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Abstract Discrete-time hedging produces a residual P&L, namely the tracking er-
ror. The major problem is to get valuation/hedging policies minimising this error.
We evaluate the risk between trading dates through a function penalising profits and
losses asymmetrically. After deriving the asymptotics from a discrete-time risk mea-
surement for a large number of trading dates, we derive the optimal strategies min-
imising the asymptotic risk in a continuous-time setting. We characterise optimality
through a class of fully nonlinear partial differential equations (PDEs). Numerical
experiments show that the optimal strategies associated with the discrete and the
asymptotic approaches coincide asymptotically.
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1 Introduction

Statement of the problem The valuation and hedging of contingent claims are
major concerns in finance, both from a theoretical and a practical point of view.
The continuous-time theory is well established (see for instance Karatzas and Shreve
[16, Chap. 2]). But in practice, hedging can be performed only at discrete times,
say t0 = 0 < t1 < · · · < tN = T , yielding a residual risk. Here, we intend to
hedge the claim HT at time T using d hedging instruments with price processes
X = (X(1), . . . ,X(d)). So the local P&L En associated with the hedging times tn and
tn+1 can be written as

En = Vtn+1 − Vtn − 〈ϑtn,Xtn+1 − Xtn〉. (1.1)

Here, V stands for the valuation process and ϑ = (ϑ(1), . . . , ϑ(d)) for the hedging
process. Also, ϑ(i) denotes the number of shares invested in the ith hedging instru-
ment. By considering discounted prices, we suppose the non-risky asset has zero
drift.

In high-frequency hedging, the impact of discrete-time compared to continuous-
time hedging is small (see for instance the convergence results by Bertsimas et al. [4]
for smooth payoffs and convergence in L2 and in distribution, and the results by Go-
bet and Temam [14] for irregular payoffs which usually modify the convergence rate).
In low-frequency hedging such as in energy markets (see Christodoulou et al. [7]),
the risk of the local P&L is bigger and may become an issue. Our aim is to find val-
uation/hedging rules (V ,ϑ) minimising this risk. We differ from the existing results
(for instance, those related to the quadratic local risk minimisation by Föllmer and
Schweizer [10, 24]) by dealing with a risk function � penalising profits (En < 0) and
losses (En > 0) asymmetrically. So the integrated local risk under study takes the
form

EN(V,ϑ) =
N−1∑

n=0

E[�(En)].

The simplest case of such a risk function � is

�γ (y) = (
1 + γ Sgn(y)

)2
y2/2, (1.2)

with γ ∈ (0,1) to penalise losses more than profits (see Fig. 1). We define the above
sign function as Sgn(y) := I{y>0} − I{y<0}. Such a risk function is inspired from
the asymmetric quadratic loss of Newey and Powell [18] in the context of statisti-
cal estimation, and was later studied by Bellini et al. [3] to define a new coherent
risk measure known as expectile, where the α-expectile is linked to the loss function

(1.2) with α = (1+γ )2

2(1+γ 2)
∈ [ 1

2 ,1]. Expectiles are known to be appropriate risk measures
when one wishes to weight differently profits and losses, like in our framework.

In this setting, our aim is to study the asymptotics of the minimum

min
(V ,ϑ)∈AV,ϑ

VT =HT

EN(V,ϑ) (1.3)
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Fig. 1 Plot of the risk function
�γ for different γ

as the number N of hedging dates becomes larger. To simplify, we take equidistant
hedging times tn = nεN with time step εN = T/N . The minimum (1.3) is computed
over the set AV,ϑ of all adapted (to the underlying filtration (Ft )t≥0) and appropri-
ately integrable pairs (V ,ϑ), under the replication constraint VT = HT .

There are a few results in that direction. In [20], Pham deals with an Lp-risk func-
tion of the losses and a fixed number of trading dates. In [21], Pochart and Bouchaud
consider the expected shortfall risk function. Their research concentrates on numerics
for a fixed number of dates and does not handle any asymptotic analysis as N → ∞.
In [1], Abergel and Millot study pseudo-optimal strategies and get asymptotic results
under the condition that the risk function is of class C3. So their analysis discards the
prototype risk function (1.2). Indeed, the discontinuity of the second derivative �′′

γ

complicates the analysis and fully changes the nature of subsequent results. As a com-
parison, in [1, Sect. 4.1, “Complete markets case”], the limiting valuation/hedging
rule does not depend on the risk function (provided that it is of class C3), whereas in
our setting, the limit strongly depends on �γ (only piecewise C2) through the param-
eter γ > 0. In short, the existing references consider different settings and difficulties
from ours.

Exogenous reference valuation and f -PDE valuation The minimisation problem
(1.3) appears attractive, but its study in the asymptotic regime N → ∞ is tough in the
case of the asymmetric risk function (1.2). To tackle this problem, we slightly change
the approach. See Fig. 2 for an overview of our analysis.

First, we suppose the hedging instruments are modelled by a stochastic differential
equation (SDE) with drift μ and diffusion σ . We also consider contingent claims of
the form HT = h(XT ). Second, we suppose that the contingent claim is evaluated
exogenously by a valuation process Vt = v(t,Xt ) for some function v. For instance,
v could be given by a mark-to-model value promoted by the regulator or the central
counterparty (CCP). The latter imposes a minimum margin requirement which the
hedging entity has to comply with. Given this exogenous reference valuation, the
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Fig. 2 Diagram of the analysis of the problem

trader will determine how to hedge on each interval [tn, tn+1] by choosing an adapted
valuation/hedging rule (Ṽtn , ϑ̃tn) and considering the related conditional local risk

Rn(γ ) := E[�γ (Vtn+1 − Ṽtn − 〈ϑ̃tn ,Xtn+1 − Xtn〉)|Ftn ]. (1.4)

In addition, the valuation/hedging rule of the trader will be parametrised by a pos-
sibly nonlinear function f . Inspired by the connection between dynamic risk valua-
tions, nonlinear partial differential equations (PDEs) and nonlinear backward SDEs
developed by many authors such as El Karoui et al. [9], Peng [19], Cheridito et al. [6],
Crépey [8, Chap. 4], Zhang [25, Chaps. 4, 5 and 12], we introduce the concept of an
f -PDE valuation. Let

σ : [0, T ] ×R
d → R

d×d, f : [0, T ] ×R
d ×R×R

d ×R
d×d → R

be continuous functions. Let τ ∈ (0, T ] be a time horizon and v(τ, ·) a reference val-
uation at time τ . Given τ and v(τ, ·), the function uτ : [0, τ ] ×R

d → R is a solution
to the f -PDE if it satisfies

∂tuτ (t, x) + 1

2
Tr[σσᵀD2

xuτ ](t, x) + f
(
t, x, uτ (t, x),Dxuτ (t, x),D2

xuτ (t, x)
)

= 0 (1.5)
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for all (t, x) ∈ [0, T ] ×R
d with the terminal condition

uτ (τ, x) = v(τ, x)

at time τ . The f -PDE valuation is the mapping from (τ, v(τ, ·)) to the solution uτ

of the f -PDE (1.5). We refer to f as the kernel. The heuristic justification from a
mathematical finance point of view works as follows. As previously mentioned, in
[9, 6, 8, 25], many valuation and hedging problems can be recast in terms of (first-
and second-order) nonlinear backward SDEs (with a nonlinearity f which accounts
for imperfections, frictions, uncertainties, etc.), and in a Markovian setting, these
BSDEs are tightly related to (first and second order) nonlinear PDEs of the form (1.5)
via Feynman–Kac formulas. The kernel f ≡ 0 corresponds to the usual (frictionless)
risk-neutral valuation [16, Chap. 2]; the case of pricing with uncertain volatility in di-
mension 1 (i.e., σ ∈ [σ ,σ ]) is related to the Black–Scholes–Barenblatt PDE, derived
by Avellaneda et al. [2], of the form ∂tuτ + 1

2 supσ≤σ≤σ (σ 2∂2
xuτ ) = 0, yielding a

nonlinear f depending on the second derivative; other kernels appear for instance in
[9] or [25, Chap. 12]. Moreover, in all these continuous-time representations, under
mild conditions, the hedging portfolio is computed as the space derivative of the PDE
solution along the asset path. Loosely speaking, the f -PDE is typically the nonlinear
valuation/hedging rule of a trader who accounts for some frictions or uncertainties
modelled by f . In [19], Peng establishes a converse by showing that any coherent
dynamic valuation must be given by a BSDE with some f . All this gives justification
for parametrising valuation/hedging rules through an f -PDE.

So far, f is arbitrary and therefore, we are in a position to potentially consider all
valuation/hedging strategies with the most usual friction or uncertainty types. In the
conditional local risk expression given by (1.4), consistently with the above heuris-
tics, we then set

Ṽtn = u(n+1)(tn,Xtn), ϑ̃tn = Dxu
(n+1)(tn,Xtn),

where we denote u(n+1) := utn+1 . Note that parametrising the f -PDE solutions with
the maturity τ is expected to enable the strategy on the interval [tn, tn+1] to have as a
target the reference value at time tn+1.

Our contributions Our first main result is to prove the existence (Theorem 2.6) of
the following limit, called the asymptotic risk,

Rγ (v, f ) = lim
N→∞

1

εN

N−1∑

n=0

E[Rn(γ )]. (1.6)

Moreover, we give an explicit expression for Rγ (v, f ) depending on γ, v,f,σ,X

and T . Then we discuss the existence of an optimal kernel f ∗ such that the f ∗-PDE
valuation minimises the asymptotic risk in the sense that

Rγ (v, f ∗) ≤ Rγ (v, f ) (1.7)

for any admissible f . In the one-dimensional case, this optimal kernel f ∗ is explicit
(see (2.18)) and depends on the risk parameter γ ; its input variables are only the
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reference valuation’s second derivative and the price process volatility. This result
is interesting on its own, apart from the problem (1.3), since when the reference
price is exogenously given (like in the CCP case mentioned in the introduction), we
get the optimal valuation/hedging kernel to use to minimise the risk measured in an
asymmetric manner.

We can go further in order to propose a candidate for the solution to (1.3), accord-
ing to the diagram of Fig. 2. This is a situation where the trader would like to use an
endogenous reference valuation consistent with her f ∗-PDE valuation/hedging rule.
In other words, we choose the reference valuation as the solution to the f ∗-PDE (1.5).
Here, the payoff h : R → R is the f ∗-PDE terminal condition at time T . We denote
by v∗ the resulting valuation. In dimension one, this PDE takes the form

∂tv
∗(t, x) + 1

2
σ 2(t, x)∂2

x v∗(t, x)

+ c∗
1σ 2(t, x)

(
∂2
x v∗(t, x)

)+ − c∗
2σ 2(t, x)

(
∂2
xv∗(t, x)

)− = 0

for some constants c∗
1 ≥ 0 and c∗

2 ≤ 0 depending on the risk parameter γ . When
σ is constant, observe that the above PDE coincides with the aforementioned Black–
Scholes–Barenblatt equation from [2] (with adjusted σ and σ depending on σ and γ ).
In higher dimension, v∗ solves a fully nonlinear PDE with a nonlinear term depending
on the Hessian D2

xv
∗ (see the nonlinear PDE (2.12)). All in all, this gives somehow an

endogenously consistent way to valuate the claim h by accounting for local hedging
errors measured with the asymmetric risk function �γ , which constitutes to the best
of our knowledge an original contribution.

Summing up, instead of minimising (1.3) and then taking the limit in N after
rescaling by εN , we take first the limit in N of the cumulated integrated local risk
for a wide class of f -PDE valuations and then minimise over all kernels f ; see the
diagram of Fig. 2. We do not prove that inverting minimisation and limit holds true
in this setting. In other words, we do not claim that the limit of the minimum (1.3)
rescaled by εN corresponds to Rγ (v∗, f ∗) and that

Ṽtn ≈ v∗(tn,Xtn), ϑ̃tn ≈ Dxv
∗(tn,Xtn). (1.8)

However, our numerical tests in dimension 1 seem to corroborate this (see in partic-
ular Table 2 and Figs. 8, 9). Proving this result rigorously is so far an open problem
that we expect to handle in the future.

