses.

The cumulants of X∗ are κ∗
1 = 0, κ∗

2 = 1 and κ∗
k = κk/κ

k/2
2 for k > 2. In par-

ticular, κ∗
3 = S, κ∗

4 = K . The most obvious parameter set of a CGMY model is
(m,C,G,M,Y ), but according to Theorem 1.1, one-to-one alternatives are

(κ1, κ2, κ3, κ4, Y ) = (μ,σ 2, κ3, κ4, Y ), (κ1, κ2, κ
∗
3 , κ∗

4 , Y ) = (μ,σ 2, S,K,Y ),

(
μ,σ 2,R sign(S),K,Y

)
.

The asymptotic results of the paper involve limits where some or more parameters in
one of these parametrisations are fixed and the rest varying. Some main cases of such
results in the (m,C,G,M,Y ) parametrisation are given in the following two results
(partly overlapping results when Y < 1 are in Küchler and Tappe [32]).

Proposition 3.1 Consider the class of CGMY models with parameters m,C,G,M,Y .
Then X∗ ⇒ W provided either (a) C → ∞ with G,M,Y fixed, (b) Y ↑ 2 with
C,G,M fixed, or (c) M,G → ∞ with C,Y fixed.

In view of the explicit expression

K = κ4

κ2
2

= 	(4 − Y)(MY−4 + GY−4)

C	(2 − Y)2(MY−2 + GY−2)2

for K (cf. (4.4) below), this is a direct corollary of Theorem 1.2 (note that we have
	(2 − Y) → ∞ when Y ↑ 2). However, Proposition 3.1 is also easily proved without
reference to that result. In fact, the case C → ∞ is just the standard CLT for X∗

t

as t → ∞ (note that Lévy processes are the continuous-time analogue of random
walks). The G,M → ∞ case is also straightforward since it essentially is a rescaling
of the C → ∞ case; cf. the final paragraph in Sect. 4. The central limit behaviour
for Y close to 2 has certainly been observed at least at the heuristic level, and it can
be proved using the standard approach of convergence of characteristic functions; the
details are much as the proof, in the Appendix, of Proposition 6.7.
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Proposition 3.2 Assume m = 0. Then:
(a) As Y ↓ 0 with C,G,M fixed, X converges to an sVG process.
(b) As G,M ↓ 0 with C,Y fixed, X converges to a symmetric stable process with

α = Y .
(c) As C ↓ 0 with G,M,Y fixed, X/C1/Y converges to a symmetric stable process

with α = Y .

(For stable processes, see Samorodnitsky and Taqqu [47], Nolan [37]. In (a), sVG
stands for a special variance gamma process; see Sect. 4.) Here the case C ↓ 0 is
equivalent to the small-time behaviour, which is a notoriously difficult topic in Lévy
processes; cf. e.g. Doney and Maller [17]. However, it is treated in a somewhat more
general context than CGMY in Rosiński [45], and part (c) is a special case of results
there. Proposition 3.2 is most easily proved by using that for a pure jump process,
convergence in distribution of X1 is implied by vague convergence of the Lévy mea-
sure ν(dx); see Kallenberg [28, Theorem 15.14]. The vague convergence is in turn
implied by pointwise convergence of n(x) together with some bound allowing a dom-
inated convergence argument. This easily gives Proposition 3.2. For example, in part
(c), the Lévy density of X/C1/Y for x > 0 is

C

(C1/Y )Y

1

x1+Y
e−MC1/Y x = 1

x1+Y
e−MC1/Y x

with the stable Lévy density x−1−Y as majorant as well as limit when C → 0, and
similarly for x < 0.

4 Further preliminaries

A Lévy process of the form (1.1) is traditionally represented in terms of its charac-
teristic triplet (a,ω, ν) by the specification

logE[esX1] = as + ωs2/2 +
∫ ∞

−∞
(esx − 1 − xI{|x|≤b}) ν(dx).

The range of s always includes the imaginary axis, but in our examples where ex-
ponential moments exist, also an open real interval around s = 0. The xI{|x|≤b} term
may be omitted in the finite-variation case, but is indispensable otherwise where so-
called compensation of small jumps is necessary. The traditional choice is b = 1, but
it can in principle be any b > 0. Changing b = 1 to some other b then also changes a.
See Cont and Tankov [15, Sect. 4.5] for the choice of a leading to the form (1.3) of
κ(s) in the CGMY process.

For a process Xt = mt + Jt without a Brownian component,

κk =
∫ ∞

−∞
xkn(x)dx, k = 2,3, . . . (4.1)

We can write X as the independent difference of two spectrally positive Lévy pro-
cesses, X = X+ − X−, where X+,X− have Lévy measures n+(x) = n(x) resp.
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n−(x) = n(−x) for x > 0 and n+(x) = n−(x) = 0 for x < 0. If κ+
k , κ−

k are the corre-
sponding cumulants, we therefore have

κk = κ+
k + κ−

k for k = 2,4, . . . , κk = κ+
k − κ−

k for k = 3,5, . . . (4.2)

For negative non-integer x, 	(x) is defined by starting with the standard values in
the interval (0,1) and then using the recurrence relation 	(x + 1) = x	(x). For the
CGMY process, this gives in particular that

	(2 − Y) = (1 − Y)	(1 − Y) = Y(Y − 1)	(−Y), (4.3)

	(−Y) = − 1

Y
	(1 − Y) = 1

Y(Y − 1)
	(2 − Y)

for Y �= 0,1. The reason that Y = 0 or Y = 1 requires special treatment is that
	(0) = ∞ since

	(ε) = 	(1 + ε)/ε ∼ 1/ε as ε ↓ 0.

For more details on the case Y = 1, see Rosiński [45] and Küchler and Tappe [32].
By insertion of the form of n(x) in (4.1), (4.2), the cumulants of a two-sided CGMY
process come out as

κk = C	(k − Y)
(
MY−k + (−1)kGY−k

)
, k ≥ 2, (4.4)

an expression valid also when Y = 0 or Y = 1. The CGMY process has also been
considered with different C and Y on the positive and negative axis. It also goes
under other names, in particular the tempered stable process (cf. Koponen [31],
Rosiński [45], Bianchi et al. [9, 10], Grabchak [22], Küchler and Tappe [32]), but
note that the terminology is somewhat ambiguous. We do not give a detailed review of
history and references, but refer to Cont and Tankov [15, Remark 4.4] and Schoutens
[50, Sect. 5.3.9]. Note the connection of the acronym CGMY to the authors Carr,
Geman, Madan, Yor of [11].

For the NIG process,

n(x) = αδ

π |x|K1(α|x|)eβx, x ∈ R,

κ(s) = δ
(√

α2 − β2 −
√

α2 − (β + s)2
)
,

where α, δ > 0, |β| < α and μ ∈ R. As usual, K1(z) denotes the modified Bessel
function of the third kind with index 1. For the Meixner process,

n(x) = d
exp(bx/a)

x sinh(π |x|/a)
= 2d

exp(bx/a − π |x|/a)

|x|(1 − exp(−2π |x|/a))
,

κ(s) = 2d log
(
cos(b/2)

) − 2d log
((

cos(as + b)/2
))

,

where a, d > 0, |b| < π and m ∈ R. Both the NIG and Meixner processes have infi-
nite variation.



392 S. Asmussen

For the gamma process with density γ αxα−1e−γ x/	(α) of X1, we refer to α as the
shape parameter and to γ as the rate parameter. The Lévy density is αe−γ x/x, x > 0.
It is thus a spectrally positive CGMY process with C = α, M = γ and Y = 0. The
VG process is the difference X+ − X− between two independent gamma processes
X+,X− with parameters, say, α+, γ + for X+ and α−, γ − for X−. Thus the CGMY
process with Y = 0 is VG with γ + = M and γ − = G, α+ = α− = C. That is, the
shape parameters of X+,X− are identical, and we use the acronym sVG for this case
(s for same). The class of GH processes includes the NIG, but is more complicated
(e.g. n(x) is only available in integral form), and in most financial examples we have
seen, the NIG performs as well. For these reasons we omit discussion of the GH
process and VG processes with α+ �= α− in this paper. We also do not go into the
compound Poisson case

∫
n(x)dx < ∞ (meaning Y < 0 in the CGMY case), since

here the log-returns have an atom at zero, a somewhat controversial feature from the
financial point of view.

Scaling a jump process by v > 0, i.e., replacing Xt by Xt/v, changes n(x) to
vn(vx). In particular, for the CGMY process, the parameters C,G,M change to
C/vY , vG,vM , while Y is left unchanged. In relation to Proposition 3.1, this shows
in particular that in the spectrally positive case, the CLT in the limit M → ∞ fol-
lows from that in the limit C → ∞ (take v = 1/M). Additivity properties of Lévy
processes then apply to the two-sided case.

