
Finance Stoch (2020) 24:39–69
https://doi.org/10.1007/s00780-019-00413-3

Ruin probabilities for a Lévy-driven generalised
Ornstein–Uhlenbeck process

Yuri Kabanov1,2,3 · Serguei Pergamenshchikov4,5

Received: 14 March 2019 / Accepted: 12 September 2019 / Published online: 4 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract We study the asymptotics of the ruin probability for a process which is the
solution of a linear SDE defined by a pair of independent Lévy processes. Our main
interest is a model describing the evolution of the capital reserve of an insurance
company selling annuities and investing in a risky asset. Let β > 0 be the root of
the cumulant-generating function H of the increment V1 of the log-price process. We
show that the ruin probability admits the exact asymptotic Cu−β as the initial capital
u → ∞, assuming only that the law of VT is non-arithmetic without any further
assumptions on the price process.
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1 Introduction

The general ruin problem can be formulated as follows. We are given a family of
scalar processes Xu with initial values u > 0. The object of interest is the exit
probability of Xu from the positive half-line as a function of u. More formally, let
τu := inf{t : Xu

t ≤ 0}. The question is to determine the function

�(u,T ) := P[τu ≤ T ]
(the ruin probability on a finite interval [0, T ]) or �(u) := P[τu < ∞] (the ruin prob-
ability on [0,∞)).

The exact solution of the problem is available only in a few rare cases e.g. for
Xu = u + W , where W is the Wiener process, �(u,T ) = P[supt≤T Wt ≥ u] and it
remains to recall that the explicit formula for the distribution of the supremum of the
Wiener process was obtained already in Louis Bachelier’s thesis of 1900, which is
probably the first ever mathematical study on continuous-time stochastic processes.
Another example is the well-known explicit formula for �(u) in the Lundberg model
of the ruin of an insurance company with exponential claims, i.e., when Xu = u + P

and P is a compound Poisson process with drift and exponentially distributed jumps.
Of course, for more complicated cases, explicit formulae are not available and only
asymptotic results or bounds can be obtained as it is done e.g. in the Lundberg–
Cramér theory. In particular, if E[P1] > 0 and the sizes of jumps are random variables
satisfying the Cramér condition (i.e., with finite exponential moments), then �(u) is
exponentially decreasing as u → ∞.

In this paper, we consider the ruin problem for a rather general model, suggested
by Paulsen in [30], in which Xu (sometimes called generalised Ornstein–Uhlenbeck
process) is given as the solution of the linear stochastic equation

Xu
t = u + Pt +

∫
(0,t]

Xu
s− dRs, (1.1)

where R and P are independent Lévy processes with Lévy triplets (a, σ 2,�) and
(aP ,σ 2

P ,�P ), respectively.
There is a growing interest in models of this type because they describe the evo-

lution of reserves of insurance companies investing in a risky asset with the price
process S. In the financial–actuarial context, R is interpreted as the relative price
process with dRt = dSt/St−, i.e., the price process S is the stochastic (Doléans) ex-
ponential E(R). Equation (1.1) means that the (infinitesimal) increment dXu

t of the
capital reserve is the sum of the increment dPt due to the insurance business activ-
ity and the increment due to a risky placement which is the product of the number
Xu

t−/St− of owned shares and the price increment dSt of a share, that is, Xu
t−dRt .

In this model, the log-price process V = lnE(R) is also a Lévy process with the
triplet (aV , σ 2,�V ). Recall that the behaviour of the ruin probability in such models
is radically different from that in classical actuarial models. For instance, if the price
of the risky asset follows a geometric Brownian motion, that is, Rt = at + σWt , and
the risk process P is as in the Lundberg model, then �(u) = O(u1−2a/σ 2

), u → ∞,
if 2a/σ 2 > 1, and �(u) ≡ 1 otherwise; see [14, 21, 34].
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We exclude degenerate cases by assuming that �((−∞,−1]) = 0 (otherwise
�(u) = 1 for all u > 0, see the discussion in Sect. 2) and P is not a subordinator
(otherwise �(u) = 0 for all u > 0 because Xu > 0; see (3.2), (3.1)). Also we exclude
the case R ≡ 0 well studied in the literature; see [24].

We are especially interested in the case where the process P describing the “busi-
ness part” of the model has only upward jumps (in other words, P is spectrally posi-
tive). In the classical actuarial literature, such models are referred to as annuity insur-
ance models (or models with negative risk sums), see [16, Sect. 1.1], [36], while in
modern sources, they serve also to describe the capital reserve of a venture company
investing in the development of new technologies and selling innovations; sometimes
they are referred to as dual models, see [1], [2, Chap. 3], [3, 5], etc.

In models with only upward jumps, the downcrossing of zero may happen only in
a continuous way. This allows us to obtain the exact (up to a multiplicative constant)
asymptotics of the ruin probability under weak assumptions on the price dynamics.

Let H : q �→ ln E[e−qV1 ] be the cumulant-generating function of the increment
of the log-price process V on the interval [0,1]. The function H is convex and its
effective domain domH is a convex subset of R containing zero.

If the distribution of the jumps of the business process has not too heavy tails, the
asymptotic behaviour of the ruin probability �(u) as u → ∞ is determined by the
strictly positive root β of H , assumed existing and lying in the interior of domH .
Unfortunately, the existing results are overloaded by numerous integrability assump-
tions on the processes R and P , while the law L(VT ) of the random variable VT is
required to contain an absolutely continuous component, where T is an independent
random variable uniformly distributed on [0,1]; see e.g. [32, Theorem 3.2], whose
part (b) provides information how heavier tails may change the asymptotics.

The aim of our study is to obtain the exact asymptotics of the exit probability in
this now classical framework under the weakest conditions. Our main result has the
following easy to memorise formulation.

Theorem 1.1 Suppose that H has a root β > 0 not lying on the boundary of domH

and
∫
R

|x|βI{|x|>1}�P (dx) < ∞. Then

0 < lim inf
u→∞ uβ�(u) ≤ lim sup

u→∞
uβ�(u) < ∞.

If, moreover, P jumps only upward and the distribution L(V1) is non-arithmetic,1

then �(u) ∼ C∞u−β as u → ∞, where C∞ > 0 is a constant.

In our argument, we are based, as many other authors, on the theory of distribu-
tional equations as presented in the paper by Goldie [15]. Unfortunately, Goldie’s
theorem does not give a clear answer when the constant defining the asymptotics of
the tail of the solution of an affine distributional equation is strictly positive. The
striking simplicity of our formulation is due to recent progress in this theory, namely
the criterion by Guivarc’h and Le Page [18]; its simple proof can be found in the
paper [9] by Buraczewski and Damek. This criterion gives a necessary and sufficient

1That is, the distribution is not concentrated on a set Zd = {0,±d,±2d, . . . } for some d .
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condition for the strict positivity of the constant in the Kesten–Goldie theorem deter-
mining the rate of decay of the tail of the solution at infinity. Its obvious corollary
allows us to simplify radically the proofs and get rid of additional assumptions pre-
sented in earlier papers; see [22, 4, 28, 29, 30, 31, 32, 33] and references therein. Our
technique involves only affine distributional equations and avoids more demanding
Letac-type equations.

The question whether the concluding statement of the theorem holds when P has
downward jumps remains open.

The structure of the paper is the following. In Sect. 2, we formulate the model and
provide some prerequisites from the theory of Lévy processes. Section 3 contains a
well-known reduction of the ruin problem to the study of the asymptotic behaviour of
a stochastic integral (called in the actuarial literature continuous perpetuity; see [11]).
In Sect. 4, we prove moment inequalities for maximal functions of stochastic integrals
needed to analyse the limiting behaviour of an exponential functional in Sect. 5. The
latter section is concluded by the proof of the main result and some comments on
its formulation. In Sect. 6, we establish Theorem 6.4 on ruin with probability one
using the technique suggested in [34]. This theorem implies in particular that in the
classical model with negative risk sums and investments in a risky asset with a price
following a geometric Brownian motion, ruin is imminent if a ≤ σ 2/2; see [21]. In
Sect. 7, we discuss examples.

Our presentation is oriented towards a reader with preferences towards Lévy pro-
cesses rather than the theory of distributional equations (called also implicit renewal
theory). That is why in the appendix, we provide rather detailed information on the
latter covering the arithmetic case. In particular, we give a proof of a version of the
Grincevic̆ius theorem under slightly weaker conditions than in the original paper [17].

We express our gratitude to E. Damek, D. Buraczewski and Z. Palmowski for
fruitful discussions and a number of useful references on distributional equations.

2 Preliminaries from the theory of Lévy processes

Let (a, σ 2,�) and (aP ,σ 2
P ,�P ) be the Lévy triplets of the processes R and P cor-

responding to the standard2 truncation function h(x) := xI{|x|≤1}.
Putting h̄(x) := xI{|x|>1}, we can write the canonical decomposition of R in the

form

Rt = at + σWt + h ∗ (μ − ν)t + h̄ ∗ μt ,

where W is a standard Wiener process and the Poisson random measure μ(dt, dx)

is the jump measure of R having a deterministic compensator (the mean of μ) of the
form ν(dt, dx) = dt�(dx). For notions and results, see the books [20, Chap. 2] and
also [10, Chaps. 2 and 3].

2Other truncation functions are also used in the literature; see e.g. [32].
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As in [20], we use ∗ for the standard notation of stochastic calculus for integrals
with respect to random measures. For instance,

h ∗ (μ − ν)t =
∫ t

0

∫
R

h(x)(μ − ν)(ds, dx).

