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Abstract We introduce a novel class of credit risk models in which the drift of the
survival process of a firm is a linear function of the factors. The prices of default-
able bonds and credit default swaps (CDS) are linear–rational in the factors. The
price of a CDS option can be uniformly approximated by polynomials in the fac-
tors. Multi-name models can produce simultaneous defaults, generate positively as
well as negatively correlated default intensities, and accommodate stochastic interest
rates. A calibration study illustrates the versatility of these models by fitting CDS
spread time series. A numerical analysis validates the efficiency of the option price
approximation method.
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1 Introduction

We introduce a novel class of flexible and tractable reduced-form models for the term
structure of credit risk, the linear credit risk models. We directly specify the sur-
vival process of a firm, that is, its conditional survival probability given the economic
background information. Specifically, we assume a multivariate factor process with a
linear drift and let the drift of the survival process be linear in the factors. Prices of
defaultable bonds and credit default swaps (CDS) are given in closed form by linear–
rational functions in the factors. By linearity, the same result holds for the prices of
CDSs on indices (CDISs). The implied default intensity is a linear–rational function
of the factors. In contrast, the price of a CDS in an affine default intensity model
is a sum of exponential-affine functions in the factor process and whose coefficients
are given by the solutions of nonlinear ordinary differential equations that are not in
closed form, in general. In addition, the linear credit risk models offer new tractable
features such as a multi-name model with negatively correlated default intensity.

Within the linear framework, we define the linear hypercube (LHC) model which
is a single-name model. The factor process is diffusive with quadratic diffusion func-
tion so that it takes values in a hypercube whose edges’ length is given by the survival
process. The quadratic diffusion function is concave and bi-monotonic. This feature
allows factors to virtually jump between low and high values. This facilitates the per-
sistence and likelihood of term structure shifts. The factors’ volatility parameters do
not enter the bond and CDS pricing formulas, yet they impact the volatility of CDS
spreads and thus affect CDS option prices. This may facilitate the joint calibration of
credit spread and option price time series. We discuss in detail the one-factor LHC
model and compare it with the one-factor affine default intensity model. We provide
an identifiable canonical representation and the market price of risk specifications
that preserve the linear drift of the factors.

We present a price approximation methodology for European-style options on
credit risky underlyings that exploits the compactness of the state space and the
closed form of the conditional moments of the factor process. First, by the Stone–
Weierstrass theorem, any continuous payoff function on the compact state space can
be approximated by a polynomial to any given level of accuracy. Second, the condi-
tional expectation of any polynomial in the factors is a polynomial in the prevailing
factor values. In consequence, the price of a CDS option can be uniformly approxi-
mated by polynomials in the factors. This method also applies to the computation of
credit valuation adjustments.

We build multi-name models by letting the survival processes be linear and poly-
nomial combinations of independent LHC models. Bond and CDS prices are still
linear–rational, but with respect to an extended factor representation. These direct ex-
tensions can easily accommodate the inclusion of new factors and new firms. Stochas-
tic short-rate models with a similar specification as the survival processes can be
introduced while preserving the setup tractability. Simultaneous defaults can be gen-
erated either by introducing a common jump process in the survival processes or a
stochastic clock.

We perform an empirical and numerical analysis of the LHC model. Assuming a
parsimonious cascading drift structure, we fit two-factor and three-factor LHC mod-
els to the ten-year long time series of weekly CDS spreads on an investment grade
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and a high yield firm. The three-factor model is able to capture the complex term
structure dynamics remarkably well and performs significantly better than the two-
factor model. We illustrate the numerical efficiency of the option pricing method
by approximating the prices of CDS options with different moneyness. Polynomials
of relatively low orders are sufficient to obtain accurate approximations for in-the-
money options. Out-of-the money options typically require a higher order. We derive
the pricing formulas for CDIS options and tranches on a homogeneous portfolio to
illustrate that their prices can also be approximated with similar techniques. In gen-
eral, the pricing of CDIS options and tranches requires manipulating multivariate
polynomial bases of possibly large dimensions. In practice, computationally efficient
multi-name credit derivative pricing necessitates the use of special algorithms which
are not studied in this paper.

