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Abstract We study Markov decision processes with Borel state spaces under quasi-
hyperbolic discounting. This type of discounting nicely models human behaviour,
which is time-inconsistent in the long run. The decision maker has preferences chang-
ing in time. Therefore, the standard approach based on the Bellman optimality prin-
ciple fails. Within a dynamic game-theoretic framework, we prove the existence of
randomised stationary Markov perfect equilibria for a large class of Markov decision
processes with transitions having a density function. We also show that randomisa-
tion can be restricted to two actions in every state of the process. Moreover, we prove
that under some conditions, this equilibrium can be replaced by a deterministic one.
For models with countable state spaces, we establish the existence of deterministic
Markov perfect equilibria. Many examples are given to illustrate our results, includ-
ing a portfolio selection model with quasi-hyperbolic discounting.
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1 Introduction

The discounted utility approach in dynamic decision making has been used since the
beginning of modern economic theory; see e.g. Samuelson [59]. It is based on the
assumption that the discount rate is constant over time. In that way, it is possible to
compare outcomes occurring at different times by discounting future utility by some
constant factor. A decision maker using high discount rates exhibits more impatience
than one with low discount rates. It should be noted, however, that there is grow-
ing evidence to think that standard (geometric) discounting is not adequate in many
real life situations; see e.g. Ainslie [2]. When discounting is non-standard, the de-
cision maker becomes time-inconsistent, that is, a policy chosen as optimal at the
beginning of the decision process is no longer optimal if it is considered as a pol-
icy in the process from some later point in time onwards. It is said that the decision
maker possesses changing time preferences or that his utilities change over time. For
example, consider a consumption/saving problem in discrete time. Suppose that the
decision maker plans to save a lot tomorrow, but as tomorrow comes, he reconsiders
his previous decision and saves little. Consumption is becoming more important and
he becomes impatient. In other words, he may redecide on his plans later on. This
shows that the consumption/saving problem cannot be solved via the usual dynamic
programming methods.

The idea of quasi-hyperbolic discounting used to capture the case of utilities
changing in time can also be described as follows. Suppose that ut is a utility (or
reward) to be received in period t ≥ 1. Then the total utility (reward) collected from
period t onwards is

Ut := ut + α(βut+1 + β2ut+2 + · · · ), (1.1)

where α > 0 is called the short-run discount factor and β ∈ (0,1) is called the long-
run discount factor. If α = 1, then (1.1) reduces to the standard discounted utility. If
the utility (1.1) was time-consistent, then we would have Ut = ut + αβUt+1 for all t .
That is the case when α = 1. To observe that the Bellman principle may not be a right
tool for constructing optimal policies in models with utilities changing over time, the
reader is referred to simple examples in e.g. [15, 38] and Sect. 4 in this paper.

Dynamic inconsistent behaviour was first formalised by Strotz [67]. Further works
by Pollak [56], Phelps and Pollak [55], Peleg and Yaari [54] and others on this issue
suggest that policies optimal in some sense for the decision maker in models with
quasi-hyperbolic discounting can be constructed as Nash equilibria in a sequential
game played by different temporal selves. Each player (self ) acts only once and takes
into account both his instantaneous utility (reward) and a sequence of utilities (re-
ceived by the players in subsequent periods) discounted by the given coefficient β .
Within such a framework, the most commonly used solution concept is that of sub-
game perfect equilibrium in Markov strategies. Phelps and Pollak [55] considered a
deterministic model of economic growth and using discounting with α and β as in
(1.1), they introduced a multigenerational game. A generation in their game formu-
lation is a self in the model mentioned above.

Nowadays, dynamic inconsistency plays an increasingly important role in many
fields. For instance, we wish to mention the papers of Balbus et al. [6] or Har-
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ris and Laibson [27] that deal with consumption/investment problems with a one-
dimensional state space. Moreover, Barro [10], Ekeland and Pirvu [24], Haurie [28],
Laibson [39] considered interesting applications of time-inconsistency to neoclassical
growth theory, portfolio management, global climate change problems and macroeco-
nomic theory, respectively. The reader is also referred to other works studying various
related control problems for models with a general state space; see Björk and Mur-
goci [15], Björk et al. [14], Christensen and Lindensjö [20], Jaśkiewicz and Nowak
[35] or Nowak [51].

A seminal paper of Shapley [63] on discounted zero-sum stochastic games is a
first study of Markov decision processes over an infinite time horizon. Alj and Haurie
[4] extended the finite state space model of Shapley to quasi-hyperbolic discount-
ing. They used an intergenerational dynamic game formulation of Phelps and Pollak
[55] and proved that any finite horizon game has an equilibrium in Markovian strate-
gies and each infinite horizon game has a stationary Markov perfect equilibrium. The
former result is based on a dynamic-programming-like algorithm and the latter is
proved using a fixed point argument. The stochastic variants of the intergenerational
game related to that of Alj and Haurie [4] with a Borel state space and compact met-
ric action spaces were further examined in Jaśkiewicz and Nowak [35] and Nowak
[51]. For instance, Jaśkiewicz and Nowak [35] studied a model in which genera-
tions are risk-averse and obtained a stationary Markov perfect equilibrium in pure
strategies making use of the Dvoretzky–Wald–Wolfowitz theorem. This result, how-
ever, is valid for transitions which are convex combinations of finitely many atomless
measures on the state space with coefficients that depend on the state–action pairs.
Although as already mentioned time-inconsistent preferences in various control mod-
els were recently studied by Björk and Murgoci [15], Björk et al. [14], Christensen
and Lindensjö [20], these papers, in contrast to our present work and works of Alj
and Haurie [4], Jaśkiewicz and Nowak [35], Nowak [51], examine neither stationary
Markov perfect equilibria nor fixed points of best-response mappings.

Markov decision processes have many applications to economic dynamics, fi-
nance, insurance or monetary economics. The reader is referred to the books of
Bäuerle and Rieder [11, Chap. 9], Stachurski [65, Chaps. 10–12], Stokey et al. [66,
Chaps. 10 and 13], where prominent and representative examples are given. In the
present paper, we consider Markov decision processes with a Borel state space and
quasi-hyperbolic discounting and the Markov perfect equilibrium as a basic solution
concept. Our contribution is four-fold. First, we show that there exists a stationary
Markov perfect equilibrium if the transition probability is norm-continuous in ac-
tions and has a density function. This result (Theorem 3.2) can be regarded as an
improvement and an extension of the basic theorem in Nowak [51], where an addi-
tional condition on the transition probability density is imposed. Furthermore, it turns
out that the obtained stationary Markov perfect equilibrium can be supported in every
state on at most two points from the action set (Theorem 3.4). Second, assuming in
addition that the transitions are atomless and the Borel σ -field on the state space has
no so-called conditional atoms with respect to the σ -field generated by the transi-
tion density functions, we apply Theorem 3.4 and a result of Dynkin and Evstigneev
[23] to prove the existence of a deterministic stationary Markov perfect equilibrium
(Theorem 3.5). Our third contribution establishes the existence of a deterministic
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Markov perfect equilibrium in decision processes with countably many states (Theo-
rem 5.2). This result is subsequently used for Markov decision processes with Borel
state spaces to obtain ε-equilibria by an approximation technique (Theorem 6.2). In
Sect. 5, we provide an example of a Markov decision process with two states for
which a deterministic stationary Markov perfect equilibrium does not exist, but there
exists a deterministic non-stationary one. It is interesting to see that a randomised
stationary Markov perfect equilibrium in this example can be dominated in terms
of expected utilities (rewards) by a more sophisticated (in some sense) deterministic
equilibrium.

Our main results for Markov decision processes with a continuum of states have
certain implications for consumption/investment models with i.i.d. shocks. They
complete the results obtained by Balbus et al. [6] and Harris and Laibson [27] for
such models with atomless transitions. In Sect. 4, we discuss many examples aris-
ing from economic theory, macroeconomics or monetary economics. They highlight
many issues in the area of quasi-hyperbolic discounting in dynamic decision pro-
cesses, including some open problems. We also present a closed-form solution to a
portfolio selection model originally studied with geometric discounting by Samuel-
son [60] (see Example 4.1 and Remark 4.2).

The paper is organised as follows. In Sect. 2, we describe our model and define
the notion of a stationary Markov perfect equilibrium. In Sect. 3, we state our main
results with many comments on the main ideas behind them. Their formal proofs
are postponed to Sect. 7. Section 4 is devoted to examples of stationary Markov
perfect equilibria, some comments on the literature and open problems. In Sect. 5,
we study deterministic Markov perfect equilibria in decision models with countably
many states and show that a deterministic Markov perfect equilibrium need not exist
even if the state space is finite. In Sect. 6, making use of an approximation of the orig-
inal Markov decision process by models with countably many states, we establish the
existence of ε-equilibria. Finally, Sect. 8 contains some concluding remarks.

2 The model and main solution concept

First we give some basic definitions and facts used in the description of our model. Let
N be the set of all positive integers, R be the set of all real numbers and R+ = [0,∞).
A Borel space, say X, is a nonempty Borel subset of a complete separable metric
space. Let B(X) denote the σ -field of all Borel subsets of X and Pr(X) the space of
all probability measures on B(X), endowed with the topology of weak convergence.
This is the coarsest topology for which the functionals p �→ ∫

X
ηdp are continuous

for every bounded continuous function η : X → R.
A Borel transition probability from X to a Borel space Z is by definition a func-

tion γ : B(Z) × X → [0,1] such that γ (B, ·) is Borel-measurable on X for each
B ∈ B(Z) and γ (·, x) ∈ Pr(Z) for each x ∈ X. We write γ (B|x) for γ (B,x). It is
well known that any Borel transition probability from X to Z can be viewed as a
Borel mapping from X to Pr(Z); see Bertsekas and Shreve [13, Chap. 7].

Let S and A be Borel spaces and K a Borel subset of S × A. Moreover, assume
that for each s ∈ S, the section

A(s) := {a ∈ A : (s, a) ∈ K} (2.1)
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is σ -compact, i.e., a countable union of nonempty compact sets. Then by Brown and
Purves [17, Theorem 1], the correspondence s �→ A(s) has a Borel-measurable selec-
tor, i.e., there exists a Borel mapping f : S → A such that f (s) ∈ A(s) for all s ∈ S.

We consider a Markov decision process characterised by the following objects:
(i) S is a Borel state space.
(ii) A is a Borel action space and K ⊆ B(S × A) is the constraint set for the

decision maker. The set A(s) defined in (2.1) is a nonempty σ -compact set of actions
available in state s ∈ S. (Our main results are stated for models with compact action
spaces, but in some examples, we only assume that the sets A(s) are σ -compact.)

(iii) u : K → R is a bounded from above Borel instantaneous utility or reward
function.

(iv) q is a Borel transition probability from K to S.
(v) β ∈ (0,1) is a long-run discount factor and α > 0 is a short-run discount

factor.
Let � be the set of all Borel transition probabilities φ from S to A such that

φ(A(s)|s) = 1 for each s ∈ S. Every φ ∈ � can be viewed as a Borel mapping from
S to Pr(A) (denoted also by φ) by setting φ(s)(·) for φ(·|s). Let F be the set of all
Borel selectors of the correspondence s �→ A(s). By Brown and Purves [17, Theorem
1], F �= ∅. Clearly, F ⊆ �.

In the decision model with quasi-hyperbolic discounting, we envision an individ-
ual decision maker as a sequence of autonomous temporal selves. The selves are
indexed by period numbers t ∈ T := N. For each state st ∈ S at the beginning of the
t th period, self t chooses an action at ∈ A(st ) according to some probability distribu-
tion over the set A(st ). A strategy for self t is a Borel transition probability ϕt ∈ �.
Then ϕ̄ = (ϕ1, ϕ2, . . . ) with ϕt ∈ � for every t ∈ T is called a strategy profile of the
selves or a Markov strategy of the decision maker. If ϕt = φ for some φ ∈ � and all
t ∈ T , then such a strategy of the decision maker is called stationary or a stationary
strategy profile of the selves. We often identify a constant sequence φ̄ = (φ,φ, . . . )

with φ ∈ �.
By the Ionescu-Tulcea theorem (Neveu [48, Proposition V.1.1]), for any st ∈ S

and φ̄ = (φ1, φ2, . . . ) ∈ �∞, there exists a unique probability measure P
φ̄
st on the

space (S × A)∞ of all sequences of state–action pairs (starting at st ) endowed with

the product Borel σ -field. The symbol E
φ̄
st denotes the corresponding expectation

operator.
The expected reward for self t is defined as

Rt(φ̄)(st ) := Eφ̄
st

[

u(st , at ) + αβ

∞∑

τ=t+1

βτ−t−1u(sτ , aτ )

]

. (2.2)

This definition explains why β ∈ (0,1) is a long-run discount factor and α > 0 is
a short-run discount factor. Notice that the discount factor applied between periods
t and t + 1 is αβ , and for α < 1, it is lower than the one used between consecu-
tive dates in the future. This fact leads to time-inconsistency in preferences. Such
preferences have been observed in many cases and individuals’ behaviours; see for
instance Krusell et al. [37], Krusell and Smith [38], Laibson [39], Phelps and Pollak
[55] or Strotz [67]. Their axiomatic characterisation can be found in Montiel Olea
and Strzalecki [47].
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In Sects. 2–4, we consider solutions for Markov decision processes in stationary
strategies. Therefore, we simplify the notation as follows. Suppose that the selves are
going to use a stationary strategy profile φ̄ = (φ,φ, . . . ) identified with φ ∈ �. We

use E
φ
st for E

φ̄
st . Moreover, Rt(φ̄)(st ) defined in (2.2) is equal to R(φ)(s) given by

R(φ)(s) := Eφ
s

[

u(s, a) + αβ

∞∑

τ=1

βτ−1u(sτ , aτ )

]

(2.3)

with s = st . In order to write this reward in a more friendly way, we define

Jβ(φ)(s′) := E
φ

s′

[ ∞∑

τ=1

βτ−1u(sτ , aτ )

]

. (2.4)

Let ν ∈ Pr(A(s)). We introduce the notations

u(s, ν) :=
∫

A(s)

u(s, a)ν(da), q(ds′|s, ν) :=
∫

A(s)

q(ds′|s, a)ν(da).