We hope that the reader will be not confused that f (x) may denote the whole function
f or its value at x; the typical example is ln(1 + x) explaining why such a flexibility
is convenient. The symbol �(f ) or �(f (x)) stands for the integral of f with respect
to the measure �. Recall that

�(x2 ∧ 1) :=
∫
R

(x2 ∧ 1)�(dx) < ∞,

and that the condition σ = 0 and �(|h|) < ∞ is necessary and sufficient for R to
have trajectories of (locally) finite variation; see [10, Proposition 3.9].

The process P describing the actuarial (“business”) part of the model admits a
similar representation as

Pt = aP t + σP WP
t + h ∗ (μP − νP )t + h̄ ∗ μP

t .

The Lévy processes R and P generate the filtration FR,P = (FR,P
t )t≥0, completed

to satisfy the usual conditions. Our standing assumption is

Assumption 2.1 The Lévy measure � is concentrated on the interval (−1,∞); σ 2

and � do not vanish simultaneously; the process P is not a subordinator.

Recall that if � charges (−∞,−1], then ruin happens at the instant τ of the first
jump of the Poisson process I{x≤−1} ∗ μ having strictly positive intensity. Indeed,
the independence of the processes P and R implies that their trajectories have no
common instants of jumps (except on a null set).

Note that τ = inf{t ≥ 0 : xI{x≤−1} ∗ μt ≤ −1} < ∞ when �((−∞,−1]) > 0, and
�Rτ ≤ −1. According to (1.1), �Xτ = Xτ−�Rτ , that is,

Xτ = Xτ−(�Rτ + 1).

It follows that τu ≤ τ < ∞.
If � does not charge (−∞,−1] but P is a subordinator, that is, an increasing Lévy

process, then ruin never happens. According to [10, Proposition 3.10], the process
P is not a subordinator if and only if either σ 2

P > 0 or one of the following three
conditions holds:

1) �P ((−∞,0)) > 0;
2) �P ((−∞,0)) = 0, �P (xI{x>0}) = ∞;
3) �P ((−∞,0)) = 0, �P (xI{x>0}) < ∞, aP − �P (xI{0<x≤1}) < 0.

The first condition in Assumption 2.1 implies that �R > −1 and the stochastic
exponential, solution of the linear equation dZ = Z−dR with the initial condition
Z0 = 1, has the form

Et (R) = eRt− 1
2 σ 2t+∑

0<s≤t (ln(1+�Rs)−�Rs).
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In the context of financial models, this stands for the price of a risky asset (e.g. stock).
The log price V := lnE(R) is a Lévy process and can be written in the form

Vt = at − 1

2
σ 2t + σWt + h ∗ (μ − ν)t + (

ln(1 + x) − h
) ∗ μt . (2.1)

Its Lévy triplet is (aV , σ 2,�V ), where

aV = a − σ 2

2
+ �

(
h
(

ln(1 + x)
) − h

)

and �V = �ϕ−1 with ϕ : x �→ ln(1 + x).
The cumulant-generating function H : q → ln E[e−qV1 ] of the random variable V1

admits an explicit expression, namely

H(q) := −aV q + σ 2

2
q2 + �

(
e−q ln(1+x) − 1 + qh

(
ln(1 + x)

))
.

Its effective domain domH = {q : H(q) < ∞} is the set {J (q) < ∞}, where

J (q) := �
(
I{| ln(1+x)|>1}e−q ln(1+x)

) = �
(
I{| ln(1+x)|>1}(1 + x)−q

)
.

Its interior is the open interval (q, q̄) with

q := inf{q ≤ 0 : J (q) < ∞}, q̄ := sup{q ≥ 0 : J (q) < ∞}.
Being a convex function, H is continuous and admits finite right and left derivatives
on (q, q̄). If q̄ > 0, then the right derivative

D+H(0) = −aV − �
(
h̄
(

ln(1 + x)
))

< ∞,

though it may be equal to −∞, a case we do not exclude.
In the formulations of our asymptotic results, we always assume that q̄ > 0 and

the equation H(q) = 0 has a root β ∈ (0, q̄). Since H is not constant, such a root is
unique. Clearly, it exists if and only if D+H(0) < 0 and lim supq↑q̄ H (q)/q > 0.
In the case where q < 0, the condition D−H(0) > 0 is necessary to ensure that
H(q) < 0 for q < 0 sufficiently small in absolute value. If J (q) < ∞, then the pro-
cess m = (mt (q))t≤1 with

mt(q) := e−qVt−tH(q)

is a martingale and

E
[
e−qVt

] = etH(q), t ∈ [0,1].
In particular, we have that H(q) = ln E[e−qV1 ] = ln E[Mq ], where M := e−V1 . For
the above properties, see e.g. [35, Theorem 25.17]. Note that

E
[

sup
t≤1

e−qVt

]
< ∞, ∀q ∈ (q, q̄). (2.2)
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Indeed, let q ∈ (0, q̄). Take r ∈ (1, q̄/q). Then E[mr
1(q)] = eH(qr)−rH(q) < ∞. By

virtue of the Doob inequality, the maximal function m∗
1(q) := supt≤1 mt(q) belongs

to Lr , and it remains to observe that e−qVt ≤ Cqmt(q) with Cq = supt≤1 etH(q).
Similar arguments work for q ∈ (q,0).

3 Ruin problem: a reduction

Let us introduce the process

Yt := −
∫

(0,t]
E−1

s− (R)dPs = −
∫

(0,t]
e−Vs− dPs. (3.1)

Due to the independence of P and R, the joint quadratic characteristic [P,R] is zero,
and a straightforward application of the product formula for semimartingales shows
that the process

Xu
t := Et (R)(u − Yt ) (3.2)

solves the non-homogeneous linear equation (1.1), i.e., the solution of the latter is
given by this stochastic version of the Cauchy formula. The strict positivity of the
process E(R) = eV implies that τu = inf{t ≥ 0 : Yt ≥ u}.

The following lemma is due to Paulsen [30].

Lemma 3.1 If Yt → Y∞ almost surely as t → ∞, where Y∞ is a finite random vari-
able unbounded from above, then for all u > 0, we have

Ḡ(u) ≤ �(u) = Ḡ(u)

E[Ḡ(Xτu) | τu < ∞] ≤ Ḡ(u)

Ḡ(0)
, (3.3)

where Ḡ(u) := P[Y∞ > u]. If �P ((−∞,0)) = 0, then �(u) = Ḡ(u)/Ḡ(0).

Proof Let τ be an arbitrary stopping time with respect to the filtration FR,P . As we
assume that the finite limit Y∞ exists, the random variable

Yτ,∞ :=
{

− limN→∞
∫
(τ,τ+N ] e

−(Vt−−Vτ ) dPt , τ < ∞,

0, τ = ∞,

is well defined. On the set {τ < ∞}, we have

Yτ,∞ = eVτ (Y∞ − Yτ ) = Xu
τ + eVτ (Y∞ − u). (3.4)

Let ξ be an FR,P
τ -measurable random variable. Since the Lévy process Y starts afresh

at τ , the conditional distribution of Yτ,∞ given (τ, ξ) is the same as the distribution
of Y∞. It follows that

P[Yτ,∞ > ξ, τ < ∞] = E[Ḡ(ξ)1{τ<∞}].
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Thus if P[τ < ∞] > 0, then

P[Yτ,∞ > ξ, τ < ∞] = E[Ḡ(ξ) | τ < ∞]P[τ < ∞].
Noting that �(u) := P[τu < ∞] ≥ P[Y∞ > u] > 0, we deduce from here using (3.4)
that

Ḡ(u) = P[Y∞ > u,τu < ∞] = P[Yτu,∞ > Xu
τu, τ

u < ∞]
= E[Ḡ(Xu

τu) | τu < ∞]P[τu < ∞]
which implies the equality in (3.3). The result follows since Xu

τu ≤ 0 on {τu < ∞},
and in the case where �P ((−∞,0)) = 0, the process Xu crosses zero in a continuous
way, i.e., Xu

τu = 0 on this set. �

In view of the above lemma, the proof of Theorem 1.1 is reduced to establish-
ing the existence of a finite limit Y∞ and finding the asymptotics of the tail of its
distribution.

4 Moments of the maximal function

In this section, we prove a simple but important result implying the existence of mo-
ments of the random variable Y ∗

1 . Here and in the sequel, we use the standard notation
of stochastic calculus for the maximal function of a process, i.e., Y ∗

t := sups≤t |Ys |.
Before the formulation, we recall the Novikov inequalities [27], also referred to as

the Bichteler–Jacod inequalities, see [8, 26], providing bounds for the moments of the
maximal function I ∗

1 of a stochastic integral I = g ∗ (μP − νP ), where g2 ∗ νP
1 < ∞.

In dependence of the parameter α ∈ [1,2], they have the form

E[I ∗p

1 ] ≤ Cp,α

⎧⎨
⎩

E[(|g|α ∗ νP
1 )p/α], p ∈ (0, α],

E[(|g|α ∗ νP
1 )p/α] + E[|g|p ∗ νP

1 ], p ∈ [α,∞).

Let U be a càdlàg process adapted with respect to a filtration under which the
semimartingale P has deterministic triplet (aP ,σ 2

P ,�P ) and let ϒt := ∫
(0,t] Us− dPs .

Lemma 4.1 If p > 0 is such that �P (|h̄|p) < ∞ and Kp := E[U∗p

1 ] < ∞, then
E[ϒ∗p

1 ] < ∞.

