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Abstract In this paper, we consider an optimal insurance problem from the perspec-
tive of a risk-averse individual who faces an insurable risk as well as some back-
ground risk and wants to maximise the expected utility of his/her final wealth. To
reduce ex post moral hazard, we follow Huberman et al. (Bell J. Econ. 14:415–426
1983) to assume that alternative insurance contracts satisfy the principle of indem-
nity and the no-sabotage condition. When the insurance premium is calculated by the
expected value premium principle, a necessary and sufficient condition for the opti-
mality of an insurance contract is established under a general dependence structure
between insurable and background risks. By virtue of this condition, some qualitative
properties of optimal contracts are developed, a scheme is provided to improve any
suboptimal insurance strategy, and optimal insurance forms are derived explicitly for
some dependence structures of interest. These forms are not always piecewise linear.
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1 Introduction

When facing an insurable risk, an individual may choose to share this risk with an
insurer by purchasing an insurance contract. Generally, the insured has to make a
balance between the risk transfer and the insurance premium paid, with the goal of
maximising his/her satisfaction. This naturally elicits the study of optimal insurance
design for the insured. In the formulation of an optimal insurance problem, there are
many different premium principles and risk measures to choose, which stimulates
different streams of research on this topic.

In the pioneering work of Arrow [1] who analyses the optimal insurance prob-
lem under the expected utility (EU) framework (von Neumann and Morgenstern [34,
Chap. I]), the optimality of stop-loss insurance, which is full insurance above a de-
ductible, is established for maximising the EU of the insured’s final wealth when
the insurance premium is calculated by the expected value principle. Later this result
is generalised mainly in two directions. In one direction, different premium prin-
ciples are used to price insurance contracts. For instance, Raviv [26], Young [36],
Kaluszka [17] and Kaluszka and Okolewski [18] investigate the optimal insurance
design under the principle of equivalent utility, Wang’s premium principle, mean–
variance premium principles and the maximal possible claims principle, respectively.
Another direction is to generalise the EU framework. Van Heerwaarden et al. [32]
and Gollier and Schlesinger [14] extend Arrow’s result by considering a general op-
timisation criterion preserving second degree stochastic dominance. Bernard et al.
[4] and Xu et al. [35] instead obtain optimal insurance strategies explicitly under the
framework of rank-dependent expected utility (RDEU). The optimal insurance de-
mand under prospect theory is investigated in Sung et al. [31] and Schmidt [29]. See
e.g. Balbás et al. [2] and Kiesel and Rüschendorf [19] for the optimal contract design
under general risk measures.

Notably, the aforementioned studies are restricted to the single-risk framework. In
practice, however, an individual may face multiple sources of risks, where one major
risk is to be insured and other risks such as investment risk, economic risk and opera-
tional risk are either uninsurable or not to be insured. These risks are often combined
together and treated as background risk in insurance economics. It is noteworthy that
many different dependence structures between background risk and insurable risk ex-
ist in insurance practice. We refer to Vercammen [33] and Dana and Scarsini [10] for
a detailed discussion.

The optimal insurance design with background risk has attracted great attention
from academics. Mayers and Smith [24] investigate the optimal proportion rate of
quota-share insurance together with the demand of financial assets, while Doherty
and Schlesinger [11] analyse the optimal deductible level of the stop-loss insurance
when the insured’s initial wealth is random. Eeckhoudt and Kimball [12] investigate
how the presence of background risk affects the demand for quota-share insurance
and stop-loss insurance, assuming that the background risk increases with respect to
the insurable risk in the sense of third increasing convex order and that the insured is
risk-averse and prudent. However, these analyses are confined to some special types
of insurance contracts and thus lack generality. Gollier [13] instead considers a large
range of alternative possible insurance contracts which are asked to satisfy the prin-
ciple of indemnity. That is, the indemnity is nonnegative but less than the insurable
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loss. Assuming that the insurance premium only depends on the expected indemnity,
he shows that the optimal contract is stop-loss insurance if background risk and in-
surable risk are independent, and changes to disappearing deductible when the back-
ground risk becomes stochastically increasing with respect to the insurable risk in the
sense of convex order. The optimality of disappearing deductible is also obtained in
Mahul [23] and Dana and Scarsini [10] who extend the insurance model of Raviv [26]
by taking background risk into consideration. However, this optimal insurance con-
tract allows the marginal indemnity to be strictly larger than 1, and hence the insured
has an incentive to benefit himself/herself by overstating the actual loss, described as
ex post moral hazard by Huberman et al. [16]. As a result, the insurance contract of
this type is seldom used in practice.

To reduce ex post moral hazard, Huberman et al. [16] suggest that both the insured
and the insurer should pay more for a larger realisation of the insurable loss. Equiv-
alently, the marginal indemnity should be nonnegative and less than 1. This is also
referred to as the no-sabotage condition (Carlier and Dana [6]). After imposing this
condition and the principle of indemnity on insurance contracts, Lu et al. [21] obtain
the same result as Arrow [1] in favor of stop-loss insurance under the assumption that
the background risk is stochastically increasing in the insurable risk. This result is
further extended by Chi and Wei [9] to a weaker positive dependence structure. More
specifically, they obtain the optimality of stop-loss insurance for the insured with the
risk preference preserving (n + 1)th degree stochastic dominance when the back-
ground risk is right tail increasing with respect to the insurable risk in nth stochastic
order.

Clearly, a positive dependence of this kind cannot capture the full spectrum of the
relationship between background risk and insurable risk. In addition to positive de-
pendence, Dana and Scarsini [10] introduce several other types of dependence struc-
tures that frequently appear in insurance practice. Motivated by their study, it is nat-
ural to ask what is the optimal insurance form for a general dependence structure
between background risk and insurable risk when ex post moral hazard is excluded
like in Huberman et al. [16]. To the best of our knowledge, there is little literature
tackling this problem. Our objective is to fill the gap and shed some light on the study
of this problem.

In this paper, we revisit the optimal insurance problem with background risk by
assuming a general dependence structure between background risk and insurable risk.
To exclude ex post moral hazard, we follow the way of Huberman et al. [16] to
assume that alternative insurance contracts satisfy the principle of indemnity and the
no-sabotage condition. As in the literature, the insurance premium is calculated by
the expected value principle with a safety loading coefficient ρ. We show that the
optimal insurance contract always exists and is often unique. However, it is quite
difficult to be derived explicitly because of the general dependence assumption and
the no-sabotage condition. We instead use the approach of the calculus of variations
to get a necessary and sufficient condition for the solution, which provides a sketchy
way to characterise solutions. More specifically, the marginal indemnity of an optimal
insurance contract should be either 0 or 1, with some exceptions at critical points,
depending upon the comparison between the function �f ∗(x) defined in (3.4) and
1 + ρ. By virtue of this condition, we can design a better insurance strategy based
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on any suboptimal contract, and derive optimal insurance forms explicitly for some
interesting dependence structures. The main contributions of this paper are threefold:

First, a necessary and sufficient condition is provided for the optimality of any
insurance strategy satisfying the principle of indemnity as well as the no-sabotage
constraint. This condition plays a fundamental role in our analysis. It can be used
to develop useful characteristics of optimal contracts. In particular, the optimal insur-
ance contract often involves a deductible if the safety loading coefficient ρ is positive,
regardless of the dependence structure between insurable risk and background risk. In
addition, for any suboptimal insurance strategy, a scheme is developed to enhance the
strategy, which results in a strict increase in the EU of the insured’s final wealth. Fur-
thermore, it is very helpful in deriving optimal contracts explicitly for some depen-
dence structures including not only positive dependence but also negative dependence
and even mixed dependence. It is quite different from Lu et al. [21] and Chi and Wei
[9] who derive explicit optimal insurance contracts only for the positive dependence
case. Although a few general dependence structures have been studied in Lu et al.
[22], their analysis is restricted to the optimality of some piecewise linear insurance
contracts. However, we find that optimal insurance forms are not always piecewise
linear, especially for some moderate negative dependence and mixed dependence.
Therefore, our analysis significantly complements the research of optimal insurance
design with background risk by taking into account more dependence structures and
establishing the optimality of new insurance forms.

Second, we find that the optimal insurance design with background risk usually
changes significantly once the no-sabotage condition is imposed. More specifically,
we show that optimal contracts satisfying this condition are very different from those
without imposing this condition (Dana and Scarsini [10]), as illustrated in Table 1.
This finding is quite different from the result obtained by Carlier and Dana [7], who
show that in the absence of background risk the optimal insurance contract always
satisfies the no-sabotage condition under the majority of EU or non-EU based models.
Notably, Xu et al. [35] have a finding similar to ours under the RDEU framework
when background risk is not taken into consideration.

Third, we revisit Mossin’s theorem in the presence of background risk. Mossin’s
theorem states that in the absence of background risk (equivalently, background risk
is a constant), full insurance is optimal if and only if the safety loading coefficient ρ

is equal to 0. However, in the presence of background risk, we show that Mossin’s
theorem may be violated. In particular, the optimality of full insurance heavily relies
on the dependence between background and insurable risk and need not hold even
if ρ is 0. One special example is that the sum of background and insurable risks is
negatively quadrant dependent with the insurable risk, and the no-insurance strategy
is always optimal for this case (Corollary 4.2).

The rest of the paper is organised as follows. In Sect. 2, we formulate an opti-
mal insurance model with background risk and introduce some dependence notions.
In Sect. 3, a necessary and sufficient condition is established for the optimality of
any given insurance strategy, and a scheme is developed to improve any suboptimal
insurance strategy under an arbitrary dependence structure. In Sects. 4–6, optimal
insurance contracts are derived explicitly for some categories of positive, moderate
negative and strong negative dependence. Section 7 extends the analysis to some
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mixed dependence structures by assuming that the insured exhibits constant absolute
risk aversion (CARA). Some concluding remarks are provided in Sect. 8. Finally, the
appendix collects three useful lemmas.

2 Preliminaries

2.1 Model formulation

Suppose that within a fixed time period, an insured endowed with initial wealth w is
facing two sources of risks X and Y , where X is insurable and nonnegative and Y is
a background risk and may be negative. Both X and Y are defined on a probability
space (�,F ,P), and X is assumed to be bounded with the support

S(X) = {x ∈ R : P[X ∈ (x − ε, x + ε)] > 0 for all ε > 0}.
Denote by M the essential supremum of X; then M = supS(X) < ∞. The assump-
tion of a bounded insurable risk is commonly used in insurance economics. See for
example Dana and Scarsini [10] and Schlesinger [28].

In order to reduce the risk exposure, the insured seeks to purchase an insurance
contract, in which an amount f (X) of risk is ceded to an insurer and the residual risk
If (X) = X − f (X) is retained. The functions f (x) and If (x) are usually called the
insured’s ceded and retained loss functions, respectively. In insurance economics, it
is widely accepted that the insurance contract should satisfy the principle of indem-
nity. That is, the ceded loss should be nonnegative but not exceed the original loss.
However, it is insufficient to impose only this constraint on insurance contracts. To
preclude ex post moral hazard, we follow Huberman et al. [16] to further assume that
alternative insurance contracts satisfy the no-sabotage condition, which asks both the
insured and the insurer to pay more for a larger realisation of the insurable loss. Math-
ematically, f (x) and If (x) should be increasing functions. It is necessary to point out
that the terms “increasing” and “decreasing” used in this paper mean “nondecreas-
ing” and “nonincreasing”, respectively. Using C to represent the set of admissible
ceded loss functions, we have

C = {0 ≤ f (x) ≤ x : If (x) and f (x) are increasing functions}.
Note that f ∈ C is equivalent to that f (x) is increasing and Lipschitz-continuous in
the sense that

f (0) = 0 and 0 ≤ f (x) − f (y) ≤ x − y, 0 ≤ y ≤ x. (2.1)

Thus any admissible ceded loss function f (x) is differentiable with 0 ≤ f ′(x) ≤ 1
almost everywhere.

To cover the potential insurable loss for the insured, the insurer will need to collect
a premium. Following the majority of the literature, we assume that the insurer is risk-
neutral and calculates the insurance premium by the expected value principle. Using
π(·) to represent the premium principle, we have

π
(
f (X)

) = (1 + ρ)E[f (X)]
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for some nonnegative safety loading coefficient ρ. It is worthwhile to point out that
the assumption of the expected value premium principle plays an important role in
this paper. Specifically, the linearity of this principle is necessary in establishing The-
orem 3.3, which is the foundation of many results in later sections. Admittedly, there
are many alternatives beyond the expected value premium principle. Readers are re-
ferred to Young [37] for a comprehensive review of premium principles. Despite the
existence of alternative premium principles, not many of them have been used in the
study of optimal insurance design under the EU framework. This is mainly due to
the mathematical challenge. For example, Raviv [26] and Young [36] have studied
the optimal insurance problem under the principle of equivalent utility and Wang’s
premium principle, respectively, and neither has obtained explicit solutions even in
the absence of background risk. Therefore, we stick to the expected value premium
principle to avoid complications.