Moreover, for any s ∈ S and φ ∈ �, we put

u
(
s,φ(s)

) :=
∫

A(s)

u(s, a)φ(da|s), q
(
ds′∣∣s,φ(s)

) :=
∫

A(s)

q(ds′|s, a)φ(da|s).

Observe that now (2.3) takes the form

R(φ)(s) = u
(
s,φ(s)

) + αβ

∫

S

J β(φ)(s′)q
(
ds′∣∣s,φ(s)

)
.

Furthermore, for any s ∈ S and ν ∈ Pr(A(s)), we define

P(s, ν,φ) := u(s, ν) + αβ

∫

S

J β(φ)(s′)q(ds′|s, ν). (2.5)

For any a ∈ A(s), let us define

P(s, a,φ) = P(s, δa,φ),

where δa is the Dirac measure at the point a.
Assume that self t chooses a randomised action ν ∈ Pr(A(s)) in state s = st . If

all following selves are going to employ a strategy φ, then P(s, ν,φ) is the expected
utility of self t is state s = st .

Definition 2.1 A stationary Markov perfect equilibrium is a φ∗ ∈ � such that for
every s ∈ S, we have

sup
ν∈Pr(A(s))

P (s, ν,φ∗) = P
(
s,φ∗(s),φ∗) = R(φ∗)(s).

A stationary Markov perfect equilibrium φ∗ is called deterministic if φ∗ ∈ F .
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One can imagine that every self is a short-lived player in a non-cooperative game
and acts only once. Such an interpretation is given by Alj and Haurie [4], Phelps
and Pollak [55]. The payoff function of self t ∈ T is given by (2.3). Then a station-
ary Markov perfect equilibrium is a constant sequence (φ∗, φ∗, . . . ) (identified with
φ∗ ∈ �) being a symmetric Nash equilibrium in this game. From Definition 2.1, it
follows that this equilibrium is subgame perfect; see Osborne [53, Chap. 5.4]. The
term Markov perfect equilibrium was introduced by Maskin and Tirole [45]. The
strategies in a Markov perfect equilibrium have the Markov property of the lack of
memory, meaning that each player’s mixed action can be conditioned only on the
state of the game. Moreover, the state can only encode payoff-relevant information.
The strategy for the decision maker built from a Markov perfect equilibrium in the
game is time-consistent, that is, no self (as time goes on) has an incentive to change
his best response to equilibrium strategies of the following selves.

3 Existence of stationary Markov perfect equilibria

In this section, we state our main results on stationary equilibria and give many com-
ments. The proofs are postponed to Sect. 7.

3.1 Basic assumptions and three equilibrium theorems

In order to formulate our results, we need the following additional assumptions.

(C3.1) The function u(s, ·) is bounded and continuous on A(s) for each s ∈ S. The
set A(s) is compact for every s ∈ S.

(C3.2) There exist a nonnegative Borel function ρ : K × S → R and a probability
measure p ∈ Pr(S) such that for all (s, a) ∈ K and B ∈ B(S),

q(B|s, a) =
∫

B

ρ(s, a, s′)p(ds′),

and if an → a0 in A(s) as n → ∞, then

lim
n→∞

∫

S

|ρ(s, an, s
′) − ρ(s, a0, s

′)|p(ds′) = 0.

Remark 3.1 By Scheffé’s lemma [62], condition (C3.2) is equivalent to the norm
continuity of a �→ q(·|s, a) on A(s). As noted by Schäl [61, Remark 5.1], (C3.2)
holds if the function a �→ ρ(s, a, s′) is lower semicontinuous on A(s) for all s, s′ ∈ S.

Now we can state our main results on stationary equilibria.

Theorem 3.2 Assume that (C3.1) and (C3.2) hold. Then there exists a stationary
Markov perfect equilibrium.
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Let us introduce the following assumption.

(C3.3) The state space S is countable and for all s, s′ ∈ S, the function a �→ q(s′|s, a)

is continuous on A(s).

Let p be any probability distribution on S such that p(s) > 0 for all s ∈ S. If we
take into account that ρ(s, a, s′) = q(s′|s, a)/p(s′), then by Scheffé’s lemma, (C3.3)
implies (C3.2) and we conclude the following fact. A related result for intergener-
ational games with finite state and action spaces was given in Alj and Haurie [4,
Theorem 5.1].

Corollary 3.3 If (C3.1) and (C3.3) hold, then there exists a stationary Markov per-
fect equilibrium.

Our second main result allows to simplify the form of the equilibrium above.

Theorem 3.4 Assume (C3.1) and (C3.2). Then there exists a stationary Markov per-
fect equilibrium φ∗ ∈ � such that for each s ∈ S, the support of the probability mea-
sure φ∗(·|s) consists of at most two points in A(s).

For the existence of a deterministic equilibrium, we need some additional assump-
tions.

Let μ be an atomless probability measure on B(S). Let G be a sub-σ -field of B(S).
Following He and Sun [29], we say that D ∈ B(S) is a G-atom or a conditional atom
under μ if μ(D) > 0 and for any D1 ∈ B(S), there exists a set D2 ∈ G such that

μ
(
(D ∩ D1)
(D ∩ D2)

) = 0.

Intuitively, this means that given the realisation of an event D, the σ -fields G and
B(S) carry essentially the same information. The definition of a G-atom was used by
Dynkin and Evstigneev [23] in their studies of the conditional expectation of corre-
spondences. As noted by He and Sun [29], the definitions of a G-atom in their paper
and the works of Dynkin and Evstigneev [23] as well as Jacobs [34, Chap. XIV] are
equivalent.

We provide here two examples of σ -fields that have no conditional atoms. Let
S := [0,1] × [0,1] and G := B([0,1]) ⊗ {∅, [0,1]}. We define μ := κ ⊗ ν, where
κ and ν are probability measures on [0,1] and ν is atomless. Then μ is atomless
and B(S) has no G-atoms under μ. For a formal proof, the reader is referred to [30,
Example 1]. In the second case, let us consider a Borel-measurable partition (Bj )j∈N
of S, i.e., Bj ∈ B(S) for each j ∈ N, S = ⋃

j∈N Bj and Bi ∩ Bj = ∅ for i �= j . By
G we denote the σ -field generated by this partition. Let μ ∈ Pr(S) be atomless. Then
B(S) has no G-atoms under μ on B(S). Usually, the notion of conditional atoms is
applied to stochastic dynamic decision models or games with the product state space;
see for instance Duggan [21] or He and Sun [29, 30].

Theorem 3.5 Assume that conditions (C3.1) and (C3.2) are satisfied. Let G be the
smallest σ -field on S such that the action correspondence s �→ A(s) and the family
{ρ(s, a, ·) : (s, a) ∈K} of all density functions are measurable. Assume that the Borel
σ -field B(S) has no G-atoms under the probability measure p and p is atomless.
Then there exists a deterministic stationary Markov perfect equilibrium.
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Remark 3.6 A version of Theorem 3.2 is Nowak [51, Theorem 4.1], where the fol-
lowing additional restrictive condition is imposed:

(C3.4) The integral
∫
S

maxa∈A(s) ρ(s, a, s′)p(ds′) is finite for every s ∈ S.

The following example shows that (C3.4) is not implied by (C3.2).

Example 3.7 Let S = [−1,1] and A(s) = A = [0,1]. Let p be the uniform distri-
bution on S. We define a density ρ(s, a, ·) = ρ(a, ·) that is independent of s ∈ S

and does not satisfy condition (C3.4). Let ρ(0, z) := 0 for z ∈ {−1} ∪ (0,1] and
ρ(0, z) := 2 for z ∈ (−1,0]. Put ρ(1, z) := 0 for z ∈ [−1,0] and ρ(1, z) := 2 for
z ∈ (0,1]. If a ∈ (0,1), then we define

ρ(a, z) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if z ∈ [−1,−1 + a],
2, if z ∈ (−1 + a,0],
0, if z ∈ (0, a − a2],
2
a
, if z ∈ (a − a2, a],

0, if z ∈ (a,1].
Condition (C3.2) holds since the function a �→ ρ(a, z) is continuous for each z ∈ S.
Note that m(z) := maxa∈A ρ(a, z) = 2 for z ∈ (−1,0], m(−1) = 0 and m(z) = 2/z

for z ∈ (0,1]. Thus
∫
S
m(z)p(dz) = ∞ and (C3.4) is not satisfied.

Remark 3.8 The assertion of Theorem 3.4 cannot be strengthened, that is, a deter-
ministic stationary Markov perfect equilibrium need not exist. This is shown in Ex-
ample 5.6 in Sect. 5. Let φ∗ ∈ � be a stationary Markov perfect equilibrium. Assume
that the support of φ∗(·|s) is a connected subset of A(s) for each s ∈ S. The function
a �→ P(s, a,φ∗) is continuous and hence has the Darboux property on the support
of φ∗(·|s). (Recall that the Darboux theorem says that every continuous function
f : X → R on a compact connected space X has the property that for any x1, x2 ∈ X

with f (x1) �= f (x2) and any y between f (x1) and f (x2), there exists x ∈ X such that
f (x) = y.) This implies that for each s ∈ S, there exists some as ∈ A(s) such that

P
(
s,φ∗(s),φ∗) =

∫

A(s)

P (s, a,φ∗)φ∗(da|s) = P(s, as,φ
∗).

A simple modification of the proof of Theorem 3.4, using the above conclusion from
Darboux’s theorem, yields the existence of a deterministic stationary Markov perfect
equilibrium. However, to check the mentioned connectedness condition, one has to
know φ∗.

Remark 3.9 The existence of deterministic stationary Markov perfect equilibria was
proved for some classes of models with one-dimensional state and action spaces and
atomless transitions by Harris and Laibson [27] and Balbus et al. [6]. The methods
of proof used there do not work in models with many commodities (more general
state space). Theorem 3.5 provides some sufficient conditions for the existence of
deterministic equilibria in models with a general state space. It is inspired by the
approach of He and Sun [29], who dealt with Nash equilibria in standard non-zero-
sum discounted stochastic games with general state spaces. However, we emphasise
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that He and Sun [29] do not prove the existence of deterministic Markov perfect
equilibria. Therefore, Theorem 3.5 is new.

Remark 3.10 Uniqueness of a stationary Markov perfect equilibrium can be proved
only for specific models. Namely, Balbus et al. [8] showed that the stochastic optimal
growth model with quasi-hyperbolic discounting with the state space S = [0,∞) and
concave transition and reward functions admits a unique solution. Within our frame-
work, we may have to deal with multiple equilibria; see Example 5.6 in Sect. 5. It is
rather well known that even in simple economic models, we may encounter multiple
deterministic equilibria; see Krusell and Smith [38], Vieille and Weibull [69].

Remark 3.11 Björk and Murgoci [15] analyse time-inconsistent stochastic Markov
models in discrete time with finite and infinite horizons. Their approach embraces
quasi-hyperbolic discounting as a special case. However, their objective is to provide
an extension of the standard Bellman equation in the form of a system of nonlinear
equations. In other words, assuming that an equilibrium point exists, they show that
the corresponding equilibrium function must satisfy a system of nonlinear equations.
They do not provide a proof of the existence of an equilibrium point. In Sect. 6, they
even stress that “these issues [existence and uniqueness of equilibrium] are in fact
quite complicated”.

3.2 Some comments on the proofs and possible extensions

In the proof of Theorem 3.2, we consider a best-response correspondence defined on
the quotient space �p of p-equivalence classes of functions in � endowed with the
weak-star topology. The space �p is compact and convex, and the correspondence
has closed and convex values. The existence of a stationary Markov perfect equilib-
rium then follows from a standard fixed point argument. Note that F is not a convex
subset of �. Therefore, a similar method does not work for determining deterministic
equilibria.

If φ̂ ∈ � is an equilibrium established in Theorem 3.2, then it is easy to see that
for any bounded Borel function η : A(s) →R, there exist a1, a2 in the support of the
probability measure φ̂(·|s) and some ϑ ∈ [0,1] such that

∫

A(s)

η(a)φ̂(da|s) = ϑη(a1) + (1 − ϑ)η(a2).