We now review some of the related literature. Our approach follows a standard
doubly stochastic construction of default times as described in Elliott et al. [21] or
Bielecki and Rutkowski [7, Sect. 6.5]. The early contributions by Lando [38] and
Duffie and Singleton [19] already make use of affine factor processes. In contrast, the
factor process in the LHC model is a strictly non-affine polynomial diffusion, whose
general properties are studied in [23]. The stochastic volatility models developed in
Hull and White [31] and Ackerer et al. [1] are two other examples of non-affine poly-
nomial models. Factors in the LHC models have a compact support and can exhibit
jump-like dynamics similar to the multivariate Jacobi process introduced by Gourier-
oux and Jasiak [29]. Our approach has some similarities with the linearity-generating
process by Gabaix [27] and the linear–rational models by Filipović et al. [25]. These
models also exploit the tractability of factor processes with linear drift, but focus on
the pricing of non-defaultable assets. To our knowledge, we are the first to model
directly the survival process of a firm with linear drift characteristics.

Options on CDS contracts are complex derivatives and intricate to price. The pric-
ing and hedging of credit derivatives in a generic hazard process framework is dis-
cussed in Bielecki et al. [4, Sect. 4], applied to CDS options in Bielecki et al. [5],
and specialised to the square-root diffusion factor process in Bielecki et al. [6]. More
recently Brigo and El-Bachir [10] developed a semi-analytical expression for CDS
option prices in the context of a shifted square-root jump-diffusion default intensity
model that was introduced in Brigo and Alfonsi [8]. Another strand of the literature
has focused on developing market models in the spirit of LIBOR market models. We
refer the interested reader to Schönbucher [48], Hull and White [32], Schönbucher
[47], Jamshidian [34] and Brigo and Morini [11]. Black–Scholes-like formulas are
then obtained for the prices of CDS options by assuming, for example, that the under-
lying CDS spread follows a geometric Brownian motion under the survival measure.
Although offering more tractability, this approach makes it difficult, if not impossible,
to consistently price multiple instruments exposed to the same source of credit risk.
Di Graziano and Rogers [16] introduced a framework where they obtained closed-
form expressions similar to ours for CDS prices, but under the assumption that the
firm default intensity is driven by a continuous-time finite-state irreducible Markov
chain.

Another important approach to default risk modelling is the use of subordinators
to model the cumulative hazard process. It has in particular been shown that time-
inhomogeneous models can reproduce well CDIS tranche prices. For more details on
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these models we refer to Kokholm and Nicolato [37], Sun et al. [51], and references
therein.

The simulation-based work by Peng and Kou [44] shows that a hazard-rate model
with systemic and idiosyncratic risk factors can fit both CDS and CDIS tranches, and
therefore confirms that a bottom-up model with common risk factors can yield an
accurate and fully consistent risk-management framework. A tractable alternative to
price multi-name credit derivatives is to model the dependence between defaults with
a copula function, as for example in Li [41], Laurent and Gregory [40] and Ackerer
and Vatter [2]. However, these models are by construction static, require repeated
calibration and in general become intractable when combined with stochastic survival
processes as in Schönbucher and Schubert [49].

The idea of approximating option prices by power series can be traced back to
Jarrow and Rudd [35]. However, most of the previous literature has focussed on ap-
proximating the transition density function of the underlying process; see for example
Corrado and Su [14] and Filipović et al. [26]. In contrast, we approximate directly the
payoff function by a polynomial.

The remainder of the paper is structured as follows. Section 2 presents the linear
credit risk framework along with generic pricing formulas. Section 3 describes the
single-name LHC model. The numerical and empirical analysis of the LHC model
is in Sect. 4. Multi-name models as well as models with stochastic interest rates are
discussed in Sect. 5. Section 6 concludes. The proofs are collected in the Appendix,
as well as some additional results on market price of risk specifications that preserve
the linear drift of the factors, and on the two-dimensional Chebyshev interpolation.

2 The linear framework

We introduce the linear credit risk model framework and derive closed-form expres-
sions for defaultable bond prices and credit default swap spreads. We also discuss
the pricing of credit index tranches, credit default swap options and credit valuation
adjustments.