With an insurance arrangement, the insured’s final wealth Wf (X,Y ) can be rep-
resented by

Wf (X,Y ) = w − Y − If (X) − π
(
f (X)

) ≤ w − Y, (2.2)

because If (X) = X − f (X) ≥ 0 and π(f (X)) ≥ 0 as f (X) ≥ 0. Following the clas-
sical EU framework, the objective is to maximise the EU of the insured’s final wealth.
Mathematically, the optimisation problem can be formulated as

max
f ∈C

E
[
u
(
Wf (X,Y )

)]
, (2.3)

where u(·) is a strictly increasing concave utility function with u′(·) > 0 and
u′′(·) < 0. The chosen utility function reflects the attitude of the insured’s risk aver-
sion. For technical convenience, we make the following assumption throughout
the paper:

Assumption 2.1 −∞ < E
[
u
(
w − Y − X − (1 + ρ)E[X])] < E[u(w − Y)] < ∞.

It is worth mentioning that the above mathematical model is also applicable to
analyse the optimal insurance problem with random initial wealth and an insurable
risk. More specifically, by regarding the negative of the wealth as a background risk,
the analysis is equivalent to solving the optimisation problem (2.3).

2.2 Dependence notions

The solution to problem (2.3) heavily depends on the dependence structure between
background and insurable risks. In order to study this problem, we introduce below
some useful dependence notions.

Definition 2.2 A random variable Z1 is said to be stochastically increasing (resp.
stochastically decreasing) in a random variable Z2, denoted as Z1 ↑st Z2 (resp.
Z1 ↓st Z2), if x 
→ E[v(Z1)|Z2 = x] is increasing (resp. decreasing) over the sup-
port of Z2 for any increasing function v(·) such that E[|v(Z1)|] < ∞.
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The notion of stochastic increasingness was proposed by Lehmann [20]. Clearly,
Y ↑st X indicates a positive dependence structure between X and Y . On the other
hand, stochastic decreasingness implies a negative dependence structure. These two
notions have been widely used in insurance economics; see for example Dana and
Scarsini [10], Cai and Wei [5] and Lu et al. [21].

In addition to stochastic increasingness, Lehmann [20] also introduced the notion
of positive quadrant dependence, which was described in terms of joint distribution
functions. Later, Shaked and Shanthikumar [30, Sect. 9.A.1] provided an equivalent
characterisation by using joint survival functions, which is characterised by Defini-
tion 2.3 below.

Definition 2.3 Two random variables Z1 and Z2 are positively (negatively) quadrant
dependent, denoted as Z1 ∼PQD Z2 (Z1 ∼NQD Z2), if

P[Z1 > x,Z2 > y] ≥ (≤) P[Z1 > x]P[Z2 > y] for all x and y.

Further, we introduce the notion of right tail increasingness, which was proposed
by Barlow and Proschan [3, Chap. 5] and whose applications in optimal insurance
problems can be found in Chi and Wei [9].

Definition 2.4 A random variable Z1 is right tail increasing (resp. right tail de-
creasing) in a random variable Z2, denoted as Z1 ↑rt Z2 (resp. Z1 ↓rt Z2), if
x 
→ E[v(Z1)|Z2 > x] is increasing (resp. decreasing) over the support of Z2 for
any increasing function v(·) such that E[|v(Z1)|] < ∞.

It is not difficult to establish that Y ↓st X (resp. Y ↓rt X, Y ∼NQD X) if and only if
−Y ↑st X (resp. −Y ↑rt X, −Y ∼PQD X). Furthermore, we have among these notions
the implications

Y ↑st X =⇒ Y ↑rt X =⇒ Y ∼PQD X. (2.4)

All these notions indicate some kind of positive dependence, with PQD being the
weakest one. It should be pointed out that the notion of PQD is symmetric (that is,
Y ∼PQD X ⇐⇒ X ∼PQD Y ), while the other two notions are not.

3 Insurance design under an arbitrary dependence structure

In this section, we study problem (2.3) under an arbitrary dependence structure.
Specifically, we first discuss the existence and uniqueness of a solution and then es-
tablish a necessary and sufficient condition for the optimality of any given insurance
strategy.

Proposition 3.1 (i) There exists at least one solution to problem (2.3).
(ii) The solution is unique in the sense that f1(X) = f2(X) a.s. for any two solu-

tions f1, f2 to problem (2.3) if one of the following conditions is satisfied: (a) ρ > 0;
(b) 0 ∈ S(X).
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Proof (i) Define M = supf ∈CE[u(Wf (X,Y ))]. There exists a sequence (fn)n≥1 ⊆ C

such that

M = lim
n→∞E

[
u
(
Wfn(X,Y )

)] ≤ E[u(w − Y)] < ∞,

where the inequality follows from (2.2). Since X is bounded by M , the (fn(X))n≥1
are uniformly bounded by M as well. Furthermore, all the (fn)n≥1 are Lipschitz-
continuous with a common Lipschitz constant, namely 1. According to the Arzelà–
Ascoli theorem (Rudin [27, Theorem 7.25]), there exists a subsequence (fnk

)k≥1
that uniformly converges to a continuous function f ∗ on the closed interval
[0,M]. Define f ∗(x) = f ∗(M) for any x > M . Following from (2.1), it is easy
to verify that f ∗(x) ∈ C. Furthermore, Wfnk

(X,Y ) → Wf ∗(X,Y ) a.s. Because
Wfnk

(X,Y ) ≤ w − Y by (2.2) and u is increasing, using first the continuity of u(·)
and then Fatou’s lemma implies

E[u(w − Y)] −E
[
u
(
Wf ∗(X,Y )

)] = E

[
lim

k→∞

(
u(w − Y) − u

(
Wfnk

(X,Y )
))]

≤ lim inf
k→∞ E

[
u(w − Y) − u

(
Wfnk

(X,Y )
)]

= E[u(w − Y)] −M,

which in turn implies M ≤ E[u(Wf ∗(X,Y ))]. Since M ≥ E[u(Wf ∗(X,Y ))] accord-
ing to the definition of M, we have M = E[u(Wf ∗(X,Y ))]. Therefore, f ∗(x) is a
solution to problem (2.3).

(ii) If both f1 and f2 are solutions to problem (2.3), it immediately follows that

E
[
u
(
Wf1(X,Y )

)] = E
[
u
(
Wf2(X,Y )

)] = M.

For any p ∈ (0,1), pf1 + (1 − p)f2 ∈ C and hence E[u(Wpf1+(1−p)f2(X,Y ))] ≤ M.
On the other hand, the concavity of u(·) leads to

E
[
u
(
Wpf1+(1−p)f2(X,Y )

)] ≥ pE
[
u
(
Wf1(X,Y )

)] + (1 − p)E
[
u
(
Wf2(X,Y )

)]

= M. (3.1)

Therefore, the equality in (3.1) must be obtained. Noting that u′′(·) < 0, this equality
holds only if Wf1(X,Y ) = Wf2(X,Y ) a.s., or equivalently,

f1(X) − (1 + ρ)E[f1(X)] = f2(X) − (1 + ρ)E[f2(X)] a.s. (3.2)

If ρ > 0, taking expectations on both sides of (3.2) yields E[f1(X)] = E[f2(X)],
which in turn implies f1(X) = f2(X) a.s. This proves case (a).

If ρ = 0, consider case (b): 0 ∈ S(X). It follows from (3.2) that the equation
E[f2(X)] − E[f1(X)] = f2(X) − f1(X) holds almost surely. In other words, we
have P[X ∈ B] = 1 with B = {x ∈ [0,M] : E[f2(X)] − E[f1(X)] = f2(x) − f1(x)}.
If 0 ∈ B, then E[f2(X)] − E[f1(X)] = f2(0) − f1(0) = 0 and thus it holds for all
x ∈ B that f2(x) − f1(x) = E[f2(X)] −E[f1(X)] = 0. This implies f1(X) = f2(X)

a.s. since P[X ∈ B] = 1. Otherwise, consider the case 0 /∈ B. Because 0 ∈ S(X), there
must exist a sequence (xn)n≥1 such that xn ∈ B and limn→∞ xn = 0. Therefore, we
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have E[f2(X)] − E[f1(X)] = limn→∞ f2(xn) − f1(xn) = 0, which in turn implies
f1(X) = f2(X) a.s. from (3.2). �

Remark 3.2 Note that the solutions to problem (2.3) need not be unique if ρ = 0
and 0 /∈ S(X). For example, if f ∗(x) is a solution to (2.3) with f ∗(ess infX) > 0,
where ess infX = infS(X), then f̃ (x) = (f ∗(x) − f ∗(ess infX))+ is also a solution
to problem (2.3) because Wf ∗(X,Y ) = W

f̃
(X,Y ) a.s. Although the solutions are not

unique in this case, it should not be a major concern. For one thing, we can see that
the two optimal ceded loss functions differ only by a constant shift on S(X) and
they produce the same final wealth in the sense of P-a.s. For another, the insurable
loss in practice usually possesses a positive probability mass at zero and the insurer
usually sets a positive safety loading coefficient to calculate the insurance premium.
Therefore, we can safely conclude the uniqueness of the solution in most situations
of practical interest.

Without a specific assumption on the dependence between X and Y , it is generally
difficult to find the solution explicitly. Below, we derive a necessary and sufficient
condition for the optimality of any given ceded loss function.

Theorem 3.3 The ceded loss function f ∗(x) is a solution to problem (2.3) if and
only if it satisfies

f ∗′
(x) =

{
1, �f ∗(x) > 1 + ρ,

0, �f ∗(x) < 1 + ρ,
(3.3)

almost everywhere on [0,M), where �f (x) is defined as

�f (x) = E[u′(Wf (X,Y ))|X > x]
E[u′(Wf (X,Y ))] , 0 ≤ x < M. (3.4)

Proof (i) (Necessity) We assume that f ∗(x) is a solution to problem (2.3). For any
f (x) ∈ C and p ∈ [0,1], if fp(x) := pf ∗(x) + (1 − p)f (x), then fp(x) ∈ C. The

optimality of f ∗(x) implies
∂E[u(Wfp (X,Y ))]

∂p
|p=1 ≥ 0, which is equivalent to

0 ≤ E
[
u′(Wf ∗(X,Y )

)(
f ∗(X) − f (X) − (1 + ρ)E[f ∗(X) − f (X)])] (3.5)

=
∫ ∞

0
E

[
u′(Wf ∗(X,Y )

)(
I{X>x} − (1 + ρ)P[X > x])](f ∗′

(x) − f ′(x)
)
dx

=
∫ M

0
P[X > x]E[

u′(Wf ∗(X,Y )
)](

�f ∗(x) − (1 + ρ)
)(

f ∗′
(x) − f ′(x)

)
dx,

where the first equality follows from the fact that f (x) = ∫ ∞
0 f ′(t)I{x>t}dt and IA

is the indicator function of the event A. Note that the above inequality holds true for
any f ∈ C. Below we prove by contradiction that this implies (3.3).

If (3.3) is not satisfied, there exists a set E ⊆ [0,M) with positive Lebesgue mea-
sure such that either f ∗′(x) < 1 and �f ∗(x) > 1 + ρ for any x ∈ E or f ∗′(x) > 0
and �f ∗(x) < 1 + ρ for any x ∈ E. In the first case, we can construct a ceded loss
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function f such that f ′(x) = 1 for any x ∈ E and f ′(x) = f ∗′(x) elsewhere. Then
the last integral in (3.5) reduces to

∫

E

P[X > x]E[
u′(Wf ∗(X,Y )

)](
�f ∗(x) − (1 + ρ)

)(
f ∗′

(x) − 1
)
dx.

Recalling that u′(·) > 0, P[X > x] > 0 and (�f ∗(x) − (1 + ρ))(f ∗′(x) − 1) < 0 for
any x ∈ E, we conclude that the above integral value is negative. This contradicts
(3.5). A similar contradiction can be obtained in the second case.