5 Inequalities

Recall that R = S2/K = κ2
3 /(κ2κ4). Recall also that a function g(x) on (0,∞) is

called completely monotone if it is a (possibly continuous) mixture of exponentials,
i.e., if g(x) = ∫ ∞

0 e−ax V (da) for some nonnegative measure V (da) on (0,∞). We
call n(x) completely monotone if both n+(x) and n−(x) are such. For example, it is
shown in Carr et al. [11] that for the spectrally positive CGMY process, V exists and
has density (a − M)Y /	(1 + Y), a > M .

If the κk are the cumulants of a general random variable Z (not necessarily of the
form Z = X1 for a Lévy process), one has S2 ≤ K + 2 and this inequality is sharp.
See Rohatgi and Székely [43], where also the inequality R ≤ 1 in part (a) of the
following result can be found (but with a different proof than the one we give in the
Appendix).

Proposition 5.1 For a Lévy process X, we have R ≤ 1, with equality if and only if
X = z0N

(λ) for some z0 �= 0 and some λ > 0, where N(λ) is a Poisson process with
rate λ. If, furthermore, n(x) is completely monotone, then R ≤ 3/4, with equality
if and only if X is spectrally positive or negative with exponential(a0) jumps in the
positive resp. negative direction for some a0 > 0.

Proposition 5.2 For a Lévy process X, we have R4 = κ2
4 /(κ2κ6) = K2/κ∗

6 ≤ 1, with

equality if and only if X = z0(N
(λ+) − N(λ−)) for some z0 > 0 and independent

N(λ+),N(λ−). If, furthermore, n(x) is completely monotone, then R4 ≤ 2/5, with
equality if and only if X+, X− are both compound Poisson with exponential(a0)

jumps, but possibly different λ+, λ−.
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In the course of the paper, we also show the following result.

Proposition 5.3 For the CGMY process with 0 ≤ Y < 2, one has R ≤ 2/3 = 0.667
and the range of R4 is [0,3/10] = [0,0.300]. For NIG, we have R ≤ 3/5 = 0.600
and the range of R4 is [0.171,0.238]. For Meixner, one has R < 2/3 = 0.667 and the
range of R4 is [0.240,0.340).

6 Spectrally positive CGMY processes

Proposition 6.1 Given constants κ̊2 > 0, κ̊3 > 0, κ̊4 > 0, an infinite-activity spectrally
positive CGMY process X with cumulants κk = κ̊k , k = 2,3,4, exists if and only if
R̊ = κ̊2

3/(κ̊2κ̊4) ≤ 2/3. In that case, the parameters C,M,Y are unique and given by

Y = 2 − 3R̊

1 − R̊
, M =

√
(2 − Y)(3 − Y)κ̊2

κ̊4
= σ

√
R̊/K̊

1 − R̊
, C = κ̊2M

2−Y

	(2 − Y)
. (6.1)

In particular, X is gamma if and only if R̊ = 2/3. Furthermore, we have

R4 = κ̊2
4

κ̊2κ̊6
= (2 − Y)(3 − Y)

(5 − Y)(4 − Y)
∈ (0,3/10]. (6.2)

A related result appears in Küchler and Tappe [32, Proposition 5.4], but is in terms
of κ1, κ2, κ3 rather than κ2, κ3, κ4. In particular, M is written there as (2 − Y)κ2/κ3.

Proof of Proposition 6.1 We first verify (6.1), (6.2) when κ̊2 = κ2, κ̊3 = κ3, κ̊4 = κ4 are
the cumulants of a spectrally positive CGMY process. Here, always for Y �= 0,1,

κ1 = −C	(−Y)YMY−1 + m = C	(1 − Y)MY−1 + m, (6.3a)

κ2 = C	(2 − Y)MY−2 = C	(−Y)Y (Y − 1)MY−2, (6.3b)

κ3 = C	(3 − Y)MY−3 = −C	(−Y)Y (Y − 1)(Y − 2)MY−3, (6.3c)

κ4 = C	(4 − Y)MY−4 = C	(−Y)Y (Y − 1)(Y − 2)(Y − 3)MY−4, (6.3d)

κ(s) = C	(−Y)
(
(M − s)Y − MY

) + sm (6.3e)

= κ2

Y(Y − 1)
M2−Y

(
(M − s)Y − MY

) + sm, s < M. (6.3f)

These are just the standard formulas (4.4) for CGMY with the (−1)kGY−k term
deleted, with the exception of (6.3f) which follows from (6.3e), (4.3) and (6.3b).
This immediately gives

R = S2

K
= κ2

3

κ2κ4
= 	(3 − Y)2

	(2 − Y)	(4 − Y)
= 2 − Y

3 − Y
. (6.4)
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In particular, the infinite-activity condition 0 ≤ Y < 2 translates into R ≤ 2/3,
with the gamma case Y = 0 corresponding to R = 2/3. We then also obtain
κ4/κ2 = (2 − Y)(3 − Y)/M2. Solving for M , we get the asserted expression. The
one for C follows from (6.3b) and then gives (6.3e). Finally, (6.2) follows from

κ6 = (5 − Y)(4 − Y)

M2 κ4 = (5 − Y)(4 − Y)

(2 − Y)(3 − Y)

κ2
4

κ2
.

It is now clear that the connection between C,M,Y and κ2, κ3, κ4 is one-to-one
and also in the case of general κ̊2, κ̊3, κ̊4 that R̊ ≤ 2/3 is a necessary condition for
existence of X. That it is also sufficient follows by first noting that C,M,Y as defined
in (6.1) are legitimate parameters and then invoking the one-to-one correspondence.

�

We next turn to topic (D) of the introduction, expressing the density f (x) of X1 in
terms of α-stable densities. For these, numerical methods are well developed in pack-
ages like MATLAB or Nolan’s STABLE program (see the preface in Nolan [37]). They
provide a quick and easy access to f (x) by means of the following Proposition 6.2;
for the two-sided case, we recommend discretising the convolution formula

f (x) =
∫ ∞

0
f +(x + y)f −(y)dy. (6.5)

For stable distributions and processes, see again Samorodnitsky and Taqqu [47] and
Nolan [37]. A nuisance is the different parametrisations in use. Here the conventions
for a stable distribution Sα(σ,β,m) are the most widely adapted ones, see [47], but
in the parametrisation S(α,β, γ, δ,0) used in [37] and in MATLAB, one has γ = σ ,
δ = βσα tan(πα/2) for an Sα(σ,β,m)-distribution. Note that β = 1 resp. m = 0 cor-
responds to the underlying stable process being spectrally positive, resp. strictly sta-
ble.

Proposition 6.2 Let f (x) be the density of X1 in a spectrally positive CGMY pro-
cess with parameters C,M,Y ∈ (0,2), m = 0 and let f0(x) be the density of
a strictly α-stable distribution Sα(σ,1,0), where α = Y . If Y �= 1 and one lets
σ = (−C	(−Y) cos(πY/2))1/Y , then

f (x) = exp
( − Mx − C	(−Y)MY

)
f0(x). (6.6)

If Y = 1 and one lets σ = Cπ/2, then

f (x) = exp
( − Mx + CM logM

)
f0(x).

Proof Assume first Y �= 1. We first note that σ is well defined since 	(−Y) < 0
and cos(πY/2) > 0 for 0 < Y < 1, whereas 	(−Y) > 0 and cos(πY/2) < 0 for
1 < Y < 2.

It is well known, see [47, Prop. 1.2.12], that the log-Laplace transform defined as
ψ(z) = log

∫
e−zxf0(x)dx is finite for all z > 0 and given by ψ(z) = −γ zα when

α = Y �= 1, where

γ = σα/ cos(πα/2) = −C	(−Y).
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Hence the f (x) in (6.6) equals exp(−Mx − ψ(M))f0(x) and is therefore a proper
density, with cumulant function

log
∫

esxf (x)dx = ψ(M − s) − ψ(M)

= −γ
(
(M − s)α − Mα

)

= C	(−Y)
(
(M − s)Y − MY

)
, s < M, (6.7)

as should be.
If Y = 1, one has ψ(z) = (2σ/π)z log z = Cz log z. The rest of the proof is just

the same as in (6.7). �

Remark 6.3 One example of application of Proposition 6.2 is simulation of X1, where
in the spectrally positive case with Y < 1, one may use acceptance–rejection with f0
as proposal density and e−Mx as acceptance probability. The case Y ≥ 1 is more com-
plicated since there e−Mx is unbounded on the support R of X1; it has been treated by
the author in [3]. Note that simulation from f0 is standard; see in particular Chambers
et al. [14]. Simulating X+

1 and X−
1 separately, we immediately get an algorithm for

the two-sided case. This appears often to be much quicker and simpler than the meth-
ods appearing in the literature which also in many cases are only approximate. See
in particular Asmussen and Rosiński [5], Ballotta and Kyriakou [6], Karlsson [29],
Kim [30], Rosiński [44], Zhang and Zhang [51]. However, the acceptance probability
and hence the efficiency is highly parameter-dependent. For the case Y < 1, more so-
phisticated versions of the algorithm are in Devroye [16] (that paper does not connect
to CGMY processes and the financial relevance).