Using this observation, we can get Borel mappings f, g ∈ F and a Borel function
λ : S → [0,1] such that {f (s), g(s)} is contained in the support of φ̂(·|s) for each
s ∈ S, and φ∗(·|s) = λ(s)δf (s)(·) + (1 − λ(s))δg(s)(·) satisfies Jβ(φ̂)(s) = Jβ(φ∗)(s)
for all s ∈ S. These facts imply that φ∗ is a stationary Markov perfect equilibrium
from the assertion of Theorem 3.4.

If the transition probability q is a convex combination of finitely many atomless
probability measures on S with coefficients depending on (s, a) ∈K, then a determin-
istic stationary equilibrium can be obtained by applying Theorem 3.4 and the elimi-
nation of randomisation method based on a version of Lyapunov’s theorem [41] given
by Dvoretzky et al. [22]. (This method was used by Jaśkiewicz and Nowak [35] in the
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study of some special cases of the model from the present paper.) In our case, we deal
with an infinite family of atomless measures q(ds′|s, a) = ρ(s, a, s′)p(ds′) indexed
by (s, a) ∈ K, and Lyapunov’s theorem is not true for infinitely many measures; see
Lyapunov [42]. Therefore, the existence of a deterministic stationary Markov per-
fect equilibrium under assumptions (C3.1) and (C3.2) with an atomless measure p

is problematic. The additional assumption in Theorem 3.5 on the lack of G-atoms
allows the elimination of randomisation in an equilibrium obtained in Theorem 3.4
(purification of φ∗) thanks to an extension of Lyapunov’s theorem given by Dynkin
and Evstigneev [23].

Remark 3.12 Discounted dynamic programming problems with an unbounded re-
ward function u are usually studied using a so-called “bounding” or “weighted”
Borel-measurable function ω : S → [1,∞) satisfying the following conditions: for
all (s, a) ∈ K, |u(s, a)| ≤ ω(s) and

∫
S
ω(s′)q(ds′|s, a) ≤ β̂ω(s) for some β̂ > 0 with

β̂β < 1. For details, the reader is referred to Hernández-Lerma and Lasserre [32,
Sect. 8.3] or to Wessels [71]. It is quite easy to see that the n-stage expected dis-
counted utility

Jβ
n (φ)(s) := Eφ

s

[ n∑

τ=1

βτ−1u(sτ , aτ )

]

, s1 = s,

converges as n → ∞ to Jβ(φ) uniformly in φ ∈ �. If we assume in addition that for
any s ∈ S and an → a0 in A(s) as n → ∞, we have

lim
n→∞

∫

S

|ρ(s, an, s
′) − ρ(s, a0, s

′)|ω(s′)p(ds′) = 0,

then the main results given in this section can be extended to the more general case
with an unbounded utility u. The proofs given in Sect. 7 need only some very sim-
ple adaptation. In this way, we can apply our results to examples where having u

unbounded is very natural.

4 Examples and an overview of selected literature

In this section, we give a number of examples with several comments. Some of them
lie in our theoretical framework from Sects. 2 and 3. In other examples (taken from
the literature), our assumptions (e.g. compactness of the action spaces) are not satis-
fied. However, the examples have solutions in closed form that show the difference
between Markov perfect equilibria in models with quasi-hyperbolic discounting and
solutions obtained in models with standard discounting via a dynamic programming
principle.

In 1969, Samuelson [60] published a seminal paper on portfolio selection and
stochastic dynamic programming. He considered a finite-horizon model with a power
utility function. His paper inspired many researchers to develop a modern theory
of portfolio selection in discrete and continuous time; see Bäuerle and Rieder [11,
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Chap. 4], Bobryk and Stettner [16], Merton [46], Shreve and Soner [64] and the
references cited therein. For instance, Bobryk and Stettner [16] extended the opti-
mal portfolio selection model of Samuelson [60] to an infinite horizon with stan-
dard discounting and completely solved the cases with power and logarithmic util-
ities (see [16, Proposition 1]). Below we provide a solution for power utility with
quasi-hyperbolic discounting.

Example 4.1 We start with the portfolio selection problem of Samuelson [60] that
can be viewed as a Markov decision process with S = R+ and A = R+ × [0,1],
A(s) = [0, s] × [0,1]. Consider a financial market consisting of a risky asset and a
risk-free asset. Assume that there are two investment possibilities: a stock with a ran-
dom rate of return εt in period t ∈ T and a bank account with a constant (riskless) rate
of return r . Assume that (εt ) is a sequence of i.i.d. random variables taking values
in the interval [−1,∞) and 1 + εt has a probability distribution με ∈ Pr(S). More-
over, r ≤ E[εt ] < ∞ for every t ∈ T . Denote by st and at the capital (wealth) and the
consumption, respectively, in period t ∈ T . Clearly, at ∈ [0, st ]. The remaining value
st − at is invested. Let wt ∈ [0,1] be the portfolio weight on the risky asset in period
t ∈ T . We obviously have (at ,wt ) ∈ A(st ). Starting with an initial wealth s1 ∈ R+,
we have the recursive formula

st+1 = (st − at )
(
(1 − wt)(1 + r) + wt(1 + εt )

)
.

Then the transition probability q is given by

q
(
D

∣
∣s, (a,w)

) =
∫ ∞

0
1D

((
(1 − w)(1 + r) + wx

)
(s − a)

)
με(dx), D ∈ B(S),

with 1D the indicator function of the set D. The consumer has a reward (utility)
function u that measures his satisfaction of consumption, that is, u(s, (a,w)) = u(a)

for all (s, (a,w)) ∈K. We assume that u(a) = aσ with σ ∈ (0,1). Define

G(w) =
∫ ∞

0

(
(1 − w)(1 + r) + wx

)σ
με(dx).

Let w∗ ∈ [0,1] be such that

G(w∗) = max
w∈[0,1]

G(w).

Assume that

γ∗ := βG(w∗) < 1.

We are going to show that a deterministic stationary equilibrium can be found in the
simple subclass F0 of functions f in F where f (s) = (cs,w) for all s ∈ S, c ∈ [0,1]
and w ∈ [0,1] (linear consumption functions and constant portfolio weights). If
f ∈ F0, then Jβ(f )(s) is of the form Jβ(f )(s) = R(c)sσ with R(c) ≥ 0. The con-
stant R(c) can be found using the well-known equation in discounted dynamic pro-
gramming, namely (see Hernández-Lerma and Lasserre [31, Sect. 4.2])

Jβ(f )(s) = u(cs) + β

∫

S

J β(f )(s′)q(ds′|s, cs) (4.1)
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for all s ∈ S. Substituting Jβ(f )(s) = R(c)sσ into (4.1), we infer that

R(c) = cσ + βG(w)R(c)(1 − c)σ .

Hence,

R(c) = cσ

1 − (1 − c)σ βG(w)
. (4.2)

Suppose that all future generations are going to use f∗(s) = (cs,w∗). Then the cur-
rent self t faces the optimisation problem

sup
(a,w)∈A(s)

P
(
s, (a,w),f∗

) = sup
(a,w)∈A(s)

(

aσ + αβ

∫

S

J β(f∗)(s′)q
(
ds′∣∣s, (a,w)

)
)

.

Note that

sup
(a,w)∈A(s)

P
(
s, (a,w),f∗

) = max
a∈[0,s]

(
aσ + αγ∗R∗(c)(s − a)σ

)
,

where R∗(c) = R(c) is given in (4.2) with w = w∗. Now note that the func-
tion a �→ aσ + αγ∗R∗(c)(s − a)σ is strictly concave for each s > 0. Therefore,
a(s) ∈ [0, s] that attains the maximum in the above optimisation problem is unique
and has the form a(s) = bs with

b = 1

1 + (αγ∗R∗(c))
1

1−σ

, s ∈ S. (4.3)

From Definition 2.1, it follows that f∗ ∈ F0 is a deterministic Markov perfect equi-
librium if (4.3) with b = c has a solution for c in c = cα ∈ [0,1]. Let

�α(c) = c − 1

1 + (αγ∗R∗(c))
1

1−σ

, s ∈ S,α ∈ [0,1].

Note that �α(1) > 0 and �1(c1) = 0 for c1 = 1 − γ
1

1−σ∗ . Thus for any α ∈ (0,1),
�α(c1) < 0 and there exists cα ∈ (c1,1) such that �α(cα) = 0. Obviously, cα is a
solution for c to (4.3) with b = c. It can be proved that cα ↓ c1 as α ↑ 1. Clearly,
f∗(s) = (cαs,w∗) is a deterministic stationary Markov perfect equilibrium and the
expected payoff to each self t is

P
(
s, f∗(s), f∗

) = (cαs)σ + αγ∗R∗(cα)(1 − cα)σ sσ .

If α = 1, then (c1s,w∗) is a solution to the dynamic programming portfolio prob-
lem with standard discounting; see Bobryk and Stettner [16, Proposition 1]. Clearly,
we conclude from the above discussion that a decision maker who faces standard
discounting consumes less than one with quasi-hyperbolic discounting. At the same
time, he is willing to increase his investments.
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The reason that the portfolio selection problem with quasi-hyperbolic discount-
ing in the above example is solvable is that the instantaneous utility function u has
the property u(a1a2) = u(a1)u(a2) for all a1, a2 ≥ 0. Example 4.1 has also a sim-
ple analytical solution for the logarithmic utility case, i.e., when u(a) = lna. Then
u(a1a2) = u(a1) + u(a2) for a1, a2 > 0. For details, see Björk and Murgoci [15,
Proposition 8.3].

Remark 4.2 The existence of a stationary Markov perfect equilibrium in the above
portfolio selection model with quasi-hyperbolic discounting is an open problem if u

is a general continuous and concave function. The methods used here and in Björk
and Murgoci [15] are not adequate. The class F0 ⊆ F is too small, because both con-
sumption and portfolio weights may depend on the state variable. If u is bounded
or the conditions described in Remark 3.12 are satisfied and (C3.2) holds, then The-
orem 3.4 implies the existence of a simple (randomised) stationary Markov perfect
equilibrium. However, to ensure that (C3.2) holds, we assume that the probability
distribution με of the random variables 1 + εt has a continuous density function g

with respect to some p ∈ Pr(S) and A(s) = [0, a(s)] × [w(s),1] for all s ∈ S, where
a and w are Borel functions on S such that 0 ≤ a(s) < s and 0 < w(s) ≤ 1 for each
s > 0. The portfolio weight w must be in [w(s),1] for any s > 0. This definition of
A(s) says that there is an upper limit for consumption for any positive stock capital s.
Note that taking a = s by any self would stop the process forever. On the other hand,
choosing w = 0 in some period would remove the risky asset from the portfolio. We
now show how to verify condition (C3.2).

Let s, s′ ∈ S and

Ã := {(a,w) ∈ A(s) : s′ − (1 + r)(1 − w)(s − a) ≤ 0}.
Since g is continuous and (a,w) ∈ [0, a(s)] × [w(s),1], we obtain for the density
function the formula

ρ
(
s, (a,w), s′) =

⎧
⎨

⎩

g(
s′−(1+r)(1−w)(s−a)

(s−a)w
)

(s−a)w
, if (a,w) ∈ A(s) \ Ã,

0, if (a,w) ∈ Ã.

The set Ã is closed in A(s). The function (a,w) �→ ρ(s, (a,w), s′) is continuous on
Ã and also on A(s) \ Ã. Suppose now that (an,wn) ∈ A(s) \ Ã for all n ∈ N and
(an,wn) → (a0,w0) ∈ Ã as n → ∞. Then s′ − (1 + r)(1 − w0)(s − a0) = 0. By the
continuity of the function g, it follows that

lim
n→∞ρ

(
s, (an,wn), s

′) = g(0)

(s − a0)w0
≥ ρ

(
s, (a0,w0), s

′) = 0.

This is sufficient to conclude that the function (a,w) �→ ρ(s, (a,w), s′) is lower
semicontinuous on A(s). By Remark 3.1, condition (C3.2) is satisfied.

Below we give two examples from the literature where a deterministic stationary
Markov perfect equilibrium can be calculated analytically. We also discuss modifica-
tions which look difficult to solve and present some possible applications of our main
results on randomised and deterministic equilibria. Other examples of deterministic
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stationary Markov perfect equilibria in closed form can be found in Barro [10], Chat-
terjee and Eyigungor [19], Krusell et al. [37], Krusell and Smith [38], Laibson [39]
and Luttmer and Mariotti [40].

Example 4.3 We consider a stochastic optimal growth model known also as con-
sumption/saving model with the state space S = R+ × R+. An element of S is de-
noted by (k, z), where k is capital and z is an exogenous variable. If (kt , zt ) ∈ S is
the state at date t and at is the amount consumed by the decision maker (consumer),
then the next state evolves according to the equations

kt+1 = (1 − d̂)kt + zt p̂(kt ) − at ,

zt+1 = π(zt , εt+1), where at ∈ A(kt , zt ) := [0, (1 − d̂)kt + zt p̂(kt )],

for every t ∈ T and

– d̂ ∈ [0,1] is the depreciation rate,
– p̂ :R+ → R+ is a concave and increasing production function,
– π : R+ × [κ1, κ2] → R+ is the law of motion of an exogenous variable with

0 < κ1 < κ2,
– (εt ) is a sequence of i.i.d. random variables which have the common distribution

m ∈ Pr([κ1, κ2]),
– (k1, z1) ∈ S is a given initial state.