The paper is structured as follows. Below, we present the notations and conven-
tions used throughout the paper. In Sect. 2, we define the stochastic setting, then state
the assumptions and the main results. The reader only interested by the main theoreti-
cal results (without their proofs) could stick to Sects. 1 and 2. The proofs are gathered
in Sect. 3. In order to grasp the main proof ideas behind Theorem 2.6, we have split
Sect. 3 into several parts: we first give an overview of the main steps of the proof, and
then separate the proof into independent sub-results (see Propositions 3.1, 3.2 and
Lemma 3.3) that are combined to obtain Theorem 2.6. Further technical results are
collected in the Appendix. Section 4 contains our numerical experiments.
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Usual notations Let d ∈ N and a, b in R
d . We denote by 〈a, b〉 = ∑d

i=1 aibi the
scalar product on R

d , adopted for both row or column vectors a and b. We set
|a| = √〈a, a〉. We denote by Md the set of all d × d matrices with real entries.
By Sd , we denote all symmetric matrices in Md . For A ∈ Md , we denote by Tr[A]
and Aᵀ, respectively, the trace and the transpose of A and set |A| = √

Tr[AAᵀ].
Let E,E′ be two generic Euclidean spaces and φ : [0, T ] × E an E′-valued func-

tion. In this paper, we say that φ satisfies a local regularity condition in time and
space if for some real q > 0, the coefficient

‖φ‖
H1/2,1

loc,pol
:= sup

t,t ′∈[0,T ]
t �=t ′

sup
x,x′∈E
x �=x′

|φ(t, x) − φ(t ′, x′)|
(|t − t ′|1/2 + |x − x′|)(1 + |x|q + |x′|q)

is finite; then φ is said to be in H1/2,1
loc,pol. We are aware that ‖φ‖

H1/2,1
loc,pol

depends on q ,

but in the following, the precise value of q is unimportant and we prefer to avoid the
reference to q in the notation ‖φ‖

H1/2,1
loc,pol

for the sake of simplicity.

Observe that φ ∈ H1/2,1
loc,pol means that φ is locally 1/2-Hölder-continuous in time

and Lipschitz-continuous in space and has polynomial growth in space uniformly in
time. Furthermore, for any φ1 and φ2 in H1/2,1

loc,pol, the product φ1φ2, the pair (φ1, φ2)

and the composition φ1(t, φ2(t, ·)) are also in H1/2,1
loc,pol.

The set C1,2([0, T ] × E;E′) denotes the set of functions φ : [0, T ] × E → E′
such that the partial derivatives ∂tφ, ∂xi

φ, ∂xi
∂xj

φ exist and are continuous for any
1 ≤ i, j ≤ d . When E = R

d and the domain E′ is unambiguous, we simply write
C1,2([0, T ] ×R

d).
For every function φ ∈ C1,2([0, T ] × R

d ;R), we denote its gradient in space by
the row vector Dxφ = (∂xi

φ)1≤i≤d and its Hessian by D2
xφ = (∂xi

∂xj
φ)1≤i,j≤d . Also,

let Lt φ : [0, T ] ×R
d →R be given by

Lt φ(t, x) = ∂tφ(t, x) + 1

2
Tr[σσᵀD2

xφ](t, x).

Notice that φ, ∂tφ,Dxφ,D2
xφ ∈ H1/2,1

loc,pol is a sufficient condition to have φ ∈ C1,2 and
to be able to apply Itô’s formula.

2 Model, assumptions and main results

2.1 Probabilistic risk model

We fix a finite time horizon T > 0. Let W = (W(1), . . . ,W(d)) : [0, T ] × � →R
d be

a standard Brownian motion on a probability space (�,F ,P). Let F = (Ft )t∈[0,T ] be
the augmented and completed filtration generated by W . We consider the F-adapted
process X = (X(1), . . . ,X(d)) : [0, T ]×� →R

d satisfying the stochastic differential
equation (SDE)

dXt = μ(t,Xt )dt + σ(t,Xt )dWt (2.1)
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Fig. 3 Plot of the derivatives of the risk function �γ for different γ : �′
γ (left) and �′′

γ (right)

with initial value X0 = x0 ∈ R
d . The coefficients μ : [0, T ] × R

d → R
d and

σ : [0, T ]×R
d → Md are Lipschitz in space, uniformly in time (see Assumption 2.1

later).
Given N ∈N equidistant hedging times t0 = 0 < t1 < · · · < tN = T on the interval

[0, T ] with tn = nεN and εN = T/N , we write

ϕN
t := sup{tn : tn ≤ t}, ϕ̄N

t := inf{tn : tn > t},
and the increment of X from tn to tn+1 is 
Xn := Xtn+1 − Xtn .

In the following, we systematically consider the risk function �γ defined in (1.2).
It is a convex and continuously differentiable function satisfying �γ (0) = �′

γ (0) = 0
and �γ (y) = �−γ (−y). In addition, it is symmetric if and only if γ = 0. Further, �′

γ is
a piecewise continuously differentiable function with �′′

γ being discontinuous as soon
as γ �= 0,

�′
γ (y) = (

1 + γ Sgn(y)
)2

y, �′′
γ (y) = (

1 + γ Sgn(y)
)2

, (2.2)

where �′′
γ is extended to 0 as �′′

γ (0) = 1 owing to Sgn(0) = 0 (see Fig. 3). In all the
sequel, we assume γ ∈ [0,1).

For a payoff function h : Rd → R, the inputs of our approach are a reference
valuation v : [0, T ] ×R

d →R such that v(T , ·) = h(·) and a kernel

f : [0, T ] ×R
d ×R×R

d × Sd →R.

Both are assumed to be smooth functions (see Assumptions 2.2 and 2.3). We consider
the f -PDE valuation giving rise to the family of functions utn+1 : [0, tn+1]×R

d → R

indexed by the hedging times tn+1. These functions are the solutions to the PDE (1.5)
with the Cauchy boundary condition utn+1(tn+1, ·) = v(tn+1, ·) at time tn+1. Also,
they are assumed to be smooth in the sense of Assumption 2.4. In this context, we set
u(n+1) = utn+1 and define the local P&L En : � →R (see (1.1)) by

En := u(n+1)(tn+1,Xtn+1) − u(n+1)(tn,Xtn) − Dxu
(n+1)(tn,Xtn)
Xn (2.3)
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and the conditional local risk by

Rn(γ ) := E[�γ (En)|Ftn]. (2.4)

As explained in the introduction, our aim is to analyse the asymptotic behaviour of
the integrated conditional local risk after appropriate renormalisation, i.e.,

RN,γ (v, f ) := 1

εN

N−1∑

n=0

E[Rn(γ )]. (2.5)

2.2 Asymptotic risk Rγ given a reference valuation v and a kernel f

Here, we study the asymptotic risk Rγ (as defined in (1.6)) when a reference valua-
tion v and a kernel f are given. We state the following assumptions.

Assumption 2.1 The coefficients μ : [0, T ] ×R
d →R

d and σ : [0, T ] ×R
d → Md

are in H1/2,1
loc,pol.

Assumption 2.2 The reference valuation v : [0, T ] ×R
d →R is in H1/2,1

loc,pol. Further,

Dxv and D2
xv exist and are in H1/2,1

loc,pol.

Assumption 2.3 The kernel f : [0, T ] ×R
d ×R×R

d × Sd →R is in H1/2,1
loc,pol.

Assumption 2.4 For all τ ∈ (0, T ], there is a unique classical solution uτ to the
PDE (1.5) with the terminal condition uτ (τ, ·) = v(τ, ·) at time τ . In addition,

∂tuτ , ∂xi
uτ , ∂xi

∂xj
uτ , ∂t ∂xi

uτ , ∂xi
∂xj

∂xk
uτ

exist and are in H1/2,1
loc,pol.

Assumption 2.5 The symmetric matrix (σᵀ(D2
xv)σ )(t,Xt ) is not zero, dt ⊗ dP-a.e.

(this is a non-degeneracy condition).

For stating the asymptotic result below, we need to introduce an extra Brownian
motion B , independent of W , with the same dimension as W . Both are defined on an
extended probability space with obvious definitions. Whenever necessary, the expec-
tation with respect to the distribution of B , or W , or both, is denoted by E

B , or EW ,
or EW⊗B .

Theorem 2.6 Let B = (B(1), . . . ,B(d)) : [0,1] × � → R
d be a standard Brownian

motion independent from W . Consider RN,γ (v, f ) given by (2.5) in the form

RN,γ (v, f ) = 1

εN

N−1∑

n=0

E[�γ (En)],
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where En is given by (2.3). Under the Assumptions 2.1–2.5, the limit of RN,γ (v, f )

as N → ∞ exists and is given by

Rγ (v, f ) = E

[∫ T

0

∫ 1

0
�′′
γ

(∫ θ

0
B

ᵀ
θ ′GtdBθ ′ − Ftθ

)

×
(

F 2
t θ − Ft

∫ θ

0
B

ᵀ
θ ′GtdBθ ′ + |GtBθ |2/2

)
dθdt

]
, (2.6)

where

Ft = f
(
t,Xt , v(t,Xt ),Dxv(t,Xt ),D

2
xv(t,Xt )

) ∈R,

Gt = (
σᵀ(D2

xv)σ
)
(t,Xt ) ∈ Sd .

The long and delicate proof is postponed to Sect. 3.
If the risk function � is different from �γ but has the same characteristics (i.e.,

� convex, �(0) = �′(0) = 0, �′′(0−) = �′′
γ (0−) and �′′(0+) = �′′

γ (0+)), we obtain the
same limit for the asymptotic risk (2.6), because only the left and right derivatives of
the risk function at zero matter. The full derivation follows the same arguments as for
�γ , and the details are left to the reader.

2.3 Optimising over the kernel f

Here, we study the optimisation problem over the kernel f described in (1.7). To
specify the definition of the optimal kernel f ∗, we rewrite the asymptotic risk in
(2.6) as a functional Rγ : �v × �f →R given by

Rγ (v, f ) = E

[∫ T

0
Rγ (Gt ,Ft )dt

]
,

where Rγ : Sd ×R →R is defined as

Rγ (S, a) = E

[∫ 1

0
�′′
γ

(
(B

ᵀ
θ SBθ − Tr[S]θ)/2 − aθ

)

× (
a2θ − a(B

ᵀ
θ SBθ − Tr[S]θ)/2 + (B

ᵀ
θ SᵀSBθ)/2

)
dθ

]
, (2.7)

with

�v = {
v ∈ H1/2,1

loc,pol : Dxv,D2
xv ∈ H1/2,1

loc,pol

}
, �f = {

f : f ∈ H1/2,1
loc,pol

}
.

To go from (2.6) to (2.7), we have applied Itô’s formula to simplify the stochastic
integral with respect to B . We prefer to keep the statement (2.6) with the stochastic
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integrals because this is the representation that comes up directly from the proof. We
aim at proving the existence of minimisers to the variational problem

min
f ∈�f

Rγ (v, f ) (2.8)

for all v ∈ �v . Observe that the minimiser f †(t, x, y, z,A) defined (for any fixed
(t, x, y, z,A)) by

f †(t, x, y, z,A) = argmin
a∈R

Rγ

(
(σᵀAσ)(t, x), a

)

is also a minimiser to (2.8) provided it is in �f . To see this, we just need to integrate
over t ∈ [0, T ] and take the expectation on both sides of

Rγ

(
G(t,Xt ), f

†(t,Xt , v(t,Xt ),Dxv(t,Xt ),D
2
xv(t,Xt )

))

≤ Rγ

(
G(t,Xt ),F (t,Xt )

)
.

This is why we seek a minimiser to a �→ Rγ (S, a) for a given symmetric matrix S.
We now prove the existence of a minimiser.

Proposition 2.7 Let γ ∈ [0,1) and S ∈ Sd . Consider the minimisation problem

min
a∈R Rγ (S, a). (2.9)

Under the hypotheses of Theorem 2.6, there exists a global minimiser a∗ ∈ R such
that Rγ (S, a∗) ≤ Rγ (S, a) for all a ∈R.

If a∗ is unique, a natural candidate for f ∗ is then given by

f ∗(t, x, y, z,A) = a∗(σᵀ(t, x)Aσ(t, x)
)
, (2.10)

for any (t, x, y, z,A) ∈ [0, T ] ×R
d ×R×R

d × Sd .

Proof of Proposition 2.7 First, we show that the function Rγ (S, a) is coercive and
continuous in a. For any θ ∈ (0,1], we consider Za

θ = (B
ᵀ
θ SBθ − Tr[S]θ)/2 − aθ .

Through simple computations, we check that Za
θ is continuous in a and integrable

with respect to dPB ⊗ dθ .
Regarding the coercivity, we exhibit a coercive function which bounds Rγ (S, a)

from below. Owing to the boundedness of �′′
γ , we estimate dPB ⊗ dθ -almost surely

�′′
γ (Za

θ )(−aZa
θ + |SBθ |2/2) ≥ (1 − γ )2(a2θ + |SBθ |2/2)

− (1 + γ )2|a|(|Bᵀ
θ SBθ | + |Tr[S]|θ)/2.

By integrating in θ and taking the expectation of this estimate, we get

Rγ (S, a) ≥ (1 − γ )2(a2/2 + Tr[SᵀS]/4) − (1 + γ )2|a|(E[|GᵀSG|] + |Tr[S]|)/4,
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where G is a standard normal random vector. Then we conclude that a �→ Rγ (S, a)

is coercive.
Regarding the continuity, we first take S = 0 and obtain

Rγ (0, a) = (
1 + γ Sgn(−a)

)
a2/2.