As another application, we give a quick proof of the following corollary, appearing
in Küchler and Tappe [32, Theorem 7.7] (for the case Y < 1 only) and proved there
by a more intricate argument. Here f (x) ∼ g(x) means f (x)/g(x) → 1 in the limit
under consideration.

Corollary 6.4 Assume Y �= 1. Then f (x) ∼ C exp(−Mx − C	(−Y)MY ) 1
x1+Y as

x → ∞.

Proof According to Nolan [37, Theorem 1.2], we have f0(x) ∼ C̃/x1+Y , where

C̃ = 2αγ α sin(πα/2)	(α)/π

= −2YC	(−Y) cos(πY/2) sin(πY/2)	(Y )/π

= 2C	(1 − Y)	(Y ) cos(πY/2) sin(πY/2)/π.

But it is standard that 	(1 − Y)	(Y ) = π/ sin(πY ) and 2 sin θ cos θ = sin(2θ). This
gives C̃ = C. �

Remark 6.5 The corresponding result for the two-sided case and Y �= 0,1 is

f (x) ∼ exp
(
−Mx+C	(−Y)

(
(G+M)Y −MY −GY

)) 1

x1+Y
, x → ∞. (6.8)
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Fig. 1 Examples of the form of f (x) in the spectrally positive case

This follows from (6.5) and Corollary 6.4 by writing f (x)/f0(x) as

exp
( − Mx − C	(−Y)(MY + GY )

)
∫ ∞

0

f0(x + y)

f0(x)
e−(G+M)yf0(y)dy.

Here the integral goes to exp(−ψ(G + M)) by dominated convergence, using that
f0(x + y)/f0(x) ≤ 1 for large x and f0(x + y)/f0(x) → 1.

Example 6.6 Using Proposition 6.2 and the MATLAB routines for stable densities, we
produced the plots in Fig. 1 for selected values of K and R. We considered three val-
ues 1/2, 1 and 4 of the kurtosis K , took the variance σ 2 = κ2 equal to one, centered to
mean zero and for each K used three values 1/4, 3/4, 6/4 = 3/2 of Y , corresponding
to R = 7/11 = 0.64, R = 5/9 = 0.56 resp. R = 1/3 = 0.33. We also supplemented
the plot with the normal density ϕ(x) with the same mean 0 and variance 1, corre-
sponding to the Black–Scholes model.

It is seen in Fig. 1 that decreasing K with Y fixed makes the fit closer to the normal.
The same is true when increasing Y or, equivalently, decreasing R. Theoretically, this
is explained by parts (a) and (b) of the following result.

Proposition 6.7 Consider the class of spectrally positive CGMY processes. Then
X∗ ⇒ W in a limit where either (a) K → 0 or (b) S → 0 or (c) K → ∞ and R → 0
sufficiently fast that R logK = S2(logK)/K → 0.

Proposition 6.8 As R ↑ 2/3 with σ 2,K fixed, X converges in distribution to a gamma
process with rate parameter γ = √

6/K/σ and shape parameter σ 2γ 2 = 6/K .

Remark 6.9 Note that (a) K → 0 in Proposition 6.7 implies (b) S → 0 since R ≤ 2/3.
However, (c) allows S → ∞, only at a slower rate than

√
K/ logK . Also one does not

necessarily have that (a) K → 0 when (b) S → 0. These findings may be surprising
since in most cases of a CLT, both the skewness and kurtosis go to 0. More precisely,
this is equivalent to a suitable uniform integrability condition.

Note also that κ2, κ3, κ4 are in one-to-one correspondence with σ 2,K,R. In
Proposition 6.8, R ↑ 2/3 is equivalent to either of S ↑ √

2κ2κ4/3 or Y ↓ 0. Similar
remarks apply at several other places in the paper.
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7 Non-skewed CGMY processes

In general, a distribution which has vanishing skewness is not always symmetric. In
other words, if it is the distribution of a random variable Z, then Z and −Z need
not have the same distribution. However, if S = 0 in a CGMY process, then the ex-
pression for κ3 shows that G = M so that symmetry holds for all Xt . Since, as noted
in Sect. 2, the skewness is quite small in many financial data sets, studying the case
S = 0 is therefore a convenient start in the financial context.

When S = 0, one has necessarily G = M as said, so that the absolute value of
the contribution of negative jumps has the same distribution as that from the positive
jumps. However, compared to the spectrally positive case, there is an important dif-
ference: the cumulants do not specify what is the common skewness in the positive
and negative parts. This leaves us with one degree of freedom, which translates into
freedom in choosing Y .

Proposition 7.1 (a) A CGMY process with given κ2 > 0, κ4 > 0 and κ3 = S = 0 exists
for any −∞ < Y < 2. The parameters C,G,M,Y are in one-to-one correspondence
with κ2, κ4, Y by means of the formulas

G = M =
√

(2 − Y)(3 − Y)κ2

κ4
, C = κ2

2	(2 − Y)
M2−Y . (7.1)

(b) We have

Y =
5 − 9R4 −

√
R2

4 + 14R4 + 1

2 − 2R4
.

Proof Noting that κ+
k = κ−

k = κk/2 for k even, part (a) is immediate from Proposi-
tion 6.1. We also get R+

4 = R−
4 = R4. Therefore (6.2) holds, which can be rewritten

as 0 = Y 2(1 − R4) − Y(5 − 9R4) + 6 − 20R4. That Y is the solution with negative
sign in front of the square root can be verified by first noting that R4 ∈ (0,1) when
−∞ < Y < 2 and then checking that the solution with positive sign is > 2 in this
range of R4. �

An illustration of the influence of the choice of Y on the shape of the density
of X1 is in Fig. 2. We took the variance σ 2 = κ2 equal to one, considered three

Fig. 2 Examples of the form of f (x) in the non-skewed case
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values 1/2, 1 and 4 of the kurtosis K and three values 1/4, 3/4, 6/4 = 3/2 of Y , and
computed f (x) by a discretised version of (6.5). We also supplemented the plot with
the normal density ϕ(x) with the same mean 0 and variance 1, corresponding to the
Black–Scholes model.

The picture is rather much the same as in the spectrally positive case: increas-
ing Y or decreasing K makes f (x) closer to the normal. An analogue of Proposi-
tions 6.7, 6.8 follows. Note that a symmetric CGMY model has three free parameters
Y,M,C or equivalently Y,σ,K (note that this set is in one-to-one correspondence
with Y,M,C according to (7.1)).

Proposition 7.2 Consider a symmetric CGMY model given by Y,σ,K . Then:
(a) X∗ ⇒ W as either (a) K → 0 or (b) Y ↑ 2 with K fixed or (c) K → ∞ and

Y ↑ 2 so fast that (2 − Y) logK → 0.
(b) As Y ↓ 0 with σ,K fixed, X converges to an sVG process with rate parameter

γ = √
6/K/σ and shape parameters α+ = α− = κ2γ

2/2 = 3/K .

8 Asymmetric CGMY processes

Let Y ∈ (0,2) be given and define Q = (4 − Y)/(2 − Y), Q1 = (1 + Q)/2,

gY (π) = (1 − π)Q + πQ, hY (π) = πQ1 − (1 − π)Q1 , ϕY (π) = hY (π)2

gY (π)
.

Lemma 8.1 (a) For fixed Y , the function ϕY (π) is continuous and increases strictly
from 0 to 1 in the interval π ∈ [1/2,1]. Furthermore, ϕY (π) ∼ 1 − π as π ↑ 1.

(b) For fixed π ∈ (1/2,1), the function ϕY (π) is strictly increasing in Y with
limY↑2 ϕY (π) = π .

For an illustration of the function ϕY , see Fig. 3 below. The function ϕY plays a
fundamental role in our main result to follow on the structure of two-sided CGMY
processes with given skewness and kurtosis. More precisely, a fixed point problem in
terms of ϕY determines the fractions

π2 = MY−2

MY−2 + GY−2
, π4 = MY−4

MY−4 + GY−4
(8.1)

Fig. 3 The function ϕY (π)
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of κ2 resp. κ4 provided by positive jumps. Let further � be the function given by
�(π) = π/(1 − π), with inverse �−1(a) = a/(1 + a).

For definiteness, we have taken S̊ > 0 or, equivalently, κ̊3 > 0 in the following
main result. If κ̊3 < 0, as is typical in financial data, one should just proceed as in
(8.2a)–(8.2b) and then interchange M and G.