The satisfaction of the consumer is measured by his utility function u : R+ → R and
depends only on the consumed part, i.e., u(s, a) = u(a) for every (s, a) ∈ K. Observe
that the transition probability q takes the form

q
(
D

∣
∣(k, z), a

) =
∫ κ2

κ1

1D

(
(1 − d̂)k + zp̂(k) − a,π(z, ξ)

)
m(dξ), D ∈ B(S),

for every (k, z) ∈ S and a ∈ A(k, z). Assume that all future selves are going to use
a stationary strategy φ ∈ �. Then the current self faces the optimisation problem,
which is independent of period t ,

sup
ν∈Pr(A(k,z))

P
(
(k, z), ν,φ

)

= sup
ν∈Pr(A(k,z))

∫

A(k,z)

(

u(a)

+ αβ

∫

R+×R+
Jβ(φ)(k′, z′)q

(
dk′ × dz′∣∣(k, z), a

)
)

ν(da)

= sup
ν∈Pr(A(k,z))

∫

A(k,z)

(

u(a) + αβ

∫ κ2

κ1

Jβ(φ)
(
(1 − d̂)k + zp̂(k)

− a,π(z, ξ)
)
m(dξ)

)

ν(da)
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for (k, z) ∈ S. The function Jβ(φ) satisfies the equation

Jβ(φ)(k, z)

= u
(
φ(k, z)

) + β

∫ κ2

κ1

Jβ(φ)
(
(1 − d̂)k + zp̂(k) − φ(k, z),π(z, ξ)

)
m(dξ)

=
∫

A(k,z)

(

u(a)

+ β

∫ κ2

κ1

Jβ(φ)
(
(1 − d̂)k + zp̂(k) − a,π(z, ξ)

)
m(dξ)

)

φ(da|k, z)

for every (k, z) ∈ S.
The existence of a stationary Markov perfect equilibrium in the above example

is an open problem. However, as noted by Maliar and Maliar [44], such a model
with specific utility and probability functions admits a closed-form solution. Assume
now that u(a) = lna, d̂ = 1, p̂(k) = kσ with σ ∈ (0,1) and z′ = π(z, ξ) = ξ . This
model is similar to the one studied in Stokey et al. [66, Chap. 10.1] or Acemoglu [1,
Chap. 17.1]. It is sufficient to consider the class F of deterministic strategies. Assume
that all future selves are going to use a stationary deterministic strategy f ∈ F . Then
the optimisation problem for the current self t is of the form

sup
a∈A(k,z)

P
(
(k, z), a, f

) = sup
a∈A(k,z)

(

lna + αβ

∫ κ2

κ1

Jβ(f )(zkσ − a, ξ)m(dξ)

)

,

where (k, z) ∈ S and the function Jβ(f ) satisfies the equation

Jβ(f )(k, z) = lnf (k, z) + β

∫ κ2

κ1

Jβ(f )
(
zkσ − f (k, z), ξ

)
m(dξ). (4.4)

For a justification of (4.4), see for instance Hernández-Lerma and Lasserre [31,
Sect. 4.2]. It is not difficult to find that the consumption strategy

f ∗
α (k, z) = 1 − βσ

1 − βσ + αβσ
zkσ

is a deterministic stationary Markov perfect equilibrium. The form of f ∗
α (k, z) does

not depend on the probability distribution m. The phenomenon that the optimal con-
sumption strategy is identical for stochastic and deterministic transitions in the above
model was also discovered for standard discounting; see Acemoglu [1, Example
17.1]. More precisely, for geometric (standard) discounting, the optimal stationary
strategy is

f ∗
1 (k, z) = (1 − βσ)zkσ for (k, z) ∈ S.

Clearly, f ∗
1 = f ∗

α for α = 1. If α < 1, then f ∗
α > f ∗

1 . This means that the decision
maker who uses quasi-hyperbolic discounting plans to save less for the future at every
stage when compared to the model with standard discounting. This follows from the
fact that such a decision maker in period t is represented by self t , who pays less
attention to all future selves by taking into account the discount factor αβ .
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The function Jβ(f ∗) is complicated and depends on the logarithmic moments of
the random variable εt . However, if m = δ1 (the deterministic case) and z1 = 1, then
as noted by Maliar and Maliar [44], we obtain for k ∈ R+ that

Jβ(f ∗)(k,1) = σ

1 − βσ
lnk

+ 1

1 − β

(

ln
1 − βσ

1 − βσ + αβσ
+ βσ

1 − βσ
ln

αβσ

1 − βσ + αβσ

)

.

Example 4.4 We now present another consumption/saving model with quasi-hyper-
bolic discounting that can be solved analytically. The decision maker (consumer)
observes the state s = (b, �) ∈ S := R×R and chooses an amount a ∈ A(s) := A = R

for consumption. Here, b is an asset (or a capital) level, � is the labour endowment
and w� is the labour income. The state evolves according to the equations

bt+1 = w�t + (1 + r)bt − at ,

�t+1 = υ�t + εt+1, where at ∈ A,

for every t ∈ T and

– w is the wage per unit of labour,
– r is the riskless rate of return on asset holdings,
– υ ∈ [0,1] and (εt ) is a sequence of i.i.d. random variables with the normal distri-

bution N (0, σ 2).

Caballero [18] considered the above model with standard discounting in the frame-
work of monetary economics and noticed that it can be solved analytically if the util-
ity function of the consumer is exponential. Next, Maliar and Maliar [43] provided a
closed-form solution for quasi-hyperbolic discounting. In fact, Caballero [18] anal-
ysed the more general case in which (�t ) is an ARMA process. As in Maliar and
Maliar [43], we assume that

u(s, a) = u(a) = −1

θ
exp(−θa), θ > 0, a ∈ A, s ∈ S.

The parameter θ is the individual’s risk coefficient and reflects his risk attitude. Ob-
serve that the transition probability q has the form

q
(
D

∣
∣(b, �), a

) =
∫ ∞

−∞
1D

(
w� + (1 + r)b − a,υ� + ξ

)
g(ξ)dξ, D ∈ B(S),

for (b, �) ∈ S and a ∈ A. Here, g is the density function of the normal distribution
N (0, σ 2). Assume that all future selves apply f ∈ F . Then the current self faces the
maximisation problem

sup
a∈A

P
(
(b, �), a, f

)

= sup
a∈A

(

u(a) + αβ

∫ ∞

−∞
Jβ(f )

(
w� + (1 + r)b − a,υ� + ξ

)
g(ξ)dξ

)
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for every (b, �) ∈ S. The function Jβ(f ) is a solution of the equation

Jβ(f )(b, �) = u
(
f (b, �)

)+β

∫ ∞

−∞
Jβ(f )

(
w�+ (1 + r)b −f (b, �), υ�+ ξ

)
g(ξ)dξ,

where (b, �) ∈ S. According to Maliar and Maliar [43, Proposition 1], the determin-
istic stationary Markov perfect equilibrium is of the form

f̃ ∗(b, �) = rb + rw

1 + r − υ
� − 1

θr
ln

(
β(1 + αr)

) − θrw2σ 2

2(1 + r − υ)2
.

Moreover,

Jβ(f̃ ∗)(b, �) = −1 + αr

θαr
exp

( − θf̃ ∗(b, �)
)
.

Obviously, the function f̃ ∗ is affine in the variables b and �. From the above formula
for f̃ ∗, it follows that a decision maker with discount factors α < 1 and β ∈ (0,1)

has the identical consumption strategy as a consumer in the standard discounted
decision model with short-run discount factor α̃ = 1 and long-run discount factor
β̃ = β(1+αr)

1+r
< β . That is because β̃(1 + r) = β(1 + αr). We also observe that larger

values of α and/or β imply a lower amount of consumption.

Examples 4.3 and 4.4 require some comments. First, we do not claim that the
derived equilibria are unique. It very often occurs that except for a smooth equilib-
rium, there may exist equilibria with discontinuous strategies. This fact was reported
among others by Krusell and Smith [38]. Moreover, Chatterjee and Eyigungor [19]
proved that in a dynamic consumer model with constant relative risk aversion pref-
erences, equilibrium strategies must be discontinuous if the decision maker’s net
wealth cannot fall below a strictly positive value. Second, the numerical computation
of a stationary Markov perfect equilibrium is difficult. Certain numerical methods
based on the first order condition and the Euler equation are analysed by Maliar
and Maliar [44]. Other specific numerical examples are provided in Chatterjee and
Eyigungor [19].

In Example 4.4 and also in the model of Caballero [18], the state and action spaces
are unbounded. This actually simplifies calculations. Additional assumptions such as
nonnegativity or/and boundedness of variables may lead to discontinuous equilibria.
For some states, the solutions may lie on the boundary of the constraint sets.

The next example is a modification of the previous one and examines a model with
compact action spaces and nonnegative state variables. This modification, although
natural, impedes finding a tractable solution. However, within such a framework,
Theorem 3.4 is in force.

Example 4.5 Assume in the previous model that the state st+1 = (bt+1, �t+1) from
S := R+ ×R+ evolves according to the equations

bt+1 = w�t + (1 + r)bt − at + ξt+1,

�t+1 = υ�t + ζt+1, where at ∈ [0,w�t + (1 + r)bt ] := A(bt , �t ),

for every t ∈ T . Moreover, (ξt+1) and (ζt+1) are sequences of nonnegative i.i.d. ran-
dom variables having continuous densities g1 and g2 (respectively) with respect to
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Lebesgue measure on R+. It is also assumed that ξt+1 and ζt+1 are independent for
each t ∈ T . Recall that the payoff function is u(s, a) = u(a) = − 1

θ
exp(−θa) with

a ∈ A(b, �), s = (b, �) ∈ S and the individual’s risk coefficient θ > 0. The transition
probability q has now the form

q
(
D

∣
∣(b, �), a

) =
∫ ∞

0

∫ ∞

0
1D

(
w� + (1 + r)b − a + x,υ� + z

)
g1(x)g2(z)dxdz

for any D ∈ B(S), a ∈ A(s) and s = (b, �) ∈ S.
In order to apply Theorem 3.4, it is sufficient to see that for every s = (b, �) ∈ S

and a ∈ A(s), q(·|s, a) is absolutely continuous with respect to some probability
measure p on B(S) and that condition (C3.2) is satisfied. We first determine the
density function x �→ ρ1(s, a, x) of the random variable w� + (1 + r)b − a + ξt+1.
From the continuity of g1, it follows that

ρ1(s, a, x) =
{

g1(x + a − w� − (1 + r)b), if x + a − w� − (1 + r)b > 0,

0, if x + a − w� − (1 + r)b ≤ 0.

It is obvious that
∫ ∞

0 ρ1(s, a, x)dx = 1. Let

Ã := {a ∈ A(b, �) : x + a − w� − (1 + r)b > 0}.
Let s = (b, �) and x be fixed. Assume that an → a0 in A(s) as n → ∞. If Ã = ∅,
then ρ1(s, an, x) = 0 → ρ1(s, a0, x) = 0. Suppose now that Ã �= ∅. If a0 /∈ Ã, then
lim inf
n→∞ ρ1(s, an, x) ≥ ρ1(s, a0, x) = 0. If a0 ∈ Ã, then an ∈ Ã for all sufficiently large

n, and therefore lim
n→∞ρ1(s, an, x) = ρ1(s, a0, x) by the continuity of g1. We have

shown that the function a �→ ρ1(s, a, x) is lower semicontinuous on A(s) for each
s ∈ S and x ≥ 0.

By the continuity of the function g2, it is easy to see that the density function
z �→ ρ2(�, z) of the random variable υ� + ζt+1 is ρ2(�, z) = g2(z − υ�), if z > υ�,
and ρ2(�, z) = 0, if z ≤ υ�.

Let p1 be the probability measure on R+ with the density 1/(1+x)2. Let us define

ρ(s, a, s′) = ρ
(
(b, �), a, (x, z)

) := ρ1
(
(b, �), a, x

)
ρ2(�, z)(1 + x)2(1 + z)2.

Then for each set D ∈ B(S),

q
(
D

∣
∣(b, �), a

) =
∫ ∞

0

∫ ∞

0
1D(x, z)ρ

(
(b, �), a, (x, z)

)
p1(dx)p1(dz).

This implies that (x, z) �→ ρ((b, �), a, (x, z)) is a density for q(·|(b, �), a) with re-
spect to the probability measure p1 ⊗p1 on S. Obviously, ρ((b, �), a, (x, z)) is lower
semicontinuous in a ∈ A(b, �). By Remark 3.1, condition (C3.2) is satisfied. The in-
stantaneous utility function u is bounded and (C3.1) holds as well. As a consequence,
Theorem 3.4 applies. The existence of a deterministic stationary Markov perfect equi-
librium in this model is an open problem.
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Example 4.6 Assume that there is a single good (called also a renewable resource)
that can be used in each period for consumption or productive investment. The set of
all resource stocks is S = R+. Self t observes the current stock st ∈ S and chooses
at ∈ A(st ) := [0, st ] for consumption. The remaining part yt = st − at is left as an
investment for future selves. The next self’s inheritance or endowment is determined
by a transition probability q0 from S to S (stochastic production function) which
depends on yt ∈ A(st ) ⊆ S, i.e., q(·|st , at ) = q0(·|yt ). We assume that

st+1 = π(st − at ) + εt , t ∈ T ,

where π : R+ → R+ is a continuous increasing function with π(0) = 0 and (εt ) is
a sequence of i.i.d. nonnegative random variables having no atoms. In Harris and
Laibson [27], the function π is linear and the probability distribution of εt has a
twice differentiable density function with respect to Lebesgue measure on S. More-
over, Harris and Laibson [27] and Balbus et al. [6] assume that u(s, a) = u(a) for all
(s, a) ∈ K, i.e., the instantaneous utility function only depends on the consumption
in state s ∈ S. Moreover, u is increasing and strictly concave. Using an additional
assumption on the relative risk aversion coefficient for u and some other technical
conditions, Harris and Laibson [27] establish the existence of a deterministic sta-
tionary Markov perfect equilibrium in the class of functions with locally bounded
variation. They also study a stochastic version of the Euler equation associated with
this model.