(ii) (Sufficiency) If (3.3) is satisfied, then for any f ∈ C, we have

E
[
u
(
Wf ∗(X,Y )

)] −E
[
u
(
Wf (X,Y )

)]

≥ E
[
u′(Wf ∗(X,Y )

)(
f ∗(X) − f (X) − (1 + ρ)E[f ∗(X) − f (X)])]

=
∫ ∞

0
E

[
u′(Wf ∗(X,Y )

)(
I{X>t} − (1 + ρ)P[X > t])](f ∗′

(t) − f ′(t)
)
dt

=
∫ M

0
P[X > t]E[

u′(Wf ∗(X,Y )
)](

�f ∗(t) − (1 + ρ)
)(

f ∗′
(t) − f ′(t)

)
dt ≥ 0,

where the first inequality is due to the concavity of the utility function u(·). As a
consequence, f ∗(x) is a solution to problem (2.3). The proof is thus completed. �

For a ceded loss function f ∗ to be optimal, f ∗ should satisfy (3.3) almost every-
where. Note that values of f ∗′ on a set with zero Lebesgue measure do not affect the
value of f ∗. Henceforth, whenever f ∗′(x) is used to describe the optimal marginal
ceded loss function, we shall not mention the term “almost everywhere”. Note that
E[u′(Wf ∗(X,Y ))] < ∞ under Assumption 2.1, and hence �f ∗(x) is well defined.

The above theorem provides a necessary and sufficient condition to characterise
the optimal insurance strategy. We remark that this result does not require any specific
assumption on the dependence structure between X and Y . Although Theorem 3.3
does not explicitly solve the problem, it provides insights on what form the optimal
insurance strategy should take. Specifically, the marginal indemnity should be either
0 or 1, with some exceptions at the critical point(s) (where �f ∗(x) = 1 + ρ). This is
very useful in developing characteristics of optimal insurance contracts.

Corollary 3.4 If f ∗(x) is a solution to problem (2.3), then

f ∗(x) = 0, 0 ≤ x ≤ νρ,

where νρ = inf{x ≥ 0 : P[X > x] ≤ 1
1+ρ

}.

Proof Note that P[X > x] > 1
1+ρ

if and only if x < νρ . For any f ∈ C, we have

�f (x) = E[u′(Wf (X,Y ))|X > x]
E[u′(Wf (X,Y ))]

= E[u′(Wf (X,Y ))I{X>x}]
E[u′(Wf (X,Y ))]P[X > x] ≤ 1

P[X > x] < 1 + ρ (3.6)
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for any x < νρ . Therefore, it follows from Theorem 3.3 and (2.1) that f ∗(x) = 0 for
any x < νρ . �

Remark 3.5 Corollary 3.4 suggests that the insured should always fully retain the
risk below the level νρ , regardless of the dependence structure between X and Y . In
other words, the dependence structure between X and Y does not affect the existence
of a deductible in the optimal insurance arrangement, provided that νρ > 0. Notably,
when ρ = 0, νρ becomes 0 and the statement of Corollary 3.4 trivially holds true.

Theorem 3.3 is also useful in improving the insurance strategy. More specifically,
for any f ∈ C, we define

B
f
− = {t ∈ [0,M) : f ′(t) > 0, �f (t) < 1 + ρ},

B
f
+ = {t ∈ [0,M) : f ′(t) < 1,�f (t) > 1 + ρ}.

If f is an optimal ceded loss function, then Theorem 3.3 implies that the sets Bf
− and

B
f
+ have Lebesgue measure 0. Otherwise, if f is suboptimal, the Lebesgue measure

of B
f
− ∪ B

f
+ is positive. To enhance the strategy f , we can reduce the marginal

indemnity at points with �f (t) < 1+ρ and increase the marginal indemnity at points
with �f (t) > 1 + ρ to some degree. Specifically, based on f , a sequence of ceded
loss functions can be constructed by

f s
p(x) = f (x) + p

∫ x

0

((
1 − f ′(t)

)
I{t∈Bf

+} − f ′(t)I{t∈Bf
−}

)
dt, p ∈ [0,1].

Obviously, f s
p ∈ C for any p ∈ [0,1] and f s

0 (x) = f (x).

Proposition 3.6 For any suboptimal ceded loss function f ∈ C, there exists some
p∗ ∈ (0,1] such that

E
[
u
(
Wf (X,Y )

)]
< E

[
u
(
Wf s

p∗ (X,Y )
)]

.

Proof Assume that f is not a solution to (2.3). It is easy to see that E[u(Wf s
p
(X,Y ))]

is a concave function of p with

∂E[u(Wf s
p
(X,Y ))]

∂p

∣∣∣∣
p=0

=
∫ M

0
E

[
u′(Wf (X,Y )

)(
I{X>t} − (1 + ρ)P[X > t])]

×
((

1 − f ′(t)
)
I{t∈Bf

+} − f ′(t)I{t∈Bf
−}

)
dt

= E
[
u′(Wf (X,Y )

)] ∫ M

0
P[X > t](�f (t) − (1 + ρ)

)

×
((

1 − f ′(t)
)
I{t∈Bf

+} − f ′(t)I{t∈Bf
−}

)
dt.
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Recall that |Bf
− ∪B

f
+| > 0. The above equation together with the definitions of Bf

−
and B

f
+ implies that

∂E[u(Wf s
p
(X,Y ))]

∂p
|p=0 > 0, which in turn implies

E
[
u
(
Wf (X,Y )

)]
< E

[
u
(
Wf s

p∗ (X,Y )
)]

,

where p∗ = arg maxp∈[0,1] E[u(Wf s
p
(X,Y ))] ∈ (0,1]. �

Proposition 3.6 provides a practical scheme to enhance the insurance design.
When seeking an optimal insurance contract, a decision maker could first design a
ceded loss function f based on the past experience, then he/she should check whether
the selected strategy satisfies (3.3). If yes, then f is the optimal insurance strategy.
Otherwise, it is suboptimal and can be enhanced according to the scheme described in
Proposition 3.6. In principle, it is possible to reach the optimal insurance strategy by
repeating the enhancement scheme. However, we admit that the repetition (especially
for many times) of the enhancement scheme may encounter practical challenges and
thus need not deliver the optimal contract as expected.

In general, it remains challenging to explicitly derive the optimal insurance strat-
egy. In the following three sections, we study the optimal insurance problem un-
der several categories of dependence structures between X and Y : (i) positive
dependence, Y ∼PQD X, which includes Y ↑rt X and Y ↑st X as special cases;
(ii) strong negative dependence, (Y + X) ∼NQD X, which includes (Y + X) ↓rt X

and (Y + X) ↓st X as special cases; and finally (iii) moderate negative dependence,
(Y + X) ↑st X and Y ↓st X. Dependence structures in these categories have very dif-
ferent nature and thus lead to different optimal insurance contracts. Note that the
moderate negative dependence is characterised by the notion of stochastic increas-
ingness, which is stronger than that used in the other two categories. This is because
the case of the moderate negative dependence structure is generally more difficult to
analyse. A similar categorisation of dependence structures has been considered by
Dana and Scarsini [10] to study optimal insurance design in a different setup. Further
discussion on the comparison between their results and ours is given in Sect. 8.

4 Strong negative dependence

We focus on the strong negative dependence structure (Y + X) ∼NQD X in this sec-
tion. Intuitively, the insurable risk X is fully hedged by the background risk Y , and
there is no need to purchase any insurance coverage for X. In this section, we confirm
this intuition through rigorous proofs.

Proposition 4.1 No-insurance is optimal if and only if

E[u′(w − Y − X)|X > x]
E[u′(w − Y − X)] ≤ 1 + ρ, νρ ≤ x < M. (4.1)

In particular, if x 
→ E[u′(w − Y − X)|X ≥ x] is decreasing over [νρ,M), then no-
insurance is the solution to problem (2.3).
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Proof The necessity and sufficiency of (4.1) for the optimality of no-insurance follow
directly from Theorem 3.3 and Corollary 3.4.

In particular, if x 
→ E[u′(w − Y − X)|X ≥ x] is decreasing over [νρ,M), then

E[u′(w − Y − X)|X > x] ≤ E[u′(w − Y − X)|X ≥ x]
≤ E[u′(w − Y − X)|X ≥ νρ]
= lim

t↑νρ

E[u′(w − Y − X)|X > t]

≤ (1 + ρ)E[u′(w − Y − X)]
for any x ∈ [νρ,M), where the last inequality follows from (3.6). As a consequence,
no-insurance is optimal. �

Proposition 4.1 can be easily interpreted. Intuitively, (4.1) means that the insur-
ance cost (safety loading coefficient ρ) is quite high, and thus it makes sense not to
purchase any insurance coverage. A stronger sufficient condition for the optimality of
no-insurance, which is independent of the specific expression of the insured’s utility
function, is provided below.

Corollary 4.2 If (Y + X) ∼NQD X, then the no-insurance strategy is a solution to
problem (2.3).

This corollary follows from Proposition 4.1 and Lemma A.1 by noting that
u′(·) is a decreasing function. Recall from (2.4) that each of (Y + X) ↓rt X and
X ↓rt (Y + X) implies (Y + X) ∼NQD X. Each of (Y + X) ↓rt X and X ↓rt (Y + X)

is also a sufficient condition for the optimality of no-insurance. It is worth mentioning
that the optimality of no-insurance with background risk has been studied by Lu et al.
[22] under the assumption of (Y + X) ↓st X, which is stronger than the assumption
of Corollary 4.2. In this sense, Corollary 4.2 extends their result to a more general
setting of negative dependence.

5 Positive dependence

In this section, we investigate the optimal insurance design under positive dependence
Y ∼PQD X, as well as its special case Y ↑rt X. It is worth pointing out that the classi-
cal single risk model falls into this category, with the background risk Y degenerating
to a constant. In the single-risk framework, Arrow [1] has already demonstrated that
stop-loss insurance is optimal. In this section, we shall find out whether stop-loss in-
surance preserves its optimality under a general positive dependence. We also derive
conditions for full insurance to be optimal and thus generalise Mossin’s theorem [25].

5.1 Optimality of stop-loss insurance

Proposition 5.1 If Y ↑rt X, then stop-loss insurance is a solution to problem (2.3).
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Proof Consider a stop-loss insurance strategy f sl
d (x) = (x −d)+ for d ≥ 0 and evalu-

ate �f sl
d
(d), where �f (x) is defined in (3.4). As a function of d , �f sl

d
(d) depends on

d through two sources. We rewrite it as 	(d;f sl
d ) to emphasise this implicit relation,

	(d;f sl
d ) = E[u′(w − Y − X ∧ d − (1 + ρ)E[(X − d)+])|X > d]

E[u′(w − Y − X ∧ d − (1 + ρ)E[(X − d)+])] ,

where x ∧ y = min{x, y}. Since Y ↑rt X, according to Proposition 5.1 in Chi and
Wei [9], �f sl

d
(d) is increasing in d over [νρ,M). With inf∅ = ∞ by convention,

define

d∗ = inf{d ∈ [νρ,M) : 	(d;f sl
d ) ≥ 1 + ρ}.

If d∗ < ∞, then 	(d∗;f sl
d∗) ≥ 1+ρ since 	(d;f sl

d ) is a right-continuous function
of d and 	(t;f sl

t ) ≤ 1 + ρ for any t < d∗. Since u′′(·) < 0 and Y ↑rt X, for any
x ≥ d∗, it holds that

�f sl
d∗ (x) =

E[u′(Wf sl
d∗ (X,Y ))|X > x]

E[u′(Wf sl
d∗ (X,Y ))]

= E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])|X > x]
E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])]

= E[u′(w − Y − d∗ − (1 + ρ)E[(X − d∗)+])|X > x]
E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])]

≥ E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])|X > d∗]
E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])]

= 	(d∗;f sl
d∗) ≥ 1 + ρ.