Therefore, a �→ Rγ (0, a) is a continuous and strictly convex function and hence has
a unique global minimiser given by a∗ = 0. Now we take S �= 0 and decompose
Rγ (S, a) as

Rγ (S, a) = −E

[∫ 1

0
aZa

θ �′′
γ (Za

θ )dθ

]
+ 1

2
E

[∫ 1

0
�′′
γ (Za

θ )|SBθ |2dθ

]
. (2.11)

By plugging in the expression of �′′
γ (see (2.2)), we get

a �→ aZa
θ �′′

γ (Za
θ ) = (1 + γ 2)aZa

θ + 2γ a|Za
θ |,

which is continuous dPB ⊗ dθ -almost surely and bounded by (1 + γ )2|a||Za
θ | (in-

tegrable with respect to dPB ⊗ dθ locally uniformly in a). By the dominated con-
vergence theorem, we conclude that the first term of the decomposition in (2.11)
is continuous in a. Also, we estimate |�′′

γ (Za
θ ) |SBθ |2| ≤ (1 + γ 2)|SBθ |2, which is

integrable uniformly in a. Because B
ᵀ
θ SBθ has a density with respect to Lebesgue

measure (see the proof of Proposition A.3 in the Appendix), we get that Za
θ �= 0

dPB ⊗ dθ -almost surely. It holds that

a �→ �′′
γ (Za

θ )|SBθ |2

is continuous dPB ⊗ dθ -almost surely, due to the continuity of �′′
γ on R

∗. Now, we
conclude that the second term of the decomposition in (2.11) is also continuous in a

by applying again the dominated convergence theorem. Therefore, we have proved
that Rγ (S, a) is continuous in a.

Take α ∈ R large enough such that K = {a : Rγ (S, a) ≤ α} is nonempty. Because
of the continuity and coercivity of Rγ (S, a), K is compact. Then by Weierstrass’
theorem, we conclude the announced result. �

Here, we have just shown the existence of a minimiser a∗ to problem (2.9) for a
given symmetric matrix S. The regularity of a∗(S) has not been analysed, because
uniqueness has not been proved. In fact, the uniqueness and smoothness of f ∗ for
problem (2.8) is challenging in the general case. Certainly, if a∗(S) is unique, then
we could define f ∗ as in (2.10).

Then, a natural candidate for the endogenous valuation/hedging rule (as explained
in the introduction) is given by the solution to the nonlinear f ∗-PDE
{

∂tv
∗(t, x) + 1

2 Tr[σσᵀD2
xv

∗](t, x) + a∗(σᵀ(t, x)D2
xv

∗(t, x)σ (t, x)
) = 0,

v∗(T , x) = h(x).
(2.12)

This PDE is fully nonlinear with a nonlinear term depending on the Hessian. Un-
fortunately, in full generality, we are not able to prove the existence/uniqueness of a
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solution v∗ satisfying Assumption 2.2. Also proving that the new kernel f ∗ fulfils
Assumption 2.3 is not straightforward. Fortunately, the one-dimensional case pro-
vides us with a quasi-explicit formulation for a∗, which hopefully is a first step in the
analysis of the PDE (2.12). Further investigation is left to future research.

Coming back to the initial problem (1.3), we conjecture that

Ṽtn ≈ v∗(tn,Xtn), ϑ̃tn ≈ Dxv
∗(tn,Xtn),

which will be numerically tested in Sect. 4.

2.4 Quasi-explicit solution in the one-dimensional case

In this section, we present a quasi-explicit formulation of the optimal kernel f ∗ in
the one-dimensional case. Here, (B

ᵀ
θ SBθ − Tr[S]θ)/2 becomes (B2

θ − θ)y/2 for
y = S ∈ R. So we can rewrite the function Rγ (S, a) given by (2.7) as

Rγ (y, a) = E

[∫ 1

0
�′′
γ

(
y(B2

θ − θ)/2 − aθ
)(

a2θ − ay(B2
θ − θ)/2 + y2B2

θ /2
)
dθ

]
.

Let a∗ ∈ R be a global minimiser of a �→ Rγ (y, a). In the following proposition,
we sum up some interesting properties of a∗. We denote by �N the cumulative dis-
tribution function of the standard normal distribution and by φN = �′

N its density.

Proposition 2.8 Let γ ∈ [0,1).
(a) Let c∗

1 ∈ R and c∗
2 ∈ R be global minimisers of

c �→ Rγ (1, c) and c �→ Rγ (−1, c),

respectively. Then a∗(y) = c∗
1yI{y>0} + c∗

2yI{y<0} is a global minimiser of

a �→ Rγ (y, a).

(b) The mappings

c �→ Rγ (1, c) and c �→ Rγ (−1, c)

are strictly convex. Thus c∗
1 and c∗

2 are uniquely characterised by

(1 + γ 2)c∗
1 + γ T (c∗

1) = 0 and (1 + γ 2)c∗
2 − γ T (c∗

2) = 0,

respectively, where

T (c) = 2cI{2c+1≤0} +
(
8c�N (−√

2c + 1)−4φN (
√

2c + 1)
√

2c + 1−2c
)
I{2c+1>0}.

Therefore, the minimiser a∗(y) is unique.
(c) For γ = 0, c∗

1 = c∗
2 = 0, and for γ ∈ (0,1), c∗

1 > 0 > c∗
2 .
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Proof (a) First, for y = 0, we get Rγ (0, a) = (1 + γ Sgn(−a))2a2/2. So a∗(0) = 0.
Now we consider the more interesting case y �= 0. By setting c = a/y, we rewrite
Rγ (y, a) as

Rγ (y, cy) (2.13)

= E

[∫ 1

0
�′′
γ

(
(B2

θ − θ)/2 − cθ
)(

c2θ − c(B2
θ − θ)/2 + B2

θ /2
)
dθ

]
y2I{y>0}

+E

[∫ 1

0
�′′
γ

( − (B2
θ − θ)/2 + cθ

)(
c2θ − c(B2

θ − θ)/2 + B2
θ /2

)
dθ

]
y2I{y<0},

because �′′
γ (yζ ) = �′′

γ (ζ ) if y > 0 and �′′
γ (yζ ) = �′′

γ (−ζ ) if y < 0, for any ζ ∈ R.
Consider a global minimiser c∗(y) of c �→ Rγ (y, cy); then a∗(y) = c∗(y)y is also

a global minimiser of a �→ Rγ (y, a). Because (y, c) �→ Rγ (y, cy) is multiplicatively
separable on {y > 0} and on {y < 0}, we write c∗(y) = c∗

1I{y>0} + c∗
2I{y<0}, where c∗

1
and c∗

2 are global minimisers of c �→ Rγ (1, c) and c �→ Rγ (−1, c), respectively.
(b) Let G be a standard normal random variable. It will be useful later to know

E[G2I{G<α}] for any real α: we have

E[G2I{G<α}] = −αφN (α) + �N (α) ,

E[G2I{G>α}] = αφN (−α) + �N (−α) ,

E[G2I{−α<G<α}] = −2αφN (−α) + (
�N (α) − �N (−α)

)
. (2.14)

Now Bθ
(d)= √

θG for all θ in [0,1]. From (2.13), we get

Rγ (1, c) = 1 + γ 2

2
T1(c) + γ T2(c), Rγ (−1, c) = 1 + γ 2

2
T1(c) − γ T2(c), (2.15)

where

T1(c) = E[c2 − c(G2 − 1)/2 + G2/2] = c2 + 1/2,

T2(c) = E
[

Sgn
(
(G2 − 1)/2 − c

)(
c2 − c(G2 − 1)/2 + G2/2

)]
.

Considering α(c) = √
2c + 1, we have

Sgn
(
(G2−1)/2−c

)= I{2c+1<0}+I{2c+1>0}(I{G<−α(c)}+I{G>α(c)}−I{−α(c)<G<α(c)}).

From the expectations in (2.14), we deduce

T2(c) = I{2c+1<0}(c2 + 1/2)

+ I{2c+1>0}(c2 + c/2)E[I{G<−α(c)} + I{G>α(c)} − I{−α(c)<G<α(c)}]
+ I{2c+1>0}(1/2 − c/2)

×E[G2I{G<−α(c)} + G2I{G>α(c)} − G2I{−α(c)<G<α(c)}]
= I{2c+1<0}(c2 + 1/2) + I{2c+1>0}β(c),
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where

β(c) = (c2 + 1/2)
(

3 − 4�N
(
α(c)

)) + 2 (1 − c)α(c)φN
(
α(c)

)
.

We easily check that Rγ (1, c) and Rγ (−1, c) are C0 and piecewise C2. Let us com-
pute their first derivatives for c < −1/2 and c > −1/2; these are

∂cRγ (1, c) = (1 + γ 2)c + γ
(
I{2c+1<0}2c + I{2c+1>0}β ′(c)

)

= I{2c+1<0} (1 + γ )2 c + (
(1 + γ 2)c + γβ ′(c)

)
I{2c+1>0}, (2.16)

∂cRγ (−1, c) = (1 + γ 2)c − γ
(
I{2c+1<0}2c + I{2c+1>0}β ′(c)

)

= I{2c+1<0}(1 − γ )2c + (
(1 + γ 2)c − γβ ′(c)

)
I{2c+1>0}, (2.17)

where

β ′(c) = 8c�N (−√
2c + 1) − 4φN (

√
2c + 1)

√
2c + 1 − 2c.

Standard computations show that ∂cRγ (−1, c) and ∂cRγ (1, c) are both continuous at
c = −1/2. Moreover, we see that ∂cRγ (1, c) and ∂cRγ (−1, c) are strictly increasing
in c under the condition that |β ′′(c)| ≤ 2 on {2c + 1 > 0}. Indeed, we have

β ′′(c) = 6 − 8�N (
√

2c + 1) ∈ [−2,2],
due to �N (

√
2c + 1) ∈ [1/2,1] for all 2c + 1 > 0. Because Rγ (1, c), Rγ (−1, c)

are both strictly convex, the optimal values c∗
1 and c∗

2 are unique and characterised
respectively by ∂cRγ (1, c∗

1) = 0 and ∂cRγ (−1, c∗
2) = 0.

(c) The case γ = 0 is clear from (2.15). Now let γ ∈ (0,1). From the explicit
representations (2.16) and (2.17), we directly get ∂cRγ (−1,0) = −γβ ′(0) > 0 and
∂cRγ (1,0) = γβ ′(0) = −4γφN (1) < 0. Therefore, since Rγ (1, ·) is strictly convex
and decreasing around 0, its minimum must be achieved on the positive line, i.e.,
c∗

1 > 0. Similarly, the minimum of Rγ (−1, ·) must be achieved on the negative line,
i.e., c∗

2 < 0. �

We depict the global minimiser a∗ in Fig. 4. We show the approximate values of
c∗

1 and c∗
2 calculated by a root finding algorithm in Table 1.

Fig. 4 Global minimiser a∗(y)
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Table 1 Optimal slopes c∗
1 and

c∗
2

γ c∗
1 c∗

2

0.1 0.1043 –0.09013

0.2 0.2262 –0.1684

0.3 0.3702 –0.2366

In the spirit of (2.10), we set

f ∗(t, x, y, z,A) = f ∗
γ

(
σ 2(t, x)A

)

with f ∗
γ denoting the optimal kernel in dimension 1, given by

f ∗
γ (y) := a∗(y) = c∗

1yI{y>0} + c∗
2yI{y<0}. (2.18)

3 Proof of Theorem 2.6

The proof is long and technical. For this reason, we split it into different stages.
First, we study the conditional local risk Rn(γ ) on the interval [tn, tn+1] by using a

time-space rescaling argument (see Sect. 3.1). This rescaling turns out to be essential
to pass to the limit later.

Second, we derive an explicit approximation of the conditional local risk Rn(γ )

(see Sect. 3.2).
Finally, we prove that the remainder terms converge almost surely to 0. For this,

we show that the Greeks of uτ (t, ·) converge to those of v(τ, ·) as t ↑ τ (see Sect. 3.3).
Also, to get the limit in (2.6), we need to pass to the limit in �′′

γ along some random
sequences; this is possible since their limiting point equals 0 (the discontinuity point
of �′′

γ ) on a set of measure zero (defined later in (3.16)).
In the proof, we use several constants Cn,N(ξ) depending polynomially on the

space variable ξ (uniformly in the interval [tn, tn+1] and in the number of time steps).
To simplify, we write Cn,N(ξ) ∈ Cpol if for some real q > 0,

sup
N∈N

sup
0≤n≤N−1

sup
ξ∈Rd

|Cn,N(ξ)|
1 + |ξ |q < +∞.

This upper bound depends on the polynomial bounds on the functions μ,σ,f, v

and u.

3.1 Preliminary time-space rescaling and conditioning

First, we start by a few observations.
– Thanks to the Markov property of the SDE and in view of our smoothness as-

sumptions, Rn(γ ) is a continuous function of tn and Xtn only (see (2.4)).
– Rn(γ ) goes to zero at rate ε2

N , because we prove that the remainder is a second-
order stochastic Taylor expansion (i.e., of order εN ) and that it appears inside �γ
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which is positively homogenous of degree 2. Rescaling it by εN , we expect to get a
non-zero limit for the aggregated value of Rn(γ ) (see (2.5)).

– Note that �′′
γ has a jump discontinuity at zero (see (2.2)). To decompose the con-

ditional local risk, we thus need to apply a stronger version of Itô’s formula, known
as the Itô–Tanaka formula.