2.1 Survival process specification

We fix a probability space (�,F ,Q) equipped with a right-continuous filtration
F = (Ft )t≥0 representing the economic background information, and where Q is the
risk-neutral pricing measure. We consider N firms and let Si be the survival process
of firm i. This is a right-continuous F-adapted and nonincreasing positive process
with Si

0 = 1. Let U1, . . . ,UN be independent standard uniform random variables that
are independent from F∞. For each firm i, we define the random default time

τi = inf{t ≥ 0 : Si
t ≤ Ui},

which is infinity if the set is empty. Let (Hi
t )t≥0 be the filtration generated by the

indicator process which is one as long as firm i has not defaulted by time t and
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zero afterwards, Hi
t = 1{τi>t} for t ≥ 0. The default time τi is a stopping time in the

enlarged filtration (Ft ∨Hi
t )t≥0. It is F-doubly stochastic in the sense that

Q[τi > t |F∞] = Q[Si
t > Ui |F∞] = Si

t .

The filtration (Gt )t≥0 = (Ft ∨H1
t ∨ · · · ∨HN

t )t≥0 contains all the information about
the occurrence of firm defaults, as well as the economic background information.
Henceforward we omit the index i of the firm and refer to any of the N firms as
long as there is no ambiguity.

In a linear credit risk model, the survival process of a firm is defined by

St = a�Yt , t ≥ 0, (2.1)

for some firm specific parameter a ∈ Rn+ and some common factor process (Y,X)

taking values in Rn+ ×Rm with linear drift of the form

dYt = (cYt + γXt) dt + dMY
t , (2.2)

dXt = (bYt + βXt) dt + dMX
t (2.3)

for some c ∈ Rn×n, b ∈ Rm×n, γ ∈ Rn×m, β ∈ Rm×m, m-dimensional F-martingale
MX and n-dimensional F-martingale MY . The process S being positive and non-
increasing, we necessarily have that its martingale component MS = a�MY is of
finite variation and thus purely discontinuous (see [33, Lemma I.4.14]) and that
−St− < �MS

t ≤ 0 for all t ≥ 0 because �St = �MS
t . This observation motivates

the decomposition of the factor process into a component X and a component Y with
finite variation. Although we do not specify further the dynamics of the factor pro-
cess at the moment, it is important to emphasise that additional conditions should be
satisfied to ensure that S is a valid survival process.

Remark 2.1 In practice, we consider a componentwise nonincreasing process Y with
Y0 = 1. Survival processes can then easily be constructed by choosing any vector
a ∈Rn+ with a�1 = 1.

The linear drift of the process (Y,X) implies that the Ft -conditional expectation
of (Yu,Xu) is linear of the form

E

[(
Yu

Xu

)∣∣∣∣Ft

]
= eA(u−t)

(
Yt

Xt

)
, t ≤ u, (2.4)

where the (m + n) × (m + n)-matrix A is defined by

A =
(

c γ

b β

)
. (2.5)

Remark 2.2 If S is absolutely continuous, so that a�dMY
t = 0 for all t ≥ 0, the

corresponding default intensity λ, which is derived from the relation St = e− ∫ t
0 λs ds ,
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is linear–rational in (Y,X) of the form

λt = −a�(cYt + γXt)

St

.

In this framework, the default times are correlated because the survival processes
are driven by common factors. Simultaneous defaults are possible and may be caused
by the martingale component of Y that forces the survival processes to jump down-
ward at the same time. Additionally, and in contrast to affine default intensity models,
the linear credit risk framework allows negative correlation between default intensi-
ties as illustrated by the following stylised example.

Example 2.3 Consider the factor process (Y,X) taking values in R2+ ×R defined by

dYt = ε

2

((−1 0
0 −1

)
Yt +

(−1
1

)
Xt

)
dt,

dXt = −κXt dt + σ
√

(e−εt − Xt)(e−εt + Xt) dWt

for some κ > ε > 0, σ > 0, X0 ∈ [−1,1] and an F-adapted univariate Brownian
motion W . The process X takes values in the interval [−e−εt , e−εt ] at time t . Let
N = 2 survival processes be defined by S1

t = Y1t and S2
t = Y2t for all t ≥ 0, so that

the implied default intensities of the two firms are given by

λ1
t = ε

2

(
1 + Xt

Y1t

)
and λ2

t = ε

2

(
1 − Xt

Y2t

)
, t ≥ 0.

This results in d〈λ1, λ2〉t ≤ 0 and d〈λ1, λ2〉t < 0 with positive probability, and
λ1

t , λ
2
t ≤ ε. Moreover, the default intensities λ1 and λ2 both mean-revert towards ε/2.

The proof of these statements is given in Appendix A.