On the other hand, for any x ∈ [νρ, d∗), we have

�f sl
d∗ (x) =

E[u′(Wf sl
d∗ (X,Y ))|X > x]

E[u′(Wf sl
d∗ (X,Y ))]

= E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])|X > x]
E[u′(w − Y − X ∧ d∗ − (1 + ρ)E[(X − d∗)+])]

= lim
t↑d∗
t>x

E[u′(w − Y − X ∧ t − (1 + ρ)E[(X − t)+])|X > x]
E[u′(w − Y − X ∧ t − (1 + ρ)E[(X − t)+])]

≤ lim
t↑d∗
t>x

E[u′(w − Y − X ∧ t − (1 + ρ)E[(X − t)+])|X > t]
E[u′(w − Y − X ∧ t − (1 + ρ)E[(X − t)+])]

= lim
t↑d∗
t>x

	(t;f sl
t ) ≤ 1 + ρ,
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where the first inequality follows from Lemma A.2. The above two equations together
with Theorem 3.3 imply that f sl

d∗(x) is a solution to problem (2.3).
If d∗ = ∞, we must have 	(d;f sl

d ) < 1 + ρ for all d ∈ [νρ,M), which in turn
implies

1 + ρ ≥ lim
d↑M

	(d;f sl
d )

= lim
d↑M

E[u′(w − Y − X ∧ d − (1 + ρ)E[(X − d)+])|X > d]
E[u′(w − Y − X ∧ d − (1 + ρ)E[(X − d)+])]

= limd↑M E[u′(w − Y − X)|X > d]
E[u′(w − Y − X)]

≥ E[u′(w − Y − X)|X > x]
E[u′(w − Y − X)] , x ∈ [νρ,M),

where the last inequality follows from Lemma A.2 together with the dependence as-
sumption on X and Y . Thus it follows from Proposition 4.1 that the optimal insurance
strategy is no-insurance, which is a special form of stop-loss insurance. �

Chi and Wei [9, Proposition 4.7] have established the same result as Propo-
sition 5.1 by using a different approach. We reprove this result for two reasons.
First, the proof demonstrates the application of Theorem 3.3. More importantly, fol-
lowing the proof presented above, the assumption of Y ↑rt X can be weakened to
“E[v(Y )|X > x] is increasing in x ∈ [νρ,M) for all increasing functions v(·)”, which
is not covered by Chi and Wei [9, Proposition 4.7]. The result of Proposition 5.1 is
interpreted as follows. In the single-risk model, stop-loss insurance is the optimal
strategy in the sense that it provides full indemnification above the deductible and
thus completely eliminates the right-tail risk. When adding a positively dependent (in
the sense of Y ↑rt X) background risk, the insurance demand for the right-tail risk is
not reduced at all. Therefore, the stop-loss insurance is still needed.

Motivated by Proposition 5.1, it is natural to ask what is the optimal insurance
strategy under the dependence structure of Y ∼PQD X, which is a weaker assumption
than that used in Proposition 5.1. While this question is generally challenging to
answer, some results can be derived when the insurance premium becomes actuarially
fair, as discussed in the next subsection.

5.2 Optimality of full insurance

Proposition 5.2 Full insurance is optimal if and only if

E[u′(w − Y − (1 + ρ)E[X])|X > x]
E[u′(w − Y − (1 + ρ)E[X])] ≥ 1 + ρ, 0 ≤ x < M. (5.1)

Furthermore, if the insurable loss X is positive almost surely, i.e., P[X > 0] = 1, then
full insurance is optimal if and only if

ρ = 0 and
E[u′(w − Y −E[X])|X > x]

E[u′(w − Y −E[X])] ≥ 1, 0 ≤ x < M. (5.2)
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Proof The necessity and sufficiency of (5.1) for the optimality of full insurance di-
rectly follow from Theorem 3.3. Thus it remains to prove the equivalence between
(5.1) and (5.2) for a positive insurable risk. Clearly, (5.2) implies (5.1). On the other
hand, a combination of (3.6) and (5.1) yields that νρ = 0, which implies ρ = 0 since
X is positive almost surely. Therefore, (5.1) implies (5.2). �

Proposition 5.2 suggests that it is rational to purchase full insurance only when
the insurance cost is relatively low, as described by (5.1). It should be noted that
full insurance is an unusual choice, as evidenced by (5.2) as well as Corollary 3.4.
Especially if the insurable loss X is positive almost surely, (5.2) indicates that in
order to guarantee the optimality of full insurance, the insurance premium has to
be actuarially fair, i.e., ρ = 0. In other words, if the safety loading coefficient ρ is
positive, then full insurance is usually suboptimal. This result has been established
by Mossin [25] for the single risk model, as stated below.

Corollary 5.3 Consider a single-risk insurance model, i.e., set Y = 0 in problem
(2.3). The full-insurance strategy is optimal if and only if ρ = 0.

Proof The conclusion directly follows from (5.1) by noting that the expression on
the left-hand side of (5.1) reduces to 1 with the assumption Y = 0. �

Note that the necessary and sufficient condition for the optimality of full insurance
in the single-risk model is much simpler than those in the presence of background
risk. In particular, with background risk, ρ = 0 is not necessarily a sufficient con-
dition for the optimality of full insurance. For example, if Y = −X, it immediately
follows from (4.1) that no-insurance is optimal, regardless of the value of ρ, intu-
itively because X is perfectly hedged by Y . Thus full insurance is suboptimal in this
case.

Proposition 5.4 Full insurance is a solution to problem (2.3) for all increasing con-
cave utility functions if and only if ρ = 0 and Y ∼PQD X.

Proof (Sufficiency) If ρ = 0 and Y ∼PQD X, then the result is a direct corollary of
Proposition 5.2 and Lemma A.1 by noting that u′(w−y − (1+ρ)E[X]) is increasing
in y for any increasing concave utility function u(·).

(Necessity) If full insurance is a solution to problem (2.3) for all increasing con-
cave utility functions, we immediately get ρ = 0 by setting u(x) ≡ x in (5.1). De-
fine v(y) = u′(w − y − (1 + ρ)E[X]) for any real y. With ρ = 0, (5.1) reduces to
E[v(Y )|X > x] ≥ E[v(Y )] for any x ∈ [0,M) and any increasing function v(·), which
implies Y ∼PQD X according to Lemma A.1. �

Notably, Hong et al. [15] use the notion of positive expectation dependence, which
is weaker than PQD, to study the optimal insurance problem with background risk.
However, they focus only on the quota-share insurance. Specifically, they show that
the insured should purchase less (more) than full insurance if and only if the in-
surable risk X is negatively (positively) expectation dependent with the background
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risk Y . This problem is revisited by Lu et al. [22] by assuming the admissible strategy
set of C. [22, Proposition 4.2] obtains the optimality of full insurance under the as-
sumption of Y ↑st X and ρ = 0. Note that Y ↑st X implies Y ∼PQD X. In this sense,
Proposition 5.4 extends the result of [22, Proposition 4.2].

More importantly, Proposition 5.4 reveals the relationship between the dependence
structure and the optimality of full insurance. Mossin’s theorem (Corollary 5.3) es-
tablishes that full insurance is optimal if and only if ρ = 0 in the single-risk model.
In the presence of background risk, the condition ρ = 0 is no longer sufficient for full
insurance to be optimal, as evidenced by the remarks immediately after Corollary 5.3.
It is the dependence structure that matters. Now Proposition 5.4 indicates that among
different positive dependence notions, PQD is the minimal requirement to guarantee
the full-insurance strategy to achieve the uniform optimality.

6 Moderate negative dependence

In this section, we investigate the optimal insurance design under the moderate neg-
ative dependence structure (Y + X) ↑st X and Y ↓st X. Intuitively, this dependence
structure means that the background risk provides a partial, but not full, hedge for the
insurable risk. Therefore, it is reasonable to anticipate that partial insurance coverage
above a deductible would be needed. In order to avoid a tedious technical discussion,
we make the following assumption

Assumption 6.1 (1) The conditional distribution of X given X > 0 is continuous and
S(X) = [0,M];

(2) νρ > 0.

Under the above assumption, we must have ρ > 0, and hence the solution to prob-
lem (2.3) is unique according to Proposition 3.1. We should note that Assumption 6.1
does not exclude the possibility that the insurable loss X possesses a positive proba-
bility mass at zero. In that case, due to the definition of νρ in Corollary 3.4, the prob-
ability mass should satisfy P[X = 0] <

ρ
1+ρ

. Furthermore, the assumption of νρ > 0
together with (3.6) implies that �f (νρ) < 1 + ρ for any f ∈ C.

Proposition 6.2 Under Assumption 6.1, when (Y + X) ↑st X and Y ↓st X, f ∗ ∈ C is
the solution to problem (2.3) if and only if it satisfies

{
f ∗(x) = 0, 0 ≤ x ≤ d,

�f ∗(x) = 1 + ρ, d < x < M,
(6.1)

for some d ∈ (νρ,M].

Proof (Sufficiency) Assume f ∈ C satisfies (6.1). Denote

Vf (x) = E
[
u′(w − Y − X + f (X) − (1 + ρ)E[f (X)])∣∣X = x

]
, x ∈ [0,M).

(6.2)
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Then �f (x) = E[Vf (X)|X>x]
E[Vf (X)] and hence E[Vf (X)|X > x] = (1 + ρ)E[Vf (X)] for

x ∈ (d,M) due to the second case in (6.1). This, together with the continuity of
Vf (x) implied by Assumption 6.1, further leads to

Vf (x) = (1 + ρ)E[Vf (X)] for all x ∈ [d,M). (6.3)

Since f (x) = 0 for x ∈ [0, d], (Y + X) ↑st X implies that Vf (x) is increasing over
[0, d]. Therefore, for any x ∈ [0, d], we have

�f (x) = E[Vf (X)|X > x]
E[Vf (X)] ≤ �f (d) = 1 + ρ.

According to Theorem 3.3, f is the solution to problem (2.3).
(Necessity) Assume f ∗ is the solution to problem (2.3). Recall that �f ∗(x) < 1 + ρ

for any x ≤ νρ and that �f ∗(x) is continuous over (0,M) under Assumption 6.1. If
�f ∗(x) < 1 + ρ for all x ∈ (0,M), then Theorem 3.3 implies that the solution is no-
insurance, which satisfies (6.1) with d = M . Otherwise, there exists a d ∈ (νρ,M)

such that

�f ∗(x) < 1 + ρ for x ∈ [0, d) and �f ∗(d) = 1 + ρ.

Consequently, we have f ∗(x) = 0 for all x ∈ [0, d] due to Theorem 3.3. In the fol-
lowing, we show by contradiction that �f ∗(x) = 1 + ρ for all x ∈ [d,M). Consider
two cases:

(i) There exists an x0 ∈ (d,M) such that �f ∗(x0) > 1 + ρ. The continuity of
�f ∗(x) implies that there exist x
 and xu such that

d ≤ x
 < x0 < xu ≤ M, �f ∗(x) > 1+ρ for x ∈ (x
, xu) and �f ∗(x
) = 1+ρ.

It follows from Theorem 3.3 that f ∗′(x) = 1 and hence Vf ∗(x) is decreasing over
(x
, xu) because Y ↓st X. If xu = M , then �f ∗(x) is decreasing over [x
,M)

and thus 1 + ρ < �f ∗(x0) ≤ �f ∗(x
) = 1 + ρ, leading to a contradiction. Other-
wise, if xu < M , then �f ∗(xu) = 1 + ρ. Using an argument similar to case (i)(b)
of Lemma A.3, a contradiction can be derived.

(ii) There exists an x1 ∈ (d,M) such that �f ∗(x1) < 1 + ρ. A contradiction can
also be derived by using a similar argument to case (i).

Combining cases (i) and (ii) yields �f ∗(x) = 1 + ρ for any x ∈ (d,M). �

Remark 6.3 In (6.1), d is a parameter to be determined. According to (3.6), d should
fall in the set (νρ,M]. Proposition 3.1 has established the existence and uniqueness
of the solution to problem (2.3). Therefore, Proposition 6.2 indicates that the solu-
tion to (6.1) exists and is unique within the set C. It is possible that (6.1) has other
solutions not belonging to C. However, this can be excluded by adding some regu-
larity condition such as the existence of a joint density function of the random vector
(X,Y ).

Proposition 6.2 shows that the optimal insurance strategy f ∗ satisfies f ∗(x) = 0
for x ∈ [0, d] and f ∗′(x) ∈ [0,1] for x ∈ (d,M). In other words, the optimal insur-
ance strategy is partial coverage above a deductible under the assumption that Y ↓st X
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and (Y + X) ↑st X. This makes sense because Y ↓st X indicates that the background
risk Y is negatively dependent with X and thus provides a hedge to some extent. On
the other hand, (Y + X) ↑st X indicates that the hedge for X provided by Y is not
adequate and the unhedged portion still calls for insurance coverage.

Below, we derive another equation for the solution based on (6.1), which can be
used to develop a numerical solution scheme.

Corollary 6.4 Under Assumption 6.1, when (Y + X) ↑st X and Y ↓st X, f ∗ ∈ C is
the solution to problem (2.3) if and only if it satisfies

{∫ ∞
0 Kτ (x, t)I{f ∗(x)>t}dt = χτ (d) − χτ (x), x ∈ (d,M),

f ∗(x) = 0, x ∈ [0, d], (6.4)

where τ = E[f ∗(X)], Kτ (x, t) = E[u′′(w − Y − X − (1 + ρ)τ + t)|X = x] and the
parameter d ∈ (νρ,M] is determined by

χτ (d) = (1 + ρ)E[χτ (X) ∧ χτ (d)], (6.5)

with χτ (x) = E[u′(w − Y − X − (1 + ρ)τ)|X = x].