Proof The two elementary inequalities |x + y|p ≤ |x|p + |y|p for p ∈ (0,1] and
|x + y|p ≤ 2p−1(|x|p + |y|p) for p > 1 allow us to treat separately the integrals
corresponding to each term in the representation

Pt = aP t + σP WP
t + h ∗ (μP − νP )t + h̄ ∗ μP

t ,

that is, by assuming that the other terms are zero.
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The case of the integral with respect to dt is obvious (we dominate U by U∗).
The estimation for the integral with respect to dWP is reduced, by applying the
Burkholder–Davis–Gundy inequality, to the estimation of the integral with respect
to dt .

Let p < 1. In more detailed notation, f ∗ μP
1 = ∑

0<s≤1: �Ps>0 f (s,�Ps) and
U− = (Ut−). Therefore we have

E[(|U−||h̄| ∗ μP
1 )p] ≤ E[|U−|p|h̄|p ∗ μP

1 ] = E[|U−|p|h̄|p ∗ νP
1 ] ≤ �P (|h̄|p)Kp.

Using the Novikov inequality (with α = 2), we have

E
[(

U−h ∗ (μP − νP )
)∗p

1

] ≤ Cp,2
(
�P (h2)

)p/2E
[(∫ 1

0
U2

t dt

)p/2]

≤ Cp,2
(
�P (h2)

)p/2
Kp.

Let p ∈ (1,2). By the Novikov inequality with α = 1, we have

E
[(

U−h̄ ∗ (μP − νP )
)∗p

1

] ≤ Cp,1
(
E[(|U−||h̄| ∗ νP

1 )p] + E[|U−|p|h̄|p ∗ νP
1 ])

≤ C̃p,1Kp,

where C̃p,1 := Cp,1((�P (|h̄|))p + �P (|h̄|p)). Using again the Novikov inequality
but with α = 2, we obtain that

E
[(

U−h ∗ (μP − νP )
)∗p

1

] ≤ Cp,2E[(U2−h2 ∗ νP
1 )p/2] ≤ Cp,2

(
�P (h2)

)p
Kp.

Finally, let p ≥ 2. Using the Novikov inequality with α = 2, we have

E
[(

U−x ∗ (μP − νP )
)∗p

1

] ≤ Cp,2
(
�P (|x|2))p/2E

[(∫ 1

0
U2 dt

)p/2]

+ Cp,2�P (|x|p)E
[∫ 1

0
|U |p dt

]

≤ Cp,2

((
�P (|x|2))p/2 + �P (|x|p)

)
Kp.

Combining the above estimates, we conclude that E[ϒ∗p

1 ] ≤ CKp for some con-
stant C. �

5 Convergence of Yt

Using Lemma 4.1, the almost sure convergence of (Yt ) given by (3.1) to a finite
random variable Y∞ can be easily established under very weak assumptions ensuring
also that Y∞ solves an affine distributional equation and is unbounded from above.
Namely, we have the following result.
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Proposition 5.1 If there is p > 0 such that H(p) < 0 and �P (|h̄|p) < ∞, then (Yt )

converges a.s. to a finite random variable Y∞ unbounded from above. Its law L(Y∞)

is the unique solution of the distributional equation

Y∞
d= Y1 + M1Y∞, Y∞ independent of (M1, Y1), (5.1)

where M1 := e−V1 .

Proof If the hypotheses hold for some p, they hold also for smaller values. We as-
sume without loss of generality that p < 1 and H(p+) < ∞. For any integer j ≥ 1,
we have the identity

Yj − Yj−1 = M1 · · ·Mj−1Qj,

where (Mj ,Qj ) are independent random vectors with the components

Mj := e−(Vj −Vj−1), Qj := −
∫

(j−1,j ]
e−(Vv−−Vj−1) dPv (5.2)

having distributions L(Mj ) = L(M1) and L(Qj ) = L(Y1). By assumption, we have
ρ := E[Mp

1 ] = eH(p) < 1 and E[|Y1|p] < ∞ by virtue of (2.2) and Lemma 4.1. Since
E[(M1 · · ·Mj−1|Qj |)p] = ρj−1E[|Y1|p], we have that

E
[∑

j≥1

|Yj − Yj−1|p
]

< ∞

and therefore
∑

j≥1 |Yj − Yj−1|p < ∞ a.s. But then also
∑

j≥1 |Yj − Yj−1| < ∞
a.s. and therefore the sequence (Yn) converges almost surely to the random variable
Y∞ := ∑

j≥1(Yj − Yj−1). Put

�n := sup
n−1≤v≤n

∣∣∣∣
∫

(n−1,v]
e−Vs− dPs

∣∣∣∣, n ≥ 1.

Note that

E[�p
n ] = E

[ n−1∏
j=1

M
p
j sup

n−1≤v≤n

∣∣∣∣
∫

(n−1,v]
e−(Vs−−Vn−1) dPs

∣∣∣∣
p]

= ρn−1E[Y ∗p

1 ] < ∞.

For any ε > 0, we get by using the Chebyshev inequality that

∑
n≥1

P[�n > ε] ≤ ε−pE[Y ∗p

1 ]
∑
n≥1

ρn−1 < ∞.

By the Borel–Cantelli lemma, �n(ω) ≤ ε for all n ≥ n0(ω) for each ω ∈ � except a
null set. This implies the convergence Yt → Y∞ a.s. as t → ∞.

Let us consider the sequence

Y1,n := Q2 + M2Q3 + · · · + M2 · · ·MnQn+1
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converging a.s. to a random variable Y1,∞ distributed as Y∞. Passing to the limit in
the obvious identity Yn = Q1 + M1Y1,n−1, we get that Y∞ = Q1 + M1Y1,∞. For fi-
nite n, the random variables Y1,n and (M1,Q1) are independent and L(Y1,n) = L(Yn).
Therefore Y1,∞ and (M1,Q1) are independent random variables, L(Y1,∞) = L(Y∞)

and L(Y∞) = L(Q1 + M1Y1,∞). These are exactly the properties abbreviated
by (5.1).

Note that our hypothesis ensures the uniqueness of the solution to the affine dis-
tributional equation (5.1). Indeed, any solution Ỹ∞ can be realised on the same prob-
ability space as Y∞ as a random variable independent of the sequence (Mj ,Qj ).
Then

L(Ỹ∞) = L(Q1 +M1Ỹ∞) = L(Q1 +M1Q2 +· · ·+M1 · · ·Mn−1Qn+M1 · · ·MnỸ∞).

Since the product M1 · · ·Mn → 0 in Lp as n → ∞, hence in probability, the
residual term M1 · · ·MnỸ∞ also tends to zero in probability, hence in law. Thus
L(Ỹ∞) = L(Y∞). �

It remains to check that Y∞ is unbounded from above. For this, the following
simple observation is useful.

Lemma 5.2 If the random variables Q1 and Q1/M1 are unbounded from above,
then Y∞ is also unbounded from above.

Proof Since Q1/M1 is unbounded from above and independent of Y1,∞, we have that
P[Y1,∞ > 0] = P[Y∞ > 0] = P[Q1/M1 + Y1,∞ > 0] > 0. Take an arbitrary u > 0.
Then

P[Y∞ > u] ≥ P[Q1 + M1Y1,∞ > u,Y1,∞ > 0] ≥ P[Q1 > u,Y1,∞ > 0]
= P[Q1 > u]P[Y1,∞ > 0] > 0

and the lemma is proved. �

Notation Jθ := ∫
[0,1] e

−θVv dv, Qθ := − ∫
(0,1] e

−θVv− dPv , where θ = ±1.

Lemma 5.3 L(Q−1) = L(Q1/M1).

Proof We have

∫
(0,1]

n∑
k=1

eVk/n−I((k−1)/n,k/n](v) dPv =
n∑

k=1

eVk/n(Pk/n − P(k−1)/n),

eV1

∫
(0,1]

n∑
k=1

e−Vk/n−I((k−1)/n,k/n](v) dPv =
n∑

k=1

eV1−Vk/n(Pk/n − P(k−1)/n).

Note that V and P are independent, the increments Pk/n − P(k−1)/n are independent
and identically distributed, and L(V1 − Vk/n) = L(V(n−k)/n). Thus the right-hand
sides of the above identities have the same distribution. The result follows because
the left-hand sides tend in probability, respectively, to −Q−1 and −Q1/M1. �
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Thus Y∞ is unbounded from above if so are the stochastic integrals Qθ .
Lemma 5.4 below shows that the Qθ are unbounded from above if the ordinary
integrals Jθ are unbounded from above. For the latter property, we prove necessary
and sufficient conditions in terms of defining characteristics (Lemma 5.7). The case
where these conditions are not fulfilled is treated separately (Lemma 5.8).

Lemma 5.4 If Jθ is unbounded from above, so is Qθ .

Proof We argue by using the following observation. Let ξ be a real-valued random
variable and η a random variable taking values in a Polish space, with distributions
Pξ and Pη. Let Pξ |y be a regular conditional distribution of ξ given η = y. If for all
real N , the set Pξ |y[ξ ≥ N ] > 0 is not a Pη-nonnull set, then ξ is unbounded from
above.

In the case σ 2
P > 0, we use the representation

Qθ = −σP

∫
[0,1]

e−θVv dWP
v +

∫
(0,1]

e−θVv− d(σP WP
v − Pv).

Applying the above observation with η = (R,P − σP WP ) and ξ the integral with
respect to WP , and noting that the Wiener integral of a nonzero deterministic function
is a nonzero Gaussian random variable, we get that Qθ is unbounded.