2.2 Defaultable bonds

We consider securities with notional amount equal to one and exposed to the credit
risk of a reference firm. We assume a constant risk-free interest rate equal to r so
that the time-t price of the risk-free zero-coupon bond with maturity tM and notional
amount one is given by e−r(tM−t). The following result gives a closed-form expres-
sion for the price of a defaultable bond with constant recovery rate at maturity.

Proposition 2.4 The time-t price of a defaultable zero-coupon bond with maturity
tM and recovery δ ∈ [0,1] at maturity is

BM(t, tM) = E[e−r(tM−t)(1{τ>tM } + δ1{τ≤tM }) |Gt ]
= (1 − δ)BZ(t, tM) + 1{τ>t}δe−r(tM−t),

where BZ(t, tM) = e−r(tM−t)E[1{τ>tM } |Gt ] denotes the time-t price of a defaultable
zero-coupon bond with maturity tM and zero recovery. It is of the form

BZ(t, tM) = 1{τ>t}
1

a�Yt

ψZ(t, tM)�
(

Yt

Xt

)
, (2.6)



Linear credit risk models 175

where the vector ψZ(t, tM) ∈Rn+m is given by

ψZ(t, tM)� = e−r(tM−t)(a� 0�
m)eA(tM−t),

where the m-dimensional vector 0m contains only zeros.

The next result shows that the price of a defaultable bond paying a constant recov-
ery rate at default can also be retrieved in closed form.

Proposition 2.5 The time-t price of a defaultable zero-coupon bond with maturity
tM and recovery δ ∈ [0,1] at default is

BD(t, tM) = E[e−r(tM−t)1{τ>tM } + δe−r(τ−t)1{t<τ≤tM } |Gt ] = BZ(t, tM)+δCD(t, tM),

where CD(t, tM) = E[e−r(τ−t)1{t<τ≤tM }|Gt ] denotes the time-t price of a contingent
claim paying one at default if this occurs between dates t and tM . It is of the form

CD(t, tM) = 1{τ>t}
1

a�Yt

ψD(t, tM)�
(

Yt

Xt

)
, (2.7)

where the vector ψD(t, tM) ∈ Rn+m is given by

ψD(t, tM)� = −a�(c γ )

∫ tM

t

eA∗(s−t) ds, (2.8)

where A∗ = A − r Id.

The price of a security whose only cash flow is proportional to the default time is
given in the following corollary. It is used to compute the expected accrued interests
at default for some contingent securities such as CDSs.

Corollary 2.6 The time-t price of a contingent claim paying τ at default if this occurs
between date t and tM is of the form

CD∗(t, tM) = E[τe−r(τ−t)1{τ≤tM } |Gt ] = 1{τ>t}
1

a�Yt

ψD∗(t, tM)�
(

Yt

Xt

)
, (2.9)

where the vector ψD∗(t, tM) ∈ Rn+m is given by

ψD∗(t, tM)� = −a�(c γ )

∫ tM

t

seA∗(s−t) ds. (2.10)

Note the presence of the factor s in the integrand on the right-hand side of (2.10),
which is absent in (2.8).

Remark 2.7 By setting r = 0 in (2.9), we get a closed-form expression for
E[τ1{τ≤tM } |Gt ]. This expression can be used to price a defaultable bond whose re-
covery value at maturity tM depends on the default time τ in a linear way, via

BD0(t, t0, tM) = BZ(t, tM) + e−r(tM−t)E

[(
δ0

τ − t0

tM − t0
+ δ1

)
1{τ≤tM }

∣∣∣∣Gt

]

for some parameters δ0, δ1 ≥ 0 with δ0 + δ1 ≤ 1 and for some time t0 ≤ t .
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The following lemma shows that the pricing formulas (2.7)–(2.10) further simplify
under an additional condition.

Lemma 2.8 Assume that the matrix A∗ is invertible. Then we have the closed-form
expressions

ψD(t, tM)� = −a�(c γ )A−1∗ (eA∗(tM−t) − Id),

ψD∗(t, tM)� = −a�(c γ )
(
(tM − t)A−1∗ eA∗(tM−t)

+ A−1∗ (Id t − A−1∗ )(eA∗(tM−t) − Id)
)
,

where Id is the (n + m)-dimensional identity matrix.