Proof Due to Proposition 6.2, it suffices to verify that (6.1) and (6.4) are equivalent.
“(6.1) =⇒ (6.4)” If (6.1) holds, then we have (6.3), i.e.,

Vf ∗(x) = (1 + ρ)E[Vf ∗(X)] for all x ∈ [d,M), (6.6)

where Vf (x) is defined in (6.2). Note that Vf ∗(x) = χτ (x) for all x ∈ [0, d]. (6.6)
implies that Vf ∗(x) = Vf ∗(d) and thus Vf ∗(x) = χτ (d) for all x ∈ [d,M). Since
(Y + X) ↑st X, then χτ (x) is increasing in x and thus Vf ∗(x) = χτ (x) ∧ χτ (d),
which together with (6.6) yields (6.5). On the other hand, noting that

u′(Wf ∗(X,Y )
) = u′(w − Y − X − (1 + ρ)τ

)

+
∫ ∞

0
u′′(w − Y − X − (1 + ρ)τ + t

)
I{f ∗(X)>t}dt,

we have

Vf ∗(x) = E
[
u′(Wf ∗(X,Y )

)∣∣X = x
]

= χτ (x) +
∫ ∞

0
Kτ (x, t)I{f ∗(x)>t}dt, x ∈ [d,M), (6.7)

which implies the first case in (6.4) by recalling Vf ∗(x) = χτ (d) for all x ∈ [d,M).
“(6.4) =⇒ (6.1)” Note that (6.7) generally holds true. Combining it with the first

case of (6.4), we have V ∗
f (x) = χτ (d) for all x ∈ [d,M). Following the same argu-

ment as in the first part, we have Vf ∗(x) = χτ (x) ∧ χτ (d), which together with (6.5)
implies (6.6). Thus �f ∗(x) = 1 + ρ for all x ∈ (d,M) and (6.1) is verified. �
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It is worth noting that the dependence structure Y ↓st X and (Y + X) ↑st X has
been considered by Dana and Scarsini [10] for analysing the optimal insurance de-
sign. Their study is merely qualitative, concluding that the solution f ∗ should fall in
C even if the no-sabotage condition is removed. The results derived in this section
make solid progress towards completely solving the optimal insurance problem un-
der this dependence structure. Specifically, Proposition 6.2 quantitatively identifies
the form of the optimal insurance, and Corollary 6.4 provides a scheme to numeri-
cally derive the optimal insurance strategy. Below, we illustrate the general idea to
find the numerical solution but omit the details of implementation:

(i) Choose a value from [0,E[X]] and assign it to τ .
(ii) For the chosen τ , solve (6.5) for d .

(iii) Derive an expression for f (x) based on (6.4).
(iv) Check whether the equation τ = E[f (X)] and f ∈ C hold.
(v) If yes, the obtained f is the desired solution. Otherwise, let τ run through all the

values in [0,E[X]] (with a small step) and repeat (ii)–(iv) until the conditions in
(iv) are satisfied (up to some precision criterion).

7 CARA utility functions

In this section, we focus on a CARA utility function, i.e.,

u(z) = −e−γ z

for some γ > 0. With this utility function, the objective function can be rewritten as

E
[
u
(
Wf (X,Y )

)] = E

[
E

[
u
(
Wf (X,Y )

)∣∣X
]]

= E
[
u
(
w − m(X) + f (X) − (1 + ρ)E[f (X)])]

for any f ∈ C, where

m(x) = 1

γ
lnE[eγ (Y+X)|X = x] = x + 1

γ
lnE[eγY |X = x].

Therefore, solving problem (2.3) is equivalent to solving the optimisation problem

max
f ∈C

E
[
u
(
w − m(X) + f (X) − (1 + ρ)E[f (X)])]. (7.1)

Note that problem (7.1) can be treated as a special case of the original optimisation
problem (2.3), with Y + X = m(X). Therefore, all the results derived in previous
sections can apply to problem (7.1).

Motivated by the equivalence between problems (2.3) and (7.1) under the CARA
assumption, we use m(x) to categorise the dependence structure between insurable
and background risks in this section. The dependence structures discussed in the pre-
vious sections can be connected to the behavior of m(x) in the following way:
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(i) If Y + X ↓st X, then m′(x) ≤ 0.
(ii) If Y ↑st X, then m′(x) ≥ 1.

(iii) If Y + X ↑st X and Y ↓st X, then 0 ≤ m′(x) ≤ 1.

Scenarios (i) and (ii) correspond to a special case of strong negative dependence
and positive dependence as discussed in Sects. 4 and 5, respectively, under which
the solutions have been explicitly derived. Scenario (iii) corresponds to the moder-
ate negative dependence structure discussed in Sect. 6. Recall that Sect. 6 has not
obtained an explicit solution under this dependence structure. The following propo-
sition shows that problem (7.1) as a special form of problem (2.3) can be explicitly
solved in that case.

Proposition 7.1 If 0 ≤ m′(x) ≤ 1, then the solution to problem (7.1) is given by
f ∗(x) = (m(x) − m(d∗))+ for some nonnegative d∗ ∈ [νρ,M].

Proof The proof is similar to that of Proposition 5.1 and thus omitted. �

In view of Proposition 7.1 and the discussion before it, problem (7.1) has been ex-
plicitly solved under the dependence structures of (i) m′(x) ≤ 0, (ii) m′(x) ≥ 1, and
(iii) 0 ≤ m′(x) ≤ 1. It should be noted that these three dependence structures cannot
capture the full spectrum of the relationship between background and insurable risks.
It is necessary to analyse the optimal insurance design under other types of depen-
dence. In the rest of this section, we study the following mixed dependence structures,
for some x0 ∈ (0,M):

Case 1. m′(x) ≤ 0 for 0 ≤ x ≤ x0 and 0 ≤ m′(x) ≤ 1 for x > x0.
Case 2. 0 ≤ m′(x) ≤ 1 for 0 ≤ x ≤ x0 and m′(x) ≤ 0 for x > x0.
Case 3. m′(x) ≥ 1 for 0 ≤ x ≤ x0 and 0 ≤ m′(x) ≤ 1 for x > x0.
Case 4. 0 ≤ m′(x) ≤ 1 for 0 ≤ x ≤ x0 and m′(x) ≥ 1 for x > x0.

In order to avoid a tedious technical discussion, we carry out the analysis under As-
sumption 6.1, and hence the solution to problem (2.3) is unique. The same holds for
problem (7.1). It will be solved for these four cases in the following propositions.

Proposition 7.2 In Case 1, the solution to problem (7.1) is given by

f ∗(x) = (
m(x) − m(d∗

1 )
)+

I{x>x0}

for some d∗
1 ≥ x0 ∨ νρ , where x ∨ y = max{x, y}.

Proof Define

L(d) = u′(w − m(d) − (1 + ρ)E[mT
d (X)])

E[u′(w − m(X) + mT
d (X) − (1 + ρ)E[mT

d (X)])]

for d ≥ x0 ∨νρ , where mT
d (X) = (m(X)−m(d))+I{X>x0}. By simple calculation, we

have
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L′(d)
(
E

[
u′(w − m(X) + mT

d (X) − (1 + ρ)E[mT
d (X)])]

)2

= m′(d)
(
(1 + ρ)P[m(X) > m(d),X > x0] − 1

)

× u′′(w − m(d) − (1 + ρ)E[mT
d (X)])

×E
[
u′(w − m(X) − (1 + ρ)E[mT

d (X)])I{m(X)≤m(d)orX≤x0}
]

− (1 + ρ)m′(d)P[m(X) > m(d),X > x0]u′(w − m(d) − (1 + ρ)E[mT
d (X)])

×E
[
u′′(w − m(X) − (1 + ρ)E[mT

d (X)])I{m(X)≤m(d)orX≤x0}
]

≥ 0,

where the last inequality is derived by m′(d) ≥ 0, u′(·) > 0, u′′(·) < 0 and

1 − (1 + ρ)P[m(X) > m(d),X > x0] ≥ 1 − (1 + ρ)P[X > d] ≥ 0.

In other words, d 
→ L(d) is increasing over [x0 ∨ νρ,M).
Noting that m(x) ≥ m(x0) for any x ≥ 0, it holds almost surely that

m(X) − (
m(X) − m(x0)

)+
I{X>x0} ≥ m(x0).

Since u′(·) is decreasing, we conclude that L(x0) ≤ 1. If νρ > x0, we can get from
(3.6) and Assumption 6.1 that L(νρ) ≤ 1 + ρ. Therefore, we can define

d∗
1 = inf{d ≥ x0 ∨ νρ : L(d) ≥ 1 + ρ}.

If d∗
1 < ∞, then for any x ≥ d∗

1 , we have

�f ∗(x) = L(d∗
1 ) = 1 + ρ,

where �f (x) is defined in (3.4) with Y + X = m(X). We prove �f ∗(x) ≤ 1 + ρ for
any 0 ≤ x < d∗

1 , and hence f ∗ is the solution to problem (7.1) according to Theo-
rem 3.3. Specifically, the proof is divided into two cases:

(i) If m(d∗
1 ) ≥ m(0), then m(d∗

1 ) ≥ m(x) for any 0 ≤ x ≤ d∗
1 . For notational con-

venience, we rewrite Wf (X,m(X) − X) as Wf (X). For each x ∈ [0, d∗
1 ], noting that

f ∗(x) = 0, we have

Wf ∗(x) = w − m(x) + f ∗(x) − (1 + ρ)E[f ∗(X)]
≥ w − m(d∗

1 ) + f ∗(d∗
1 ) − (1 + ρ)E[f ∗(X)] = Wf ∗(d∗

1 ). (7.2)

Since Wf ∗(x) = Wf ∗(d∗
1 ) for any x ≥ d∗

1 , it holds for any x ≥ 0 that

E
[
u′(Wf ∗(X)

)∣∣X > x
] ≤ u′(Wf ∗(d∗

1 )
) = (1 + ρ)E

[
u′(Wf ∗(X)

)]
,

where the equality follows from the fact that L(d∗
1 ) = 1 + ρ. As a consequence, we

have �f ∗(x) ≤ 1 + ρ for all x ∈ [0, d∗
1 ].
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(ii) If m(d∗
1 ) < m(0), there exists an x1 ∈ [0, x0] such that m(x) ≥ m(d∗

1 ) for any
x ∈ [0, x1] and m(x) ≤ m(d∗

1 ) for any x ∈ [x1, d
∗
1 ). For any x ∈ [x1, d

∗
1 ), similarly to

(7.2), we can conclude that Wf ∗(x) ≥ Wf ∗(d∗
1 ) and thus

E
[
u′(Wf ∗(X)

)∣∣X > x
] ≤ u′(Wf ∗(d∗

1 )
) = (1 + ρ)E

[
u′(Wf ∗(X)

)]
,

which implies �f ∗(x) ≤ 1 + ρ. For any x ∈ [0, x1], since m(x) ≥ m(d∗
1 ), we get

E
[
u′(Wf ∗(X)

)∣∣X ∈ [0, x]] ≥ u′(Wf ∗(d∗
1 )

)

= (1 + ρ)E
[
u′(Wf ∗(X)

)] ≥ E
[
u′(Wf ∗(X)

)]
. (7.3)

On the other hand, note that

E
[
u′(Wf ∗(X)

)] = E
[
u′(Wf ∗(X)

)∣∣X ∈ [0, x]]P[
X ∈ [0, x]]

+E
[
u′(Wf ∗(X)

)∣∣X > x
]
P[X > x]. (7.4)

Combining (7.3) and (7.4), we obtain E[u′(Wf ∗(X))|X > x] ≤ E[u′(Wf ∗(X))].
Therefore, �f ∗(x) = E[u′(Wf ∗ (X))|X>x]

E[u′(Wf ∗ (X))] ≤ 1 ≤ 1 + ρ for any x ∈ [0, x1). This ends

the case d∗
1 < ∞.