In view of a Taylor–Itô expansion, we consider the process XεN = (X
εN

θ )θ∈[0,1]
satisfying

dX
εN

θ = εNμ(tn + θεN ,X
εN

θ )dθ + ε
1/2
N σ(tn + θεN ,X

εN

θ )dBθ ,

X
εN

0 = ξ ∈R
d, (3.1)

where B is an extra Brownian motion independent from W . This is a time-space
rescaling of the original process starting from ξ at tn.

Denoting by Xt,ξ the SDE solution starting from ξ at t , we notice that the pro-
cesses (X

tn,ξ
tn+θεN

)θ∈[0,1] and (X
εN

θ )θ∈[0,1] have the same distribution. This is because
both processes satisfy the same SDE generated by Brownian motions both indepen-
dent from Ftn . Thus we can rewrite Rn(γ ) (see (2.4)) as a continuous function in
terms of Xtn and X

εN

θ . Setting

T εN (tn, ξ)

= ε−2
N E

B
[
�γ

(
u(n+1)(tn+1,X

εN

1 ) − u(n+1)(tn, ξ) − Dxu
(n+1)(tn, ξ)(X

εN

1 − ξ)
)]

leads to

Rn(γ ) = ε2
NT εN (tn,Xtn). (3.2)

3.2 Stochastic expansion of the conditional local risk at time tn

Proposition 3.1 Using the notations and assumptions of Theorem 2.6, define the
functions F (n+1) : [0, tn+1] ×R

d → R and G(n+1) : [0, tn+1] ×R
d → Sd by

F (n+1)(t, ·) = f
(
t, ·, u(n+1)(t, ·),Dxu

(n+1)(t, ·),D2
xu

(n+1)(t, ·)),
G(n+1)(t, ·) = (

σᵀ(D2
xu

(n+1))σ
)
(t, ·). (3.3)

For any tn and ξ ∈ R
d , let XεN : [0,1] × � → R

d be the strong solution to the
SDE (3.1) with X

εN

0 = ξ , and let EεN : [0,1] × � → R be the stochastic process
defined by

EεN

θ = u(n+1)(tn + θεN ,X
εN

θ ) − u(n+1)(tn, ξ) − 〈Dxu
(n+1)(tn, ξ),X

εN

θ − ξ 〉 (3.4)

so that

T εN (tn, ξ) = ε−2
N E

B [�γ (EεN

1 )]. (3.5)
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Then we have the local risk decomposition

T εN (tn, ξ) = E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)

× Qθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)
dθ

]
+ Cn,N(ξ)ε

1/2
N ,

where

Eθ(S, y) =
∫ θ

0
B

ᵀ
θ ′SdBθ ′ − yθ, (3.6)

Qθ(S, y) = y2θ − y

∫ θ

0
B

ᵀ
θ ′SdBθ ′ + |SBθ |2/2, (3.7)

R
εN

θ (tn, ξ) = EεN

θ /εN − Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)
, (3.8)

for some constant Cn,N(ξ) ∈ Cpol.

The proof of Proposition 3.1 is delicate. We postpone it to Sect. 3.5. In order to per-
form a second-order stochastic expansion, we need u(n+1) and Dxu

(n+1) to be in C1,2

to apply Itô’s formula. Additionally, we require σ , Dxu
(n+1), D2

xu
(n+1), ∂tDxu

(n+1)

and D2
xDxu

(n+1) to have polynomial growth to obtain proper integrability along the

computations. Finally, we ask for σ and D2
xu

(n+1) to be in H1/2,1
loc,pol, which is useful

in the stochastic expansion of the gradient Dxu
(n+1). All the above conditions are

satisfied thanks to our assumptions.

3.3 Approximation of sensitivities in small time

First, notice that the above expansion of T εN (tn, ξ) depends on u(n+1), solution of
the PDE (1.5) on the subinterval [tn, tn+1], whose size goes to 0. Therefore, by invok-
ing a small-time approximation argument, we replace u(n+1) and its first and second
derivatives by the terminal value v(tn+1, ·) and its first and second derivatives. Notice
that the reference valuation v is independent of εN . This is the matter of the following
statement, proved in Appendix A.1.

Proposition 3.2 With the notations and assumptions of Theorem 2.6, there exists
some constant Cn,N(ξ) ∈ Cpol such that

|u(n+1)(tn, ξ) − v(tn+1, ξ)| ≤ Cn,N(ξ)ε
1/2
N , (3.9)

|Dxu
(n+1)(tn, ξ) − Dxv(tn+1, ξ)| ≤ Cn,N(ξ)ε

1/2
N , (3.10)

|D2
xu

(n+1)(tn, ξ) − D2
xv(tn+1, ξ)| ≤ Cn,N(ξ)ε

1/2
N . (3.11)
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3.4 Aggregation of local risk and passage to the limit

We set

F(t, ξ) = f
(
t, ξ, v(t, ξ),Dxv(t, ξ), (D2

xv)(t, ξ)
) ∈R,

G(t, ξ) = (
σᵀ(D2

xv)σ
)
(t, ξ) ∈ Sd . (3.12)

Replacing ξ by Xtn in the expansion of T εN (tn, ξ) in Proposition 3.1 leads to

T εN (tn,Xtn) = E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn,Xtn),F

(n+1)(tn,Xtn)
) + R

εN

θ (tn,Xtn)
)

× Qθ

(
G(n+1)(tn,Xtn),F

(n+1)(tn,Xtn)
)
dθ

]

+ Cn,N(Xtn)ε
1/2
N ,

where Cn,N(Xtn) ∈ Cpol. By replacing u(n+1)(tn, ·) by its terminal value v(tn+1, ·)
in F (n+1)(tn, ·) and G(n+1)(tn, ·) (see (3.3)), we get F(tn+1, ·) and G(tn+1, ·) (see
(3.12)). Hence,

T εN (tn,Xtn) = E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(tn+1,Xtn),F (tn+1,Xtn)

) + R̄
εN

θ (tn,Xtn)
)

× Qθ

(
G(tn+1,Xtn),F (tn+1,Xtn)

)
dθ

]

+ C̄εN (tn,Xtn) + Cn,N(Xtn)ε
1/2
N ,

where

R̄
εN

θ (tn, ξ) := Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) − Eθ

(
G(tn+1, ξ),F (tn+1, ξ)

)

+ R
εN

θ (tn, ξ), (3.13)

C̄εN (tn, ξ) := E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(tn+1, ξ),F (tn+1, ξ)

) + R̄
εN

θ (tn, ξ)
)

×
(
Qθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)

− Qθ

(
G(tn+1, ξ),F (tn+1, ξ)

))
dθ

]
. (3.14)

In the sequel, we require estimates of R̄
εN

θ (tn,Xtn) and C̄εN (tn,Xtn), summarised
in the following lemma, proved later in Sect. 3.6.

Lemma 3.3 Under the assumptions of Theorem 2.6, for any p ≥ 1, there exists a
constant Kp such that
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(a)

E

[
sup

0≤n≤N−1
sup

θ∈[0,1]

∣∣Eθ

(
G(n+1)(tn,Xtn),F

(n+1)(tn,Xtn)
)

− Eθ

(
G(tn+1,Xtn),F (tn+1,Xtn)

)∣∣p
]

≤ Kpε
p/2
N ;

(b) sup0≤n≤N−1 E[|C̄εN (tn,Xtn)|] ≤ K1ε
1/2
N ;

(c) sup0≤n≤N−1 supθ∈[0,1] |R̄εN

θ (tn,Xtn)| −→ 0 as N → ∞, dPW ⊗ dPB -a.s.

Proof of Theorem 2.6 We have ε−1
N Rn(γ ) = T εN (tn,Xtn)εN from the definition of

T εN in (3.2). By summing over 0 ≤ n ≤ N − 1, we obtain

ε−1
N E

[N−1∑

n=0

Rn(γ )

]

= E

[N−1∑

n=0

T εN (tn,Xtn)εN

]
= E

[∫ T

0
T εN (ϕN

t ,XϕN
t
)dt

]

= E
W⊗B

[∫ T

0

∫ 1

0
�′′
γ

(
Eθ

(
G(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
) + R̄

εN

θ (ϕN
t ,XϕN

t
)
)

× Qθ

(
G(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
)
dθ dt

]

+
N−1∑

n=0

E
[
C̄εN (tn,Xtn)εN + Cn,N(Xtn)ε

3/2
N

]
. (3.15)

The last sum goes to 0 as N → ∞, due to Lemma 3.3 and Proposition 3.1. It remains
to determine the limit of the first term in (3.15). We achieve this result by applying
the dominated convergence theorem, as follows.

1) Because of σ, v,Dxv,D2
xv, f ∈ H1/2,1

loc,pol (therefore, they are continuous in time

and space) and the path-continuity of X, we get dPW -a.s. for any t that
(
σᵀ(D2

xv)σ
)
(ϕ̄N

t ,XϕN
t
) −→

N→∞
(
σᵀ(D2

xv)σ
)
(t,Xt ),

f
(
ϕ̄N

t ,XϕN
t
, v(ϕ̄N

t ,XϕN
t
),Dxv(ϕ̄N

t ,XϕN
t
),D2

xv(ϕ̄N
t ,XϕN

t
)
)

−→
N→∞ f

(
t,Xt , v(t,Xt ),Dxv(t,Xt ),D

2
xv(t,Xt )

)
.

Hence we have dPW ⊗ dPB -a.s. for any θ, t that

Eθ

(
G(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
) −→

N→∞ Eθ

(
�(t,Xt ),F (t,Xt )

)
,

Qθ

(
G(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
) −→

N→∞ Qθ

(
G(t,Xt ),F (t,Xt )

)
,

because Eθ and Qθ (see (3.6) and (3.7)) are continuous in S and y, dPB ⊗ dθ -a.s.
Also, from part (c) of Lemma 3.3, we have
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sup
0≤n≤N−1

sup
θ∈[0,1]

|R̄εN

θ (tn,Xtn)| −→
N→∞ 0,

dPW ⊗ dPB -almost surely.
2) Seeing that the second derivative �′′

γ is discontinuous at 0 and the set

A :=
{
(ω, t, θ) ∈ � × [0, T ] × [0,1] : Eθ

(
G

(
t,Xt (ω)

)
,F

(
t,Xt (ω)

))
(ω) = 0

}

(3.16)

has measure zero (see Proposition A.3 in the Appendix), it holds that

�′′
γ

(
Eθ

(
G(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
) + R̄

εN

θ (ϕ̄N
t ,XϕN

t
)
)

−→
N→∞ �′′

γ

(
Eθ

(
G(t,Xt ),F (t,Xt )

))
,

dPW ⊗ dPB ⊗ dt ⊗ dθ -almost surely.
3) Because of the boundedness of �′′

γ and the polynomial growth of σ, v,Dxv,D2
xv,

we have
∣∣∣�′′

γ

(
Eθ

(
�(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
) + R̄

εN

θ (ϕ̄N
t ,XϕN

t
)
)

× Qθ

(
G(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
)∣∣∣

≤ C

(
1 + sup

t∈[0,T ]
|Xt | + |Bθ | +

∣∣∣∣
∫ θ

0
Bθ dB

ᵀ
θ

∣∣∣∣

)q

for some positive constants C and q . By dominated convergence, we conclude that

E
W⊗B

[∫ T

0

∫ 1

0
�′′
γ

(
Eθ

(
�(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
) + R̄

εN

θ (ϕ̄N
t ,XϕN

t
)
)

× Qθ

(
�(ϕ̄N

t ,XϕN
t
),F (ϕ̄N

t ,XϕN
t
)
)
dθ dt

]

−→
N→∞ E

W⊗B

[∫ T

0

∫ 1

0
�′′
γ

(
Eθ

(
�(t,Xt ),F (t,Xt )

))
Qθ

(
�(t,Xt ),F (t,Xt )

)
dθ dt

]
.