Now consider the case where σ 2
P = 0. For ε > 0, we denote by ζ ε the locally

square-integrable martingale with

ζ ε
t := e−θV−I{|x|≤ε}x ∗ (μP − νP )t . (5.3)

Since 〈ζ ε〉1 = e−2θV−I{|x|≤ε}x2 ∗ νP
1 → 0 as ε → 0, we have that supt≤1 |ζ ε

t | → 0 in
probability. Note that

Qθ = (
�P (xI{ε≤|x|≤1}) − aP

)
Jθ − ζ ε

1 − e−θV−I{|x|>ε}x ∗ μP
1 .

Take N > 1. Since Jθ is unbounded from above, there is N1 > N + 1 such that the
set {N ≤ Jθ ≤ N1, inft≤1 e−Vt ≥ 1/N1} is nonnull. Then

�ε :=
{
N ≤ Jθ ≤ N1, inf

t≤1
e−Vt ≥ 1/N1, |ζ ε

1 | ≤ 1
}

is also a nonnull set for all sufficiently small ε > 0.
As the process P is not a subordinator, we have only three possible cases:
1) �P ((−∞,0)) > 0: Then �P ((−∞,−ε0)) > 0 for some ε0 > 0. Due to their

independence, the intersection of �ε with the set

{|I{x<−ε}x ∗ μP
1 | ≥ N1(a

+
P N1 + N), I{x>ε} ∗ μP

1 = 0}
is nonnull when ε ∈ (0, ε0). On this intersection, we have that

Qθ ≥ −aPJθ − ζ ε
1 − e−θV−I{x<−ε}x ∗ μP

1 ≥ −a+
P N1 − 1 + a+

P N1 + N ≥ N − 1.
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2) �P ((−∞,0)) = 0, �P (h) = ∞: Diminishing ε if necessary to ensure the in-
equality �P (xI{x>ε}) ≥ N1(a

+
P N1 + N), we have that

Qθ = −aPJθ − ζ ε
1 + e−θV−I{x>ε} ∗ νP

1 ≥ −a+
P N1 − 1 + a+

P N1 + N ≥ N − 1

on the nonnull set �ε ∩ {I{x>ε} ∗ μP
1 = 0}.

3) �P ((−∞,0)) = 0, �P (h) < ∞ and �P (h) − aP > 0: Then on the nonnull set
{Jθ ≥ N} ∩ {I{x>0} ∗ μP

1 = 0}, we have that

Qθ = (
�P (h) − aP

)
Jθ ≥ (

�P (h) − aP

)
N.

Since N is arbitrary, Qθ is unbounded from above in all three cases. �

Remark 5.5 If J1I{V1<0} is unbounded from above, so is Q1I{V1<0}.

Remark 5.6 The proof above shows that in the case where σP = 0, there is a constant
κ > 0 such that if the set {Jθ > N} is nonnull, then Qθ > κN on an FR,P

1 -measurable
nonnull subset of the latter set. The statement remains valid with obvious changes if
the integration over the interval [0,1] is replaced by the integral over an arbitrary
finite interval [0, T ].

Lemma 5.7 (i) The random variable J1 is unbounded from above if and only if
σ 2 + �((−1,0)) > 0 or �(xI{0<x≤1}) = ∞.

(ii) The random variable J−1 is unbounded from above if and only if we have
σ 2 + �((0,∞)) > 0 or �(xI{x<0}) = −∞.

Proof In the case where σ 2 > 0, the “if” parts of the statements are obvious: W

is independent of the jump part of V and the distribution of the random variable∫ 1
0 e−σθWvg(v)dv, where g > 0 is a deterministic function, has a support unbounded

from above. So suppose that σ = 0 and consider the “if” parts separately. Note that
in this case,

Vt = at + h ∗ (μ − ν)t + (ϕ − h) ∗ μt , (5.4)

where ϕ = ϕ(x) = ln(1 + x).
(i) Consider first the case where �((−1,0)) > 0, i.e., �((−1,−ε)) > 0 for some

ε ∈ (0,1). Then the process V given by (5.4) admits the decomposition

Vt = (
a − �(xI{−1<x≤−ε})

)
t + V

(1)
t + V

(2)
t ,

where V
(1)
t := I (1)x ∗ (μ − ν)t + (ϕ(x) − x)I (1) ∗ μt + ϕ(x)I{x>1} ∗ μt with

I (1) = I{−ε<x≤1} and V
(2)
t := ϕ(x)I{−1<x≤−ε} ∗ μt . The processes V (1) and V (2) are

independent. The decreasing process V (2) has jumps of size not less than | ln(1 − ε)|
and the number of jumps on the interval [0, t] is a Poisson random variable with pa-
rameter t�((−1,−ε)) > 0. Hence V

(2)
t is unbounded from below for any t ∈ (0,1).

In particular, for any N > 0, the set where e−V (2) ≥ N on the interval [1/2,1] is
nonnull. The required property follows from these considerations.
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Now suppose that we have �(h(x)I{x>0}) = ∞. We assume without loss of gen-
erality that �(−1,0) = 0. In this case, the process V has only positive jumps.
Take arbitrary N > 1 and choose ε > 0 such that we have �(xI{ε<x≤1}) > 2N and
�(I{0<x≤ε}ϕ2(x)) ≤ 1/(32N2). We have the decomposition

Vt = ct + V
(1)
t + V

(2)
t + V

(3)
t ,

where the processes V (1) := I{0<x≤ε}ϕ(x) ∗ (μ − ν), V (2) := I{ε<x≤1}ϕ(x) ∗ (μ − ν)

and V (3) := I{x>1}ϕ(x)∗μ are independent and c := a + �((ϕ(x) − x)I{0<x≤1})<∞.

By the Doob inequality, P[supt≤1 V
(1)
t < N/2] > 1/2. The processes V (2) and V (3)

have no jumps on [0,1] on a nonnull set. In the absence of jumps, the trajectory of
V (2) is the linear function yt = −�(ϕ(x)I{ε<x≤1})t ≤ −2Nt . It follows that

sup
1/2≤t≤1

Vt ≤ c − N/2

on a set of positive probability. This implies that J1 is unbounded from above.
(ii) Let first �((0,∞)) > 0, i.e., �((ε,∞)) > 0 for some ε > 0. Then

Vt = (
a − �(hI{x>ε})

)
t + V

(1)
t + V

(2)
t ,

where

V
(1)
t := I{x≤ε}h ∗ (μ − ν)t + (

ϕ(x) − h
)
I{x≤ε} ∗ μt ,

V
(2)
t := ϕ(x)I{x>ε} ∗ μt .

The processes V (1) and V (2) are independent. The increasing process V (2) has jumps
of size not less than ϕ(ε) and the number of jumps on the interval [0, t] is a Poisson
random variable with parameter t�((ε,∞)) > 0. Hence V

(2)
t is unbounded from

above for any t ∈ (0,1). In particular, for any N > 0, the set where eV (2) ≥ N on the
interval [1/2,1] is nonnull. These facts imply the required property.

It remains to consider the case �(xI{x<0}) = −∞ and �(0,∞) = 0. The process
V has only negative jumps. Take arbitrary N > 1 and choose ε ∈ (0,1/2) such that
−�(ϕ(x)I{−1/2<x≤−ε}) > 2N and �(I{−ε<x<0}ϕ2(x)) ≤ 1/(32N2). This time, we
use the representation

Vt = ct + V
(1)
t + V

(2)
t + V

(3)
t ,

where the processes

V (1) := I{−ε<x<0}ϕ(x) ∗ (μ − ν),

V (2) := I{−1/2<x≤−ε}ϕ(x) ∗ (μ − ν),

V (3) := I{−1<x≤−1/2}ϕ(x) ∗ μ

are independent and c := a + �(ϕ(x)I{−1/2<x<0} − h). Due to the Doob inequality,

P[supt≤1 V
(1)
t < N/2] > 1/2. The processes V (2) and V (3) have no jumps on [0,1]
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with strictly positive probability. In the absence of jumps, the trajectory of V (2) is the
linear function y = −�(ϕ(x)I{−1/2<x≤−ε})t ≥ 2Nt . It follows that

sup
1/2≤t≤1

Vt ≤ c + N/2

on a nonnull set. This implies that J−1 is unbounded from above.
Finally, the “only if” parts of the lemma are obvious. �

Summarising, we conclude that Q1 and Q−1 (and hence Y∞) are unbounded from
above if σ 2 > 0, or σ 2

P > 0, or �(|h|) = ∞, or �((−1,0)) > 0 and �((0,∞)) > 0.
The remaining cases are treated in the following result.

Lemma 5.8 Let σ = 0, �(|h|) < ∞, σP = 0. If �((−1,0))=0 or �((0,∞)) = 0,
then the random variable Y∞ is unbounded from above.

Proof By our assumptions, Vt = ct + L with the constant c := a − �(h), � ≡ 0 and
Lt := ϕ ∗ μt . The assumption β > 0 implies that P[V1 < 0] > 0 and P[V1 > 0] > 0.
So there are two cases which we consider separately.

(i) c < 0 and �((0,∞)) > 0: Take any T > 1. Then
∫
[0,T ] e

−Vt dt ≥ T/e on the

nonnull set {LT ≤ 1}. By virtue of Remark 5.6, on the nonnull FR,P
T -measurable sub-

set �T ⊆ {LT ≤ 1}, we have − ∫
[0,T ] e

−Vt− dPt ≥ KT , where KT → ∞ as T → ∞.
For every T > 1,

P[�T ∩ {LT +1 − LT ≥ |c|(T + 1)}] = P[�T ]P[LT +1 − LT ≥ |c|(T + 1)] > 0.