If d∗
1 = ∞, we have f ∗(X) = 0 and

1 + ρ ≥ lim
d↑M

L(d) = lim
d↑M

E[u′(w − m(X) ∧ m(d))|X > d]
E[u′(w − m(X))]

= lim
d↑M

E[u′(w − m(X))|X > d]
E[u′(w − m(X))] ≥ E[u′(w − m(X))|X > t]

E[u′(w − m(X))]
for any t ∈ [x0,M), where the last inequality is derived by the fact m′(x) ≥ 0 for
all x ≥ x0. Thus we have �f ∗(t) = E[u′(w−m(X))|X>t]

E[u′(w−m(X))] ≤ 1 + ρ for all t ∈ [x0,M).
We prove that this inequality also holds for each t ∈ [0, x0), and hence f ∗(x) ≡ 0
(the no-insurance strategy) is the solution according to Theorem 3.3. Specifically, the
proof is divided into two cases:

(i) If u′(w − m(0)) ≤ (1 + ρ)E[u′(w − m(X))], then for any 0 ≤ t < x0,

E[u′(w − m(X))|X > t]
E[u′(w − m(X))]

= E[u′(w − m(X))I{X>x0}] +E[u′(w − m(X))I{X∈(t,x0]}]
E[u′(w − m(X))]P[X > t]

≤ E[u′(w − m(X))|X > x0]P[X > x0]
E[u′(w − m(X))]P[X > t] + u′(w − m(0))P[X ∈ (t, x0]]

E[u′(w − m(X))]P[X > t]
≤ 1 + ρ,

where the first inequality is derived by the fact that m′(x) ≤ 0 for x ≤ x0.
(ii) If u′(w − m(0)) > (1 + ρ)E[u′(w − m(X))], there must exist a t0 ∈ (0, x0)

such that u′(w − m(t0)) = (1 + ρ)E[u′(w − m(X))]. Using a similar argument, we
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have E[u′(w−m(X))|X>t]
E[u′(w−m(X))] ≤ 1 + ρ for any t ∈ [t0, x0). On the other hand, noting that

u′(w − m(x)) is decreasing on [0, t0] and by virtue of (7.3) and (7.4), we have

E
[
u′(w − m(X)

)∣∣X > t
] ≤ E

[
u′(w − m(X)

)]

for any t ∈ [0, t0). As a consequence, E[u′(w−m(X))|X>t]
E[u′(w−m(X))] ≤ 1 + ρ for any t ∈ [0, x0).

This ends the case d∗
1 = ∞. �

Proposition 7.3 In Case 2, the solution to problem (7.1) is given by

f ∗(x) =
{

(m(x) − m(dL
2 ))+ ∧ (m(dU

2 ) − m(dL
2 )), x ∈ [0, x0],

m(dU
2 ) − m(dL

2 ), x ∈ (x0,M], (7.5)

for some νρ ∧ x0 ≤ dL
2 ≤ dU

2 ≤ x0.

Proof Let f ∗ be the solution to problem (7.1). Under Assumption 6.1, it follows from
(3.6) that �f ∗(x) < 1 + ρ for any 0 ≤ x ≤ νρ . Furthermore, for each x ∈ [νρ,M),
Lemma A.3 (iii) implies �f ∗(x) ≤ 1+ρ since m′(x) ≤ 1. Therefore, �f ∗(x) ≤ 1+ρ

for all x ∈ [0,M).
If �f ∗(x) < 1+ρ for all x ∈ [0,M), it follows from Theorem 3.3 that the solution

is no-insurance, which is a special case of (7.5) by setting dL
2 = dU

2 .
Otherwise, define

dL
2 = inf{x ∈ [0,M) : �f ∗(x) = 1 + ρ},

dU
2 = sup{x ∈ [0,M) : �f ∗(x) = 1 + ρ}.

We have �f ∗(dL
2 ) = �f ∗(dU

2 ) = 1 + ρ and νρ < dL
2 ≤ dU

2 .
If dU

2 ≤ x0, recalling that 0 ≤ m′(x) ≤ 1 for all x ∈ [dL
2 , dU

2 ], we get from
Lemma A.3 (i)(c) that �f ∗(x) = 1 + ρ for any x ∈ [dL

2 , dU
2 ] and �f ∗(x) < 1 + ρ

elsewhere, due to the definitions of dL
2 and dU

2 . This implies that f ∗(x) admits the
form (7.5) according to Theorem 3.3 and Lemma A.3 (ii).

If dU
2 > x0, then �f ∗(x) ≥ �f ∗(dU

2 ) = 1 + ρ for any x ∈ [x0, d
U
2 ] since

m(x) − f ∗(x) is decreasing on [x0,M). Recalling that �f ∗(x) ≤ 1 + ρ for all
x ∈ [0,M), it must hold that �f ∗(x) = 1 + ρ for all x ∈ [x0, d

U
2 ]. According

to Lemma A.3 (i)(c), we also have �f ∗(x) = 1 + ρ for all x ∈ [dL
2 , x0] since

0 ≤ m′(x) ≤ 1 for x ∈ [dL
2 , x0]. Due to the definitions of dL

2 and dU
2 , we conclude

that �f ∗(x) < 1 + ρ for any x < dL
2 or x > dU

2 .
As a consequence, we have f ∗′(x) = 0 for any x < dL

2 or x > dU
2 according to

Theorem 3.3 and f ∗′(x) = m′(x) for any x ∈ (dL
2 , dU

2 ) according to Lemma A.3 (ii).
For each x ∈ (x0, d

U
2 ) ⊆ (dL

2 , dU
2 ), noting that f ∗′(x) ≥ 0 ≥ m′(x), it must hold that

f ∗′(x) = m′(x) = 0. Therefore, f ∗(x) still admits the form given in (7.5). �

Proposition 7.3 identifies the optimal insurance form when background risk Y and
insurable risk X follow the dependence structure specified in Case 2. Intuitively, when
X > x0, the combined risk m(X) is decreasing in X, meaning that the increment of
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X is completely hedged by Y and thus no-insurance is needed. When X ∈ [0, x0], the
combined risk m(X) can be treated as a single one and a one-layer insurance form is
applied to m(X). We remark that if x0 ≤ νρ , it is easy to conclude that the optimal
strategy is no-insurance, which is a special case of (7.5) by setting dL

2 = dU
2 .

Proposition 7.4 In Case 3, the solution f ∗(x) to problem (7.1) admits one of the
following forms:

(a) f ∗(x) = (m(x) − m(dU
3 ))+ for some constant dU

3 with x0 ≤ dU
3 ≤ M ;

(b) f ∗(x) = (x − dL
3 )+I{x≤dU

3 } + (m(x) − m(dU
3 ))+ for some constants dL

3 , dU
3

with 0 ≤ dL
3 ≤ x0 ≤ dU

3 ≤ M .

Proof First, consider the case �f ∗(x0) < 1 + ρ. Since m′(x) ≤ 1 for any x ≥ x0, it
follows from Lemma A.3 (iii) that �f ∗(x) ≤ 1 + ρ for all x ≥ x0. Define

dU
3 = sup{x ∈ [x0,M) : �f ∗(t) < 1 + ρ for all t ∈ [x0, x]}.

We have �f ∗(x) < 1 + ρ for any x ∈ [x0, d
U
3 ) and �f ∗(x) = 1 + ρ for any

x ∈ [dU
3 ,M) according to Lemma A.3 (iii′). Therefore m(x) − f ∗(x) is increasing

on [x0, d
U
3 ] and constant on [dU

3 ,M) according to Theorem 3.3 and Lemma A.3 (ii).
Recalling that m′(x) ≥ 1 for any x ≤ x0, it follows from (2.1) that m(x) − f ∗(x) is
increasing over [0, x0]. Therefore m(x)−f ∗(x) is increasing over [0,M), which im-
plies that �f ∗(x) is increasing and thus �f ∗(x) ≤ �f ∗(x0) < 1 + ρ for any x ≤ x0.
According to Theorem 3.3, we have f ∗′(x) = 0 for any x ≤ dU

3 and m′(x) = f ∗′(x)

on [dU
3 ,M). That is, f ∗(x) admits the form (a).

Second, consider the case �f ∗(x0) > 1 + ρ. Define

dU
3 = sup{x ∈ [x0,M) : �f ∗(t) > 1 + ρ for all t ∈ [x0, x]},

dL
3 = inf{x ∈ [0, x0] : �f ∗(t) > 1 + ρ for all t ∈ [x, x0]}.

Under Assumption 6.1, it is easy to see that νρ < dL
3 < x0 < dU

3 , �f ∗(dL
3 ) = 1 + ρ

and �f ∗(x) > 1 + ρ for any x ∈ (dL
3 , dU

3 ). Recalling that m′(x) ≥ 1 for x ∈ [0, x0],
we get that u′(Wf ∗(x)) is increasing on [0, x0] and hence

1 + ρ = �f ∗(dL
3 ) = P[X > x0]

P[X > dL
3 ]�f ∗(x0)

+P[dL
3 < X ≤ x0]E[u′(Wf ∗(X))|dL

3 < X ≤ x0]
P[X > dL

3 ]E[u′(Wf ∗(X))]

>
P[X > x0]
P[X > dL

3 ] (1 + ρ) + P[dL
3 < X ≤ x0]u′(Wf ∗(dL

3 ))

P[X > dL
3 ]E[u′(Wf ∗(X))] ,

which is equivalent to
u′(Wf ∗ (dL

3 ))

E[u′(Wf ∗ (X))] < 1 + ρ. Consequently, for any x ∈ [0, dL
3 ),
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�f ∗(x) = P[X > dL
3 ]

P[X > x] �f ∗(dL
3 ) + P[x < X ≤ dL

3 ]E[u′(Wf ∗(X))|x < X ≤ dL
3 ]

P[X > x]E[u′(Wf ∗(X))]

≤ P[X > dL
3 ]

P[X > x] (1 + ρ) + P[x < X ≤ dL
3 ]u′(Wf ∗(dL

3 ))

P[X > x]E[u′(Wf ∗(X))] < 1 + ρ.

If dU
3 < M , then �f ∗(dU

3 ) = 1 + ρ due to the continuity of �f ∗(x). According to
Lemma A.3 (iii′), we have �f ∗(x) = 1 + ρ for any x ∈ [dU

3 ,M). If dU
3 = M , then

�f ∗(x) > 1 + ρ for any x ∈ (dL
3 ,M) due to the definitions of dL

3 and dU
3 . Either

way, we conclude that �f ∗(x) < 1 + ρ for any x ∈ [0, dL
3 ), �f ∗(x) > 1 + ρ for any

x ∈ (dL
3 , dU

3 ), and �f ∗(x) = 1 + ρ for any x ∈ [dU
3 ,M). According to Theorem 3.3

and Lemma A.3 (ii), we have f ∗′(x) = 0 for any x ∈ [0, dL
3 ), f ∗′(x) = 1 for any

x ∈ (dL
3 , dU

3 ) and f ∗′(x) = m′(x) for any x ∈ (dU
3 ,M). Therefore f ∗(x) admits the

form (b) for this case.
Finally, we consider the case �f ∗(x0) = 1 + ρ. Recalling that 0 ≤ m′(x) ≤ 1 for

x > x0, we have �f ∗(x) = 1 + ρ for any x ∈ [x0,M) according to Lemma A.3 (iii′),
and thus m′(x) = f ∗′(x) for x ∈ (x0,M) due to Lemma A.3 (ii). Since m′(x) ≥ 1
for any x ∈ (0, x0), then m(x) − f ∗(x) is increasing on [0, x0] and thus on [0,M).
Therefore �f ∗(x) is increasing on [0,M), and so �f ∗(x) ≤ �f ∗(x0) = 1 + ρ for
any x ≤ x0. Define x3 = inf{x ∈ [0, x0] : �f ∗(x) = 1 + ρ}. We have �f ∗(x) < 1 + ρ

for any x ∈ [0, x3) and �f ∗(x3) = 1 + ρ due to the continuity of �f ∗(x). Then
the increasing property of �f ∗(x) implies that �f ∗(x) = 1 + ρ for any x ≥ x3.
Using Theorem 3.3 and Lemma A.3 (ii), we get f ∗′(x) = 0 for x ∈ (0, x3) and
f ∗′(x) = m′(x) for x ∈ (x3,M). On the other hand, for any x ∈ (x3, x0), noting that
f ∗′(x) ≤ 1 ≤ m′(x), we must have f ∗′(x) = m′(x) = 1. Therefore f ∗ admits the
form (b) with dL

3 = x3 and dU
3 = x0. �

Proposition 7.5 In Case 3, the solution to (7.1) is given by f ∗(x) = (m(x)−m(d3))
+

for some d3 ∈ [x0,M] if �f 0
x0

(x0) ≤ 1 + ρ, where f 0
x0

(x) = (m(x) − m(x0))
+.