This is a remarkable result since the prices of contingent cash flows become
closed-form expressions composed of basic matrix operations and are thus easily
computed. Closed-form formulas for defaultable securities render the linear frame-
work appealing for large-scale applications, for example with a large number of firms
and contracts, in comparison to standard affine default intensity models that in gen-
eral require the use of additional numerical methods. For illustration, assume that the
survival process S is absolutely continuous so that it admits the default intensity λ as
in Remark 2.2. Then CD(t, tM) can be rewritten as

CD(t, tM) = 1{τ>t}
∫ tM

t

e−r(u−t)E[λue− ∫ u
t λs ds |Ft ]du.

With affine default intensity models, the expectation to be integrated requires solving
Riccati equations, which have a closed-form solution only when the default intensity
is driven by a sum of independent univariate CIR processes. Numerical methods such
as finite difference are usually employed to compute the expectation with time-u cash
flow for u ∈ [t, tM ]. The integral can then only be approximated by means of another
numerical method such as quadrature, that necessitates solving the corresponding
ordinary differential equations at many different points u. For more details on affine
default intensity models, we refer to Duffie and Singleton [20, Sect. 3.4], Filipović
[22, Sect. 12.3] and Lando [39, Sect. 5].

2.3 Credit default swaps

We derive closed-form expressions for credit default swaps (CDS) on a single firm
and multiple firms. We conclude the section with a discussion of factors unspanned
by bonds and CDS prices.

A single-name CDS is an insurance contract that pays at default the realised
loss on a reference bond—the protection leg—in exchange for periodic payments
that stop after default—the premium leg. We consider the discrete tenor structure
t ≤ t0 < t1 < · · · < tM and a contract offering default protection from date t0 to date
tM . When t < t0, the contract is usually called a knock-out forward CDS and gen-
erates cash flows only if the firm has not defaulted by time t0. We consider a CDS
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contract with notional amount equal to one. The time-t value of the premium leg with
spread k is given by kVprem(t, t0, tM), where

Vprem(t, t0, tM) = Vcoup(t, t0, tM) + Vai(t, t0, tM)

is the sum of the value of coupon payments before default,

Vcoup(t, t0, tM) =
M∑

j=1

E[e−r(tj −t)(tj − tj−1)1{tj <τ } |Gt ],

and the value of the accrued coupon payment at the time of default,

Vai(t, t0, tM) =
M∑

j=1

E[e−r(τ−t)(τ − tj−1)1{tj−1<τ≤tj } |Gt ].

The time-t value of the protection leg is

Vprot(t, t0, tM) = (1 − δ)E[e−r(τ−t)1{t0<τ≤tM } |Gt ],

where δ ∈ [0,1] denotes the constant recovery rate at default. This specification of
payments is in line with the ISDA model; see White [52]. The (forward) CDS spread
CDS(t, t0, tM) is the spread k that makes the premium leg and the protection leg equal
in value at time t , that is,

CDS(t, t0, tM) = Vprot(t, t0, tM)

Vprem(t, t0, tM)
.

Proposition 2.9 The values of the protection and premium legs are given by

Vprot(t, t0, tM) = 1{τ>t}
1

St

ψprot(t, t0, tM)�
(

Yt

Xt

)
,

Vprem(t, t0, tM) = 1{τ>t}
1

St

ψprem(t, t0, tM)�
(

Yt

Xt

)
,

where the vectors ψprot(t, t0, tM),ψprem(t, t0, tM) ∈Rn+m are given by

ψprot(t, t0, tM) = (1 − δ)
(
ψD(t, tM) − ψD(t, t0)

)
,

ψprem(t, t0, tM) =
M∑

j=1

(tj − tj−1)ψZ(t, tj ) + ψD∗(t, tM) − ψD∗(t, t0)

+ tM−1ψD(t, tM) −
M−1∑
j=1

(tj − tj−1)ψD(t, tj ) − t0ψD(t, t0).
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As a consequence of Proposition 2.9, the CDS spread is given by a readily avail-
able linear–rational expression, namely

CDS(t, t0, tM) = 1{τ>t}
ψprot(t, t0, tM)�

(
Yt

Xt

)
ψprem(t, t0, tM)�

(
Yt

Xt

) .