Let ζ ε be the square-integrable martingale given by (5.3) (note that −V is here
bounded above by a deterministic function) with θ = 1. Take N > 1 sufficiently large
and ε > 0 sufficiently small to ensure that the set �

ε,N
T defined as the intersection of

�T ∩ {LT +1 − LT ≥ |c|(T + 1)} and
{

sup
s∈[T ,T +1]

e−Vs ≤ N, inf
s∈[T ,T +1] e

−Vs ≥ 1/N

}
∩ {|ζ ε

T +1 − ζ ε
T | ≤ 1}

is nonnull. Let us consider the representation

Y∞ = −
∫

(0,T ]
e−Vt− dPt + aε

P

∫
(T ,T +1]

e−Vt dt − ζ ε
T +1 + ζ ε

T

−I(T ,∞)e
−V−xI{|x|>ε} ∗ μP

T +1 + e−VT +1YT +1,∞.

Take an arbitrary y < 0 such that the set {YT +1,∞ > y} is nonnull. Since the process P

is not a subordinator with σP = 0, it must satisfy one of the characterising conditions
1)–3) of Sect. 2. Let us consider them consecutively. If �P ((−∞,0)) > 0, then there
is ε0 > 0 such that �P ((−∞,−ε0)) > 0. Due to their independence, the intersection
of �

ε,N
T with the set

�̃
ε,N
T := {I[T ,∞)I{x<−ε} ∗ μP

T +1 ≥ −(1/ε)N2aε
P , I[T ,∞)I{x>ε} ∗ μP

T +1 = 0}
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is nonnull when ε ∈ (0, ε0). Due to their independence, the intersection of �
ε,N
T ∩ �̃

ε,N
T

and {YT +1,∞ > y} is also a nonnull set. But on this intersection, we have the inequal-
ity Y∞ ≥ KT − 1 + y, implying that Y∞ is unbounded from above.

Suppose next that �P (−∞,0) = 0 and �P (h) = ∞. Thus for sufficiently small
ε > 0, we have aε

P > 0. On the nonnull set

�
ε,N
T ∩ {I[T ,∞)I{x>ε} ∗ μP

T +1 = 0} ∩ {YT +1,∞ > y},
the inequality Y∞ ≥ KT − 1 + y holds and we conclude as above.

Finally, suppose that �P (−∞,0) = 0, �P (h) < ∞ and �P (h) − aP > 0. In this
case, we can use the representation

Y∞ = −
∫

(0,T ]
e−Vt− dPt + (

�P (h) − aP

)∫
(T ,T +1]

e−Vt dt

− I(T ,∞)e
−V−xI{x>0} ∗ μP

T +1 + e−VT +1YT +1,∞.

On the nonnull set �
ε,N
T ∩ {I(T ,∞)I{x>0} ∗ μP

T +1 = 0} ∩ {YT +1,∞ > y}, we have that
Y∞ ≥ KT + y, implying that Y∞ is unbounded from above.

(ii) c > 0 and �(−1,0) > 0: In this case, there are 0 < γ < γ1 < 1 such
that the sets {I(−1,−γ1) ∗ μ1 = 0}, {I(−γ1,−γ ) ∗ μ1/2 = I(−γ1,−γ ) ∗ μ1 = N} and
{ϕI(−γ1,0) ∗ μ1 ≥ −1} are nonnull. Due to their independence, their intersection AN

is also nonnull. On AN , we have the bounds

c + N ln(1 − γ1) − 1 ≤ V1 ≤ c + N ln(1 − γ ),

J1 :=
∫

[0,1]
e−Vt dt ≥ e−c

∫
[0,1/2]

e− ln(1+x)∗μt dt ≥ 1

2
e−c(1 − γ )−N.

By virtue of Remark 5.6, there are a constant κN and an FR,P
1 -measurable non-

null subset BN of AN such that Q1 ≥ κN on BN and κN → ∞ as N → ∞.
Take T = TN > 0 such that cT + N ln(1 − γ1) − 2 ≥ 0. Then the set
{I]1,1+T [ϕ(x) ∗ μ1+T ≥ −1} is nonnull and its intersection with BN is also non-
null. On this intersection, we have e−V1+T ≤ 1 and c1(N) ≤ V1+T ≤ c2(N), where
c1(N) := c + N ln(1 − γ1) − 2 and c2(N) := c(T + 1) + N ln(1 − γ ). With this, we
accomplish the arguments by considering the cases corresponding to the properties
1)–3) with obvious modifications. �

With the above lemma, the proof of Proposition 5.1 is complete. �

Proof of Theorem 1.1 First, we relate the notations and hypotheses of Theorem 1.1
with those used in the results from implicit renewal theory summarised in Theo-
rem A.6 of Appendix A. The hypothesis that H(β) = 0 means that E[Mβ ] = 1 with
M = M1 = e−V1 . Also, E[Mβ+ε] < ∞ for some ε > 0 since β does not belong to the
boundary of the effective domain of the function H . In view of (2.2) and Lemma 4.1,
we have that E[|Q|β ] < ∞, where Q = Q1 = ∫

(0,1] e
−Vvdv. Proposition 5.1 provides

the information that the almost sure limit Y∞ of the process Y given by (3.1) exists,
is finite, unbounded from above and has a law solving the distributional equation
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L(Y∞) = L(Q + MY∞), which can be written in the form (A.1). Thus all the condi-
tions of Theorem A.6 are fulfilled. The latter gives the statements on the asymptotic
behaviour of the tail function Ḡ(u) = P[Y∞ > u] as u → ∞. Using Lemma 3.1 al-
lows us to transform them into statements on the asymptotic behaviour of the ruin
probability �(u) and complete the proof. �

Remark 5.9 The constant C∞ in Theorem 1.1 is of the form C∞ = C+/Ḡ(0), where
C+ is given in (A.3).

Remark 5.10 Note that the hypothesis β ∈ int domH can be replaced by the slightly
weaker assumption E[e−βV1V −

1 ] < ∞.

Remark 5.11 The hypothesis that L(V1) is non-arithmetic can also be replaced by a
weaker one: one can assume that L(VT ) is non-arithmetic for some T > 0. Indeed,
due to the identity ln E[e−βVT ] = T H(β), the root β does not depend on the choice
of the time unit.

The following lemma shows that the condition on L(V1) can be formulated in
terms of the Lévy triplet.

Lemma 5.12 The (non-degenerate) distribution of the random variable V1 is arith-
metic if and only if σ = 0, �(R) < ∞ and there is d > 0 such that �V is concentrated
on the lattice �(h) − a +Zd .

Proof Recall that σV = σ and �V = �ϕ−1, where ϕ : x �→ ϕ(x). So we have
�V (R) = �(R). If σV > 0 or �V (R) = ∞, the distribution of V1 has a density; see
[10, Proposition 3.12]. If σ = 0 and 0 < �V (R) < ∞, then V is a compound Poisson
process with drift c = a −�(h) and distribution of jumps FV := �V /�V (R). In that
case, L(V1) is concentrated on the lattice Zd if and only if �V is concentrated on the
lattice −c +Zd . �

Remark 5.13 The property that Y∞ is unbounded from above can be deduced from
the much more general Theorem 1 on the support of exponential functionals from
the paper [6]. However, the results for the supports of Jθ and Qθ and the arguments
presented here have own interest and can also be used without assuming, as in [6],
that the limit Y∞ exists.

6 Ruin with probability one

In this section, we give conditions under which ruin is imminent for any initial re-
serve.

Recall the following ergodic property of the autoregressive process (Xu
n)n≥1 with

random coefficients which is defined recursively by the relations

Xu
n = AnX

u
n−1 + Bn, n ≥ 1,Xu

0 = u, (6.1)

where (An,Bn)n≥1 is a sequence of i.i.d. random variables in R
2 (see [34, Proposi-

tion 7.1], and [12] for a deeper result).
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Lemma 6.1 Suppose that E[|An|δ] < 1 and E[|Bn|δ] < ∞ for some δ ∈ (0,1). Then
for any u ∈ R, the sequence (Xu

n) converges in Lδ (hence, in probability) to the ran-
dom variable

X0∞ =
∞∑

n=1

Bn

n−1∏
j=1

Aj ,

and for any bounded uniformly continuous function f ,

1

N

N∑
n=1

f (Xu
n) −→ E[f (X0∞)] in probability as N → ∞. (6.2)

Corollary 6.2 Suppose that E[|An|δ] < 1 and E[|Bn|δ] < ∞ for some δ ∈ (0,1).

(i) If P[X0∞ < 0] > 0, then infn≥1 Xu
n < 0.

(ii) If A1 > 0 and B1/A1 is unbounded from below, then infn≥1 Xu
n < 0.

Proof We get (i) by a straightforward application of (6.2) to the function

f (x) := I{x<−1} + xI{−1≤x<0}.

The statement (ii) follows from (i). Indeed, put X
0,1∞ := ∑∞

n=2 Bn

∏n−1
j=2 Aj . Then

X0∞ = B1 + A1X
0,1∞ = A1(X

0,1∞ + B1/A1).

Since B1/A1 and X
0,1∞ are independent and the random variable B1/A1 is unbounded

from below, P[X0∞ < 0) > 0. �

Let Mj and Qj be the same as in (5.2).