Theorem 8.2 Given constants κ̊2 > 0, κ̊3 > 0, κ̊4 > 0, an infinite-activity two-sided
CGMY process X with given rate parameter Y and cumulants κk = κ̊k , k = 2,3,4,
exists if and only if R̊ = κ̊2

3 /(κ̊2κ̊4) ≤ 2/3 and 0 ≤ Y < Ymax(R̊), where Ymax(R) is
defined as Ymax(R) = (2 − 3R)/(1 − R). In that case, the parameters C,G,M are
unique and given by

M2 = π2κ̊2

π4κ̊4

	(4 − Y)

	(2 − Y)
, G2 = (1 − π2)κ̊2

(1 − π4)κ̊4

	(4 − Y)

	(2 − Y)
, (8.2a)

C = π2
2 κ̊2

2

π4κ̊4

	(4 − Y)

	(2 − Y)2
M−Y = (1 − π2)

2κ̊2
2

(1 − π4)κ̊4

	(4 − Y)

	(2 − Y)2
G−Y . (8.2b)

Here π2,π4 ∈ (1/2,1), �(π4) = �(π2)
Q, and π2 is the unique solution in (1/2,1) of

the equation ϕY (π2) = A, where A = R̊(3 − Y)/(2 − Y).

Proof We first consider the case where κ̊2 = κ2, κ̊3 = κ3, κ̊4 = κ4 are the cumulants
of a two-sided CGMY process. We have 1 − π2 = GY−2/(MY−2 + GY−2) which
together with (8.1) gives �(π2) = (M/G)Y−2. Since κ3 > 0 and Y − 2 < 0, we have
M < G and so π2 ∈ (1/2,1). Similarly, �(π4) = (M/G)Y−4, giving �(π4) = �(π2)

Q,
and π4 ∈ (1/2,1) follows. In particular, π4 is determined from π2 as

π4 = �(π2)
Q

1 + �(π2)Q
= π

Q
2

gY (π2)
= π

Q
2

π
Q
2 + (1 − π2)Q

. (8.3)

Now κ3 is the difference between the contributions from positive resp. negative
jumps, i.e., κ3 = κ+

3 − κ−
3 , where

κ+
3 = C	(3 − Y)MY−3, κ−

3 = C	(3 − Y)GY−3.

Here κ+
3 > κ3 when κ3 > 0, so that we can write κ+

3 = (1 + θ)κ3, κ−
3 = θκ3 for some

θ > 0. Using (6.4) on the positive resp. negative parts, we get

2 − Y

3 − Y
= (1 + θ)2κ2

3

π2κ2π4κ4
= θ2κ2

3

(1 − π2)κ2(1 − π4)κ4
, (8.4)

implying (1 + 1/θ)2 = �(π2)�(π4). Therefore

θ = 1√
�(π2)�(π4) − 1

= 1

�(π2)Q1 − 1
= (1 − π2)

Q1

hY (π2)
,



400 S. Asmussen

implying 1 + θ = π
Q1
2 /hY (π2). Also, using (8.4) in the first two steps and (8.3) in

the third gives

A = (1 − π2)(1 − π4)

θ2 = π2π4

(1 + θ)2 = π
1+Q
2

gY (π2)

hY (π2)
2

π
1+Q
2

= ϕY (π2).

The expressions (8.2a), (8.2b) now follow from Proposition 6.1.
Consider next the case of general κ̊k . By the preceding case, we must have

A < 1 which is equivalent to Y < (2 − 3R̊)/(1 − R̊). Define π2,π4,C,G,M as in
(8.2a)–(8.2b). To check that the two expressions for C in (8.2b), say C+, C−, co-
incide, we note that the definition of π4 is equivalent to �(π4) = �(π2)

Q and that
1 − Q = −2/(2 − Y) so that

(
M

G

)Y−2

=
(

�(π2)

�(π4)

)(Y−2)/2

= �(π2)
(1−Q)(Y−2)/2 = �(π2).

The desired conclusion C+ = C− then follows from 2 − Q = −Y/(2 − Y) because

C+
C−

= �(π2)
2

�(π4)

(
M

G

)−Y

= �(π2)
2−Qπ

−Y/(Y−2)

2 = 1.

Let X be the process given by the defined C,G,M and predescribed Y . With κk being
its cumulants, it remains to check that κ2 = κ̊2, κ3 = κ̊3, κ4 = κ̊4. First, we have

κ2 = C	(2 − Y)(MY−2 + GY−2) = C+	(2 − Y)MY−2 + C−	(2 − Y)GY−2.

Here C+	(2 − Y)MY−2 equals

π2
2 κ̊2

2 	(4 − Y)

π4κ̊4	(2 − Y)
M−2 = π2

2 κ̊2
2	(4 − Y)

π4κ̊4	(2 − Y)

π4κ̊4	(2 − Y)

π2κ̊2	(4 − Y)
= π2κ̊2.

Analogously, C−	(2 − Y)GY−2 = (1 − π2)κ̊2 and adding gives κ2 = κ̊2. Similarly,
C+	(4 − Y)MY−4 = π2κ̊4, C−	(4 − Y)GY−4 = (1 − π2)κ̊4 and κ4 = κ̊4.

Finally, let π#
2 be the ratio between the parts of κ2 provided by positive resp.

negative jumps of X and A# = κ2
3 /(κ2κ4)(3 −Y)/(2 −Y). Then ϕY (π#

2 ) = A# by the
first case. Also, �(π#

2 ) = (M/G)Y−2 which was shown above to equal �(π2). Hence
π#

2 = π2, giving A# = A. That κ3 = κ̊3 then follows since by the definition of π2,

κ̊2
3 = κ̊2κ̊4

2 − Y

3 − Y
A = κ2κ4

2 − Y

3 − Y
A# = κ2

3 . �

Recall that in the infinite-activity case, Y can take any value in [0, Ymax(R)) for
fixed κ2, κ3, κ4, where Ymax(R) = (2 − 3R)/(1 − R).

Theorem 8.3 Consider the class of two-sided CGMY models with κ2, S > 0,K fixed
and Y varying in (0, Ymax(R)). Then:

(a) As Y ↑ Ymax(R), it holds that X converges in D[0,∞)-distribution to the spec-
trally positive CGMY process with the same κ2, κ3, κ4.
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(b) As Y ↓ 0, it holds that X converges in D[0,∞)-distribution to the sVG process
with parameters α+ = α− = C0, G0, M0, where C0,G0,M0 are given by (8.2a),
(8.2b) with Y = 0, π2 defined as the solution of f0(π2) = 3R/2, and π4 given by
(8.3). Here π2,π4 both are in the open interval (1/2,1).

Theorem 8.4 Consider the class of two-sided CGMY models. Then X∗ ⇒ W if either
(a) K → 0 or (b) lim supK < ∞ and Y ↑ 2, or (c) K → ∞ and Y ↑ 2 sufficiently
fast that (2 − Y) logK → 0.

Remark 8.5 Note that Y ↑ 2 is only possible if R → 0 so that S → 0 in both of (a)
and (b). As in the spectrally positive case, S → ∞ is possible in (c).

9 Fitting: further numerical examples

In a fitting perspective, our examples relate to volatility/skewness/kurtosis fitting of
historical data. They also illuminate the range of the shape of the log-return density
in the CGMY model. Using moment fitting rather than ML is (at least at first sight)
appealing since it does not involve calculation of f (x) for many different parame-
ter sets. In contrast, CGMY cumulants are easily calculated, and hence so are the
moments.

If “data” refers to series of log-returns over a period, the empirical moments
◦
mk

are what are readily calculated, but the empirical cumulants κ̊k can then be obtained
from standard formulas like

κ1 = m1, κ2 = m2 − m2
1, κ3 = m3 − 3m1m2 + 2m3

1,

κ4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1.

However, “data” may also be a Lévy process, say an NIG process with given param-
eters to which we want to find a fit by a CGMY process, and in such situations, the
cumulants κ̊k are usually given by explicit formulas.

The fitting equations κk = κ̊k , k = 2,3,4, were solved in Theorem 8.2 for the
CGMY model. For the NIG and Meixner processes, the task is not difficult; see Ap-
pendices B and C. Again, R = S2/K = κ2

3/(κ2κ4) plays a fundamental role. The
outcome is that always R < 3/5 for an NIG process (as is well known) and that actu-
ally the fitting equations have a unique solution for α,β, δ when R̊ = S̊2/K̊ < 3/5. In
the Meixner case, R < 2/3 and there is a unique solution for a, b, d when R̊ < 2/3.
The quantity R̊ also plays an important technical role since looking at the equation
R̊ = R is a convenient first step in the solution.