This is a remarkably simple expression that allows us to see how the factors (Y,X)

affect the CDS spread through the vectors ψprot(t, t0, tM) and ψprem(t, t0, tM). For
comparison, in an affine default intensity model, the two legs Vprot(t, t0, tM) and
Vprem(t, t0, tM) are given as sums of exponential-affine terms that cannot be sim-
plified further. In the following, we denote by VCDS(t, t0, tM, k) the time-t price of a
CDS contract starting at time t0 with maturity tM and spread k,

VCDS(t, t0, tM, k) = 1{τ>t}
(
ψprot(t, t0, tM) − ψprem(t, t0, tM)

)�
(

Yt

Xt

)
. (2.11)

A multi-name CDS, or credit default index swap (CDIS), is an insurance on a
reference portfolio of N firms with equal weight, which we assume to be 1/N so
that the portfolio total notional amount is equal to one. The protection buyer pays a
regular premium that is proportional to the current notional amount of the CDIS. Let
δ ∈ [0,1] be the recovery rate determined at inception. Upon default of a firm, the
protection seller pays 1 − δ to the protection buyer and the notional amount of the
CDIS decreases by 1/N . These steps are repeated until maturity or until all firms in
the reference portfolio have defaulted, whichever comes first.

Denote by Si = a�
i Y the survival process of firm i as defined in (2.1). The CDIS

spread simplifies to a double linear–rational expression, i.e.,

CDIS(t, t0, tM) =
∑N

i=1 1{τi>t}(1/a�
i Yt )ψ

i
prot(t, t0, tM)�(

Yt

Xt
)∑N

i=1 1{τi>t}(1/a�
i Yt )ψi

prem(t, t0, tM)�(
Yt

Xt
)
,

where ψi
prot(t, t0, tM) and ψi

prem(t, t0, tM) are defined as in Proposition 2.9 for each
firm i.

Remark 2.10 The characteristics of the martingales MY and MX do not appear ex-
plicitly in the bond, CDS and CDIS pricing formulas. This leaves the freedom to spec-
ify exogenous factors that feed into MY and MX . Such factors would be unspanned
by the term structures of defaultable bonds and CDS and give rise to unspanned
stochastic volatility, as described in Filipović et al. [25]. They provide additional
flexibility for fitting time series of bond prices and CDS spreads. These unspanned
stochastic volatility factors affect the distribution of the survival and factor processes
and therefore can be recovered from the prices of credit derivatives such as those
discussed later.

2.4 CDIS tranche

A CDIS tranche is a partial insurance on the losses of a reference portfolio in the
sense that only losses larger than the attachment point Ka and lower than the de-
tachment point Kd are insured. We assume the same tenor structure and reference
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portfolio as for the CDIS contract; the protection buyer pays a periodic premium that
is proportional to the current notional amount of the tranche,

Tt =
(
Kd − Ka − (

Nt(1 − δ)/N − Ka

)+)+
, (2.12)

where Nt = ∑N
i=1 1{τi≤t} is the total number of firms which have defaulted in the

reference portfolio at time t . The values of the protection leg and the premium leg at
time t are respectively given by

Vprot(t, tM,Ka,Kd) = E

[∫ tM

t

e−ru dTu

∣∣∣∣Gt

]
, (2.13)

Vprem(t, tM,Ka,Kd) =
M∑

j=1

e−rtj

∫ tj

tj−1

(Kd − Ka −E[Tu |Gt ]) du. (2.14)

The value of the tranche is then simply given by the difference of the cash flow values,

VT(t, tM,Ka,Kd, k) = Vprot(t, tM,Ka,Kd) − kVprem(t, tM,Ka,Kd), (2.15)

where k is the tranche spread. The following proposition shows that the (F∞ ∨ Gt )-
conditional distribution of the number of defaults at time u > t can be exactly re-
trieved in closed form by applying the discrete Fourier transform as described in Ack-
erer and Vatter [2].

Proposition 2.11 The (F∞ ∨ Gt )-conditional distribution of the number of defaults
Nu, for u > t , is given by

Q[Nu = n |F∞ ∨ Gt ] = 1

N + 1

N∑
j=0

ζ nj
N∏

i=1

(
ζ j + (1 − ζ j )1{τi>t}

a�
i Yu

a�
i Yt

)
(2.16)

for any n = 0, . . . ,N , and where ζ = exp(2iπ/(N +1)) with the imaginary number i.