Proposition 6.3 Suppose that E[M−δ
1 ] < 1 and E[M−δ

1 |Q1|δ] < ∞ for δ ∈ (0,1). If
Q1 is unbounded from above, then �(u) ≡ 1.

Proof The process Xu solving (1.1) and restricted to integer values of the time scale
admits the representation

Xu
n = eVn−Vn−1Xu

n−1 + eVn

∫
(n−1,n]

e−Vt− dPt , n ≥ 1,Xu
0 = u.

That is, Xu
n is given by (6.1) with An = M−1

n and Bn = −M−1
n Qn. The result follows

from statement (ii) of Corollary 6.2. �

Now we give more specific conditions for ruin with probability one in terms of the
triplets.

Theorem 6.4 Suppose that 0 ∈ int domH and �P (|h̄|ε) < ∞ for some ε > 0. If
aV + �(h̄(ln(1 + x))) ≤ 0, then �(u) ≡ 1.
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Proof Note that D−H(0) = −aV − �(h̄(ln(1 + x))). If D−H(0) > 0, then for all
q < 0 sufficiently close to zero, we have H(q) < 0, that is, E[Mq

1 ] < 1. By virtue
of Lemma 5.3, we have L(M−1

1 Q1) = L(Q−1). If �P (|h̄|ε) < ∞ for some ε > 0,
Lemma 4.1 implies that E[|Q−1|q ] < ∞ for sufficiently small q > 0. To get the
result, we can use Proposition 6.3. Indeed, by virtue of Lemmas 5.4 and 5.7 (i), the
random variable Q1 is unbounded from above, except possibly in the case where
σ 2 = 0, σ 2

P = 0, �(|h|) < ∞ and �(−1,0) = 0, �(0,∞) > 0. Recall that in this
special case, we have Vt = ct + Lt , where c := a − �(h) and Lt := ln(1 + x) ∗ μt .
Note that

X0
n =

∫
(0,n]

eVn−Vt− dPt
d=

∫
(0,n]

eVt− dPt =: −Ŷn,

where the equality in law holds by virtue of Lemma 5.3 (the latter is formulated
for [0,1], but its extension to arbitrary intervals is obvious). The random variable
Ŷn is defined by the same formula as Yn with V replaced by −V . As in Proposi-
tion 5.1, we show that (Ŷn) converges to a finite value Ŷ∞ in probability. It follows
that L(X0

n) = L(−Ŷn). As in Lemma 5.8 (i), we can show that Ŷ∞ is unbounded from
above.

In the case where D−H(0) = 0, we consider, following [34], the discrete-time
process (X̃u

n)n∈N, where X̃u
n = XTn and the descending ladder times Tn of the random

walk (Vn)n∈N are defined by T0 := 0 and

Tn := inf{k > Tn−1 : Vk − VTn−1 < 0}.
Since J (q) = �(I{| ln(1+x)|>1}(1 + x)−q) < ∞ for any q ∈ (q, q̄), we have that

�(ln2(1 + x))) < ∞. The formula (2.1) can be written as

Vt = σWt + ln(1 + x) ∗ (μ − ν)t ,

i.e., V is a square-integrable martingale so that E[V1] = 0 and E[V 2
1 ] < ∞. Accord-

ing to Feller’s book [13, Chap. XII.7, Theorem 1a and the remark preceding it], the
above properties imply that there is a finite constant c such that

P [T1 > n] ≤ cn−1/2. (6.3)

It follows in particular that the differences Tn − Tn−1 are well defined and form a
sequence of finite independent random variables distributed as T1. The discrete-time
process (X̃u

n) = (Xu
Tn

) has the representation

X̃u
n = e

VTn−VTn−1 X̃u
n−1 + eVTn

∫
(Tn−1,Tn]

e−Vt− dPt , n ≥ 1, X̃u
0 = u,

and solves the linear equation

X̃u
n = ÃnX̃

u
n−1 + B̃n, n ≥ 1, X̃u

0 = u,

where

Ãn := e
VTn−VTn−1 , B̃n := eVTn

∫
(Tn−1,Tn]

e−Vt− dPt
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and B̃1/Ã1 = −YT1 , where Y is given by (3.1). By construction, Ãδ
1 < 1 for any δ > 0.

Using the definition of Qj given by (5.2), we have that

|B̃1| ≤
T1∑

j=1

eVT1−Vj−1 |Qj | ≤
T1∑

j=1

|Qj |.

According to Lemma 4.1, E[|Q1|p] < ∞ for some p ∈ (0,1). Taking r ∈ (0,p/5)

and defining the sequence �n := �n4r�, using the Chebyshev inequality and (6.3)
gives

E[|B̃1|r ] ≤ 1 + r
∑
n≥1

nr−1P
[ T1∑

j=1

|Qj | > n

]

≤ 1 + r
∑
n≥1

nr−1P
[ �n∑

j=1

|Qj | > n

]
+ r

∑
n≥1

nr−1P[T1 > �n]

≤ 1 + rE[|Q1|p]
∑
n≥1

�nn
r−1−p + rc

∑
n≥1

nr−1�
−1/2
n < ∞.

To apply Corollary 6.2 (ii), it remains to check that YT1 is unbounded from above.
Since {Q1 > N,V1 < 0} ⊆ {YT1 > N}, it is sufficient to check that the probability
of the set on the left-hand side is strictly positive for all N > 0, or, by virtue of
Remark 5.5, that

P[J1 > N,V1 < 0] > 0, ∀N > 0. (6.4)

If σ 2 > 0, the conditional distribution of the process (Ws)s≤1 given W1 = x coin-
cides with the (unconditional) distribution of the Brownian bridge Bx = (Bx

s )s≤1
with Bx

s = Ws + s(x − W1). Using this, we easily get for any bounded positive func-
tion g and any y,M ∈R that

P
[∫ 1

0
e−σWvg(v) dv > y,W1 < M

]
> 0;

cf. [21, Lemma 4.2]. This implies (6.4).
Now suppose that σ 2 = 0, but �((−1,0)) > 0, i.e., �((−1,−ε)) > 0 for some

ε ∈ (0,1). In the decomposition V = V (1) + V (2), where

V
(1)
t := I{−1<x≤−ε} ln(1 + x) ∗ μt ,

V
(2)
t := (

a − �(hI{−1<x≤−ε})
)
t + I{x>−ε}h ∗ (μ − ν)t

+I{x>−ε}
(

ln(1 + x) − h
) ∗ μt ,

the processes V (1) and V (2) are independent. The process V (1) is decreasing
by negative jumps whose absolute values are at least | ln(1 − ε)|, and the num-
ber of jumps on the interval [0,1/2] has a Poisson distribution with parameter
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(1/2)�((−1,−ε)) > 0. Thus P[V (1)
1/2 < −n] > 0 for any real n. It follows that

P[J1 > N,V1 < 0] ≥ P
[∫ 1

0
e−Vt dt > N,V1 < 0,V

(1)
1/2 < −n

]

≥ P
[
en

∫ 1

1/2
e−V

(2)
t dt > N,V

(2)
1 < n,V

(1)
1/2 < −n

]

= P
[∫ 1

1/2
e−V

(2)
t dt > Ne−n,V

(2)
1 < n

]
P[V (1)

1/2 < −n].

The right-hand side is strictly positive for sufficiently large n and so (6.4) holds.
Finally, the case where �(xI{0<x≤1}) = ∞ is treated similarly as in the last part
of the proof of Lemma 5.7 (i). The exceptional case �(|h|) < ∞, �((−1,0)) = 0,
�((0,∞)) > 0 is treated by a reduction to Corollary 6.2 (i). �

7 Examples

Example 7.1 Let us consider a model with negative risk sums and Lévy mea-
sure �P (dx) = λFP (dx) with a constant λ > 0, where the probability distribution
FP (dx) is concentrated on (0,∞), and set

a0
P := λ

∫
[0,1]

xFP (dx) − aP .

The process P admits a representation as the sum of a Wiener process with drift and
an independent compound Poisson process, i.e.,

Pt = −a0
P t + σP WP

t +
NP

t∑
j=1

ξj , (7.1)

where the Poisson process NP with intensity λP is independent of the sequence
(ξj )j≥1 of positive i.i.d. random variables with common distribution FP . Suppose
that the price process is a geometric Brownian motion, i.e.,

Et (R) = eVt = e(a−σ 2/2)t+σWt ,

so that σ �= 0 and � ≡ 0.
For this model, we have q = −∞ and q̄ = ∞. The condition D+H(0) < 0 is

reduced to the inequality σ 2/2 < a, and the function H(q) = (σ 2/2 − a + qσ 2/2)q

has the root β = 2a/σ 2 − 1 > 0. Suppose that σ 2
P + (a0

P )+ > 0. By Theorem 1.1,

the exact asymptotic �(u) ∼ C∞u−β as u → ∞ holds if E[ξβ1
1 ] < ∞. Since the

exponential distribution has the above property, we recover as a very particular case
the asymptotic result of [21] where it was assumed that σ 2

P = 0 and a0
P > 0.

If σ 2
P + (a0

P )+ > 0, σ 2/2 ≥ a and E[ξε
1 ] < ∞ for some ε > 0, then Theorem 6.4

implies that �(u) ≡ 1.
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Models with a price process given by a geometric Brownian motion were inten-
sively studied by using the representation of � as solution of integro-differential
equations. To the reader interested not only in asymptotic results, but also in the be-
haviour of ruin probabilities for finite values of the initial capital, we recommend the
very detailed study [7] with a number of simulation results.