Balbus et al. [6] consider a more general case. They only assume that q0 is atom-
less and weakly continuous in investment. Under these assumptions, they show that
there exists a deterministic stationary Markov perfect equilibrium in some special
class F0 ⊆ F . A function f ∈ F belongs to the class F0 if and only if s − f (s) is
nondecreasing and continuous from the left. The fact that the probability distribution
of εt is atomless plays a crucial role in the proof. Moreover, some results from the
theory of supermodular functions (see Topkis [68, Chap. 2]) and the Schauder fixed
point theorem are applied. Condition (C3.2) need not be satisfied.

Remark 4.7 The existence of a stationary Markov perfect equilibrium in stochastic
growth models with weakly continuous transitions is a difficult issue. If we deal with
a one-dimensional state space and do not impose any additional conditions on the
transition probabilities, then the function

y �→
∫

S

J β(f )(s′)q0(ds′|y)

is not concave in general, even if all future selves use a Lipschitz-continuous strategy
f ∈ F . The best reply (if one exists) is very often a discontinuous function. Therefore,
Balbus et al. [6] and Harris and Laibson [27] consider a class of discontinuous strate-
gies. The assumption that the transitions are atomless is very helpful. However, the
techniques used in the above papers do not work for consumption/investment models
with multidimensional state spaces (many commodities). The problem is not solved
either if we allow the transition probabilities to possess some atoms. In particular,
the existence of a stationary Markov perfect equilibrium is an open problem if the
transitions are deterministic.
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If the state and action spaces are one-dimensional and the transition probability is
a convex combination of finitely many probability measures on the state space with
coefficients depending on the state–action pairs, then under some stochastic dom-
inance condition, one can prove the existence of a deterministic stationary Markov
perfect equilibrium in the class of Lipschitz-continuous strategies with Lipschitz con-
stant one; see Balbus et al. [5, Sect. 3.2]. Below, we give an example of such a model
for which it is possible to find a solution in closed form.

Example 4.8 Consider the consumption/investment model with S = [0,1] and a tran-
sition probability q0 of the form

q0(·|s − a) := (
1 − (s − a)σ

)
δ0(·) + (s − a)σ mL(·), σ ∈ (0,1),

where mL is Lebesgue measure on S. As mentioned above, a denotes the amount
of consumption and a ∈ A(s) = [0, s]. The utility function for the consumer is
u(a) = aσ . Observe also that q0({0}|0) = 1, which means that 0 is an absorbing state
and Jβ(f )(0) = 0 for any f ∈ F .

Assume that all future selves are going to use a stationary deterministic consump-
tion strategy f ∈ F . Then current self has to solve the optimisation problem

sup
a∈A(s)

P (s, a, f ) = sup
a∈A(s)

(

u(a) + αβ

∫

S

J β(f )(s′)q0(ds′|s − a)

)

= sup
a∈A(s)

(

aσ + αβ
((

1 − (s − a)σ
)
Jβ(f )(0)

+ (s − a)σ
∫ 1

0
Jβ(f )(s′)mL(ds′)

))

= sup
a∈A(s)

(

aσ + αβ(s − a)σ
∫ 1

0
Jβ(f )(s′)mL(ds′)

)

for every s ∈ S, where

Jβ(f )(s) = (
f (s)

)σ + β
(
s − f (s)

)σ
∫ 1

0
Jβ(f )(s′)mL(ds′), s ∈ S.

It turns out that in this example, there exists a deterministic stationary Markov perfect
equilibrium in the class of linear functions. Consider the subclass F0 ⊆ F such that
f ∈ F0 if f (s) = cs for some constant c ∈ [0,1] and all s ∈ S. Using the above
equations and assuming that the equilibrium f ∗ is in F0 and that Jβ(f ∗)(s) = Csσ

for s ∈ S and some constant C > 0, we obtain for C the equation

C = c̃σ (σ + 1)

σ + 1 − β(1 − c̃)σ
with c̃ := ( σ+1

Cαβ
)

1
1−σ

1 + ( σ+1
Cαβ

)
1

1−σ

.

Clearly, a deterministic stationary Markov perfect equilibrium is f ∗(s) = c̃s. For
instance, if β = 0.9, α = σ = 0.5, then C = 1.17851 and c̃ = 0.888889. If on the
other hand β = 0.9, α = 1 and σ = 0.5, then C = 1.25 and c̃ = 0.64. Similarly as
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in Example 4.3, a decision maker with quasi-hyperbolic discounting saves less for
the future and prefers to consume more in each period than a decision maker with
standard discounting. Moreover, we note that the greater β , the smaller the amount
that is consumed. If yσ is replaced by a concave increasing function η(y) with range
η(S) ⊆ [0,1] and if u is strictly concave and increasing, then from Balbus et al. [5,
Theorem 2], we know that a Lipschitz equilibrium exists in the example with the
transition function

q0(·|s, a) = (
1 − η(s − a)

)
δ0(·) + η(s − a)mL(·),

but the calculations look very difficult.

We close this section with an application of Theorem 3.5.

Example 4.9 We now consider a model with a transition probability whose condi-
tional density functions with respect to some atomless probability measure generate
a σ -field G such that the original σ -field on the state space has no G-atoms. Usu-
ally, for such examples, the state space is represented as S := Z × Y , where Z and
Y are complete separable metric spaces with their Borel σ -fields B(Z) and B(Y ),
respectively. The space S is endowed with the product σ -field. Consider a controller
(decision maker) of a certain production process, whose state s ∈ S consists of two
coordinates s = (z, y), where z ∈ Z is a capital stock and y ∈ Y is a noise component
determining for instance specific technological shocks. Assume that in each period,
the controller needs to make a decision a = (a1, . . . , am) ∈ A on the intensities for m

different production processes. Here, A is a compact subset of Rm+ and A(s) = A for
every s ∈ S. Given the current state (z, y) and an action profile a, the transition law
q is determined by

q(B|s, a) :=
∫

Z

∫

Y

1B(z′, y′)λ̃(dy′)qZ(dz′|s, a), s = (z, y) ∈ S,a ∈ A,

where B ∈ B(Z) ⊗B(Y ). Here,
– qZ(·|s, a) denotes the marginal of q(·|s, a) on Z; additionally, qZ(·|s, a) is ab-

solutely continuous with respect to some κ ∈ Pr(Z) for every (s, a) ∈ S × A; it is
assumed that the corresponding Radon–Nikodým derivative ρ(s, a, ·) is such that
a �→ ρ(s, a, z′) is continuous on A for every s ∈ S, z′ ∈ Z;

– λ̃ ∈ Pr(Y ) is atomless.
Hence, s = (z, y), where z is influenced by the action of the controller and y is a
technological shock. Define p := κ ⊗ λ and observe that G = B(Z) ⊗ {∅, Y }. Since
λ̃ is atomless, B(Z) ⊗B(Y ) has no G-atoms under p.

Let u : S × A → R be a one-period bounded reward function. The controller
wishes to find an equilibrium for the infinite-horizon problem with quasi-hyperbolic
discounting. From Theorem 3.5, we conclude that there exists a deterministic station-
ary Markov perfect equilibrium for that problem. For further comments and possible
structures of the reward functions, we refer the reader to Duggan [21] and references
therein.

It should be mentioned that similar sets of states and transition laws were already
considered in the area of standard stochastic games in the context of existence of
randomised stationary Nash equilibria; see Duggan [21] and He and Sun [29, 30].
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5 Markov perfect equilibria in countable state space models

5.1 Existence of deterministic non-stationary Markov perfect equilibria

In this section, we assume that S is a countable set. We shall prove that in a model
with countably many states satisfying assumptions (C3.1) and (C3.3) there exists a
deterministic Markov perfect equilibrium.

Let F∞ = F × F × · · · and let f̄ = (f1, f2, . . . ) ∈ F∞ be a sequence of deter-

ministic strategies of all selves. For any t ∈ T , we put f̄ t := (ft , ft+1, . . . ). Let E
f̄ t

st

denote the expectation operator with respect to the unique probability measure P
f̄ t

st

on the space (S × A)∞ of all sequences of state–action pairs, when the process starts
at st and is induced by f̄ t ∈ F∞ and the transition probability q (see the Ionescu-
Tulcea theorem in Neveu [48, Proposition V.1.1]).

The expected utility of self t is defined as

Rt(f̄
t )(st ) := E

f̄ t

st

[

u(st , at ) + αβ

∞∑

τ=t+1

βτ−t−1u(sτ , aτ )

]

.

Introducing the notation

J
β

t+1(f̄
t+1)(st+1) := E

f̄ t+1

st+1

[ ∞∑

τ=t+1

βτ−t−1u(sτ , aτ )

]

,

we obtain that

Rt(f̄
t )(st ) = u

(
st , ft (st )

) + αβ

∫

S

J
β

t+1(f̄
t+1)(st+1)q

(
dst+1

∣
∣st , ft (st )

)
.

Furthermore, for any s ∈ S and a ∈ A(s), we set

Pt (s, a, f̄ t+1) := u(s, a) + αβ

∫

S

J
β

t+1(f̄
t+1)(st+1)q(dst+1|s, a).

Definition 5.1 A deterministic Markov perfect equilibrium is defined to be a se-
quence f̄ = (ft )t∈T ∈ F∞ such that for every s ∈ S and t ∈ T , we have

sup
a∈A(s)

Pt (s, a, f̄ t+1) = Pt

(
s, ft (s), f̄

t+1) = Rt(f̄
t )(s).

From this definition, it follows that a deterministic Markov perfect equilibrium is
subgame perfect.

Theorem 5.2 Under assumptions (C3.1) and (C3.3) and if S is countable, there ex-
ists a deterministic Markov perfect equilibrium.

For the proof, we need some lemmas. For any f ∈ F and any bounded function
v : S →R, we define

uf (s) := u
(
s, f (s)

)
, qf (v)(s) :=

∑

s′∈S

v(s′)q
(
s′∣∣s, f (s)

)
, s ∈ S.
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Then we observe that for any t ∈ T , s = st+1 ∈ S, we have

J
β

t+1(f̄
t+1)(s)

= uft+1(s) + βqft+1(uft+2)(s) +
∞∑

n=t+2

βn−t qft+1 · · ·qfn(ufn+1)(s). (5.1)

Lemma 5.3 Assume that condition (C3.3) holds. Let (vn)n∈N be a sequence of func-
tions on S such that supn∈N,s∈S |vn(s)| < ∞. Assume that vn(s

′) → v(s′) for each
s′ ∈ S and (fn)n∈N is a sequence in F such that fn(s) → f (s) for each s ∈ S as
n → ∞. Then the following statements hold:

(a) qfn(vn)(s) → qf (v)(s) for all s ∈ S as n → ∞,
(b) max

a∈A(s)

∑
s′∈S vn(s

′)q(s′|s, a) → max
a∈A(s)

∑
s′∈S v(s′)q(s′|s, a) as n → ∞.

Proof Part (a) follows directly from Royden [58, Proposition 18]. For (b), note that
∣
∣
∣
∣ max
a∈A(s)

∑

s′∈S

vn(s
′)q(s′|s, a) − max

a∈A(s)

∑

s′∈S

v(s′)q(s′|s, a)

∣
∣
∣
∣

≤ ξn(s) := max
a∈A(s)

∣
∣
∣
∣
∑

s′∈S

(
vn(s

′) − v(s′)
)
q(s′|s, a)

∣
∣
∣
∣.

Since A(s) is compact metric, there exists a sequence (bn) of elements of A(s)

such that

ξn(s) =
∣
∣
∣
∣
∑

s′∈S

(
vn(s

′) − v(s′)
)
q(s′|s, bn)

∣
∣
∣
∣ for all n ∈ N,

and we can assume without loss of generality that (bn) is convergent to some
b0 ∈ A(s). Then Royden [58, Proposition 18] yields that ξn(s) → 0 as n → ∞. Hence
the proof is complete. �

The set F of all selectors of the correspondence s �→ A(s) (see Sect. 2) can
be viewed as the product space

∏
s∈S A(s). Then F with the product topology

is by Tychonoff’s theorem a compact metric space, and so is F∞. We point
out that f̄n = (fn1, fn2, . . . ) converges to f̄ = (f1, f2, . . . ) in F∞ as n → ∞ if
limn→∞ fnk(s) = fk(s) for all k ∈ N and s ∈ S.

Lemma 5.4 Under assumptions (C3.1) and (C3.3), the mapping

f̄ �→ J
β

t+1(f̄
t+1)(s)

is continuous on F∞ for all s ∈ S and t ∈ T .