From (2.12), it follows immediately that the conditional expectation of Tu can be
expressed as a function of the conditional distribution of Nu. Assume for simplicity
that Ka = na(1 − δ)/N and Kd = nd(1 − δ)/N for some integers 0 ≤ na < nd ≤ N .
Then the conditional expectation of Tu for u > t is given by

E[Tu |F∞ ∨ Gt ] =
N−na∑
j=1

(1 − δ)min(j, nd − na)

N
Q[Nu = na +j |F∞ ∨Gt ]. (2.17)

The tranche price (2.15) has therefore a closed-form expression as long as the con-
ditional probability Q[Nu = j |Gt ] is available in closed form for all t ≤ u ≤ tM and
j = 0, . . . ,N . An example is given in Sect. 4.4 for a polynomial model.
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2.5 CDS option and CDIS option

A CDS option with strike spread k is a European call option on the CDS contract
exercisable only if the firm has not defaulted before the option maturity date t0. Its
payoff at time t0 is

(
VCDS(t0, t0, tM)

)+ = 1{τ>t0}
a�Yt0

(
ψcds(t0, t0, tM, k)�

(
Yt0

Xt0

))+

with

ψcds(t, t0, tM, k) = ψprot(t, t0, tM) − kψprem(t, t0, tM). (2.18)

Denote by VCDSO(t, t0, tM, k) the price of the CDS option at time t ,

VCDSO(t, t0, tM, k) = E

[
e−r(t0−t) 1{τ>t0}

a�Yt0

(
ψcds(t0, t0, tM, k)�

(
Yt0

Xt0

))+ ∣∣∣∣Gt

]

= 1{τ>t}
e−r(t0−t)

a�Yt

E

[(
ψcds(t0, t0, tM, k)�

(
Yt0

Xt0

))+ ∣∣∣∣Ft

]
,

where the second equality follows directly from Lemma A.1.
A CDIS option gives the right at time t0 to enter a CDIS contract with strike spread

k and maturity tM on the firms in the reference portfolio which have not defaulted and,
simultaneously, to receive the losses realised before the exercise date t0. Denote by
VCDISO(t, t0, tM, k) the price of the CDIS option at time t ≤ t0, so that

VCDISO(t, t0, tM, k) = e−r(t0−t)

N
E

[( N∑
i=1

V i
CDS(t0, t0, tM, k)+(1−δ)1{τi≤t0}

)+ ∣∣∣∣Gt

]
,

where V i
CDS(t0, t0, tM, k) is defined as in (2.11) for firm i.

Proposition 2.12 The price of a CDIS option is given by

VCDISO(t, t0, tM, k) =
∑

α∈{0,1}N

e−r(t0−t)

N
E

[(
V∗(α, t0, tM, k)

)+
q(α, t, t0)

∣∣Ft

]

with the conditional payoffs

V∗(α, t0, tM, k) =
N∑

i=1

αi

a�
i Yt0

ψi
cds(t0, t0, tM, k)�

(
Yt0

Xt0

)
+ (1 − δ)(1 − αi)

and the conditional probabilities

q(α, t, t0) =
N∏

i=1

(a�
i Yt0)

αi (a�
i (Yt − Yt0))

1−αi

a�
i Yt

1{τi>t} + (1{τi≤t})1−αi ,

where α = (α1, . . . , αN) and with the convention 00 = 0.
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The time-t price of a CDS option, or of a CDIS option, is therefore given by
the expected value of a non-smooth continuous function in (Yt0 ,Xt0), where t < t0.
A methodology to price such contracts is presented in Sect. 3.2.

2.6 Credit valuation adjustment

The unilateral credit valuation adjustment (UCVA) of a position in a bilateral contract
is the present value of losses resulting from its cancellation when the counterparty
defaults.

Proposition 2.13 The time-t price of the UCVA with maturity tM and time-u net
positive exposure f (u,Yu,Xu), for some continuous function f (u, y, x), is

UCVA(t, tM) = E[e−r(τ−t)1{t<τ≤tM }f (τ,Yτ ,Xτ ) |Gt ]

= 1{τ>t}
a�Yt

∫ tM

t

e−r(u−t)E[f (u,Yu,Xu)a
�(cYu + γXu) |Ft ]du,

where τ is the counterparty default time.

Computing the UCVA therefore boils down to a numerical integration of
European-style option prices. As is the case for CDS and CDIS options, these option
prices can be uniformly approximated as described in Sect. 3.2. We refer to Brigo
et al. [9] for a thorough analysis of bilateral counterparty risk valuation in a doubly
stochastic default framework.