Example 7.2 Let the process P again be given by (7.1) and suppose that the price
process has a jump component, namely,

Et (R) = exp

(
(a − σ 2/2)t + σWt +

Nt∑
j=1

ln(1 + ηj )

)
,

where the Poisson process N with intensity λ > 0 is independent of the sequence
(ηj )j≥1 of i.i.d. random variables with common distribution F not concentrated at
zero and such that F((−∞,−1]) = 0; see [25, Chap. 7]. That is, the log price process
is represented as

Vt = (a − σ 2/2)t + σWt + ln(1 + x) ∗ μt ,

where �(dx) = λF(dx). The function H is given by the formula

H(q) = (σ 2/2 − a + qσ 2/2)q + λ
(
E[(1 + η1)

−q ] − 1
)
.

Suppose that E[(1 + η1)
−q ] < ∞ for all q > 0. Then q̄ = ∞. Let σ �= 0. Then

lim supq→∞ H(q)/q = ∞. If

D+H(0) = σ 2/2 − a − λE[ln(1 + η1)] < 0,

then the root β > 0 of the equation H(q) = 0 does exist. Thus if E[ξβ

1 ] < ∞, then
Theorem 1.1 can be applied to get that �(u) ∼ C∞u−β , where C∞ > 0.

If E[(1+η1)
1−2a/σ 2 ] < 1 (resp. E[(1+η1)

1−2a/σ 2] > 1), the root β is larger (resp.
smaller) than 2a/σ 2 −1, the value of the root of H in the model of Example 7.1 where
the price process is continuous.

Now let σ = 0. If

D+H(0) = −a − λE[ln(1 + η1)] < 0

and

lim sup
q→∞

q−1E[(1 + η1)
−q − 1] > a/λ,

then the root β > 0 also exists. Theorem 1.1 can be applied when P[η1 > 0] ∈ (0,1),
and then we have the exact asymptotics if the distribution of ln(1 + η1) is non-
arithmetic.

Suppose again that E[(1+η1)
−q ] < ∞ for all q ∈R. Then q = −∞ and q̄ = ∞. If

the conditions σ 2/2 −a −λE[ln(1 +η1)] ≥ 0, σ 2 + P[η1 < 0] > 0 and E[|ξ1|ε] < ∞
for some ε > 0 hold, then �(u) ≡ 1 by virtue of Theorem 6.4.
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Appendix A: Tails of solutions of distributional equations

A.1 Kesten–Goldie theorem

Here we present a short account of needed results on distributional equations (random
equations in the terminology of [15]) of the form

Y∞
d= Q + MY∞, Y∞ independent of (M,Q), (A.1)

where (M,Q) is an R
2-valued random variable such that M > 0 and P[M �= 1] > 0

and
d= is equality in law. This is a symbolic notation which means that we are

given, in fact, a two-dimensional distribution L on (0,∞) × R not concentrated
on {1} × R, and the problem is to find a probability space with random variables
Y∞ and (M,Q) on it such that Y∞ and (M,Q) are independent, L(M,Q) = L and
L(Y∞) = L(Q + MY∞). Uniqueness in this problem means uniqueness of the distri-
bution of Y∞.

In the sequel, (Mj ,Qj ) form an i.i.d. sequence whose generic term (M,Q) has
the distribution L and Zj := M1 · · ·Mj , Z∗

n := supj≤n Zj .
If there is p > 0 such that E[Mp] < 1 and E[|Q|p] < ∞, then the solution Y∞

of (A.1) can be easily realised on the probability space (�,F ,P) where the sequence
(Mj ,Qj ) is defined; in fact, we can take the limit in Lp of the series

∑
j≥0 Zj−1Qj ,

see the beginning of the proof of Proposition 5.1.
The following classical result from renewal theory is the Kesten–Goldie theorem;

see [15, Theorem 4.1].

Theorem A.1 Suppose that (M,Q) is such that the distribution of lnM is non-
arithmetic and, for some β > 0,

E[Mβ ] = 1, E[Mβ(lnM)+] < ∞, E[|Q|β ] < ∞. (A.2)

Then

lim
u→∞uβP[Y∞ > u] = C+ < ∞,

lim
u→∞uβP[Y∞ < −u] = C− < ∞,

where C+ + C− > 0.
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Theorem A.1 leaves open the question when the constant C+ is strictly positive.
The expression

C+ = E[((Q + MY∞)+)β − ((MY∞)+)β ]
βE[Mβ lnM] (A.3)

given in [15] and involving the unknown distribution of Y∞ is not helpful. How to
check whether the right-hand side of this formula is strictly positive? Recently, Guiv-
arc’h and Le Page [18] showed for the above case where the distribution of lnM

is non-arithmetic that C+ > 0 if and only if Y∞ is unbounded from above; see also
Buraczewski and Damek [9] for simpler arguments. Of course, this criterion is not
a result formulated in terms of the given data; it involves a property of the unknown
distribution of Y∞, namely that the support is unbounded. But this property can be
checked in the model considered in the present paper.

The remaining part of the appendix is a compendium of facts needed to cover also
the arithmetic case.

A.2 Grincevic̆ius theorem

The theorem below is a simplified version of [17, Theorem 2(b)], but with a slightly
weaker assumption on Q, namely E[|Q|β ] < ∞, as used in our study. For the reader’s
convenience, we give a complete proof after recalling some concepts and facts from
renewal theory.

Theorem A.2 Suppose that (A.2) holds and the distribution of lnM is concentrated
on the lattice Zd = {0,±d,±2d, . . . }, where d > 0. Then

lim sup
u→∞

uβP[Y∞ > u] < ∞.

We consider the convolution-type linear operator which is well defined for all
positive as well as for (Lebesgue-) integrable functions by the formula

ψ̌(x) =:
∫ x

−∞
e−(x−y)ψ(y)dy.

Clearly, the functions ψ and ψ̌ are simultaneously integrable or not and
∫
R

ψ̌(x)dx =
∫
R

ψ(x)dx.

Suppose that ψ ≥ 0 is integrable. Then ψ̌(x + δ) ≥ e−δψ̌(x) for any δ > 0 and

δ inf
x∈[jδ,(j+1)δ] ψ̌(x) ≥ δe−δψ̌(jδ) ≥ e−2δ

∫ jδ

(j−1)δ

ψ̌(x) dx,

implying that

U(ψ̌, δ) := δ
∑
j∈Z

inf
x∈[jδ,(j+1)δ] ψ̌(x) ≥ e−2δ

∫
R

ψ̌(x) dx.
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Similarly,

Ū (ψ̌, δ) := δ
∑
j∈Z

sup
x∈[jδ,(j+1)δ]

ψ̌(x) ≤ e2δ

∫
R

ψ̌(x) dx.

Thus Ū(ψ̌, δ) < ∞ and Ū(ψ̌, δ) − U(ψ̌, δ) → 0 as δ → ∞. These two properties
mean by definition that the function ψ̌ is directly Riemann-integrable. Arguing for
the positive and negative parts, we obtain that if ψ is integrable, then ψ̌ is directly
Riemann-integrable.

We use in the sequel the following renewal theorem (see [19, Proposition 2.1]) for
the random walk Sn := ∑n

i=1 ξi on a lattice.

Proposition A.3 Let ξi be i.i.d. random variables taking values in the lattice Zd ,
d > 0, and having finite expectation m := E[ξi] > 0. Let F : R → R be a measurable
function. If x ∈ R is such that

∑
j∈Z |F(x + jd)| < ∞, then

lim
n→∞ E

[∑
k≥0

F(x + nd − Sk)

]
= d

m

∑
j∈Z

F(x + jd).

Proof of Theorem A.2 Let the solution of (A.1) be realised on some probability space
(�,F ,P). We use the notation (M,Q) instead of (M1,Q1) and as usual define the
tail function Ḡ(u) := P[Y∞ > u]. Set g(x) := eβxḠ(ex). Since Y∞ and M are inde-
pendent, we have P[MY∞ > ex] = E[Ḡ(ex−lnM)]. Introducing the new probability
measure P̃ := MβP and noting that

eβxP[MY∞ > ex] = E[Mβeβ(x−lnM)Ḡ(ex−lnM)] = Ẽ[g(x − lnM)],

we obtain the identity (called renewal equation)

g(x) = D(x) + Ẽ[g(x − lnM)], (A.4)

where D(x) := eβx(P[Y∞ > ex] − P[MY∞ > ex]). The Jensen inequality for the
convex function x �→ x lnx implies that Ẽ[lnM] = E[Mβ lnM] > 0 and hence
Ẽ[| lnM|] < ∞. Let us check that the function x �→ D(x) is integrable. To this end,
we note that for any random variables ξ, η,

∣∣P[ξ > s] − P[η > s]∣∣ ≤ P[η+ ≤ s < ξ+] + P[ξ+ ≤ s < η+].

Using the Fubini theorem, we obtain that

∫ ∞

0
P[η+ ≤ s < ξ+]sβ−1 ds = E

[
I{η+<ξ+}

∫ ξ+

η+
sβ−1 ds

]

= 1

β
E

[(
(ξ+)β − (η+)β

)+]
.