Proof If x0 ≤ νρ , it follows from (3.6) that �f ∗(x0) < 1 + ρ under Assump-
tion 6.1. Therefore, similarly to the proof of Proposition 7.4, we can conclude that
f ∗(x) = (m(x) − m(d3))

+ for some d3 ∈ [x0,M]. If x0 > νρ , using a proof similar to
that of Chi and Wei [9, Proposition 5.1], we can show that d 
→ �f 0

d
(d) is increasing

over [x0,M). Note that limd↑M �f 0
d
(d) = u′(w−m(M))

E[u′(w−m(X))] .
If limd↑M �f 0

d
(d) ≥ 1+ρ, there exists a d3 ∈ [x0,M] such that �f 0

d3
(d3) = 1 + ρ,

because d 
→ �f 0
d
(d) is continuous and it is assumed that �f 0

x0
(x0) ≤ 1 + ρ. In

Case 3, it is easy to see that x 
→ −Wf 0
d3

(x) is increasing over [0, d3] and constant

afterwards. So is x 
→ E[u′(Wf 0
d3

(X))|X > x]. Thus, �f 0
d3

(x) = 1 + ρ for x ≥ d3 and

�f 0
d3

(x) ≤ 1 + ρ for x ≤ d3. According to Theorem 3.3, f 0
d3

(x) = (m(x) − m(d3))
+

is a solution.
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If u′(w−m(M))
E[u′(w−m(X))] < 1 + ρ, noting that x 
→ u′(w − m(x)) is increasing gives

E[u′(w − m(X))|X > x]
E[u′(w − m(X))] ≤ u′(w − m(M))

E[u′(w − m(X))] < 1 + ρ, x < M.

According to Proposition 4.1, the solution is no-insurance, which is a special form of
f ∗(x) = (m(x) − m(d))+ with d = M . �

Remark 7.6 From the above result, we can see that in Case 3, the optimal insurance
admits the form f ∗(x) = (m(x) − m(d3))

+ for some d3 ∈ (νρ,M] when x0 ≤ νρ .

Proposition 7.7 In Case 4, the solution f ∗(x) to problem (7.1) admits one of the
following forms:

(a) f ∗(x) = (x − dU
4 )+ for some constant dU

4 with dU
4 ∈ [x0,M];

(b) f ∗(x) = (m(x) − m(dL
4 ))+I{x≤dM

4 } + (x − dM
4 )+ for some constants dL

4 , dM
4

with 0 ≤ dL
4 ≤ dM

4 ≤ x0.

Proof First, consider the case �f ∗(x0) ≥ 1 + ρ. According to Lemma A.3 (iv), we
have f ∗′(x) = 1 for any x > x0. If �f ∗(x0) = 1 + ρ, set dM

4 = x0. Otherwise, let

dM
4 = inf{x ∈ [0, x0] : �f ∗(t) > 1 + ρ for all t ∈ [x, x0]}.

Under Assumption 6.1, we have dM
4 > νρ and �f ∗(dM

4 ) = 1 + ρ. By Theorem 3.3,
we have f ∗′(x) = 1 for any x ∈ (dM

4 , x0). Further, if we define

dL
4 = inf{0 ≤ x ≤ dM

4 : �f ∗(x) = 1 + ρ},
then νρ < dL

4 ≤ dM
4 and �f ∗(dL

4 ) = 1 + ρ due to the continuity of �f ∗(x). From
Lemma A.3 (i)(c) and (ii), we have �f ∗(x) = 1 + ρ and thus m′(x) = f ∗′(x) for
x ∈ (dL

4 , dM
4 ). According to the definition of dL

4 , we have either �f ∗(x) > 1 + ρ for
all x < dL

4 or �f ∗(x) < 1 + ρ for all x < dL
4 . Since νρ < dL

4 and �f ∗(νρ) < 1 + ρ,
the latter case must hold, i.e., �f ∗(x) < 1+ρ for all x < dL

4 . This implies f ∗′(x) = 0
for x < dL

4 according to Theorem 3.3. In summary, when �f ∗(x0) ≥ 1 + ρ, we have

f ∗′
(x) =

⎧
⎪⎨

⎪⎩

0, x ∈ (0, dL
4 ),

m′(x), x ∈ (dL
4 , dM

4 ),

1, x ∈ (dM
4 ,M).

That is, the solution f ∗ admits the form (b).
Second, consider the case �f ∗(x0) < 1 + ρ. Define

x4 = inf{x ∈ [0, x0] : �f ∗(t) < 1 + ρ for all t ∈ [x, x0]},
dU

4 = sup{x ∈ [x0,M) : �f ∗(t) < 1 + ρ for all t ∈ [x0, x]}.
Clearly, �f ∗(x) < 1+ρ and thus f ∗′(x) = 0 for x ∈ (x4, d

U
4 ). Furthermore, it can be

concluded that x4 = 0. Otherwise, we have 0 < x4 < x0, and thus �f ∗(x4) = 1 + ρ
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and �f ∗(x) < 1 + ρ for any x ∈ (x4, x0]. According to Theorem 3.3, we have
f ∗′(x) = 0 on (x4, x0]; then m(x)−f ∗(x) is increasing on [x4,M) and so is �f ∗(x).
Therefore, we get �f ∗(x4) ≤ �f ∗(x0) < 1 +ρ, which contradicts �f ∗(dL

4 ) = 1 +ρ.
If dU

4 = M , then �f ∗(x) < 1 + ρ for any x ∈ [0,M) and hence the solution is no-
insurance, which is a special case of form (a). If dU

4 < M , then �f ∗(dU
4 ) = 1 + ρ.

Since m′(x) ≥ 1 for any x > dU
4 , Lemma A.3 (iv) implies f ∗′(x) = 1 for any x > dU

4 .
Recalling that f ∗′(x) = 0 for any x ∈ (0, dU

4 ), we conclude that the solution f ∗ ad-
mits the form (a). �

Remark 7.8 Proposition 7.7 gives two possible forms for the solution to problem
(7.1) in Case 4. Note that both suggest that the insured should cede all the tail risk.
This makes sense because with the structure specified in Case 4, the background
risk becomes stochastically increasing with the insurable risk when the insurable loss
exceeds x0. Similarly to Remark 7.6, we note that the solution to problem (7.1) in
Case 4 must admit the form (a) if x0 ≤ νρ . Further, we develop a weaker sufficient
condition to decide when the solution takes the form (a) in the following proposition.

Proposition 7.9 In Case 4, the stop-loss insurance f sl
d4

(x) = (x − d4)
+ for d4 ≥ x0

is the solution to problem (7.1) if �f sl
x0

(x0) ≤ 1 + ρ.

Proof The proof is very similar to that of Proposition 7.5 and thus omitted. �

While the preceding analysis is restricted to CARA utility functions, it is also
applicable to any other increasing concave utility function if the dependence structure
between X and Y is of some special form.

Proposition 7.10 If Y + X = m(X) + ε for some function m(x) and a random vari-
able ε independent of X, the results of Propositions 7.1–7.5, 7.7 and 7.9 still hold
true for any risk-averse insured.

Proof Defining û(w) = E[u(w − ε)], we have û′(·) > 0 and û′′(·) < 0. Since ε is
independent of X, the analysis of problem (2.3) with Y +X = m(X)+ε is equivalent
to solving the maximisation problem

max
f ∈C

E
[
û
(
w − m(X) + f (X) − (1 + ρ)E[f (X)])].

But that is the same as problem (7.1), only with a different insured’s utility function.
Therefore, we obtain the desired results by using the same arguments. �

Interestingly, Proposition 7.4 shows that the optimal ceded loss function may sat-
isfy f ∗′(x) = 1 while m′(x) ≤ 1 for some x ∈ [x0, d

U
3 ) in Case 3. That is, the optimal

strategy may overinsure this part of the insurable risk. The following example is used
to justify the existence of such an over-insurance situation.
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Example 7.11 In this example, we assume that X is uniformly distributed on [0,1]
and Y + X = m(X), where

m(x) =
{

5x, 0 ≤ x ≤ 0.9,

0.9x + 3.69, 0.9 < x ≤ 1.

We choose the safety loading coefficient ρ = 0.1 and we use the utility function
u(z) = −0.5(w − z)2 with z ≤ w, where w is the insured’s initial wealth. This util-
ity function is often called the quadratic utility function in the literature, and it is
applicable for our setting because

Wf (x) = w − m(x) + f (x) − (1 + ρ)E[f (X)] ≤ w

for any f ∈ C, where the inequality uses m(x) ≥ x ≥ f (x) for all x ∈ [0,1].
In this setting, problem (2.3) is equivalent to problem (7.1). Consider the stop-loss

insurance form fd(x) = (x − d)+ for d ∈ [0,1]. Note that E[fd(X)] = 0.5(1 − d)2,
u′(z) = w − z and Wfd

(X) = w − m(X) + fd(X) − (1 + ρ)E[fd(X)]. For
0 ≤ d < 0.9, simple calculations yield that

E[m(X)] = 2.4795, E
[
u′(Wfd

(X)
)] = 2.4795 + 0.05(1 − d)2,

E
[
u′(Wfd

(X)
)∣∣X > d

] = 1.9795 + d − 3d2

1 − d
+ 0.55(1 − d)2.

Set d∗ = 0.123525. It is easy to verify that �fd∗ (d∗) = 1 + ρ. Furthermore,
x 
→ u′(Wfd∗ (x)) is increasing over [0,0.9] and decreasing afterwards with

u′(Wfd∗ (1)
) = 4.1360 > 2.7697 = (1 + ρ)E

[
u′(Wfd∗ (X)

)]
.

Similarly as in the proof of Proposition 7.2, it can be shown that �fd∗ (x) < 1 +ρ for
x < d∗ and �fd∗ (x) > 1 + ρ for x > d∗. Therefore, fd∗ is the solution to problem
(7.1) according to Theorem 3.3. Notably, f ′

d∗(x) = 1 while m′(x) = 0.9 < 1 on the
interval [0.9,1], indicating an over-insurance situation.

8 Concluding remarks

In this paper, we study an optimal insurance problem in the presence of background
risk, where alternative insurance contracts are asked to satisfy the principle of indem-
nity and the no-sabotage condition. We first establish in Theorem 3.3 a necessary and
sufficient condition for the optimality of any given admissible ceded loss function
and then provide a way to enhance any suboptimal insurance strategy under an arbi-
trary dependence structure. Theorem 3.3 suggests that the optimal ceded loss function
should roughly possess a multilayer form. With the help of this result, we show the
optimality of insurance forms of general interest and also solve the optimal insurance
problem under different types of dependence structures.

We mainly focus on three categories of dependence structures: (i) positive de-
pendence Y ∼PQD X, which includes Y ↑st X as a special case; (ii) strong negative
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Table 1 Comparison of optimal insurance contracts with and without the no-sabotage condition

Dependence structure Our optimal contracts Dana and Scarsini [10]

Y ↑st X Stop-loss insurance Disappearing deductible

(Y + X) ↓st X No-insurance Neither no-insurance nor full insurance

Y ↓st X and (Y + X) ↑st X f ∗ satisfies (6.4) f ∗ ∈ C

dependence, i.e., (Y + X) ∼NQD X, which includes (Y + X) ↓st X as a special case;
and (iii) (Y + X) ↑st X and Y ↓st X. In each category, we derive the optimal insur-
ance strategy, and the results align with intuition. Specifically, strong negative depen-
dence implies that the background risk provides a full hedge for the insurable risk and
thus requires no-insurance coverage. On the other hand, a positively dependent back-
ground risk provides hardly any hedge for the insurable risk and thus requires stop-
loss insurance coverage under the expected value premium principle. In between, a
moderately negatively dependent background risk provides a partial hedge for the
insurable risk and thus requires some insurance coverage for the unhedged portion.
Some results concerning the positive and strong negative dependence structures have
been established in the literature, and this paper generalises and extends those results.
There are few studies in the literature regarding the moderate negative dependence
case. To the best of our knowledge, we are the first to conduct a quantitative analysis
on the optimal insurance strategy for this dependence case under the EU framework.

It is worth pointing out that the no-sabotage condition plays an important role
in the optimal insurance design with background risk. In the absence of that condi-
tion, Dana and Scarsini [10] investigate the qualitative properties of optimal insur-
ance contracts for three cases: (i) Y ↑st X, (ii) (Y + X) ↓st X, and (iii) Y ↓st X and
(Y + X) ↑st X. In Table 1, we compare our optimal insurance strategies with those of
[10]. Notably, for case (iii), [10] conclude that the optimal ceded loss function should
fall in C (without giving an explicit solution). Consequently, the optimal insurance
strategies with and without the no-sabotage condition must turn out to be the same,
as given by Corollary 6.4. However, for the other two cases, Table 1 illustrates that
optimal contracts are quite different. Therefore, as in Chi and Tan [8], we emphasise
that adding the no-sabotage constraint is quite necessary for the optimal insurance
design in the presence of background risk, especially for positive and strong negative
dependence structures. Even in the absence of background risk, this constraint plays
a critical role in the optimal insurance design under the RDEU framework, as pointed
out by Xu et al. [35].