Example 9.1 As data skewness S̊ and kurtosis K̊ , we took as one of the more
extreme examples in Table 1 those in N1∗, the NIG distribution calibrated from
S&P500 in Schoutens [50, Sect. 6.3] with the modification that we changed the
sign of the skewness from negative to positive. This gives S̊ = 2.21, K̊ = 10.6,
R̊ = 0.46, Y(R̊) = 1.146. The NIG parameters are α = 6.19, β = 3.90, δ = 0.152,
m = 0. Moment/cumulant fitting a CGMY process with κ2 = 1 for selected values of
Y ∈ [0, Y (R̊)) produced the results in Table 2 and Fig. 4 (where for comparison we
also included the Meixner cumulant fit).
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Table 2 Fitted parameters

Y C G M m π2 π4 θ κ6 L

0 0.42 1.63 0.703 –0.338 0.84 0.97 0.086 418 24.0

2
9 Y (R̊) = 0.255 0.41 1.69 0.627 –0.374 0.85 0.98 0.070 469 22.9

4
9 Y (R̊) = 0.509 0.40 1.88 0.553 –0.438 0.86 0.99 0.050 537 22.1

6
9 Y (R̊) = 0.764 0.39 2.47 0.481 –0.576 0.88 1.00 0.027 625 22.0

8
9 Y (R̊) = 1.018 0.39 6.61 0.415 –1.106 0.94 1.00 0.004 731 22.2

Fig. 4 Meixner and CGMY cumulant fits of NIG distribution N1∗

Fig. 5 NIG and Meixner fits of Y = 1/3 CGMY distribution

Example 9.2 We now turn the situation around and imagine that the data have the
shape of the CGMY distribution with Y = 1/3 in Example 9.1. We then performed
ML fitting of an NIG and a Meixner distribution, using that the continuous version of
minus log-likelihood is cross-entropy; the estimate is given by

(α,β, δ,m) = arg min
α,β,δ,m

−
∫

logfα,β,δ,m(x)fC,G,M,Y,m(x)dx

in the NIG case, and similarly for Meixner. The results are plotted in Fig. 5. For
the maximisation, we used MATLAB’s fminsearch routine. The ML fitted NIG
parameters came out as δ = 1.38, α = 0.790, β = 0.531, m = −0.429, whereas for
Meixner they are a = 2.37, b = 1.45, d = 0.177, m = −0.408.
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Table 3 Fits for first simulated data set

C G M Y m κ1 κ2 κ3 κ4 κ6 L

Model 0.41 1.73 0.60 0.33 –0.39 0 1 2.21 10.6 488 1.15

Simulation — — — — — 0.02 1.02 2.50 8.71 38.5 —

Y0 = 0.11, C-fit 0.41 1.65 0.67 0.11 –0.35 0 1 2.21 10.6 438 1.07

Y0 = 0.11, ML fit 0.41 1.73 0.67 0.11 –0.35 0.00 0.98 2.22 10.5 435 1.04

Y0 = 0.25, C-fit 0.41 1.70 0.63 0.25 –0.37 0 1 2.21 10.6 468 1.09

Y0 = 0.25, ML fit 0.38 1.93 0.56 0.31 –0.40 0.01 1.01 2.59 13.0 701 1.08

Y0 = 0.75, C-fit 0.39 2.41 0.49 0.75 –0.56 0 1 2.21 10.6 620 1.11

Y0 = 0.75, ML fit 0.49 2.39 0.75 0.28 –0.43 0.00 0.83 1.60 6.16 190 1.07

Fig. 6 Data and fits for first simulated data set

Example 9.3 As data, we simulated N = 500 observations from the Y = 1/3 CGMY
distribution in Example 9.1, corresponding roughly to the number of trading days in
two years. From these, we performed ML estimation of (C,G,M,Y,m), using MAT-
LABs fminsearch routine with three different starting points (C0,G0,M0, Y0,m0)

taken as the cumulant fits with different Y = Y0. The first was determined by taking
a step size 0.01 of Y and using the Y0 = Y giving the highest likelihood. For the sec-
ond, we took Y0 = 0.25, corresponding to a value fairly close to the true 0.33, and the
third had Y0 = 0.75, a value quite far from 0.33.

The experiment was repeated a number of times using different seeds for the sim-
ulation, and the results of two of these are reported in Table 3 and Fig. 6, resp. Ta-
ble 4 and Fig. 7. Here C-fit means fitting C,G,M to match the empirical cumu-
lants κ̊2, κ̊3, κ̊4 as in Theorem 8.2, and m then chosen to match κ̊1. The number L is
minus the log-likelihood divided by N ; for the model, it is reported as the entropy
− ∫

f (x) logf (x)dx, such that by the law of large numbers and consistency of ML
estimates, the L-values for ML fits should be close to the entropy. The results show
that the ML fit may be quite different for different initial conditions of the likelihood
maximisation, in particular for the Y -component. However, visually the fits are quite
similar except possibly very near the mode, and they are also quite close to the C-fits
except for the Y0 = 0.75 case.

The picture in the further experiments not reported here was quite similar. Here Y

in the C-fits with highest likelihood invariably came out as Y = Y0 = 0.11, and the
resulting ML fits had Y in the range 0.07–0.11. For Y0 = 0.25, Y was most often in
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Table 4 Fits for second simulated data set

C G M Y m κ1 κ2 κ3 κ4 κ6 L

Model 0.41 1.73 0.60 0.33 –0.39 0 1 2.21 10.6 488 1.15

Simulation — — — — — 0.00 0.89 1.77 5.63 37.2 —

Y0 = 0.11, C-fit 0.41 1.65 0.67 0.11 –0.35 0 1 2.21 10.6 438 1.05

Y0 = 0.11, ML fit 0.41 1.73 0.67 0.11 –0.035 0.00 0.98 2.21 10.4 432 1.03

Y0 = 0.25, C-fit 0.41 1.70 0.63 0.25 –0.37 0 1 2.21 10.6 468 1.07

Y0 = 0.25, ML fit 0.40 1.79 0.62 0.25 –0.38 0.00 0.96 2.21 10 6 479 1.07

Y0 = 0.75, C-fit 0.39 2.41 0.49 0.75 –0.56 0 1 2.21 10.6 620 1.11

Y0 = 0.75, ML fit 0.45 1.99 0.76 0.16 –0.39 0.03 0.83 1.61 6.59 207 1.07

Fig. 7 Data and fits for second simulated data set

the range 0.25–0.31, but also values 0.07–0.11 occurred. For Y0 = 0.75, Y was most
often in the range 0.07–0.11, but sometimes also in 0.25–0.31. Between the three dif-
ferent initial values of Y0, the first (determined from the C-fit with highest likelihood)
always gave the highest likelihood (meaning smallest L) of the corresponding ML fit.

10 Choosing Y

How to choose Y depends on the context and we have no universal recommendation.
Some possibilities follow.

1) An obvious follow-up of the procedure of fitting the first four moments is to
choose Y to fit the 5th or 6th moment or, equivalently, cumulants 5 or 6. A difficulty
is that empirical higher-order cumulants have a very substantial statistical uncertainty.
Financial data are often nearly symmetric, and one would therefore expect this un-
certainty to be particularly marked for the 5th cumulant. For example, in our σ = 1,
K = 10.6 case in Examples 9.1, 9.2, with S changed from 2.21 to 0, the correct val-
ues of cumulants 4–6 are 10.6, 0, 433, whereas simulation estimates of the standard
deviation on the empirical values with the given sample size N = 500 were 10.1, 114,
433. For an attempt to remedy such problems, see Hosking [25]. An explicit formula
for fitting the 6th cumulant or, equivalently, R4 was given in Proposition 7.1(b) for
the purely symmetric case. For skewed data, we have no other suggestion than to
search through a range of Y -values. Computationally, this is very fast.
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2) If the aim is to fit the center of the distribution, maximum likelihood is the
approach which is precisely designed to perform this task. For the CGMY process,
the maximisation has to be done by a numerical algorithm, typically requiring starting
values of the parameters m,C,G,M,Y . Our study in Example 9.3 indicates that
different choices of this starting value may lead to quite different ML estimates, in
particular of Y (we have not seen this observation in the literature). Figures 4, 5
clearly show that doing moment fitting alone has its pitfalls. We therefore think that
using some form of the more demanding ML procedure cannot be dispensed with. For
CGMY, Example 9.3 indicates that the likelihood surface may have a quite intricate
form with local maxima, so that an ML search should be performed from different
starting points for the same data. However, it is also suggested that the moment fit
with the Y giving the highest likelihood is quite close to the global ML fit. These
observations are of course preliminary, and more research is required. For computing
the log-likelihood, our use of the connection of f (x) to stable densities appears to be
more straightforward than the traditional use of Fourier inversion.

3) In the ML setup in 2), the parameters are most often not of intrinsic interest
– different sets are of equal quality if they match the data equally well. A context
where the particular value of Y is crucial is, however, finer path properties. In a wider
Lévy process perspective, Y plays the role of the so-called Blumenthal–Getoor index
which is known to govern many such properties. One may estimate Y from this point
of view via the sample path p-variation; see for example Norvaiša and Salopek [38],
Aït-Sahalia and Jacod [1] and references there.