This completes the proof of Theorem 2.6. �

3.5 Proof of Proposition 3.1

For the sake of conciseness, we set u = u(n+1). By substituting X
εN

θ in (3.1) into EεN

θ

in (3.4), we get

EεN

θ = u(tn + θεN ,X
εN

θ ) − u(tn, ξ) − εN

∫ θ

0
Dxu(tn, ξ)μ(tn + θ ′εN,X

εN

θ ′ )dθ ′

− ε
1/2
N

∫ θ

0
Dxu(tn, ξ)σ (tn + θ ′εN ,X

εN

θ ′ )dBθ ′ , (3.17)

where Dxu(·, ·) is a row vector.
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In the proof, we apply the Itô–Tanaka formula to �γ (EεN

θ ) between θ = 0
and θ = 1 and perform some Taylor–Itô expansions in terms of εN . Because
u, ∂tu,Dxu,D2

xu are in H1/2,1
loc,pol, we have u ∈ C1,2([tn, tn+1] × R

d;R). Applying

Itô’s formula to u(tn + θεN ,X
εN

θ ) yields

u(tn + θεN ,X
εN

θ ) − u(tn, ξ) = ε
1/2
N

∫ θ

0
(Dxuσ)(tn + θ ′εN ,X

εN

θ ′ )dBθ ′

+ εN

∫ θ

0
(Ltn+θ ′εN

u)(tn + θ ′εN ,X
εN

θ ′ )dθ ′

+ εN

∫ θ

0

(
(Dxu)μ

)
(tn + θ ′εN ,X

εN

θ ′ )dθ ′. (3.18)

Here, we write (
Dxu)(t, ζ ) = Dxu(t, ζ ) − Dxu(tn, ξ) for any t ∈ [tn, tn+1] and
ζ ∈ R

d . Replacing (3.18) in (3.17) leads to

EεN

θ = ε
1/2
N

∫ θ

0

(
(
Dxu)σ

)
(tn + θ ′εN ,X

εN

θ ′ )dBθ ′

+ εN

∫ θ

0
(Ltn+θ ′εN

u)(tn + θ ′εN ,X
εN

θ ′ )dθ ′

+ εN

∫ θ

0

(
(
Dxu)μ

)
(tn + θ ′εN ,X

εN

θ ′ )dθ ′. (3.19)

Now we first use that u solves the PDE (1.5) to simplify the second term above. Then
we apply the Itô–Tanaka formula to the convex function �γ (see [23, Theorem VI.1.5
and Corollary VI.1.6]) composed with the process EεN

θ between θ = 0 and θ = 1.
Because �′

γ (y) = �′′
γ (y)y for all y ∈R, we get

�γ (EεN

1 ) = −εN

∫ 1

0
�′′
γ (EεN

θ )EεN

θ F (n+1)(tn + θεN,X
εN

θ )dθ

+ ε
1/2
N

∫ 1

0
�′′
γ (EεN

θ )EεN

θ

(
(
Dxu)σ

)
(tn + θεN,X

εN

θ )dBθ

+ εN

∫ 1

0
�′′
γ (EεN

θ )EεN

θ

(
(
Dxu)μ

)
(tn + θεN ,X

εN

θ )dθ

+ 1

2
εN

∫ 1

0
�′′
γ (EεN

θ )
∣∣((
Dxu)σ

)
(tn + θεN,X

εN

θ )
∣∣2dθ.

Considering T εN (tn, ξ) in (3.5), taking the expectation of the above expression and
dividing by ε2

N gives

T εN (tn, ξ) = T
εN

1 (tn, ξ) + T
εN

2 (tn, ξ) + T
εN

3 (tn, ξ), (3.20)
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where

T
εN

1 (tn, ξ) := −ε−1
N E

B

[∫ 1

0
�′′
γ (EεN

θ )EεN

θ F (n+1)(tn + θεN,X
εN

θ )dθ

]
, (3.21)

T
εN

2 (tn, ξ) := 1

2
ε−1
N E

B

[∫ 1

0
�′′
γ (EεN

θ )
∣∣((
Dxu)σ

)
(tn + θεN ,X

εN

θ )
∣∣2dθ

]
, (3.22)

T
εN

3 (tn, ξ) := ε−1
N E

B

[∫ 1

0
�′′
γ (EεN

θ )EεN

θ

(
(
Dxu)μ

)
(tn + θεN ,X

εN

θ )dθ

]
. (3.23)

Here we have used that the stochastic integral in �γ (EεN

1 ) has expectation zero, which

follows directly from E[∫ 1
0 |EεN

θ |4dθ ] < +∞ and from the polynomial growth of σ

and Dxu (because σ,Dxu ∈ H1/2,1
loc,pol). Now we analyse the expansion of EεN

θ and then

apply it to T
εN

i (tn, ξ) for i = 1,2,3.

1) Stochastic Taylor expansion of ((
Dxu)σ )(tn + θεN ,X
εN

θ ) and EεN

θ . We ap-

proximate 
Dxu up to order ε
1/2
N by setting

(
Dxu)(tn + θεN ,X
εN

θ ) = ε
1/2
N B

ᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ) + r

εN

θ , (3.24)

where 
Dxu and r
εN

θ are row vectors.

Lemma 3.4 Let p ≥ 2. Under the assumptions of Theorem 2.6, we have

(a) sup0≤n≤N−1 supθ∈[0,1] EB [|rεN

θ |p] ≤ Cn,N(ξ)ε
p
N ,

(b) sup0≤n≤N−1 supθ∈[0,1] EB [|(
Dxu)(tn + θεN ,X
εN

θ )|p] ≤ Cn,N(ξ)ε
p/2
N ,

for some constant Cn,N(ξ) ∈ Cpol.

Proof of Lemma 3.4 (b) This follows directly from Lemma A.1 and from part (a),
using standard computations.

(a) Because Dxu, ∂tDxu,D2
xu,D2

xDxu are in H1/2,1
loc,pol, we have that Dxu is in

C1,2([tn, tn+1] ×R
d). By applying Itô’s formula to Dxu(tn + θεN,X

εN

θ ), we get

r
εN

θ = εN

∫ θ

0

(
Ltn+θ ′εN

Dxu + μᵀ(D2
xu)

)
(tn + θ ′εN ,X

εN

θ ′ )dθ ′

+ ε
1/2
N

∫ θ

0
dB

ᵀ
θ ′

((
σᵀ(D2

xu)
)
(tn + θ ′εN ,X

εN

θ ′ ) − (
σᵀ(D2

xu)
)
(tn, ξ)

)
.

Using the Hölder inequality, the BDG inequality and the polynomial growth
conditions on the functions (because σ,Dxu, ∂tDxu,D2

xu,D2
xDxu ∈ H1/2,1

loc,pol), we
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estimate

E
B [|rεN

θ |p]

≤ 2p−1ε
p
N

∫ θ

0
E

B
[∣∣(Ltn+θ ′εN

Dxu + μᵀ(D2
xu)

)
(tn + θ ′εN ,X

εN

θ ′ )
∣∣p]

dθ ′θ

+ 2p−1CBDGε
p/2
N

∫ θ

0
E

B
[∣∣(σᵀ(D2

xu)
)
(tn + θ ′εN ,X

εN

θ ′ )

− (
σᵀ(D2

xu)
)
(tn, ξ)

∣∣p]
dθ ′.

Using the growth conditions from the assumptions and applying the bounds (A.1) in
Lemma A.1 to σᵀ(D2

xu) ∈ H1/2,1
loc,pol (because σ and D2

xu are in H1/2,1
loc,pol), we get the

announced estimate. �

Plugging the decomposition (3.24) into the expression of EεN

θ in (3.19) gives

EεN

θ = εNEθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + εNR
εN

θ (tn, ξ), (3.25)

where

Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) =
∫ θ

0
B

ᵀ
θ ′G(n+1)(tn, ξ)dBθ ′ − F (n+1)(tn, ξ)θ

(3.26)
and

R
εN

θ (tn, ξ) = −
∫ θ

0

(
F (n+1)(tn + θ ′εN ,X

εN

θ ′ ) − F (n+1)(tn, ξ)
)
dθ ′

+
∫ θ

0
B

ᵀ
θ ′

(
σᵀ(D2

xu)
)
(tn, ξ)

(
σ(tn + θ ′εN ,X

εN

θ ′ ) − σ(tn, ξ)
)
dBθ ′

+ ε
−1/2
N

∫ θ

0
r
εN

θ ′ σ(tn + θ ′εN ,X
εN

θ ′ )dBθ ′

+ ε
1/2
N

∫ θ

0
B

ᵀ
θ ′

(
σᵀ(D2

xu)
)
(tn, ξ)μ(tn + θ ′εN ,X

εN

θ ′ )dθ ′

+
∫ θ

0
r
εN

θ ′ μ(tn + θ ′εN ,X
εN

θ ′ )dθ ′. (3.27)

Lemma 3.5 Under the assumptions of Theorem 2.6, we have

(a) supθ∈[0,1] EB [|Eθ(G
(n+1)(tn, ξ),F (n+1)(tn, ξ))|2] ≤ Cn,N(ξ),

(b) supθ∈[0,1] EB [|RεN

θ (tn, ξ)|2] ≤ Cn,N(ξ)εN ,

for some constant Cn,N(ξ) ∈ Cpol.
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Proof (a) From (3.26), we get

E
B
[∣∣∣Eθ

((
σᵀ(D2

xu)σ
)
(tn, ξ),F (n+1)(tn, ξ)

)∣∣∣
2]

≤ 2|F (n+1)(tn, ξ)|2θ2 + 2EB

[∣∣∣∣
∫ θ

0
B

ᵀ
θ ′

((
σᵀ(D2

xu)σ
))

(tn, ξ)dBθ ′

∣∣∣∣
2]

,

and we conclude by using the Itô isometry and the growth conditions on the coeffi-
cients (because σ,u,Dxu,D2

xu,f ∈ H1/2,1
loc,pol).

(b) From (3.27), we estimate

E
B [|RεN

θ (tn, ξ)|2]

≤ 5
∫ 1

0
E

B
[|F (n+1)(tn + θ ′εN ,X

εN

θ ′ ) − F (n+1)(tn, ξ)|2]dθ ′

+ 5EB

[∫ 1

0

∣∣Bᵀ
θ ′

(
σᵀ(D2

xu)
)
(tn, ξ)

(
σ(tn + θ ′εN ,X

εN

θ ′ ) − σ(tn, ξ)
)∣∣2dθ ′

]

+ 5ε−1
N E

B

[∫ 1

0
|rεN

θ ′ σ(tn + θ ′εN ,X
εN

θ ′ )|2dθ ′
]

+ 5εN

∫ 1

0
E

B
[∣∣Bᵀ

θ ′
(
σᵀ(D2

xu)
)
(tn, ξ)μ(tn + θ ′εN ,X

εN

θ ′ )
∣∣2]dθ ′

+ 5
∫ 1

0
E

B [|rεN

θ ′ μ(tn + θ ′εN,X
εN

θ ′ )|2]dθ ′

for all ξ ∈ R
d , n ∈ {0, . . . ,N − 1} and θ ∈ [0,1]. Now we deduce the inequality (b)

by using f , u, Dxu, D2
xu, σ ∈ H1/2,1

loc,pol and by applying Lemmas A.1 and 3.4. �

2) Expansion of T
εN

1 (tn, ξ) and T
εN

3 (tn, ξ). From �′′
γ (y) = �′′

γ (y/εN) for all
y ∈R and the expansion of EεN

θ in (3.25), we get

�′′
γ (EεN

θ ) = �′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)
. (3.28)

By combining this with (3.21) and (3.25), we obtain

T
εN

1 (tn, ξ) = −E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)

× F(tn, ξ)Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)
dθ

]

+ C
εN

1 (tn, ξ),
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where

C
εN

1 (tn, ξ) := −E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)

× R
εN

θ (tn, ξ)F (n+1)(tn + θεN ,X
εN

θ )dθ

]

−E
B

[∫ 1

0
�′′
γ (EεN

θ )
(
F (n+1)(tn + θεN ,X

εN

θ ) − F (n+1)(tn, ξ)
)

× Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)
dθ

]
. (3.29)

The estimates of C
εN

1 (tn, ξ) and T
εN

3 (tn, ξ) are summarised in the following
lemma.

Lemma 3.6 Under the assumptions of Theorem 2.6, we have

(a) E
B [|CεN

1 (tn, ξ)|] ≤ Cn,N(ξ)ε
1/2
N ,

(b) E
B [|T εN

3 (tn, ξ)|] ≤ Cn,N(ξ)ε
1/2
N ,

for some constant Cn,N(ξ) ∈ Cpol.

Proof (a) From (3.29), it readily follows that

|CεN

1 (tn, ξ)| ≤ KE
B

[∫ 1

0
|F (n+1)(tn + θεN ,X

εN

θ )||RεN

θ (tn, ξ)|dθ

]

+ KE
B

[∫ 1

0
|F (n+1)(tn + θεN ,X

εN

θ ) − F (n+1)(tn, ξ)|

× ∣∣Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)∣∣dθ

]
,

where K is an upper bound for �′′
γ . For the first term above, we use that F (n+1)

has polynomial growth in its arguments (because u(n+1),Dxu
(n+1),D2

xu
(n+1),

f ∈ H1/2,1
loc,pol) and Lemma 3.5 (b). For the second term, applying the Cauchy–Schwarz

inequality with Lemmas A.1 and 3.5 (a) yields

|CεN

1 (tn, ξ)| ≤ Cn,N(ξ)ε
1/2
N

as announced.
(b) Similarly to (a), from (3.23) we write

|T εN

3 (tn, ξ)| ≤ K

∫ 1

0
E

B
[∣∣Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
∣∣

× ∣∣((
Dxu)μ
)
(tn + θεN ,X

εN

θ )
∣∣]dθ

≤ K

∫ 1

0

√
EB

[∣∣Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
∣∣2]

×
√
EB

[∣∣((
Dxu)μ
)
(tn + θεN ,X

εN

θ )
∣∣2]dθ.
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It is now straightforward to conclude that the above is bounded by Cn,N(ξ)ε
1/2
N by

using Lemmas A.1, 3.4 and 3.5. �

3) Expansion of C
εN

2 (tn, ξ). Using the expansion of 
Dxu in (3.24), we obtain

∣∣((
Dxu)σ
)
(tn + θεN ,X

εN

θ )
∣∣2

= εN

∣∣Bᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)σ (tn + θεN ,X

εN

θ )
∣∣2 + |rεN

θ σ (tn + θεN ,X
εN

θ )|2

+ 2ε
1/2
N

〈
B

ᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)σ (tn + θεN ,X

εN

θ ), r
εN

θ σ (tn + θεN ,X
εN

θ )
〉
.