Proof Since u is bounded, the series in (5.1) converges uniformly in f̄ ∈ F∞ and
s ∈ S. It is sufficient to prove that f̄ �→ qft+1 · · ·qfn(rfn+1) is continuous on F∞
for each t ∈ T and n > t + 1. This can be shown by induction with the help of
Lemma 5.3. �
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Let ḡ = (g1, g2, . . . ) ∈ F∞ and

Jβ(ḡ)(s′) := E
ḡ

s′

[ ∞∑

n=1

βn−1u(sn, an)

]

= ug1(s
′) + βqg1(ug2)(s

′) +
∞∑

n=2

βnqg1 · · ·qgn(ugn+1)(s
′).

For the proof of Theorem 5.2, we define two correspondences. Let B(ḡ) denote the
set of all f ∈ F such that

f (s) ∈ arg max
a∈A(s)

(

u(s, a) + αβ
∑

s′∈S

J β(ḡ)(s′)q(s′|s, a)

)

for all s ∈ S, and for any t ∈ T , let Bt(ḡ
t+1) be the set of all f ∈ F such that

f (s) ∈ arg max
a∈A(s)

(

u(s, a) + αβ
∑

st+1∈S

J
β

t+1(ḡ
t+1)(st+1)q(dst+1|s, a)

)

for each s ∈ S.

Proof of Theorem 5.2 Fix any f̄ = (f,f, . . . ) ∈ F∞. Choose some f1 ∈ B(f̄ ) and
define f̄1 := (f1, f, f, . . . ). Suppose that f̄n−1 = (fn−1, . . . , f1, f, f, . . . ) has been
defined for some n ≥ 2. Choose any fn ∈ B(f̄n−1) and define

f̄n = (fn, fn−1, . . . , f1, f, f, . . . ).

Since F∞ is a compact metric space, the sequence (f̄n) has a subsequence (f̄n′)
converging to some f̄0 = (f01, f02, f03, . . . ) as n′ → ∞. Denote this subsequence by
f̄n′ = (fn′1, fn′2, fn′3, . . . ). Take any t ∈ T . Observe that

fn′t ∈ Bt(f̄
t+1
n′ ) for each t ∈ T ,n′ > t. (5.2)

Since f̄n′ → f̄0, we have f̄ t+1
n′ → f̄ t+1

0 as n′ → ∞. Using (5.2), Lemmas 5.3 and 5.4,

one can easily deduce that f0t ∈ Bt(f̄
t+1
0 ) for each t ∈ T , that is, f̄0 is a deterministic

Markov perfect equilibrium. �

Remark 5.5 (a) Theorem 5.2 is new and we apply in its proof a backward induc-
tion method similar to that used in standard dynamic programming (see for instance
Hernández-Lerma and Lasserre [31, Sect. 3.2] or Puterman [57, Sect. 4.5]) or finite-
horizon models with quasi-hyperbolic discounting (see Alj and Haurie [4], Bernheim
and Ray [12] or Goldman [26]). In our setup, this method determines a sequence of
strategies in F∞ which need not be convergent and may have many accumulation
points. In Example 5.6 below, we present two accumulation points that give different
deterministic Markov perfect equilibria.



214 A. Jaśkiewicz, A.S. Nowak

(b) It is worth noticing that the existence proof of Theorem 5.2 is not based on any
fixed point argument. A similar “iterative method” gives in Balbus et al. [7] a non-
stationary deterministic Markov perfect equilibrium in a model with quasi-hyperbolic
discounting and one-dimensional state and action spaces satisfying some additional
conditions similar to that in Balbus et al. [6] and Harris and Laibson [27]. The deter-
ministic equilibrium obtained in [7] belongs to the intersection of a decreasing family
of closed sets of strategies for the decision maker. The methods used in this section
and in [7] have many limitations in the sense that they work only under some special
conditions on the primitive data of the model.

(c) Theorem 5.2 can be extended (with minor changes in the proof) to the un-
bounded reward case discussed in Remark 3.12.

5.2 An example with a finite state space

As noted in Sect. 3, a stationary Markov perfect equilibrium is a fixed point of a best-
response correspondence defined on a compact convex set. The set F of deterministic
strategies is not convex. Thus an argument based on fixed point theorems is difficult
to apply. This suggests that a deterministic stationary Markov perfect equilibrium
need not exist even in simple models. Below we provide an example of a Markov
decision process with finite state and action spaces in which a deterministic stationary
Markov perfect equilibrium does not exist. This example also shows two different
deterministic Markov perfect equilibria being two accumulation points of a sequence
of strategies as in the proof of Theorem 5.2.

Example 5.6 The state space is S = {1,2} and the action sets are A(1) = {a, b},
A(2) = {a}. The transition probabilities are defined as q(2|1, a) = 1 = q(1|2, a) and
q(1|1, b) = q(2|1, b) = 0.5. The set F of all deterministic stationary strategies con-
sists of two elements f and g, where f (1) = a and g(1) = b. For simplicity, we
apply standard matrix/vector notation. Any function w : S → R is written as the col-
umn vector (w(1),w(2))T . Transition probabilities are given by stochastic matrices.
For any φ ∈ �, the function u(·, φ(·)) is denoted by the column payoff vector Uφ . By
Qφ , we denote the transition probability matrix induced by φ.

For any stationary strategy profile (φ,φ, . . . ) with φ ∈ �, we write Jβ(φ) = J
β
φ

as a column vector. Assume that β = 0.8 and α = 0.5. To compute J
β
φ , we use the

well-known formula (see Neyman [49, Lemma 1(b)])

J
β
φ = (I − βQφ)−1Uφ,

where I is the identity matrix.
Note that we have

Qf =
(

0 1

1 0

)

and (I − βQf )−1 =
( 25

9
20
9

20
9

25
9

)

,

Qg =
( 1

2
1
2

1 0

)

and (I − βQg)
−1 =

( 25
7

10
7

20
7

15
7

)

.
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We now show that there exists a stationary Markov perfect equilibrium φ ∈ � and
there are no deterministic ones. Let the reward vectors be given by

Uf =
(

0

17

)

and Ug =
(

2

17

)

.

Immediately, we get

J
β
f =

( 340
9

425
9

)

and Jβ
g =

( 220
7

295
7

)

.

It is easy to check that Bf = {g} and Bg = {f }. Thus there is no deterministic sta-
tionary Markov perfect equilibrium. Indeed, it follows that

Uf + αβQf J
β
f =

( 170
9

289
9

)

and Ug + αβQgJ
β
f =

( 171
9

289
9

)

,

which implies that in state s = 1, the better strategy is g if we assume that all future
selves are going to use f . Similarly, we obtain

Uf + αβQf Jβ
g =

( 118
7

207
7

)

and Ug + αβQgJ
β
g =

( 117
7

207
7

)

.

Hence the best response of the current self is f if all future selves are going to use
the stationary deterministic strategy g.

It is easy to check that φ ∈ � with φ(1) = φ(2) = 0.5 is a stationary Markov
perfect equilibrium. We have

Qφ =
( 1

4
3
4

1 0

)

and Uφ =
(

1

17

)

,

and

J
β
φ = (I − βQφ)−1Uφ =

( 25
8

15
8

20
8

20
8

)(
1

17

)

=
(

35

45

)

.

Next, we have

Uf + αβQf J
β
φ = Ug + αβQgJ

β
φ =

(
18

31

)

.

Hence it follows that Bφ = �, i.e., every φ̂ ∈ � is a best reply to φ. In particular,
φ ∈ Bφ , i.e., φ is a stationary Markov perfect equilibrium.

Consider now two deterministic “periodic” strategy profiles

fg = (f, g,f, g, . . . ) and gf = (g, f, g,f, . . . ).
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The discounted expected reward vector over the infinite horizon under fg is

J
β

fg
= Uf + βQf Ug + β2Qf QgUf + β3Qf QgQf Ug + β4Qf QgQf QgUf + · · ·
= (

I + β2Qf QgUf + β4(Qf Qg)
2Uf + · · · )(Uf + βQf Ug)

=
( ∞∑

n=0

β2n(Qf Qg)
n

)

(Uf + βQf Ug) = (I − β2Qf Qg)
−1(Uf + βQf Ug),

where (Qf Qg)
0 = I . Therefore, we have

J
β

fg
=

( 25
9 0

200
153

25
17

)(( 0

17

)
+

( 0 4
5

4
5 0

)( 2

17

))

=
( 340

9
6905
153

)

.

Proceeding in an analogous way, we may calculate the expected discounted reward
vector J

β

gf
when the Markov strategy profile gf = (g, f, g,f, . . .) is applied. We get

J
β

gf
= (I − β2QgQf )−1(Ug + βQgUf ) =

( 5380
153
425

9

)

.

Suppose that the selves following self t are going to employ the strategy profile
fg. Then the rewards for self t using f or g are

Uf + αβQf J
β

fg
=

( 2762
153
289
9

)

and Ug + αβQgJfg =
( 2843

153
289

9

)

.

In state s = 1, it is better for self t to use g. In state s = 2, the rewards are same.
Assuming that the selves following self t are going to apply gf , we obtain for self t

the rewards

Uf + αβQf J
β

gf
=

( 170
9

4753
153

)

and Ug + αβQgJ
β

gf
=

( 2827
153

4753
153

)

.

In this setup, it is better for self t to use in state s = 1 the strategy f . From these
calculations, we conclude that both profiles fg and gf are deterministic Markov
perfect equilibria.

It is interesting to note that in both cases, the Markov equilibria fg and gf give
higher rewards than in the stationary randomised equilibrium obtained above.

Moreover, if the Markov decision process starts in state s = 1, the equilibrium
profile fg is more advantageous for the decision maker since 170/9 > 2843/153.
For the initial state s = 2, the profile gf is better since 289/9 > 4753/153.
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6 Approximate deterministic Markov perfect equilibria in Borel state
space models

It is well known that if p is atomless, then the set of all p-equivalence classes of
mappings in F is dense in �p ; see Warga [70, Theorem IV.3.10]. Therefore, the limit
in the weak-star topology on �p of a sequence of deterministic strategies may be
a randomised strategy; see Elliott et al. [25, Example 3.16]. This implies that the
approach taken in the proof of Theorem 5.2 for a countable state space cannot be
extended to a model with a Borel set of states. However, similarly as in stochastic
games (see Nowak [50] and Whitt [72]), one can think about an approximation of a
Markov decision process on a Borel state space by processes with countably many
states. In other words, for a Borel state space, deterministic Markov perfect equilibria
in the approximating model can be used to obtain deterministic Markov ε-equilibria
in the original model.

Definition 6.1 Let ε > 0. A deterministic Markov perfect ε-equilibrium is a sequence
f̄ = (ft )t∈T ∈ F∞ such that for every s ∈ S and t ∈ T , we have

sup
a∈A

Pt (s, a, f̄ t+1) ≤ Pt

(
s, ft (s), f̄

t+1) + ε.

Let C(A) denote the Banach space of all continuous functions on A endowed with
the supremum norm ‖ · ‖c. In this section, we study the Borel state space decision
model, denoted by M, satisfying the following assumption:

(C6.1) A is a compact metric space, A(s) = A for all s ∈ S, (C3.1) holds and the tran-
sition q has a Borel density function ρ : S × A × S →R with respect to p satisfying
(C3.4) and such that ρ(s, ·, s′) ∈ C(A) for all s, s′ ∈ S.

Theorem 6.2 below is new for decision models with quasi-hyperbolic discounting.
It is based on Theorem 5.2 and modified arguments from the works of Nowak [50]
and Whitt [72] on stochastic games. The result cannot be obtained by an approxima-
tion of the original model by models with finite horizons.

Theorem 6.2 Assume that (C6.1) holds. Then for any ε > 0, there exists a determin-
istic Markov perfect ε-equilibrium in the model M.

Proof As noted in Nowak [50, Lemma 4.2], under condition (C6.1), one can con-
struct for any δ > 0 a measurable partition (Sj )j∈No

of the state space, where No ⊆ N

and Sj ∈ B(S) for each j ∈No, and functions uj : A → R, ρj : A×S → [0,∞) such
that uj ∈ C(A) and ρj (·, s′) ∈ C(A) for all j ∈No and

‖u(s, ·) − uj (·)‖c +
∫

S

‖ρ(s, ·, s′) − ρj (·, s′)‖cp(ds′) < δ (6.1)

for every s ∈ Sj and all j ∈ No. Moreover, ρj (a, ·) is a density function, i.e.,∫
S
ρj (a, s′)p(ds′) = 1 for all j ∈ No and a ∈ A. The transition probability in the

approximating model is

q̃(B|s, a) :=
∫

B

ρj (a, s′)p(ds′) for B ∈ B(S) and s ∈ Sj ,
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and the reward function ũ is ũ(s, a) = uj (a) for s ∈ Sj and a ∈ A. We denote the
Markov decision process with uj and ρj satisfying (6.1) by Mδ .

Let f̄ = (f1, f2, . . .) be an arbitrary sequence in F∞. We define the corresponding
reward functions in Mδ as follows. For s ∈ Sj , j ∈ No, and t ∈ T , we put

R̃t (f̄
t )(s) := uj

(
ft (s)

) + αβ

∫

S

J̃
β

t+1(f̄
t+1)(s′)q̃

(
ds′∣∣s, ft (s)

)
,

where

J̃
β

t+1(f̄
t+1)(s′) := Ẽ

f̄ t+1

s′

[ ∞∑

τ=t+1

βτ−t−1
∑

j∈No

1Sj
(sτ )uj (aτ )

]

.