4) In problems like pricing far-from-the-money options, the tail of the underlying
return distribution plays a crucial role. All of the tails in CGMY, NIG, Meixner, VG,
etc., models are semi-heavy, meaning P[X1 > x] ∼ δe−βxxη as x → ∞, for some
δ,β, η. For CGMY, integration in Corollary 6.4 and (6.8) gives β = M,η = −1 − Y ,
and one could find the M̂ with the best match of the empirical tail by using the Hill
estimator (see e.g. Resnick [41, Sect. 4.4]) to the exponentiated data which under the
CGMY model have asymptotic tail x−Mh(x), where h(x) = δ/(logx)1+Y . However,
it is generally considered impossible among statisticians to estimate features such as
Y of the slowly varying function h. One would therefore rather as in 1) search through
a range of Y -values to find the Y making the moment-matched M equal to M̂ .

Viewing R4 = R4(K,R,Y ), M = M(K,R,Y ), G = G(K,R,Y ) as functions of
K,R,Y for a fixed κ2, we computed R4,M,G for κ2 = 1 in a range of the parameter
set K,R,Y and the range 0.01 < Y/Ymax(R) < 0.95. The numerical results indicate
that R4 does not depend on K , whereas M scales as 1/K and G as K . That is,

R4(K,R,Y ) ≡ R4(1,R,Y ),

M(K,R,Y ) = 1

K
M(1,R,Y ),

G(K,R,Y ) = KG(1,R,Y ).

For these reasons, we have only taken K = 1 in Fig. 8, illustrating the shape of the
functions R4,M,G.
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Fig. 8 Selected characteristics as function of Y/Ymax(R) for K = 1: (left) R4, (middle) M , (right) G

11 Concluding remarks

Our starting point was a wish to look into some frequently occurring heuristics in the
financial literature: that a non-zero kurtosis explains a sharper mode of the empirical
log-returns than would be compatible with the Black–Scholes model, and that quan-
titatively, a model fitting the empirical kurtosis K̊ would give a good fit around the
mode. We investigated these features for CGMY, but we also touched upon two other
popular Lévy models, NIG and Meixner.

The outcome was not that supportive of this heuristics: models with the same
kurtosis K may lead to quite different shapes of the log-return density f (x) around
the mode; cf. the right panels in Figs. 1, 2 and 4, 5. However, for the CGMY model,
these differences could largely be removed by taking into account the value of the
parameter Y , which was found to be subject to choice even for given values of the first
four moments/cumulants. One of our main findings is that in the range Y < Ymax(R),
there is a one-to-one correspondence and that in this range, the shape of the log-return
distribution is quite variable. In particular, it is not universally true that the kurtosis
K alone governs the sharpness of the mode and heaviness of the tails; one needs to
take also the value of Y into account. These and related features were substantiated
by a number of limit results, proved in various different settings according to which
parameters/cumulants are fixed and which are varying.

Some further remarks:
1) Lévy models capture some stylised facts of the log-returns like the pres-

ence of jumps, distributions with a different shape than the normal (more marked
modes and heavier tails), but certainly not all. One exception is the autocorrelation
of the squared returns. Extensions covering this are time-transformed Lévy models
(Carr et al. [12]) or regime-switching ones (Asmussen and Bladt [4] and references
there).

2) Theorem 1.2 can alternatively also be derived from bounds in terms of the
Wp-Wasserstein distance, which in the simplest case of distributions on the line with
cumulative distribution functions F1,F2 has the form

Wp(F1,F2) =
∫ 1

0
|F−1

1 (q) − F−1
2 (q)|p dq.

In particular, Fomichov et al. [20, Lemma 2.1] states that the W2-distance between
the distribution of X∗

1 and the standard normal distribution is bounded by C4
√

K

for some C4. Since Wp-convergence implies weak convergence, this gives part (a)
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of Theorem 1.2 as well as the upper bound O(
√

K) on the rate of W2-Wasserstein
convergence. The C4 originates from Berry–Esseen-type CLT bounds in [42, Theo-
rem 4.1] (see also Mariucci and Reiss [35, Theorem 5]), but numerical values do not
appear to be easily available. Thus the C4

√
K bound is hardly quantitative.

Similarly, replacing Rio [42, Theorem 4.1] by Petrov [39, Theorem 16] gives a
bound C3S on the W1-Wasserstein distance in the spectrally positive case, giving
part (b) of Theorem 1.2. Similar results for the Kolmogorov distance can be obtained
using the ordinary Berry–Esseen bound or the Wasserstein distance via Petrov [39,
1.8.32] and Huber and Ronchetti [26, Corollary 4.3].

It also follows from Fomichov et al. [20, Corollary 3.3] that the W2-distance be-
tween the trajectories of X∗ and BM W on a compact interval can be bounded by
a multiple of (K logK)1/4. Financially, this is of relevance when dealing with path-
dependent options, e.g. of Asian or barrier type.

3) For a given set of data, cumulant inequalities like those of Sect. 5 may pro-
vide guidelines on which model to choose or not to choose. For example, if the
empirical value of R = κ2

3 /(κ2κ4) = S2/K fails to satisfy R̊ ≤ 1, this is an indica-
tion that a Lévy model may not be appropriate. Similarly, R̊ being less than 1 but
quite close could be taken as a warning not to use any of CGMY, NIG, Meixner, VG
or any other completely monotone class of Lévy models. Similar remarks apply to
R4 = κ2

4 /(κ2κ6). Here the range is (0,0.30] for CGMY, with the more narrow inter-
vals [0.171,0.238] for NIG and [0.240,0.340] for Meixner (see also the numerical
values reported in Table 1). This illustrates also that as a 5-parameter family, CGMY
is potentially a more flexible class than the 4-parameter NIG and Meixner ones. Our
limited number examples did, however, not include cases where CGMY fits the shape
of financial returns better than NIG or Meixner.

Appendix A: Proofs

In this Appendix, we slightly change notations. The time index t of a stochastic pro-
cess is not written with a subscript as in Xt , but with an argument in brackets as in
X(t).

Various techniques for proving functional limit theorems have been outlined in
Sect. 3. We add here that even if subtraction is not continuous in D[0,∞), it is so
in R, and it therefore suffices to establish a limit of X(1) or X∗(1) separately for the
positive and negative parts and then subtract. We also repeatedly use the fact from
analysis that for the convergence x → x∞ in a metric space, say D[0,∞), it suffices
that every subsequence (xn) of x has a further subsequence (xnk

) such that xnk
→ x∞

as k → ∞.

Proof of Theorem 1.2 (a) Consider a sequence (Xn) of Lévy processes. We can write
X∗

n = (1 − σ 2
n )1/2W + J ∗

n , where J ∗
n is the jump part with Lévy measure, say, νn and

centered to mean 0 and Var[X∗
n(1)] = 1. Thus the cumulants are κ1,n = 0, κ2,n = 1

and

κk,n =
∫ ∞

−∞
xkνn(dx), k = 3,4, . . .
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Further, we have
∫

x2νn(dx) = σ 2
n . The assumption is that κ4,n → 0, and we must

prove that Xn(1) ⇒ V , where V is standard normal.
Consider first the pure jump case σ 2

n = κ2,n = 1. If each νn is concentrated
on {x : |x| ≤ 1}, we have for k > 4 that κk,n ≤ κ4,n and hence κk,n → 0. Also
κ3,n → 0 since κ2

3,n ≤ κ2,nκ4,n → 0 by a general Lévy process inequality. Thus
all cumulants and hence all moments converge, which is sufficient (e.g. Kallen-
berg [28, Chap. 5, Exercise 11]). In the case of a general support of the νn, write
Xn(1) = X′

n(1) + X′′
n(1), where X′

n(1) is the part of Xn(1) coming from jumps of
sizes x with |x| > 1 and X′′

n(1) the rest. Then

Var[X′′
n(1)] =

∫

{|x|>1}
x2νn(dx) ≤

∫ ∞

−∞
x4νn(dx) = κ4,n −→ 0.

Thus X′′
n(1) → 0 and VarX′

n(1) → 1 so that we can neglect X′′
n(1) and use what was

proved for the finite support case to get X′
n(1) ⇒ V and hence Xn(1) ⇒ V .

In the presence of a Brownian component, it suffices to show that each subse-
quence has a further subsequence (nk) with Xnk

(1) ⇒ V . This is clear if σ 2
n → 0

along the subsequence. Otherwise, we can choose nk with σ 2
nk

→ σ 2 for some
0 < σ 2 ≤ 1. Define J̃n = Jn/σn. Then the pure jump process J̃n has mean 0, vari-
ance 1 and cumulants κ̃k,n = κk,n/σ

k
n , k > 2. Thus κ̃4,n → 0 because σ 2 > 0, and we

can use what was already proved to conclude that J̃nk
(1) ⇒ Ṽ . Hence

Xnk
(1) = (1 − σ 2

nk
)1/2W(1) + σnk

J̃nk
(1) =⇒ (1 − σ 2)1/2W(1) + σ Ṽ

d= V.