Using the identity σ(t, ζ ) = 
σ(t, ζ ) + σ(tn, ξ) in the first term of the previous
equation, we get

∣∣((
Dxu)σ
)
(tn + θεN,X

εN

θ )
∣∣2 = εN

∣∣Bᵀ
θ

(
σᵀ(D2

xu)σ
)
(tn, ξ)

∣∣2 + c
εN

θ (tn, ξ), (3.30)

where

c
εN

θ (tn, ξ) (3.31)

= εN

∣∣Bᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)
σ(tn + θεN ,X

εN

θ )
∣∣2 + |rεN

θ σ (tn + θεN ,X
εN

θ )|2

+ 2εN

〈
B

ᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)
σ(tn + θεN,X

εN

θ ),B
ᵀ
θ

(
σᵀ(D2

xu)σ
)
(tn, ξ)

〉

+ 2ε
1/2
N

〈
B

ᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)σ (tn + θεN,X

εN

θ ), r
εN

θ σ (tn + θεN,X
εN

θ )
〉
.

From (3.30) and (3.28), the expression of T
εN

2 in (3.22) becomes

T
εN

2 (tn, ξ) = 1

2
E

B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)

× ∣∣Bᵀ
θ

(
σᵀ(D2

xu)σ
)
(tn, ξ)

∣∣2
dθ

]
+ C

εN

2 (tn, ξ),

where

C
εN

2 (tn, ξ) := 1

2
E

B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)

× ε−1
N c

εN

θ (tn, ξ)dθ

]
. (3.32)

The estimate of C
εN

2 (tn, ξ) is summarised in the following lemma.

Lemma 3.7 Under the assumptions of Theorem 2.6, we have

|CεN

2 (tn, ξ)| ≤ Cn,N(ξ)ε
1/2
N ,

for some constant Cn,N(ξ) ∈ Cpol.
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Proof From the expression for c
εN

θ (tn, ξ) in (3.31), we write

E
B [|cεN

θ (tn, ξ)|] ≤ εNE
B
[∣∣Bᵀ

θ

(
σᵀ(D2

xu)
)
(tn, ξ)
σ(tn + θεN ,X

εN

θ )
∣∣2]

+E
B [|rεN

θ σ (tn + θεN,X
εN

θ )|2]
+ 2εN

√
EB

[∣∣Bᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)
σ(tn + θεN ,X

εN

θ )
∣∣2]

×
√
EB

[∣∣Bᵀ
θ

(
σᵀ(D2

xu)σ
)
(tn, ξ)

∣∣2]

+ 2ε
1/2
N

√
EB

[∣∣Bᵀ
θ

(
σᵀ(D2

xu)
)
(tn, ξ)σ (tn + θεN ,X

εN

θ )
∣∣2]

×
√
EB

[∣∣rεN

θ σ (tn + θεN,X
εN

θ )
∣∣2]

≤ Cn,N(ξ)ε
3/2
N .

Again we have used the polynomial growth condition on σ,D2
xu and the local regu-

larity condition on σ ∈ H1/2,1
loc,pol with Lemma A.1, and Lemma 3.4 (a). Consequently,

and in view of the definition (3.32) of C
εN

2 (tn, ξ), we get the estimate

|CεN

2 (tn, ξ)| ≤ 1

2
|�′′

γ |∞ ε−1
N sup

θ∈[0,1]
E

B [|cεN

θ (tn, ξ)|],

which leads to the announced result. �

4) Expansion of T εN (tn, ξ). From (3.20) and the previous expansions of
T

εN

i (tn, ξ) for i = 1,2,3, we deduce

T εN (tn, ξ) = E
B

[∫ 1

0
�′′
γ

(
Eθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

) + R
εN

θ (tn, ξ)
)

× Qθ

(
G(n+1)(tn, ξ),F (n+1)(tn, ξ)

)
dθ

]

+ C
εN

1 (tn, ξ) + C
εN

2 (tn, ξ) + T
εN

3 (tn, ξ),

where Qθ is defined in (3.7). Since C
εN

1 (tn, ξ), C
εN

2 (tn, ξ) and T
εN

3 (tn, ξ) satisfy

ε
1/2
N -bounds, we get the result of Proposition 3.1. �

3.6 Proof of Lemma 3.3

(a) From the definition of Eθ in (3.6), it follows that
∣∣Eθ

(
G(n+1)(tn,Xtn),F

(n+1)(tn,Xtn)
) − Eθ

(
�(tn+1,Xtn),F (tn+1,Xtn)

)∣∣

≤ ∣∣f
(
tn,Xtn, u

(n+1)(tn,Xtn),Dxu
(n+1)(tn,Xtn),D

2
xu

(n+1)(tn,Xtn)
)

− f
(
tn+1,Xtn, v(tn+1,Xtn),Dxv(tn+1,Xtn),D

2
xv(tn+1,Xtn)

)∣∣

+ ∣∣(σᵀ(D2
xu

(n+1))σ
)
(tn,Xtn) − (

σᵀ(D2
xv)σ

)
(tn+1,Xtn)

∣∣
∣∣∣∣
∫ θ

0
Bθ ′dB

ᵀ
θ ′

∣∣∣∣

≤ Cn,N(Xtn)ε
1/2
N

(
1 +

∣∣∣∣
∫ θ

0
Bθ ′dB

ᵀ
θ ′

∣∣∣∣

)
,
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for some constant Cn,N(Xtn) ∈ Cpol, where we have used Proposition 3.2 and the
assumptions on the coefficients, prices and Greeks. Thanks to the Burkholder–Davis–
Gundy (BDG) inequalities, we conclude the proof of (a).

(b) From C̄εN (tn, ξ) in (3.14), we get

E[|C̄εN (tn,Xtn)|] ≤ |�′′
γ |∞

∫ 1

0
E

[∣∣Qθ

(
G(n+1)(tn,Xtn),F

(n+1)(tn,Xtn)
)

− Qθ

(
�(tn+1,Xtn),F (tn+1,Xtn)

)∣∣]dθ.

Considering the expression of Qθ in (3.7), we can apply the same arguments as
for (a). Further details are left to the reader.

(c) Let p ≥ 1 and set ZN := sup0≤n≤N−1 supθ∈[0,1] |R̄εN

θ (tn,Xtn)|p . From the def-
inition (3.13) of R̄

εN

θ (tn, ξ), we can write

E[ZN ] ≤ 2p−1
E

[
sup

0≤n≤N−1
sup

θ∈[0,1]
∣∣Eθ

(
G(n+1)(tn,Xtn),F

(n+1)(tn,Xtn)
)

− Eθ

(
�(tn+1,Xtn),F (tn+1,Xtn)

)∣∣p
]

+ 2p−1
E

[
sup

0≤n≤N−1
sup

θ∈[0,1]
|RεN

θ (tn,Xtn)|p
]

≤ KpNε
p/2
N

due to (a) and Lemma 3.8 below. Finally, applying Lemma A.2 to the above ZN with
p > 4, we are done. �

In the proof, we have used the following result, useful to justify the a.s. conver-
gence to 0 of remainder terms.

Lemma 3.8 Let R
εN

θ (tn, ξ) be given by (3.8) and p ≥ 1. Under the assumptions of
Theorem 2.6, there exists a finite positive constant Kp , depending on the coefficients
μ, σ , f , u(n+1) and their derivatives, such that

E

[
sup

0≤n≤N−1
sup

θ∈[0,1]
|RεN

θ (tn,Xtn)|p
]

≤ KpNε
p/2
N .

Proof We first claim that we have the upper bound

E
B
[

sup
θ∈[0,1]

|RεN

θ (tn, ξ)|p2
]

≤ Cn,N(ξ)ε
p
N (3.33)

for some constant Cn,N(ξ) ∈ Cpol. With this control at hand, we complete the proof
by using the rough inequality

E

[
sup

0≤n≤N−1
sup

θ∈[0,1]
|RεN

θ (tn,Xtn)|p
]

≤
N−1∑

n=0

E

[
sup

θ∈[0,1]
|RεN

θ (tn,Xtn)|p
]
.

So it is enough to show (3.33). Regarding the control of R
εN

θ (tn, ξ), we follow the
proof of Lemma 3.5 (b). The adaptation is obvious since instead of taking p = 2, we
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take p ≥ 1. Then we handle the supremum over θ inside the expectation by using
the BDG inequalities. The other arguments are unchanged, leading to the announced
estimate. We leave the details to the reader. �

4 Numerical experiments

In this section, we compute a numerical approximation of v∗ in (2.12), a solution to
the f -PDE in (1.5) using the optimal kernel f ∗ defined in (2.10). In Sect. 2.4, we
have obtained a quasi-explicit formulation for the optimal kernel f ∗

γ (see (2.18)) in
the one-dimensional case. Therefore, we only perform numerical experiments in di-
mension d = 1 with the risk parameter γ ∈ {0.0,0.1,0.2,0.3}. First, in Sect. 4.1, we
present the numerical solution for a set of European options. Then, in Sect. 4.2, we
compute the asymptotic risk Rγ (v∗, f ) for different kernels f ∈ {f ∗

0 , f ∗
0.1, f

∗
0.2, f

∗
0.3}

confirming the optimality of f ∗
γ . Finally, in Sect. 4.3, we compare numerically the so-

lution to the f -PDE with the solution to the minimisation problem (1.3). We aim to
check the conjecture whether one can interchange the limit in N and the minimisa-
tion over strategies in our setting (see the diagram in Fig. 2). Alternatively, we verify
whether the solution to the minimisation problem in discrete time (see (1.3)) corre-
sponds, for N large, to the solution of the nonlinear f ∗-PDE (1.5).

4.1 The f ∗-PDE valuation for different options

Here we show the numerical solution to (2.12) for different option payoffs h (as
terminal condition) under the assumption that the underlying process X satisfies the
SDE (2.1) with σ(t, x) = σx. We consider the value function U(t, x) as the solution
to the f -PDE valuation (in forward form, by reversing time)

∂U

∂t
(t, x) = α(x)∂2

xU(t, x) + f
(
2α(x)∂2

xU(t, x)
)
, (t, x) ∈ (0, T ] ×R, (4.1)

where α(x) = 1
2σ 2x2 and f : R → R is a real-valued function to be chosen. Seeing

that (4.1) has a second-order partial differential in space and first-order in time, we
require for a numerical resolution one initial and two boundary conditions. Also, the
payoff of European options with maturity T , denoted by h(x), will be used as initial
condition for (4.1). We have chosen the following options:

(i) call option with payoff function h(x) = (x − K0)
+ and put option with payoff

function h(x) = (K0 − x)+, where x �→ x+ = max(x,0) and K0 is the strike price;
(ii) asset-or-nothing call option with payoff function h(x) = xI{x−K0>0} and asset-

or-nothing put option with h(x) = xI{x−K0<0}, where K0 is the strike price;
(iii) bull spread option with payoff function h(x) = (x − K1)

+ − (x − K2)
+ and

bear spread option with h(x) = (K2 − x)+ − (K1 − x)+, where K1,K2 are strike
prices with K2 > K1.

We examine the asset-or-nothing options because of their discontinuous payoff.
We analyse the spread options because of the change of convexity. We are aware
that these payoffs do not satisfy the assumptions of Theorem 2.6, but we believe that
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these hypotheses are only sufficient and the previous asymptotic analysis can also be
applied to those payoffs.

In the following numerical examples, we consider the following parameters:

Set Strike Volatility Maturity

A (vanilla and digital) K0 = 100 σ = 0.3 T = 1
B (spread) (K1,K2) = (90,110) σ = 0.3 T = 1

Space discretisation Here, we detail our numerical scheme. We look for a second-
order accurate solution to the PDE in (4.1) on a finite domain L = [0, xmax]. Let
I ∈ N. We equally discretise L in I + 1 points {x0, x1, . . . , xI−1, xI } such that

x = xmax/I and xi = i
x for 0 ≤ i ≤ I . Assuming that U is smooth enough, we
get the second-order approximation of the second derivative of U as

Ui+1 − 2Ui + Ui−1


x2
= ∂2

xU(xi) + O(
x2),

for every 1 ≤ i ≤ I − 1, with Ui denoting U(xi). Thanks to the second-order approx-
imation, we obtain from (4.1) a semi-discretisation

∂tUi = αi

Ui+1 − 2Ui + Ui−1


x2
+ f

(
2αi

Ui+1 − 2Ui + Ui−1


x2

)
, (4.2)

for every 1 ≤ i ≤ I − 1, where the factor αi is α(x) evaluated in each xi . Assuming
that f in (4.1) is Lipschitz-continuous, the system of equations (4.2) is a second-order
approximation of the PDE (4.1) and can be viewed in matrix form as

dU
dt

= AU + f (2AU),

where A is the coefficient matrix and U the discrete solution. Besides the system
in (4.2), U satisfies U0 = bmin and Un = bmax, where bmin and bmax represent a
Dirichlet-type boundary condition imposed on the numerical solution. Therefore, the
matrix A is of form

A00 = 0, Aii−1 = αi/
x2, Aii = −2αi/
x2, Aii+1 = αi/
x2, AII = 0.