It should be noted that the approach developed in this paper to solve the optimal
insurance problem is innovative. It consists of two steps. First, a necessary and suf-
ficient condition is established for the optimality of an insurance contract; then this
condition is applied to derive explicit solutions in different cases. As demonstrated in
the paper, this approach is powerful and is applicable in a wide range of scenarios.
It is also promising to apply it in other types of optimal insurance problems where
classical methods fail to work.

There are still unsolved problems. Our ultimate goal is to find the optimal in-
surance strategy under an arbitrary dependence structure between background risk
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and insurable risk. This problem is of interest to both academics and practitioners. In
practice, it is usually difficult to precisely identify the dependence structure, and prac-
titioners need to know the optimal contracts under different scenarios for the purpose
of robust decision-making. On the other hand, this problem is very challenging be-
cause of its generality. Fortunately, the study in this paper has shed some light on the
ultimate solution. First of all, Theorem 3.3 reveals the general form of the optimal
insurance contract, and Proposition 3.6 provides a way to enhance any suboptimal
insurance strategy. Furthermore, the analysis on different categories of dependence
structures and their mixtures in Sects. 4–7 reveals how the dependence structure af-
fects the insurance demand and thus provides a foundation for further research.
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Appendix A: Useful lemmas

Lemma A.1 The notions of PQD and NQD have the following equivalent character-
isations:

(i) Y ∼PQD X if and only if E[v(Y )|X > x] ≥ E[v(Y )] for all x and any increasing
function v(·) such that E[|v(Y )|] < ∞.

(ii) Y ∼NQD X if and only if E[v(Y )|X > x] ≤ E[v(Y )] for all x and any increas-
ing function v(·) such that E[|v(Y )|] < ∞.

Proof It suffices to prove (i). The conclusion of (ii) can be obtained through the
relationship that Y ∼PQD X if and only if −Y ∼NQD X.

Note that Y ∼PQD X is equivalent to P[Y > y|X > x] ≥ P[Y > y] for any x and y.
This is further equivalent to saying that the conditional distribution of Y given X > x

is larger than the distribution of Y in the usual stochastic order. The desired char-
acterisation immediately follows from the functional characterisation of the usual
stochastic order; see Shaked and Shanthikumar [30, Sect. 1.A.1]. �

Lemma A.2 If x 
→ E[v(Y )|X > x] is increasing over [νρ,M) for any increasing
function v(·), then x 
→ E[w(Y + X ∧ t)|X > x] is increasing over [νρ,M) for any
increasing function w(·) and nonnegative t .

Proof For any νρ ≤ x1 < x2 < M , we have

E[w(Y + X ∧ t)|X > x2] −E[w(Y + X ∧ t)|X > x1]

= P[x1 < X ≤ x2]E[w(Y + X ∧ t)I{X>x2}]
P[X > x1]P[X > x2]

− P[X > x2]E[w(Y + X ∧ t)I{X∈(x1,x2]}]
P[X > x1]P[X > x2] .
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If P[x1 < X ≤ x2] = 0, then E[w(Y + X ∧ t)|X > x2] = E[w(Y + X ∧ t)|X > x1].
Otherwise, if P[x1 < X ≤ x2] > 0, the above equation implies that

E[w(Y + X ∧ t)|X > x2] −E[w(Y + X ∧ t)|X > x1]
= P[x1 < X ≤ x2]

P[X > x1]
(
E[w(Y + X ∧ t)|X > x2] −E

[
w(Y + X ∧ t)

∣∣X ∈ (x1, x2]
])

≥ P[x1 < X ≤ x2]
P[X > x1]

(
E[w(Y + x2 ∧ t)|X > x2] −E

[
w(Y + x2 ∧ t)

∣∣X ∈ (x1, x2]
])

= E[w(Y + x2 ∧ t)|X > x2] −E[w(Y + x2 ∧ t)|X > x1] ≥ 0,

where the first inequality is derived by the increasingness of w(·) and the second
follows from the assumption. �

Lemma A.3 Let f ∗ be the solution to problem (7.1). Under Assumption 6.1, �f ∗(x)

in (3.4) possesses the following properties:
(i) Assume there exist s1, s2 ∈ (0,M) such that s1 < s2 and

�f ∗(s1) = �f ∗(s2) = 1 + ρ.

(a) If m(x) is increasing over [s1, s2], then �f ∗(x) ≥ 1 + ρ for all x ∈ [s1, s2].
(b) If m′(x) ≤ 1 on [s1, s2], then �f ∗(x) ≤ 1 + ρ for all x ∈ [s1, s2].
(c) If 0 ≤ m′(x) ≤ 1 on [s1, s2], then �f ∗(x) = 1 + ρ for all x ∈ [s1, s2].

(ii) If �f ∗(x) = 1 + ρ for any x ∈ [s1, s2], then m(x) − f ∗(x) is constant on
[s1, s2].

(iii) If there exists s0 ∈ [0,M) such that �f ∗(s0) ≤ 1 + ρ and m′(x) ≤ 1 for
x ∈ [s0,M), then �f ∗(x) ≤ 1 + ρ for all x ∈ [s0,M).

(iii′) If there exists s1 ∈ [0,M) such that �f ∗(s1) = 1+ρ and 0 ≤ m′(x) ≤ 1, then
�f ∗(x) = 1 + ρ for any x ∈ [s1,M).

(iv) Assume there exists s0 ∈ [0,M) such that �f ∗(s0) ≥ 1 + ρ. If m′(x) ≥ 1 for
any x ≥ s0, then f ∗′(x) = 1 for any x ∈ (s0,M).

Proof (i)(a) Assume the result does not hold, i.e., there exists x1 ∈ (s1, s2) such that
�f ∗(x1) < 1+ρ. Due to the continuity of �f ∗(x), we conclude that there exist s3, s4
such that s1 ≤ s3 < x1 < s4 ≤ s2, �f ∗(s3) = �f ∗(s4) = 1 + ρ and �f ∗(x) < 1 + ρ

for all x ∈ (s3, s4). It follows from Theorem 3.3 that f ∗′(x) = 0 on (s3, s4). This
in turn implies that m(x) − f ∗(x) is increasing over [s3, s4], and so is u′(Wf ∗(x)).
Recalling that s3 < x1 < s4, we have

(1 + ρ)E
[
u′(Wf ∗(X)

)]

= E
[
u′(Wf ∗(X)

)∣∣X > s3
]

= E[u′(Wf ∗(X))|X > x1]P[X > x1] +E[u′(Wf ∗(X))I{X∈(s3,x1]}]
P[X > s3]

<
(1 + ρ)E[u′(Wf ∗(X))]P[X > x1] + u′(Wf ∗(x1))P[X ∈ (s3, x1]]

P[X > s3] ,
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which in turn implies

u′(Wf ∗(x1)
)
> (1 + ρ)E

[
u′(Wf ∗(X)

)]
. (A.1)

On the other hand, using a similar argument, we have

(1 + ρ)E
[
u′(Wf ∗(X)

)]

> E
[
u′(Wf ∗(X)

)∣∣X > x1
]

= E[u′(Wf ∗(X))|X > s4]P[X > s4] +E[u′(Wf ∗(X))I{X∈(x1,s4]}]
P[X > x1]

≥ (1 + ρ)E[u′(Wf ∗(X))]P[X > s4] + u′(Wf ∗(x1))P[X ∈ (x1, s4]]]
P[X > x1] .

Therefore we must have u′(Wf ∗(x1)) < (1 + ρ)E[u′(Wf ∗(X))], which contradicts
(A.1). Thus the desired conclusion must hold.

(i)(b) Assume the conclusion does not hold, i.e., there exists x1 ∈ (s1, s2) such that
�f ∗(x1) > 1 + ρ. Use the same argument as in (i)(a), we can get a contradiction and
thus prove the desired conclusion.

(i)(c) This is a combination of the conclusions from (i)(a) and (i)(b).
(ii) If �f ∗(x) = 1 + ρ for all x ∈ [s1, s2], a simple calculation gives

0 = (
�f ∗(x2) − �f ∗(x1)

)
E

[
u′(Wf ∗(X)

)]

= P[x1 < X ≤ x2]
P[X > x1]

(
E

[
u′(Wf ∗(X)

)∣∣X > x2
] −E

[
u′(Wf ∗(X)

)∣∣X ∈ (x1, x2]
])

= P[x1 < X ≤ x2]
P[X > x1]

(
(1 + ρ)E

[
u′(Wf ∗(X)

)] −E
[
u′(Wf ∗(X)

)∣∣X ∈ (x1, x2]
])

for any s1 ≤ x1 < x2 ≤ s2. Under Assumption 6.1, it is easy to get from the above
equation that u′(Wf ∗(x)) = (1 + ρ)E[u′(Wf ∗(X))] for any x ∈ [s1, s2]. As a result,
m(x) − f ∗(x) is constant over [s1, s2].

(iii) Assume there exists x1 ∈ (s0,M) such that �f ∗(x1) > 1 + ρ. Note that
x 
→ �f ∗(x) is continuous on [s0,M) under Assumption 6.1. Define

xL = inf{x ∈ [s0, x1) : �f ∗(t) > 1 + ρ for all t ∈ (x, x1]},
xU = sup{x ∈ [x1,M) : �f ∗(t) > 1 + ρ for all t ∈ (x1, x]}.

Clearly, we have s0 ≤ xL < x1 < xU , �f ∗(xL) = 1 + ρ and �f ∗(x) > 1 + ρ for
all x ∈ (xL, xU ), which together with Theorem 3.3 implies that f ∗′(x) = 1 and thus
m(x) − f ∗(x) is decreasing on (xL, xU ). If xU = M , then m(x) − f ∗(x) is decreas-
ing on [xL,M), and so is �f ∗(x). Therefore, we have �f ∗(xL) ≥ �f ∗(x1) > 1 + ρ,
which contradicts �f ∗(xL) = 1 + ρ. If xU < M , then by the continuity of �f ∗(x),
we have �f ∗(xU ) = 1 + ρ. According to (i)(b), we have �f ∗(x) ≤ 1 + ρ for all
x ∈ (xL, xU ), which contradicts �f ∗(x1) > 1 + ρ. As a result, there cannot exist
x1 ∈ [s0,M) with �f ∗(x1) > 1 + ρ. In other words, we must have �f ∗(x) ≤ 1 + ρ

for any x ∈ [s0,M).
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(iii′) According to (iii), we must have �f ∗(x) ≤ 1 + ρ for any x ∈ [s1,M).
Define yU = sup{t ∈ [s1,M) : �f ∗(t) = 1 + ρ}. We have s1 ≤ yU ≤ M and
�f ∗(yU ) = 1 + ρ. If yU < M , the definition of yU and the continuity of �f ∗(t)
imply �f ∗(t) < 1 + ρ for all t ∈ (yU ,M). Using Theorem 3.3, we get f ∗′(t) = 0,
and hence m(x) − f ∗(x) is increasing over (yU ,M). Consequently, we have
1 + ρ > �f ∗(t) ≥ �f ∗(yU ) = 1 + ρ for all t ∈ (yU ,M), which leads to a contra-
diction. Therefore, we must have yU = M and the result follows by using (i)(c).

(iv) If m′(x) ≥ 1 for x ≥ s0, (2.1) implies that m(x) − f ∗(x) is increasing on
[s0,M). So is then �f ∗(x). If �f ∗(s0) > 1 + ρ, then �f ∗(x) ≥ �f ∗(s0) > 1 + ρ for
any x ≥ s0, and thus f ∗′(x) = 1 for any x > s0 according to Theorem 3.3. Otherwise,
if �f ∗(s0) = 1 + ρ, let s1 = sup{x ∈ [s0,M) : �f ∗(x) = 1 + ρ}. Then the increasing
property of �f ∗(x) implies

�f ∗(x)

{= 1 + ρ, x ∈ [s0, s1],
> 1 + ρ, x ∈ (s1,M).

Therefore we have f ∗′(x) = 1 for any x ∈ (s1,M), and (ii) implies that m(x)−f ∗(x)

is constant on [s0, s1], which in turn implies that f ∗′(x) = m′(x) = 1 on (s0, s1)

because m′(x) ≥ 1 ≥ f ∗′(x). As a consequence, f ∗′(x) = 1 for any x ∈ (s0,M). �
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