The proof of (b) is almost the same, noting that by positivity we can replace the
bounds in terms of κ4,n by bounds in terms of κ3,n. �

Proof of Proposition 5.1 Adding a Brownian component increases κ2, but leaves
κ3, κ4, . . . unchanged, so that we may assume that X has no Brownian component.
Let Z be a random variable with P[Z ∈ dx] = x2ν(dx)/κ2. Then E[Zk] = κk+2/κ2,
and thus the inequality E[Z2] ≥ (E[Z])2 means that κ2

3 /(κ2κ4) ≤ 1 as claimed in the
first part. Equality holds if and only if Z and then ν is degenerate at some z0 (then
λ = ν({z0}).

For the second part, assume that we have n(x) = ∫ ∞
0 e−ax V +(da) for x > 0 and

n(x) = ∫ ∞
0 e−a|x| V −(da) for x < 0, so that

κ±
k =

∫ ∞

0
xk

∫ ∞

0
e−ax V ±(da).

Define V = V + + V −. Using that an exponential(a) random variable Ua has the kth
moment k!/ak , we get that for k even,

κk = κ+
k + κ−

k =
∫ ∞

0
xk

∫ ∞

0
e−ax V (da)dx

=
∫ ∞

0

∫ ∞

0
xk
P[Ua ∈ dx]a−1V (da)dx

= k!
∫ ∞

0
a−k−1V (da) = k!κ4E[Z4−k/4!],
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where now Z has distribution

P[Z ∈ da] = a−5V (da)
∫ ∞

0 b−5V (db)
= a−5V (da)

κ4/4! . (A.1)

Similarly,

|κk| ≤ κ+
k + κ−

k = k!κ4E[Z4−k]/4! for k odd. (A.2)

Since E[Z0] = 1, this gives

S2

K
= κ2

3

κ2κ4
≤ (3!κ4E[Z]/4!)2

(2!κ4E[Z2]/4!)(4!κ4E[Z0]/4!) ≤ 62

2 · 24
= 3

4
.

Equality holds if and only if Z and then V is degenerate at some a0. However, the
inequality in (A.2) is strict if X is spectrally two-sided. Thus the necessary and suffi-
cient condition for equality is that X is either spectrally positive with V = V + degen-
erate at some a0 or spectrally negative with V = V − degenerate at some −a0. �

Remark A.1 The methods in the proof of Proposition 5.1 give similar bounds on other
normalised cumulants. For example, for a spectrally positive finite-variation process,
we get κ3κ4 ≤ κ2κ5 and (use Hölder’s inequality with P[Z ∈ dx] = xν(dx)/κ1) also
κ2

2 ≤ κ1κ3.

Proof of Proposition 5.2 For the first part, let Z be as in the first part of the proof of
Proposition 5.1. Then just use (E[Z2])2 ≤ E[Z4], with equality if and only if Z2

is degenerate at some z2
0 (then λ+ = ν({z0}), λ− = ν({−z0})). For the second part,

use that E[Y−1] ≥ (E[Y ])−1 for Y > 0 by Jensen’s inequality and the convexity of
y �→ 1/y, y > 0. Taking Y = Z2 with now Z as in (A.1), this gives

κ2
4

κ2κ6
= κ2

4

(2!κ4E[Z2]/4!)(6!κ4E[Z−2]/4!) ≤ 1

(1/12) · 30
= 2

5
.

Equality holds if and only if Z2 is degenerate at some a2
0 , which is the same as the

stated condition. �

Proof of Proposition 5.3, range of R4 for CGMY Assume without loss of generality that
G < ∞ and let ρ = M/G. Then

R4 = 	(4 − Y)2

	(2 − Y)	(6 − Y)

(MY−4 + GY−4)2

(MY−2 + GY−2)(MY−6 + GY−6)

= (2 − Y)(3 − Y)

(4 − Y)(5 − Y)

ρ2Y−8 + 1 + 2ρY−4

ρ2Y−8 + 1 + ρY−2 + ρY−6

≤ (2 − Y)(3 − Y)

(4 − Y)(5 − Y)
, (A.3)
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where the last step follows from (2ρY−4)/(ρY−2 + ρY−6) = (2ρ2)/(ρ4 + 1) and
the inequality 2z ≤ 1 + z2 with z = ρ2. Here the right-hand side of (A.3) decreases
monotonically from 3/5 to 0 as Y increases from 0 to 2, with R4 = 3/10 if and only
if Y = 0, ρ = 1. �

Proof of Lemma 8.1 (a) Continuity of ϕY is clear, as well as ϕY (1/2) = 0, ϕY (1) = 1.
Also, by elementary calculus, one gets f ′

Y = hY kY /g2
Y , where

kY (π) = 2gY (π)h′
Y (π) − hY (π)g′

Y (π) = πP + (1 − π)P + (3Q + 1)πP (1 − π)P

with P = (3Q − 1)/2. Here gY (π) and kY (π) are obviously strictly positive for
π ∈ [1/2,1], and hY (π) is equally so for π ∈ (1/2,1). This implies f ′

Y (π) > 0 for
π ∈ (1/2,1) and the strictly increasing property. That ϕY (π) ∼ 1 − π as π ↑ 1 fol-
lows since then gY (π) ∼ 1, hY (π) ∼ 1, kY (π) ∼ 1 and hence f ′

Y (π) ∼ 1.
(b) Let L = L(π) = �(1 − π) = (1 − π)/π and T = 1/(2 − Y), so that L < 1 and

Q = 1 + 2T , Q1 = 1 + T . We can write

ϕY (π) = (ππT − (1 − π)(1 − π)T )2

ππ2T + (1 − π)(1 − π)2T
= π

(1 − L1+T )2

1 + L1+2T

(for the second expression, multiply both the numerator and denominator by π−2T ).
Since L < 1, LT is a strictly decreasing function of T and hence of Y , implying
ϕY (π) to be strictly increasing in Y . Since L < 1 and T → ∞, we have LT → 0 for
such a fixed π , giving ϕY (π) → π . �

Proof of Proposition 6.7 Parts (a) and (b) are direct corollaries of parts (a) resp. (b) of
Theorem 1.2. For part (c), we use characteristic functions together with

M∗ =
√

(2 − Y)(3 − Y)

K
=

√
R(3 − Y)2

K(1 − R)
, (A.4)

κ∗(s) = M∗2

Y(Y − 1)

(
(1 − s/M∗)Y − 1

) + s
M∗

Y − 1
, (A.5)

as follows from Proposition 6.1 and κ∗
2 = 1. Here (A.5) holds for Y �= 0,1 and the

final term is needed to ensure κ∗′(0) = 0. Now 2−Y = R/(1−R) and so (A.4) gives
first that Y → 2, M∗ → 0 and next that

|(1 − is/M∗)Y−2|
= M∗2−Y (

1 + o(1)
) = exp

(
(2 − Y) logM∗)(1 + o(1)

)

= exp

(
R

1 − R

(
logR/2 − logK/2 − log(1 − R)/2 + o(1)

)
)

(
1 + o(1)

)

= exp
(
o(1)

)(
1 + o(1)

) = 1 + o(1).
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Here we used that R logK → 0 and K → ∞ implies R → 0 and hence R logR → 0.
Hence by (A.5),

κ∗(is) = M∗2

Y(Y − 1)

(
(1 − is/M∗)2(1 + o(1)

) − 1
)

+ is
M∗

Y − 1

= M∗2

Y(Y − 1)
(1 − is/M∗)2o(1) + M∗2

Y(Y − 1)

(
(1 − is/M∗)2 − 1

) + is
M∗

Y − 1

= o(1) + M∗2

Y(Y − 1)
(−s2/M∗2 − 2is/M∗) + is

M∗

Y − 1

= o(1) − s2

2 + o(1)
+ is

M∗

Y − 1

(

1 − 2

Y

)

= − s2

2
+ o(1). �

Proof of Proposition 6.8 The gamma distribution of X(1) corresponding to the as-
serted limit has cumulant generating function −κ2γ

2 log(1 − s/γ ) for s < M ; so
it suffices to prove that κ(s) has this asymptotic form. But R ↑ 2/3 implies Y ↓ 0 and
M → √

6κ2/κ4 = γ , and so by (6.3f),

κ(s) = κ2

Y(Y − 1)
M2−Y

(
(M − s)Y − MY

)

= κ2

Y(Y − 1)
M2

(
exp

(
Y log(1 − s/M)

) − 1
)

∼ κ2

Y − 1
γ 2 log(1 − s/M) ∼ −σ 2γ 2 log(1 − s/M). �

Proof of Proposition 7.2 This is almost immediate from Proposition 6.7 and the pos-
itive and negative parts of a non-skewed CGMY process being identical. One just
needs to notice that the R of these is given by R = (2 − Y)/(3 − Y), cf. (6.4), so that
(2 − Y)/K → ∞ is equivalent to R/K → ∞. Further, in C, one needs to replace κ2
by κ+

2 = κ2/2. �

Proof of Theorem 8.3 (a) That Y ↑ Ymax(R) is equivalent to A ↑ 1 and hence by an
easy continuity argument, we then have π2 ↑ 1. This implies

π4 = π
Q
2

(1 − π2)Q + π
Q
2

∼ 1

0 + 1
= 1,

1 − π4 = (1 − π2)
Q

(1 − π2)Q + π
Q
2

∼ (1 − π2)
Q = o(1 − π2).