After the space discretisation, there remains a system of ordinary differential equa-
tions

dU
dt

= AU + F, U(0) = h, F := f (2AU).

Time discretisation Now we apply a second-order method in time. Let J ∈ N.
Divide the time interval [0, T ] in J intervals with a constant time step 
t = T/J .

Denote by Uj (resp. Fj ) the vector U (resp. F) evaluated at t = j
t . Because
of the nonlinearity of F regarding U, we use Adams–Moulton (AM) methods with
Adams–Bashforth (AB) methods to construct a predictor–corrector algorithm with
AM and AB of the same order. Here we apply the second-order Adams–Bashforth
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(AB2) method to predict Fj+1, and we use F̄ j+1 within the second-order Adams–
Moulton (AM2) method:

1) We predict (Uj+1,Fj+1) with AB2 which gives us

F̄ j+1 = f (2AŪj+1), Ū j+1 = Uj + 
t

(
3

2
(AUj + Fj ) − 1

2
(AUj−1 + Fj−1)

)
.

2) We correct (Uj+1,Fj+1) with AM2 which gives us

Fj+1 = f (2AUj+1), Uj+1 = Uj + 
t

(
1

2
(AUj+1 + F̄ j+1) + 1

2
(AUj + Fj )

)
.

Here, f is computed as the optimal kernel f ∗
γ given in (2.18). Further, in Table 1,

we have given the constants c∗
1 and c∗

2 computed by using a root finding algorithm.
Since the algorithm looks two steps back, we need some initialisation steps. There-
fore we use the AB1 (forward Euler) and the AM1 (backward Euler) method for the
prediction and correction part, respectively, so that

Ū1 = U0 + 
t(AU0 + F0), F0 = f (2U0),

U1 = U0 + 
t(AU1 + F̄ 1), F̄ 1 = f (2Ū1).

Initial boundary conditions Regarding the boundary conditions, we have stipu-
lated a space domain L = [0, xmax], where xmax is supposed to be large enough. Then
we use Dirichlet boundary conditions U(t,0) = bmin(t) and U(t, xmax) = bmax(t)

for any t in [0, T ]. We set the left boundary bmin(t) = h(0) and the right bound-
ary bmax(t) = h(xmax) for any t in [0, T ]. Regarding the numerical solution, we fix
xmax = 400, I = 200 and J = 200.

Fig. 5 Vanilla options: numerical approximation of f ∗-PDE solution U at final time (i.e., initial time
t = 0 for the solution to (2.12)) for different γ
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Fig. 6 Digital options: numerical approximation of f ∗-PDE solution U at final time (initial time for the
solution to (2.12)) for different γ

Fig. 7 Spread options: numerical approximation of f ∗-PDE solution U at final time (initial time for the
solution to (2.12)) for different γ
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In Fig. 5, we show the vanilla option values plotted for different risk parameters γ .
We depict analogous plots for digital and spread options in Figs. 6 and 7, respectively.
We remark that the numerical solutions are increasing as functions of γ . Intuitively,
whenever the seller’s risk aversion increases, it will be more reasonable that he asks
for a higher option price. According to Proposition 2.8, we have that y �→ f ∗

γ (y) is
nonnegative for all γ ∈ (0,1). Therefore, the nonlinear source of the PDE (4.1) is
nonnegative irrespective of the sign of the second derivatives. Our risk-averse valua-
tion adds a risk premium to the risk-neutral one whenever the underlying price varies
too quickly, i.e., proportionally to the Greek gamma.

4.2 The asymptotic risk Rγ (v,f ) for different kernels f

Here we test the asymptotic risk Rγ (v, f ) (see in (2.6)) for different kernels f given
a reference valuation v. Consider v∗

γ (t, ·) = U(T − t, ·), where U is the solution to the
PDE (4.1) (in forward form) using the optimal kernel f ∗

γ given by Proposition 2.8.
Then we confirm numerically the optimality of f ∗

γ for the reference valuation v∗
γ

by computing Rγ (v∗
γ , f ∗

γ ′) for a different γ ′; recall that the optimality in Proposi-
tions 2.7 and 2.8 is in the sense of

Rγ (v, f ∗
γ ) ≤ Rγ (v, f ) (4.3)

Table 2 Asymptotic risk estimate R̂N,M for N = 20 and M = 5 × 105

γ γ ′ X0 = 90 X0 = 110

0 0 41.20±0.08 47.92±0.08

0 0.1 42.09±0.08 48.96±0.08

0 0.2 45.41±0.09 52.82±0.09

0 0.3 52.49±0.10 61.05±0.10

0.1 0 41.26±0.08 48.03±0.08

0.1 0.1 40.53±0.08 47.17±0.08

0.1 0.2 41.52±0.08 48.32±0.08

0.1 0.3 45.20±0.09 52.61±0.08

0.2 0 41.46±0.08 48.29±0.07

0.2 0.1 39.46±0.07 45.97±0.07

0.2 0.2 38.66±0.07 45.03±0.07

0.2 0.3 39.75±0.07 46.30±0.07

0.3 0 41.61±0.07 48.51±0.07

0.3 0.1 38.66±0.07 45.08±0.07

0.3 0.2 36.51±0.07 42.57±0.06

0.3 0.3 35.65±0.06 41.56±0.06

(a) R̂N,M for a call option with K0 = 100

γ γ ′ X0 = 90 X0 = 110

0 0 41.20±0.08 47.92±0.08

0 0.1 42.09±0.08 48.96±0.08

0 0.2 45.41±0.09 52.82±0.09

0 0.3 52.49±0.10 61.05±0.10

0.1 0 41.26±0.08 48.03±0.08

0.1 0.1 40.53±0.08 47.17±0.08

0.1 0.2 41.52±0.08 48.32±0.08

0.1 0.3 45.20±0.09 52.61±0.08

0.2 0 41.46±0.08 48.29±0.07

0.2 0.1 39.46±0.07 45.97±0.07

0.2 0.2 38.66±0.07 45.03±0.07

0.2 0.3 39.75±0.07 46.30±0.07

0.3 0 41.61±0.07 48.51±0.07

0.3 0.1 38.66±0.07 45.08±0.07

0.3 0.2 36.51±0.07 42.57±0.06

0.3 0.3 35.65±0.06 41.56±0.06

(b) R̂N,M for a bear option with K1 = 80 and
K2 = 120
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for any v,f and in particular for v = v∗
γ and f = f ∗

γ ′ . To achieve that, we approx-
imate Rγ (v∗

γ , f ∗
γ ′) by forward Monte Carlo simulations of X. In addition, we use

the numerical PDE solution to compute the partial derivatives of v∗
γ . We denote its

estimate by R̂N,M(γ, γ ′), where N is the number of time steps and M is the number
of paths (Xtn)

N
n=0.

Set σ = 0.3, N = 20, M = 5 × 105 and X0 ∈ {90,110}. The number of time steps
used in the PDE resolution between each time step of the MC algorithm is 50. We
study the following options:

(i) call option with K0 = 100 and T = 1;
(ii) bear option with K1 = 80, K2 = 120 and T = 1.

Let γ ∈ [0,1) and X0 ∈ R+ be fixed. Thanks to Theorem 2.6 and Proposition 2.7
(see also (4.3)), we expect that the minimum of R̂N,M

(
γ ′, γ

)
in γ ′ is attained

at γ ′ = γ . In Table 2, we compute the numerical approximation R̂N,M

(
γ, γ ′) for

(γ, γ ′) ∈ {0.0,0.1,0.2,0.3}2 to verify this claim.

4.3 The f ∗-PDE valuation/hedging rule and the discrete-time problem solution

Let Uγ be the solution to the forward f ∗
γ -PDE (4.1). Here, we compare the f ∗

γ -PDE
valuation/hedging rule ϕ∗

γ (t, ·) = (Uγ (T − t, ·), ∂xUγ (T − t, ·)) for t ∈ [0, T ] and

the discrete-time problem solution ϕN
tn

(t, ·) = (V N
γ (tn, ·), δN

γ (tn, ·)) for 0 ≤ n ≤ N ,

where N is the number of hedging times. We approximate ϕN
γ by ϕN,M

γ by using a
regression Monte Carlo (RMC) algorithm, where M is the number of Monte Carlo
paths.

RMC algorithm Here we present our RMC algorithm, which is a variation of the
hedged Monte Carlo algorithm (proposed by Potters et al. [22]) with a fixed point
stage. We determine the option value by working step by step from T = N
t to the
present t = 0, where 
t is the time interval. We denote the underlying asset price X

at time tn = n
t by Xn, and the option value Vn(Xn) at time tn only depends on the
current asset price Xn. We introduce the hedge δn(Xn), which is the amount of the
underlying asset in the portfolio at time tn when the asset price is Xn.

The average risk, over all paths of the underlying process, is given by

Rn = 〈
�γ

(
Vn+1(Xn+1) − Vn(Xn) − δn(Xn)(Xn+1 − Xn)

)〉
M

,

where the angle brackets 〈· · · 〉M denote here the average over the sampled asset val-
ues. The functional minimisation of Rn with respect to Vn(Xn) and δn(Xn) gives
us equations which allow us to determine the option value and hedge provided that
Vn+1 is known. We generate a set of M paths Xm

n , where n is the time index and m

the path index. We decompose Vn and δn over a set of K basis functions Ln
k and Cn

k .
The use of local basis functions in RMC is presented in [13]. Therefore, we choose
Ln

k and Cn
k as a piecewise linear and a piecewise constant function, respectively, on

each partition of the real line. In addition, we use adaptive breakpoints as proposed
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by Bouchard and Warin in [5], i.e.,

VK
n (x) :=

K∑

k=1

an
k Ln

k(x), δK
n (x) :=

K∑

k=1

bn
kCn

k (x).

In other words, we reduce the original functional optimisation problem (find the func-
tions Vn and δn) to a numerical optimisation (find the coefficients an

k and bn
k ). We have

a good approximation of the true functional solution conditionally on K being large
enough. We then solve N minimisation problems backward in time from the matu-
rity T , where VN(x) is equal to the payoff function h. For each step n, we minimise

1

M

M∑

m=1

�γ

(
EK

n,m(Vn+1, a
n, bn)

)
,

where

EK
n,m(V, a, b) := V(Xm

n+1) −
K∑

k=1

akL
n
k(X

m
n ) −

K∑

k=1

bkC
n
k (Xm

n )(Xm
n+1 − Xm

n ).

Thanks to the choice of the risk function �, we can write �γ (y) = (ywγ (y))2 with a
weight function wγ (y) = 1 + γ Sgn(y). Then for each n ∈ {N − 1, . . . ,0}, we solve,
starting from the quadratic optimal solution, the fixed point problem

(an,0, bn,0) := argmin
(a,b)

1

M

M∑

m=1

(
EK

n,m(Vn+1, a, b)
)2

,

(an,p+1, bn,p+1) := argmin
(a,b)

1

M

M∑

m=1

(
EK

n,m(Vn+1, a, b)wγ

(
EK

n,m(Vn+1, a
n,p, bn,p)

))2

for every p ∈ {0, . . . ,P − 1}, where Vn+1 = VK,P
n+1 ,

VK,P
n+1 :=

K∑

k=1

a
n+1,P
k Ln+1

k , δ
K,P
n+1 :=

K∑

k=1

b
n+1,P
k Cn+1

k .