Here, Ẽ
f̄ t+1

s′ denotes the expectation operator with respect to the unique probability
measure on (S × A)∞ which is well defined by the Ionescu-Tulcea theorem; see
Neveu [48, Proposition V.1.1]. This measure is induced by the transition probability
q̃ and f̄ t+1 ∈ F∞ when the state in period t + 1 is s′.

Let ‖ · ‖ be the supremum norm on the space of all bounded Borel functions on
S and suppose that |u(s, a)| ≤ C for all (s, a) ∈ K and some constant C > 0. Then
by minor modifications of Nowak [50, proofs of Lemmas 4.3 and 4.4], we can de-
duce that

‖Jβ

t+1(f̄
t+1) − J̃

β

t+1(f̄
t+1)‖ ≤ δ(1 + β(C − 1))

(1 − β)2
.

This fact and condition (6.1) imply that for every s ∈ S, we have
∣
∣
∣
∣

∫

S

J
β

t+1(f̄
t+1)(s′)q

(
ds′∣∣s, ft (s)

) −
∫

S

J̃
β

t+1(f̄
t+1)(s′)q̃

(
ds′∣∣s, ft (s)

)
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

S

J
β

t+1(f̄
t+1)(s′)q

(
ds′∣∣s, ft (s)

) −
∫

S

J
β

t+1(f̄
t+1)(s′)q̃

(
ds′∣∣s, ft (s)

)
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S

J
β

t+1(f̄
t+1)(s′)q̃

(
ds′∣∣s, ft (s)

) −
∫

S

J̃
β

t+1(f̄
t+1)(s′)q̃

(
ds′∣∣s, ft (s)

)
∣
∣
∣
∣

≤ δC

1 − β
+ δ(1 + β(C − 1))

(1 − β)2
= δ(1 − β + C)

(1 − β)2
.

Consequently, for every t ∈ T , we have

‖Rt(f̄
t ) − R̃t (f̄

t )‖ ≤ δ

(

1 + αβ
1 − β + C

(1 − β)2

)

,

which means that for any f ∈ F ,

∥
∥Pt

(·, f (·), f̄ t+1) − P̃t

(·, f (·), f̄ t+1)∥∥ ≤ δ

(

1 + αβ
1 − β + C

(1 − β)2

)

. (6.2)

Here,

P̃t

(
s, f (s), f̄ t+1) := uj

(
f (s)

) + αβ

∫

S

J̃
β

t+1(f̄
t+1)(s′)q̃

(
ds′∣∣s, f (s)

)
,
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for s ∈ Sj , j ∈ No. Observe that the constant on the right-hand side of (6.2) is inde-
pendent of t .

Clearly, the approximating model Mδ induces a Markov decision process with
countable state space No and transition probability q̃(k|j, a) = ∫

Sk
ρj (a, s′)p(ds′),

which is continuous on A for every j, k ∈ No. This countable state space model
will also be denoted by Mδ . Let F̃ be the space of piecewise constant functions
f̃ : S → A defined as follows. A function f̃ belongs to F̃ if for each j ∈ No there
exists mj ∈ A such that f̃ (s) = mj for all s ∈ Sj . Clearly, F̃ ⊆ F . Hence, a deter-
ministic Markov strategy for the decision maker in Mδ is a sequence (f̃t ) ∈ F̃∞.

Choose δ > 0 such that

δ

(

1 + αβ
1 − β + C

(1 − β)2

)

≤ ε

2
.

From Theorem 5.2, we conclude that there exists a deterministic Markov perfect
equilibrium ḡ = (gt ) ∈ F̃∞ in the model Mδ . We claim that ḡ is an ε-equilibrium in
the model M. Fix an arbitrary function f ∈ F . From (6.2) and the definition of ḡ, it
follows that for every t ∈ T and s ∈ S

Pt

(
s, f (s), ḡt+1) ≤ ε

2
+ P̃t

(
s, f (s), ḡt+1)

≤ ε

2
+ sup

a∈A

P̃t (s, a, ḡt+1) = ε

2
+ P̃t

(
s, gt (s), ḡ

t+1)

≤ ε + Pt

(
s, gt (s), ḡ

t+1).

This proves our claim. �

7 Proofs of Theorems 3.2, 3.4 and 3.5

Let ϕ ∈ � and v : S → R be a bounded Borel function. We define

uϕ(s) := u
(
s, ϕ(s)

) =
∫

A(s)

u(s, a)ϕ(da|s),

qϕ(v)(s) :=
∫

S

v(s′)q
(
ds′∣∣s, ϕ(s)

)
, s ∈ S.

Let qn
ϕ be the composition of qϕ with itself n times. Then Jβ(ϕ)(s′) (defined in (2.4)

with ϕ = φ) can be expressed as

Jβ(ϕ)(s′) = uϕ(s′) +
∞∑

n=1

βnqn
ϕ(uϕ)(s′), s′ ∈ S. (7.1)

Let L1(S,p) be the Banach space of all absolutely integrable (with respect to p)
functions on S and L∞(S,p) the space of all p-essentially bounded functions
on S. We endow L∞(S,p) with the weak-star topology. Recall that vn →∗ v0 as
n → ∞, i.e., a sequence (vn) converges to v0 weak-star in L∞(S,p), if and only if∫
S
vn(s)h(s)p(ds) → ∫

S
v0(s)h(s)p(ds) for every h ∈ L1(S,p).
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A function c :K → R is Carathéodory (is a C-function) if it is Borel on K, c(s, ·)
is continuous on A(s) for each s ∈ S and

∫

S

max
a∈A(s)

|c(s, a)|p(ds) < ∞.

Let �p be the space of p-equivalence classes of functions in �. The elements of �p

are called Young measures. The space �p is endowed with the weak-star topology.
Since B(S) is countably generated, �p is metrisable. Moreover, since every set A(s)

is compact, �p is a compact convex subset of a locally convex linear topological
space. For a detailed discussion of these issues, see Balder [9, Theorem 1] or Warga
[70, Chap. IV]. We recall that φn →∗ φ0 in �p if and only if for every C-function
c : K →R, it holds that

lim
n→∞

∫

S

∫

A(s)

c(s, a)φn(da|s)p(ds) =
∫

S

∫

A(s)

c(s, a)φ0(da|s)p(ds).

Lemma 7.1 Assume that vn →∗ v0 in L∞(S,p) and ϕn →∗ ϕ0 in �p as n → ∞.
Then under assumption (C3.2), it follows that qϕn(vn) →∗ qϕ0(v0) in L∞(S,p) as
n → ∞.

Proof Take any h ∈ L1(S,p). We have
∣
∣
∣
∣

∫

S

qϕn(vn)(s)h(s)p(ds) −
∫

S

qϕ0(v0)(s)h(s)p(ds)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

S

(
qϕn(vn)(s) − qϕn(v0)(s)

)
h(s)p(ds)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S

(
qϕn(v0)(s) − qϕ0(v0)(s)

)
h(s)p(ds)

∣
∣
∣
∣. (7.2)

The second term on the right-hand side in (7.2) converges to zero since ϕn →∗ ϕ0 as
n → ∞. Observe that

|qϕn(vn)(s) − qϕn(v0)(s)|

≤
∫

A(s)

∣
∣
∣
∣

∫

S

(
vn(s

′) − v0(s
′)
)
ρ(s, a, s′)p(ds′)

∣
∣
∣
∣ϕn(da|s)

≤ Mn(s) := max
a∈A(s)

∣
∣
∣
∣

∫

S

(
vn(s

′) − v0(s
′)
)
ρ(s, a, s′)p(ds′)

∣
∣
∣
∣. (7.3)

The fact that Mn(s) → 0 for every s ∈ S as n → ∞ follows from Nowak and Ragha-
van [52, proof of Lemma 7]. For the sake of completeness, we provide a short argu-
ment here. For any n ∈ N, we can find an ∈ A(s) that attains the maximum in (7.3).
Without loss of generality, we can assume that an → a0 ∈ A(s) as n → ∞. Note that

0 ≤ Mn(s) ≤
∣
∣
∣
∣

∫

S

(
vn(s

′) − v0(s
′)
)
ρ(s, a0, s

′)p(ds′)
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S

(
vn(s

′) − v0(s
′)
)(

ρ(s, an, s
′) − ρ(s, a0, s

′)
)
p(ds′)

∣
∣
∣
∣. (7.4)
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The first term on the right-hand side in (7.4) converges to zero since vn →∗ v0 in
L∞(S,p). Clearly, there exists some constant b such that |vn(s

′)− v0(s
′)| ≤ b p-a.e.

Thus
∣
∣
∣
∣

∫

S

(
vn(s

′) − v0(s
′)
)(

ρ(s, an, s
′) − ρ(s, a0, s

′)
)
p(ds′)

∣
∣
∣
∣

≤ b

∫

S

|ρ(s, an, s
′) − ρ(s, a0, s

′)|p(ds′).

Using this inequality and (C3.2) we conclude that Mn(s) → 0 for any s ∈ S as
n → ∞. Obviously,

∫
S
Mn(s)h(s)p(ds) → 0 as n → ∞. This property together with

(7.2) and (7.3) completes the proof. �

Lemma 7.2 If (C3.1) and (C3.2) hold and ϕk →∗ ϕ0 ∈ �p , then Jβ(ϕk) →∗ Jβ(ϕ0)

in L∞(S,p). In particular,
∫
B

Jβ(ϕk)(s)p(ds) → ∫
B

Jβ(ϕ0)(s)p(ds) as k → ∞ for
all B ∈ B(S).

Proof Note that the series in (7.1) is convergent uniformly on � × S. Obviously,
rϕk

→∗ rϕ0 in L∞(S,p) as k → ∞. By induction and Lemma 7.1, for each n ∈ N,
qn
ϕk

(uϕk
) →∗ qn

ϕ0
(uϕ0) in L∞(S,p) as k → ∞. Thus the lemma follows. �

For any ϕ ∈ �p , we define the correspondence

ϕ �→ BRp(ϕ) :=
{
ψ ∈ �p : ψ(s) ∈ arg max

ν∈Pr(A(s))

P (s, ν,ϕ) p-a.e.
}
.

Lemma 7.3 If (C3.1) and (C3.2) hold, the correspondence ϕ �→ BRp(ϕ) has a
closed graph.

Proof Due to measurable selection theorems (see Brown and Purves [17]), we have
that BRp(ϕ) �= ∅ for each ϕ ∈ �p . Suppose that ϕn →∗ ϕ0 in �p as n → ∞. As-
sume that φn ∈ BRp(ϕn) for all n ∈ N. Since �p is compact metric, we can as-
sume without loss of generality that φn →∗ φ0 ∈ �p as n → ∞. By Lemma 7.2,
Jβ(ϕn) →∗ Jβ(ϕ0) in L∞(S,p) as n → ∞. Using the arguments from the proof of
Lemma 7.1, we can show that

max
a∈A(s)

∣
∣
∣
∣

∫

S

J β(ϕn)(s
′)q(ds′|s, a) −

∫

S

J β(ϕ0)(s
′)q(ds′|s, a)

∣
∣
∣
∣

= max
a∈A(s)

∣
∣
∣
∣

∫

S

(
Jβ(ϕn)(s

′) − Jβ(ϕ0)(s
′)
)
ρ(s, a, s′)p(ds′)

∣
∣
∣
∣ −→ 0 (7.5)

as n → ∞. Recall (2.5) and note that
∣
∣
∣
∣

∫

B

max
ν∈Pr(A(s))

P (s, ν,ϕn)p(ds) −
∫

B

max
ν∈Pr(A(s))

P (s, ν,ϕ0)p(ds)

∣
∣
∣
∣

≤
∫

B

∣
∣
∣
∣ max
ν∈Pr(A(s))

P (s, ν,ϕn)p(ds) − max
ν∈Pr(A(s))

P (s, ν,ϕ0)

∣
∣
∣
∣p(ds)

≤
∫

B

max
a∈A(s)

∣
∣
∣
∣

∫

S

(
J (ϕn)(s

′) − J (ϕ0)(s
′)
)
ρ(s, a, s′)p(ds′)

∣
∣
∣
∣p(ds)
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for any Borel set B ∈ B(S). This and (7.5) imply that

lim
n→∞

∫

B

max
ν∈Pr(A(s))

P (s, ν,ϕn)p(ds) =
∫

B

max
ν∈Pr(A(s))

P (s, ν,ϕ0)p(ds) (7.6)

for any B ∈ B(S). By Lemmas 7.1 and 7.2, we have

lim
n→∞

∫

B

P
(
s,φn(s), ϕn

)
p(ds) =

∫

B

P
(
s,φ0(s), ϕ0

)
p(ds), B ∈ B(S). (7.7)

Since φn ∈ BRp(ϕn) for all n ∈ N, we conclude from (7.6) and (7.7) that
∫

B

P
(
s,φ0(s), ϕ0

)
p(ds) =

∫

B

max
ν∈Pr(A(s))

P (s, ν,ϕ0)p(ds)

for all B ∈ B(S). This implies that φ0 ∈ BRp(ϕ0), i.e., BRp has a closed graph. �

Proof of Theorem 3.2 Clearly, each set BRp(ϕ) is convex. Moreover, since �p is
compact, ϕ �→ BRp(ϕ) is upper semicontinuous. By the Kakutani–Fan–Glicksberg
fixed point theorem (see Aliprantis and Border [3, Corollary 17.55]), there exists
some φ̂ ∈ �p such that φ̂ ∈ BRp(φ̂). Thus there exists a Borel set B1 ⊆ S such that
p(B1) = 1, the restriction of φ̂ to B1 is Borel and

φ̂(s) ∈ arg max
ν∈Pr(A(s))

P (s, ν, φ̂)

for all s ∈ B1. Choose any Borel mapping f̂ : S → A such that

f̂ (s) ∈ arg max
a∈A(s)

P (s, a, ϕ̂)

for all s ∈ S \ B1. The existence of f̂ is guaranteed by Brown and Purves [17, Corol-
lary 1] or the Arsenin–Kunugui theorem (see Kechris [36, Theorem 18.18]). Define
ϕ̂(s) = φ̂(s) for s ∈ B1 and ϕ̂(s) = f̂ (s) for s ∈ S \ B1. Since q(·|s, a) � p(·) for all
(s, a) ∈ K, we have

ϕ̂(s) ∈ arg max
ν∈Pr(A(s))

P (s, ν, ϕ̂)

for all s ∈ S, which completes the proof. �
For any bounded Borel function v : S → R, we define

L(v)(s, a) := u(s, a) + β

∫

S

v(s′)q(ds′|s, a), (s, a) ∈ K,

and if φ ∈ �, then

Lφ(v)(s) :=
∫

A(s)

L(v)(s, a)φ(da|s) = u
(
s,φ(s)

) + β

∫

S

v(s′)q
(
ds′|s,φ(s)

)
.