64 Y. Kabanov, S. Pergamenshchikov

Applying the above bound and identity with ξ := Q + MY∞
d= Y∞ and η := MY∞,

we get that
∫
R

|D(x)|dx =
∫ ∞

0

∣∣P[ξ > s] − P[η > s]∣∣sβ−1 ds ≤ 1

β
E

[∣∣(ξ+)β − (η+)β
∣∣] ,

and it remains to verify that

E
[∣∣((Q + η)+

)β − (η+)β
∣∣] < ∞ (A.5)

when E[|Q|β ] < ∞. But |((Q + η)+)β − (η+)β | = ζ1 + ζ2 with positive summands

ζ1 := I{−Q<η≤0}(Q + η)β + I{0<η≤−Q}ηβ ≤ |Q|β,

ζ2 := I{Q+η>0,η>0}|(Q + η)β − ηβ |.
If β ≤ 1, the random variable ζ2 is also dominated by the random variable |Q|β . If
β > 1, the inequality |xβ −yβ | ≤ β|x −y|(x ∨y)β−1 for x, y ≥ 0 combined with the
inequality (|a| + |b|)β−1 ≤ 2(β−2)+(|a|β−1 + |b|β−1) leads to the estimate

ζ2 ≤ 2(β−2)+β|Q|(|η|β−1 + |Q|β−1).

Using the independence of (M,Q) and Y∞, the Hölder inequality and taking into
account that E[Mβ ] = 1 and E[|Y∞|p] < ∞ for p ∈ [0, β), we get that

E[|Q||η|β−1] = E[|Q|Mβ−1]E[|Y∞|β−1] ≤ (E[|Q|β ])1/βE[|Y∞|β−1] < ∞.

Thus (A.5) holds. The integrability of D allows us to transform (A.4) into the equality

ǧ(x) = Ď(x) + Ẽ[ǧ(x − lnM)].
Iterating, we obtain that

ǧ(x) =
N−1∑
n=0

Ẽ[Ď(x − Sn)] + Ẽ[ǧ(x − SN)], (A.6)

where Sn := ∑n
i=1 ξi for n ≥ 1 and (ξi) is a sequence of independent random vari-

ables on (�,F , P̃), independent of Y∞, such that L(ξi, P̃) = L(lnM, P̃). In particu-
lar, Ẽ[e−βξi ] = 1.

By the strong law of large numbers, we have SN/N → Ẽ[lnM] > 0 P̃-a.s. as
N → ∞ and therefore y − lnSN → −∞ P̃-a.s. for every y. Since Ẽ[e−βSN ] = 1, we
have by dominated convergence that

Ẽ[g(y − SN)] = Ẽ[eβ(y−SN )Ḡ(ey−SN )] −→ 0.

It follows that the remainder term E[ǧ(x − SN)] in (A.6) tends to zero so that

ǧ(x) =
∑
k≥0

Ẽ[Ď(x − Sk)].
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Using Proposition A.3 (with F = Ď), we obtain that for any x > 0,

lim
n→∞ ǧ(x + dn) = d

Ẽ[lnM]
∑
j∈Z

Ď(x + jd) ≤ Ū (Ď, d) < ∞.

Replacing in the integral below the function Ḡ(ey) by its maximal value Ḡ(ex),
we get

ǧ(x) :=
∫ x

−∞
e−(x−y)eβyḠ(ey)dy ≥ 1

β + 1
g(x)

and therefore

lim sup
u→∞

uβP[Y∞ > u] = lim sup
x→∞

g(x) ≤ (β + 1) lim sup
x→∞

ǧ(x) < ∞.

Theorem A.2 is proved. �

A.3 Buraczewski–Damek approach

The following result, usually formulated in terms of the supremum of the random
walk Sn := ∑n

i=1 lnMi , is well known (see e.g. Kesten [23, Theorem A] for a much
more general setting).

Proposition A.4 If M satisfies (A.2), then

lim inf
u→∞ uβP[Z∗∞ > u] > 0.

Proof Let F(x) := P[lnM ≤ x], F̄ (x) := 1 − F(x) and Sn := ∑n
i=1 ξi , where

ξi := lnMi . The function H̄ (x) := P[supn∈N Sn > x] admits the representation

H̄ (x) = P[ξ1 > x] + E[I{ξ1≤x}H̄ (x − ξ1)] = F̄ (x) +
∫ x

−∞
H̄ (x − t) dF (t).

Putting Z(x) := eβxH̄ (x), z(x) := eβxF̄ (x) and P̃ := eβξ1 P, we obtain from here that

Z(x) = z(x) + Ẽ[Z(x − ξ1)I{ξ1≤x}].
The same arguments as were used in deriving (A.6) lead to the representation

Z(x) = Ẽ
[∑

k≥0

z(x − Sk)I{Sk≤x}
]
.

The function ẑ(x) := z(x)I{x≥0} is directly Riemann-integrable. Indeed, for j ≥ 0,
we have that

sup
x∈[jδ,(j+1)δ]

z(x) ≤ eβ(j+1)δF̄ (jδ) ≤ e2βδ

∫ jδ

(j−1)δ

eβvF̄ (v) dv
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and therefore

Ū (ẑ, δ) = δz(0) + δ
∑
j≥0

sup
x∈[jδ,(j+1)δ]

z(x) ≤ δz(0) + e2βδ

∫ ∞

−δ

eβvF̄ (v) dv.

In the same spirit, we get

inf
x∈[jδ,(j+1)δ] z(x) ≥ eβjδF̄

(
(j + 1)δ

) ≥ e−2βδ

∫ (j+2)δ

(j+1)δ

eβvF̄ (v) dv

and

U(ẑ, δ) = δ
∑
j≥0

sup
x∈[jδ,(j+1)δ]

z(x) ≥ e−2βδ

∫ ∞

δ

eβvF̄ (v) dv.

Taking into account that
∫
R

eβvF̄ (v) dv = 1

β
E[eβξ1 ] = 1

β
< ∞,

we get from here that Ū (ẑ, δ) < ∞ and Ū (ẑ, δ) − U(ẑ, δ) → 0 as δ → 0. Using
renewal theory, we obtain that if the law of ξ is non-arithmetic,

lim
x→∞ eβxH̄ (x) = 1

Ẽ[ξ ]
∫ ∞

0
z(v) dv; (A.7)

see e.g. [13, Chap. XI, 9]. If the law of ξ is arithmetic with step d > 0, then according
to Proposition A.3, for any x > 0, we have

lim
n→∞ eβ(x+nd)H̄ (x + nd) = d

Ẽ[ξ ]
∑
j∈Z

z(x + jd)I{x+jd≥0}. (A.8)

The equalities (A.7) and (A.8) imply the statement. �

The proof of the result below, formulated in a form to cover our needs, follows
the same lines as in Lemma 2.6 of the Buraczewski–Damek paper [9] with minor
changes to include also the arithmetic case.

Theorem A.5 Suppose that (A.2) holds. If the support of the distribution of Y∞ is
unbounded from above, then

lim inf
u→∞ uβP[Y∞ > u] > 0.

Proof Let

Ȳn := −
n∑

j=1

Q−
j Zj−1, Yn,∞ :=

∞∑
j=n+1

Qj

j−1∏
�=n+1

M�
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and Z∗
n := supj≤n Zj . Theorems A.1 and A.2 imply that P[Ȳ∞ < −u] ≤ C1u

−β

with C1 > 0. On the other hand, by Proposition A.4, P[Z∗∞ > u] ≥ C2u
−β with

C2 > 0. Of course, in both cases the inequalities hold when u is sufficiently large. Put
Un := {Zn > u, Ȳn > −Cu}, where Cβ := 4C1/C2. The process Ȳ decreases. There-
fore, we have the inclusion {Zn > u} ⊆ {Ȳ∞ ≤ −Cu} ∪ Un. It follows that for suffi-
ciently large u > 0, we have

(3/4)C2u
−β ≤ P[Z∗∞ > u] = P

[ ⋃
n∈N

{Zn > u}
]

≤ P[Ȳ∞ ≤ −Cu] + P
[ ⋃

n∈N
Un

]

≤ 2C1C
−βu−β + P

[ ⋃
n∈N

Un

]

so that P[⋃n∈N Un] ≥ (1/4)C2u
−β . Since Ȳn + ZnYn,∞ ≤ Yn + ZnYn,∞ = Y∞, we

have that

{Yn,∞ > C + 1} ∩ Un ⊆ {Ȳn + ZnYn,∞ > u} ∩ Un ⊆ {Y∞ > u} ∩ Un.

Note that P[Y∞ > C + 1] = P[Yn,∞ > C + 1] because L(Yn,∞) = L(Y∞). Using
the independence of Yn,∞ and the sets Wn := Un ∩ (

⋃n−1
k=1 Uk)

c forming a disjoint
partition of

⋃
n∈N Un, we get that

P[Y∞ > C + 1]P
[ ⋃

n∈N
Wn

]
=

∑
n

P[{Yn,∞ > C + 1} ∩ Wn]

≤
∑
n

P[{Y∞ > u} ∩ Wn] ≤ P[Y∞ > u].

Thus P[Y∞ > u] ≥ (1/4)bC2u
−β , where b := P[Y∞ > C +1] > 0 by the assumption

that the support of L(Y∞) is unbounded from above. The obtained asymptotic bound
implies that C+ > 0. �

Summarising the above results, we get for the function Ḡ(u) = P[Y∞ > u] the
following asymptotic properties when u → ∞.

Theorem A.6 Suppose that (A.2) holds. Then lim supu→∞ uβḠ(u) < ∞. If Y∞ is
unbounded from above, then lim infu→∞ uβḠ(u) > 0, and in the case where L(lnM)

is non-arithmetic, Ḡ(u) ∼ C+u−β with C+ > 0.
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