The least squares problem with weights is solved using standard procedures. From
a practical point of view, we have used a C++ library called StOpt (see the docu-
mentation by Gevret et al. [12]) to implement this previous RMC with local basis
functions and adaptative breakpoints. Even though we do not establish any theoreti-
cal convergence result, we know that the previous algorithm is strongly related to an
RMC method for computing generalised BSDEs proposed by Gobet et al. [17, 15].
In the following, we denote the optimal strategy (VK,P

n (·), δK,P
n (·)) by ϕN,M

γ (tn, ·).
Set of parameters Regarding the RMC algorithm, we set M = 8 × 105, N = 40,
K = 80 and P = 20. For the underlying process, we set σ = 0.3, X0 = 100 and
T = 1. Here, we compare the optimal valuation/hedging rule ϕ∗

γ (t, ·) and the discrete-
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Fig. 8 Relative error V
N,M
γ (tn, ·)/Uγ (T − tn, ·) − 1 for a call option

Fig. 9 Relative error V
N,M
γ (tn, ·)/Uγ (T − tn, ·) − 1 for a bear option

time problem solution ϕN
γ (tn, ·) for a call option with strike K0 = 100 and a bear

option with strikes K1 = 80, K2 = 120.
Thanks to the previous algorithm, we compute the option value V N,M

γ (tn, ·). From
the finite difference scheme in Sect. 4.1, we have the value function Uγ (T − tn, ·).
Here we consider γ ∈ {0.0,0.1,0.2,0.3} and tn ∈ {0.1,0.3}. In Fig. 8, we present the
relative error V N,M

γ (tn, ·)/Uγ (T − tn, ·) − 1 for a call option. We show analogous
plots for a bear spread option in Fig. 9. We observe that the relative errors seem to
confirm numerically the conjecture (1.8): the optimal price in discrete time for a large
number of hedging times coincides asymptotically with the f ∗-PDE solution.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Appendix: Technical results

We gather here the results related to the proof of Theorem 2.6. The first one is about
estimating the increment |XεN

θ − ξ |. This is quite standard, and the proof is left to the
reader.
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Lemma A.1 We have for any p ≥ 1

sup
θ∈[0,1]

E
B [|XεN

θ − ξ |p] ≤ Cn,N(ξ)ε
p/2
N ,

for some constant Cn,N(ξ) ∈ Cpol depending on p. Moreover, for any function

φ : [0, T ] ×R
d →R in H1/2,1

loc,pol,we have for any p ≥ 1

sup
θ∈[0,1]

E
B [|φ(tn + θεN ,X

εN

θ ) − φ(tn, ξ)|p] ≤ Cn,N(ξ)ε
p/2
N , (A.1)

for some constant Cn,N(ξ) ∈ Cpol depending on p.

Next, the following lemma gives a sufficient condition on the expectation of a
random variable ZN to ensure its almost sure convergence. This is standard and we
omit the proof.

Lemma A.2 Let (ZN)N≥1 be a sequence of positive real random variables. If ZN

satisfies E[ZN ] ≤ C/N1+δ for some finite numbers C ≥ 0 and δ > 0, then (ZN)

converges almost surely towards 0, i.e., ZN
a.s.−→

N→∞ 0.

The next proposition is used to complete the proof of Theorem 2.6.

Proposition A.3 Under the assumptions of Theorem 2.6, notably Assumption 2.5,
the set A has measure zero.

Proof From (3.6), we write Eθ in the form

Eθ(S, y) = (B
ᵀ
θ SBθ − Tr[S]θ)/2 − yθ

for any θ, S, y ∈ [0,1] × Sd ×R. From (3.12), we recall that F and G are given by

F(t, ξ) = f
(
t, ξ, v(t, ξ),Dxv(t, ξ),D2

xv(t, ξ)
)
, G(t, ξ) = (

σᵀ(D2
xv)σ

)
(t, ξ)

for any t, ξ ∈ [0,1] ×R
d . Here we show that the set A defined in (3.16) as

A = {
(ω, t, θ) ∈ � × [0, T ] × [0,1] : Eθ

(
G(t,Xt ),F (t,Xt )

) = 0
}

has measure zero with respect to dPW ⊗ dPB ⊗ dt ⊗ dθ . This is equivalent to

E
W⊗B

[∫ T

0

∫ 1

0
I{Eθ (G(t,Xt ),F (t,Xt ))=0}dθdt

]
= 0.

Applying Fubini’s theorem, the tower property of the conditional expectation and
Assumption 2.5, the previous condition is equivalent to

∫ T

0

∫ 1

0
E

W
[
P

B
[
Eθ

(
G(t,Xt ),F (t,Xt )

) = 0
∣∣ Xt

]
I{G(t,Xt )�=0}

]
dθdt = 0.
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For S ∈ Sd \{0}, y ∈R and θ �= 0, we claim that the random variable Eθ(S, y) admits
a density function with respect to Lebesgue measure. Therefore, for such S,y, θ , we
get PB [Eθ (S, y) = 0] = 0. This proves the announced result.

Now take S ∈ Sd \ {0}, y ∈ R and θ �= 0. In view of the expression of Eθ(S, y),
we notice that showing Eθ(S, y) admits a density function is equivalent to showing
that B

ᵀ
θ SBθ/θ has a density function. The latter has the same distribution as GᵀSG,

where G is a standard normal random vector. Consider the spectral decomposition of
S as S = ∑I

i=1 λipip
ᵀ
i , where the pi are orthonormal vectors and the eigenvalues λi

are strictly positive. Since S �= 0, I ≥ 1. As a consequence, setting Ḡi = p
ᵀ
i G gives

GᵀSG =
I∑

i=1

λiḠ
2
i .

The components Ḡi are independent and distributed as standard normal random vari-
ables. To sum up, we have decomposed GᵀSG as a weighted sum of independent χ2

1
random variables. Therefore, GᵀSG has a probability density given by the convolu-
tion of χ2

1 random variables. �

A.1 Proof of Proposition 3.2

Since we make estimates on [tn, tn+1], we simply write u instead of u(n+1). In the
following, Cn,N(ξ) denotes a generic constant with polynomial growth in the variable
ξ (see the definition at the beginning of Sect. 3).

Before starting the analysis, we mention that one strategy of proof could be to use
the Feynman–Kac (FK) representations. There, one would represent the PDE (1.5) in
terms of the SDE with zero drift and diffusion coefficient σ . Although natural, this
approach is cumbersome at some points, especially when one has to deal with the
derivatives of the SDE with respect to the initial condition.

As an alternative, we take advantage of writing an FK formula using directly a
Brownian motion. Let ξ ∈ R

d and set W̃
tn,ξ
t = ξ + Wt − Wtn for all t ∈ [tn, tn+1],

where W is a d-dimensional Brownian motion. Now the proof consists of applying
Itô’s formula to u(·, W̃ tn,ξ· ) and estimating u(tn, ξ) − v(tn+1, ξ). Observe that W̃ tn,ξ

is convenient for sensitivity computations because the first (resp. second) derivative
of W̃ tn,ξ with respect to ξ is the identity matrix Id (resp. the null array 0 in R

d×d×d ).

Proof of (3.9) Applying Itô’s formula to u(·, W̃ tn,ξ· ) and taking expectations gives

E[u(tn+1, W̃
tn,ξ
tn+1

)] = u(tn, ξ) +E

[∫ tn+1

tn

(∂tu + 1/2 Tr[D2
xu])(t, W̃ tn,ξ

t )dt

]
.

Since Dxu(t, x) has polynomial growth in space (because Dxu(t, x) ∈ H1/2,1
loc,pol), we

have used that the stochastic integral is a martingale. By seeing that u is the solu-
tion of the PDE (1.5) with terminal condition u(tn+1, ·) = v(tn+1, ·), we get the FK
representation

u(tn, ξ) = E

[
v(tn+1, W̃

tn,ξ
tn+1

) +
∫ tn+1

tn

g(t, W̃
tn,ξ
t )dt

]
, (A.2)
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where

g(t, x) := f
(
t, x, u(t, x),Dxu(t, x),D2

xu(t, x)
)

+ 1

2
Tr

[(
(σσᵀ)(t, x) − Id

)
(D2

xu)(t, x)
]
.

Subtracting v(tn+1, ξ) from (A.2) leads to

u(tn, ξ) − v(tn+1, ξ) = E[v(tn+1, W̃
tn,ξ
tn+1

) − v(tn+1, ξ)] +
∫ tn+1

tn

E[g(t, W̃
tn,ξ
t )]dt.

(A.3)

To obtain the announced results, we need to bound the derivatives of the ex-
pectation E[g(t, W̃

tn,ξ
t )]. The following lemma provides an estimate in the interval

[tn, tn+1]. �

Lemma A.4 Let α = (α1, α2, . . . , αd) be a d-dimensional multi-index such that
|α| = α1 + α2 + · · · + αd ≥ 1. For any function φ ∈ H1/2,1

loc,pol, we have

|∂α
ξ E[φ(t, W̃

tn,ξ
t )]| ≤ Cn,N(ξ)(t − tn)

(1−|α|)/2, tn < t ≤ tn+1,

for some constant Cn,N(ξ) ∈ Cpol.

Under our assumptions, g(t, x) and v are in H1/2,1
loc,pol. By using the estimates in

Lemma A.1 with p = 1, we get

|u(tn, ξ) − v(tn+1, ξ)| ≤ ‖v‖
H1/2,1

loc,pol
Cn,N(ξ)ε

1/2
N +

∫ tn+1

tn

Cn,N (ξ)dt

≤ Cn,N(ξ)ε
1/2
N ,

because the term related to the integral converges to zero at rate εN .

Proof of (3.10) Now we estimate the first derivative of u(tn, ξ) − v(tn+1, ξ) with
respect to the initial condition ξ . Differentiating (A.3) with respect to ξ yields

Dxu(tn, ξ) − Dxv(tn+1, ξ) = E[Dxv(tn+1, W̃
tn,ξ
tn+1

) − Dxv(tn+1, ξ)] (A.4)

+
∫ tn+1

tn

DξE[g(t, W̃
tn,ξ
t )]dt.

From our assumptions, g(t, x) and Dxv are in H1/2,1
loc,pol. By using the estimates in

Lemma A.4 with |α| = 1 in Lemma A.1 with p = 1, we get

|Dxu(tn, ξ) − Dxv(tn+1, ξ)| ≤ ‖Dxv‖
H1/2,1

loc,pol
Cn,N(ξ)ε

1/2
N +

∫ tn+1

tn

Cn,N (ξ)dt

≤ Cn,N(ξ)ε
1/2
N ,
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where the term related to the integral converges to zero at rate εN . This implies the
announced result. �

Proof of (3.11) Analogously as in the proof of (3.10), we estimate the second deriva-
tive of u(tn, ξ) − v(tn+1, ξ) by differentiating (A.4) with respect to ξ to obtain

D2
xu(tn, ξ) − D2

xv(tn+1, ξ) = E[D2
xv(tn+1, W̃

tn,ξ
tn+1

) − D2
xv(tn+1, ξ)]

+
∫ tn+1

tn

D2
ξE[g(t, W̃

tn,ξ
t )]dt.

From our assumptions, g(t, x) and D2
xv are in H1/2,1

loc,pol. By using the estimates in
Lemma A.4 with |α| = 2 in Lemma A.1 with p = 1, we get

|D2
xu(tn, ξ) − D2

xv(tn+1, ξ)| ≤ ‖D2
xv‖

H1/2,1
loc,pol

Cn,N(ξ)ε
1/2
N +

∫ tn+1

tn

Cn,N (ξ)

(t − tn)1/2
dt

≤ Cn,N(ξ)ε
1/2
N ,

where the integral term is of magnitude ε
1/2
N . Therefore, we get the announced esti-

mates. �

Proof of Lemma A.4 Let |α| �= 0. Differentiating E[φ(t, W̃
tn,ξ
t )] with respect to ξ

yields

∂α
ξ E[φ(t, W̃

tn,ξ
t )] =

∫

Rd

φ(t, x)∂α
ξ p(tn, ξ ; t, x)dx (A.5)

=
∫

Rd

(
φ(t, x) − φ(tn, ξ)

)
∂α
ξ p(tn, ξ ; t, x)dx, (A.6)

where

p(tn, ξ ; t, x) := 1

(2π)d/2(t − tn)d/2
exp

(
− 1

2

|x − ξ |2
t − tn

)

is the transition density function of W̃
tn,ξ
t . To pass from (A.6) to (A.5), we have used

that for any |α| ≥ 1, we have

0 = ∂α
ξ

∫

Rd

p(tn, ξ ; t, x)dx =
∫

Rd

∂α
ξ p(tn, ξ ; t, x)dx.

According to the result in [11, Sect. 6, Chap. 9, Theorem 8] related to the bounds for
the transition density function p(tn, ξ ; t, x), there exist two positive constants c and
C depending on α such that

|∂α
ξ p(tn, ξ ; t, x)| ≤ C

(t − tn)(|α|+d)/2
exp

(
− c

|x − ξ |2
t − tn

)
,
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for any x, ξ in R
d and any tn < t ≤ tn+1. Because of φ ∈ H1/2,1

loc,pol and the previous
estimate, we have

|∂α
ξ E[φ(t, W̃

tn,ξ
t )]| ≤ C‖φ‖

H1/2,1
loc,pol

∫

Rd

(1 + |x|q + |ξ |q)
|t − tn|1/2 + |x − ξ |

(t − tn)d/2+|α|/2

× exp

(
− c

|x − ξ |2
t − tn

)
dx

for some real q > 0. Using the estimate

∣∣(1 + |y|q)e−y2c
∣∣ ≤ C̃e−y2c̃, y ∈R,

for some positive constants C̃ and c̃ < c, we get the existence of a new constant C̄

such that

|∂α
ξ E[φ(t, W̃

tn,ξ
t )]| ≤ C̄(1 + |ξ |p)(t − tn)

d/2 |t − tn|1/2

(t − tn)d/2+|α|/2

= C̄(1 + |ξ |p)(t − tn)
(1−|α|)/2

for any tn < t ≤ tn+1. Therefore, we get the announced result. �
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