Let Ln
φ denote the composition of Lφ with itself n times.

The following fact is well known; see for instance Hernández-Lerma and Lasserre
[31, Sect. 4.2].
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Lemma 7.4 (a) The equality v(s) = Lφ(v)(s) holds for all s ∈ S if and only if
v(s) = Jβ(φ)(s) for all s ∈ S.

(b) For any bounded Borel function v : S → R, it holds that

lim
n→∞Ln

φ(v)(s) = Jβ(φ)(s) for every s ∈ S.

Proof of Theorem 3.4 By Theorem 3.2, there exists a stationary Markov perfect equi-
librium ϕ̂ ∈ �. For every s ∈ S, we define

�(s) := supp
(
ϕ̂(·|s)) =

⋂
{K : K ⊆ A(s),K is closed and ϕ̂(K|s) = 1}.

The closed-valued correspondence � is weakly measurable because for any open set
U ∈ A, the set of all s ∈ S with �(s) ∩ U �= ∅ is precisely {s ∈ S : ϕ̂(U |s) �= 0} and
belongs to B(S). Since A(s) is compact for each s ∈ S, also �(s) is compact for each
s ∈ S. Therefore � has a Borel graph (see Himmelberg [33]). Let � be the set of all
(s, a1, a2, �) ∈ S × A × A × [0,1] such that a1, a2 ∈ �(s) = supp(ϕ̂(·|s)) and

�L
(
Jβ(ϕ̂)

)
(s, a1) + (1 − �)L

(
Jβ(ϕ̂)

)
(s, a2) = Lϕ̂

(
Jβ(ϕ̂)

)
(s).

Clearly, � is a Borel set. Moreover, the set

�(s) = {(a1, a2, �) : (s, a1, a2, �) ∈ �}
is nonempty and compact. By the Arsenin–Kunugui theorem (see Kechris [36, The-
orem 18.18]), there exist Borel mappings f : S → A, g : S → A and λ : S → [0,1]
such that (f (s), g(s), λ(s)) ∈ �(s) for all s ∈ S. Let

φ∗(·|s) := λ(s)δf (s)(·) + (
1 − λ(s)

)
δg(s)(·). (7.8)

Clearly, φ∗ ∈ � and φ∗({f (s), g(s)}|s) = 1 for each s ∈ S. We have

Lφ∗
(
Jβ(ϕ̂)

)
(s) = Lϕ̂

(
Jβ(ϕ̂)

)
(s) = Jβ(ϕ̂)(s)

for all s ∈ S. From Lemma 7.4 (a), it follows that Jβ(φ∗) = Jβ(ϕ̂). Let

A0(s, ϕ̂) = arg max
a∈A(s)

P (s, a, ϕ̂).

Since f (s), g(s) ∈ �(s) ⊆ A0(s, ϕ̂) for all s ∈ S, we conclude that

max
ν∈Pr(A(s))

(

u(s, ν) + αβ

∫

S

J β(φ∗)(s′)q(ds′|s, ν)

)

= u
(
s,φ∗(s)

) + αβ

∫

S

J β(φ∗)(s′)q
(
ds′∣∣s,φ∗(s)

)

= P
(
s,φ∗(s),φ∗

)
. (7.9)

From (7.9), we conclude that φ∗ is a stationary Markov perfect equilibrium with the
required property that the support of every measure φ∗(·|s) contains at most two
points. This completes the proof. �
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Let μ ∈ Pr(S) and w : K → R be a Borel function such that for all ψ ∈ F , the
integral

∫
S
|w(s,ψ(s))|μ(ds) is finite. We define

Iw(f,g,λ)(s) := λ(s)w
(
s, f (s)

) + (
1 − λ(s)

)
w

(
s, g(s)

)

where f,g ∈ F and λ : S → [0,1] is a Borel function. If ψ ∈ F , then

Iw(ψ)(s) := w
(
s,ψ(s)

)
.

Given a Borel function Y : S → R such that
∫
S
|Y(s)|μ(ds) < ∞, we denote by

E[Y |G] a version of the conditional expectation of Y with respect to the σ -field G.

The following result is a corollary to Dynkin and Evstigneev [23, Theorem 1.2],
which is an extension of the classical Lyapunov theorem.

Lemma 7.5 Assume that G is a σ -field contained in B(S) and B(S) has no G-atoms
under an atomless probability measure μ. Let f , g ∈ F . Then for any Borel func-
tion λ : S → [0,1], there exists some ψ ∈ F such that ψ(s) ∈ {f (s), g(s)} for all
s ∈ S and

E[Iw(f,g,λ)|G] = E[Iw(ψ)|G] μ-a.e.

Proof of Theorem 3.5 Let φ∗ be the stationary Markov perfect equilibrium given in
(7.8). By Lemma 7.5, there exists some φ0 ∈ F such that φ0(s) ∈ {f (s), g(s)} for all
s ∈ S and

E
[
Lφ∗

(
Jβ(φ∗)

)∣∣G
] = E

[
Lφ0

(
Jβ(φ∗)

)∣∣G
]

p-a.e.

Since ρ(s, a, ·) and s �→ A(s) are G-measurable, this implies that for all (s, a) ∈ K,
we have

E
[
Lφ∗

(
Jβ(φ∗)

)
ρ(s, a, ·)∣∣G] = E

[
Lφ∗

(
Jβ(φ∗)

)∣
∣G

]
ρ(s, a, ·)

= E
[
Lφ0

(
Jβ(φ∗)

)∣
∣G

]
ρ(s, a, ·)

= E
[
Lφ0

(
Jβ(φ∗)

)
ρ(s, a, ·)∣∣G]

p-a.e. (7.10)

By taking the expectation on both sides of (7.10) with respect to p, we obtain
∫

S

Lφ∗
(
Jβ(φ∗)

)
(s′)q(ds′|s, a) =

∫

S

Lφ0

(
Jβ(φ∗)

)
(s′)q(ds′|s, a) (7.11)

for all (s, a) ∈K. Multiplying both sides of (7.11) by β , putting a = φ0(s) and adding
to both sides u(s,φ0(s)), we obtain

Lφ0

(
Lφ∗

(
Jβ(φ∗)

))
(s) = L2

φ0

(
Jβ(φ∗)

)
(s), s ∈ S.

Since Jβ(φ∗) = Lφ∗(J
β(φ∗)), it follows that

Lφ0

(
Jβ(φ∗)

)
(s) = L2

φ0

(
Jβ(φ∗)

)
(s), s ∈ S.

By iterating this equality, we obtain

Lφ0

(
Jβ(φ∗)

)
(s) = Ln

φ0

(
Jβ(φ∗)

)
(s), s ∈ S.
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This equality and Lemma 7.4 (b) imply that

Lφ0

(
Jβ(φ∗)

)
(s) = lim

n→∞Ln
φ0

(
Jβ(φ∗)

)
(s) = Jβ(φ0)(s), s ∈ S. (7.12)

Since Jβ(φ0) = Lφ0(J
β(φ0)), we conclude from (7.12) that

β

∫

S

J β(φ∗)(s′)q
(
ds′∣∣s,φ0(s)

) = β

∫

S

J β(φ0)(s
′)q

(
ds′∣∣s,φ0(s)

)
(7.13)

for all s ∈ S. Multiplying both sides of (7.13) by α and adding to both sides
u(s,φ0(s)), we obtain

P
(
s,φ0(s),φ∗

) = P
(
s.φ0(s),φ0

)
(7.14)

for all s ∈ S. We know from Lemma 7.5 that φ0(s) ∈ {f (s), g(s)} for all s ∈ S. From
(7.9) and (7.14), we deduce that

P
(
s,φ0(s),φ0

) = P
(
s,φ0(s),φ∗

) = max
ν∈Pr(A(s))

P (s, ν,φ∗), s ∈ S. (7.15)

Since Lφ∗(J
β(φ∗)) = Jβ(φ∗), we obtain from (7.12) that Lφ0(J

β(φ∗)) = Jβ(φ0).
This fact and (7.11) imply that

∫

S

J β(φ∗)(s′)q(ds′|s, a) =
∫

S

J β(φ0)(s
′)q(ds′|s, a) (7.16)

for all (s, a) ∈K. From (7.16), we easily conclude that

P(s, a,φ∗) = P(s, a,φ0) for all (s, a) ∈ K.

This equality in turn implies that

max
ν∈Pr(A(s))

P (s, ν,φ∗) = max
ν∈Pr(A(s))

P (s, ν,φ0). (7.17)

Now, we easily deduce from (7.15) and (7.17) that φ0 is a deterministic stationary
Markov perfect equilibrium. �

Remark 7.6 In order to adapt the proofs in this section to the unbounded utility case
discussed in Remark 3.12, one has to replace L∞(S,p) by the space of classes of
functions v : S →R such that s �→ v(s)

ω(s)
is p-essentially bounded.

8 Concluding remarks

In this paper, we have studied a fairly general class of time-inconsistent Markov deci-
sion processes with a Borel state space. Using quasi-hyperbolic discounting and the
game-theoretic formulation as for instance in Balbus et al. [6], Harris and Laibson
[27], Pelag and Yaari [54], Phelps and Pollak [55] or Pollak [56], we have established
the existence of a stationary Markov perfect equilibrium in models with transitions
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having a density function. In order to obtain a stationary equilibrium, we have used
a fixed point argument. More importantly, we have shown that a stationary Markov
equilibrium may be simplified in the sense that all selves can randomise their choices
over at most two pure actions in each state. The existence of a deterministic sta-
tionary equilibrium requires some additional assumptions on an atomless transition
probability. The dynamic-programming-like algorithm used in Sect. 5 for Markov de-
cision processes with countably many states produces a sequence (f̄n) of strategies
having a subsequence converging to a deterministic Markov perfect equilibrium. The
sequence (f̄n) itself need not be convergent (see Example 5.6). This non-stationary
equilibrium may have interesting properties. Namely, it can dominate (in the sense of
expected utilities) the randomised stationary one. We have also shown by a suitable
approximation that ε-equilibria in deterministic Markovian strategies exist in some
models with a Borel state space.

We should like to emphasise that an analysis of optimality (equilibria) in dynamic
decision models under quasi-hyperbolic discounting cannot be done using the Bell-
man optimality principle. An extensive discussion of this issue can be found in Björk
and Murgoci [15], Krusell and Smith [38], Maliar and Maliar [43, 44]. The examples
given in this paper also confirm this statement. Therefore, we apply game-theoretic
tools and a fixed point theorem. However, as noted by Maliar and Maliar [44], nu-
merical calculations of stationary Markov perfect equilibria are complicated even in
simple cases where closed-form (analytical) solutions are already known. The ques-
tion of existence of deterministic equilibria in different types of models with a general
state space remains open. Here, we have solved this problem for some important sub-
classes of decision processes.

As indicated earlier, studying Markov perfect equilibria in Markov decision pro-
cesses with quasi-hyperbolic discounting has some relevance to macroeconomics,
portfolio management or finance. We wish to point out in conclusion that Theorems
3.4 and 3.5 for Markov decision processes with a continuum of states extend and
complete the results obtained by Balbus et al. [6] and Harris and Laibson [27] for
consumption/investment models with atomless transitions. In Theorem 3.4, the tran-
sitions may have some atoms. Our results can be applied to various Markov decision
processes with a multidimensional state space.

Acknowledgement We thank the Editors and anonymous referees for very constructive and helpful
comments. We also thank our colleagues Łukasz Balbus and Łukasz Woźny for stimulating discussions
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