The expressions for C,G,M then show that G → ∞ and that M and C have the
limits given by Proposition 6.1. This proves (a).

(b) First, Y → 0 is equivalent to A → 3R/2. Since 3R/2 is an interior point of
(0,1), the limit π2 of the solution to ϕY (π2) = A is indeed as asserted. The rest is
then easy. �
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Proof of Theorem 8.4 We establish (a) and (b) by showing that (d) K(2 − Y) → 0
implies S+ → 0 and S− → 0. By Theorem 1.2(b), this gives that both (X+)∗ and
(X−)∗ have Brownian limits. Hence so has X∗ as desired. Now

K+ = κ+
4

(κ+
2 )2

= π4κ4

π2
2 κ2

2

= π4

π2
2

K, and similarly K− = 1 − π4

(1 − π2)2
K. (A.6)

Since π2,π4 ∈ [1/2,1), this gives that (S+)2 = K+R+ = K+(2−Y)/(3−Y) → 0 as
desired. Similarly, (S−)2 = K−(2 − Y)/(3 − Y) → 0 except when possibly π2 → 1
along some subsequence. However, then X− can be ignored in the limit.

The proof of (c) is a similar application of (A.6), only using Proposition 6.7(c)
instead of Theorem 1.2(b). �

Appendix B: NIG

The density of X1 is

αδ

π
exp

(

δ

√
α2 − β2 + β(x − μ)

)
K1(α

√
δ2 + (x − μ)2)

√
δ2 + (x − μ)2

,

which is called the NIG(α,β,μ, δ) density; α is the tail heaviness of steepness, β is
the skewness, δ is the scale, and μ is the location. For the density of Xt , just replace
δ by δt and μ by μt . Numerically, we just used MATLAB’s besselk routine for K1.
Scaling by v changes the parameters to αv, βv, δ/v.

The cumulants are

κk = δ
qk(β)

(α2 − β2)k−1/2
, k ≥ 2, (B.1)

where the polynomials qk are given by the recurrence relation

qk(s) = (α2 − s2)q ′
k−1(s) + (2k − 3)sqk−1(s)

starting from q2(s) = α2. In particular,

q3(β) = 3α2β, q4(β) = 3α4 + 12α2β2, q5(β) = 45α4s + 60α2β3,

q6(β) = 45α6 + 540α4β2 + 360α2β4.

These expressions for the κk with k ≤ 4 are classical for k ≤ 4, while for k > 4, we
refer to Asmussen and Bladt [4]. With ρ = β2/α2, we get

R = q3(β)2

q2(β)q4(β)
= 3ρ

1 + 4ρ
, R4 = q4(β)2

q2(β)q6(β)
= (1 + 4ρ)2

5 + 60ρ + 40ρ2 .

Letting ρ vary from 0 to 1 shows that R ranges from 0 to 3/5 = 0.6. For R4, the range
is [0.171,5/21) = [0.171,0.238).



Role of skewness and kurtosis in CGMY models 413

Proposition B.1 Given values κ̊1, κ̊2, κ̊3, κ̊4, an NIG process satisfying κk = κ̊k for
k = 1,2,3,4 exists if and only if R̊ = S̊2/K̊ ≤ 3/5. In that case, the fitted parameters
can be computed by first letting ρ = R̊/(3 − 5R̊) and then

α = 1

1 − ρ̂

√
3κ̊2(1 + 4ρ)

κ̊4
, β = sign(κ̊3)α

√
ρ,

δ = 1

α2
κ̊2(α

2 − β2)3/2, m = κ̊1 − δβ
√

α2 − β2
.

Note that related results are given in Eriksson et al. [18] and Ghysels and
Wang [21].

Proof of Proposition B.1 With ρ = β2/α2, we have

R = 3ρ/4

ρ + 1/4
= 3

4

(

1 − 1

4ρ + 1

)

which increases monotonically from 0 to 3/5 as ρ varies from 0 to 1. We also get
ρ = R/(3 − 5R). The stated expression for α then follows from

κ4

κ2
= 3(α2 + 4β2)

(α2 − β2)2
= 3(1 + 4ρ)

α2(1 − ρ)2
,

and those for β , δ from ρ = β2/α2 resp. (B.1) with k = 2. �

Appendix C: Meixner

Some basic references are Schoutens [49], [50, Chap. 5] and Mozzola and
Muliere [36]. It is the special case b+ = b− of the generalised z-process in Grigelio-
nis [23], for which b is allowed to take different values b+, b− for x > 0 resp. x < 0.
The cumulant function and the mean/variance/skewness/kurtosis are

κ(s) = 2d log
(
cos(b/2)

) − 2d log
(

cos(as + b)/2
) + ms,

κ1 = m + da tan(b/2), κ2 = d
a2

2 cos2(b/2)
,

S = sinb√
d(cosb + 1)

= 1√
d

√
2 sin(b/2), K = 1

d

(
3 − 2 cos2(b/2)

)
.

Letting t (s) = tan((as + b)/2)) and using that the derivative of tanx is 1 + tan2 x,
one gets from κ(1)(s) = dat (s) that κ(k)(s) is a polynomial pk(t (s)) of degree k in
t (s), given by the recursion

pk(x) = a

2
p′

k−1(x)(1 + x2), k ≥ 2.
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Thus the cumulants are κk = pk(tan(b/2)). In particular,

p2(x) = da2

2
(1 + x2), p3(x) = da3

4
(2x + 2x3),

p4(x) = da4

8
(2 + 8x2 + 6x4), p5(x) = da5

16
(16x + 40x3 + 24x5),

p6(x) = da6

32
(16 + 136x2 + 120x4 + 120x6).

From these formulas, we found numerically (letting x2 = tan2(b/2) vary in [0,∞))
that the range of R4 is [0.240,0.340].

The density of X1 is

(2 cos(b/2))2d

3aπ	(2d)
eb(x−m)/a

∣
∣	

(
d + i(x − m)/a

)∣
∣2

.

Numerically, the most obvious possibility is to write the absolute values of the gamma
function |	(d + iy)|2 of a complex argument as I 2

1 + I 2
2 , where

I1 =
∫ ∞

0
zd−1 cos(y log z)e−z dz, I2 =

∫ ∞

0
zd−1 sin(y log z)e−z dz,

and evaluate I1, I2 by numerical integration. However, in some cases, MATLAB’s in-
tegration routine failed to perform this task, possibly because of the highly oscillatory
nature of the integrands. Instead, we then used simulation based on the representa-
tions I1 = 	(d)E[cos(y logZ)], I2 = 	(d)E[sin(y logZ)] with Z gamma-distributed
with form parameter d and rate parameter 1.

For the density of Xt , replace d by dt . Scaling by v changes a to a/v.

Proposition C.1 Given values κ̊1, . . . , κ̊4, a Meixner process satisfying κk = κ̊k for
k = 1,2,3,4 exists if and only if R̊ < 2/3. In that case, the fitted parameters can be
computed by first letting q2 = (2 − 3R̊)/(2(1 − R̊)) and then recursively defining

d = 2(1 − q)2/S̊2, b = sign(κ̊3)2 arcsin
(√

1 − q2
)
,

a =
√

2κ̊2q2/d, m = κ̊1 − da tan(b/2).

Proof In terms of q = cos(b/2), we have R = S2/K = 2(1 − q2)/(3 − q2), so we
must have q2 = (2 − 3R)/(2(1 − R)). The rest is then easy. �

Acknowledgements I am indebted to a reviewer for some very detailed comments and references on the
Wasserstein aspect of Theorem 1.2, essentially reproduced as item 2) in Sect. 11.
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44. Rosiński, J.: Series representations of Lévy processes from the perspective of point processes.

In: Barndorff-Nielsen, O., et al. (eds.) Lévy Processes – Theory and Applications, pp. 401–415.
Birkhäuser, Basel (2001)
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