3 The linear hypercube model

The linear hypercube (LHC) model is a single-name model, that is, n = 1 so that
S = Y . The survival process is absolutely continuous, as in Remark 2.2, and the
factor process X is diffusive and takes values in a hypercube whose edges’ length is
given by Yt , for all t ≥ 0. More formally, the state space of (Y,X) is given by

E = {(y, x) ∈ R1+m : y ∈ (0,1] and x ∈ [0, y]m}.
The dynamics of (Y,X) is

dYt = −γ �Xt dt,

dXt = (bYt + βXt) dt + �(Yt ,Xt ) dWt

(3.1)

for some γ ∈ Rm+ and some m-dimensional Brownian motion W , and where the
volatility matrix �(y,x) is given by

�(y,x) = diag
(
σ1

√
x1(y − x1), . . . , σm

√
xm(y − xm)

)
(3.2)

with volatility parameters σ1, . . . , σm ≥ 0.
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Let (Y,X) be an E-valued solution of (3.1). It is readily verified that Y is nonin-
creasing and that the parameter γ controls the speed at which it decreases, i.e.,

0 ≤ γ �Xt ≤ γ �1Yt ,

which implies

0 ≤ λt ≤ γ �1 and Yt ≥ Y0e−γ �1t > 0 for any t ≥ 0.

Note that the default intensity upper bound γ �1 depends on γ , which is estimated
from data. Therefore, a crucial step in the model validation procedure is to verify that
the range of possible default intensities is sufficiently wide.

The following theorem gives conditions on the parameters such that the LHC
model (3.1) is well defined.

Theorem 3.1 Assume that for all i = 1, . . . ,m, we have

bi −
∑
j �=i

β−
ij ≥ 0, (3.3)

γi + βii + bi +
∑
j �=i

(γj + βij )
+ ≤ 0. (3.4)

Then for any initial law of (Y0,X0) with support in E, there exists a unique in law
E-valued solution (Y,X) of (3.1). It satisfies the boundary non-attainment, for any
i = 1, . . . ,m, that

(i) Xit > 0 for all t ≥ 0 if Xi0 > 0 and

bi −
∑
j �=i

β−
ij ≥ σ 2

i

2
; (3.5)

(ii) Xit < Yt for all t ≥ 0 if Xi0 < Y0 and

γi + βii + bi +
∑
j �=i

(γj + βij )
+ ≤ −σ 2

i

2
. (3.6)

The state space E is a regular (m+ 1)-dimensional hyperpyramid. Figure 1 shows
E when m = 1 and illustrates the drift inward pointing conditions (3.3) and (3.4) at
the boundaries of E.

In Sect. B, we describe all possible market price of risk specifications under which
the drift function of (Y,X) remains linear.

Remark 3.2 The volatility of Xi is maximal at the center of its support when
Xi = Y/2 and decreases to zero at its boundaries for Xi → 0 and Xi → Y . As a
consequence, a factor may rapidly move from the lower to the upper part of its sup-
port without spending much time in the middle part; this may mimic a regime-shifting
behaviour.
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Fig. 1 State space of the LHC
model with a single factor.
Illustrations of the inward
pointing drift conditions (3.3)
and (3.4). The survival-process
value is given by the y-axis and
the factor value by the x-axis

Remark 3.3 If we define the normalised process Z = X/Y , then the dynamics of
(Z,λ) is given by

dZt =
(
b + (

β + diag(γ �Zt)
)
Zt

)
dt + �(1Zt) dWt ,

dλt = γ � dZt .

We derive closed-form expressions for the stationary points of the drift of (Z,λ) in
Sects. 3.1 and 4.1 and in Example 2.3.

3.1 One-factor LHC model

The default intensity of the one-factor LHC model, m = 1, has autonomous dynamics
of the form

dλt = (λ2
t + βλt + bγ )dt + σ

√
λt (γ − λt ) dWt .

The diffusion function of λ is the same as the diffusion function of a Jacobi pro-
cess taking values in the compact interval [0, γ ]. However, the drift of λ includes a
quadratic term that is present neither in Jacobi nor in affine processes.1 Conditions
(3.3) and (3.4) in Theorem 3.1 can be rewritten as

b ≥ 0 and (γ + b + β) ≤ 0.

In other words, the drift of λ is nonnegative at λ = 0 and nonpositive at λ = γ . We
can factorise the drift as

λ2
t + βλt + bγ = (λt − �1)(λt − �2)

for some roots 0 ≤ �1 ≤ γ ≤ �2. Hence λ drifts towards �1 as long as not λt = �2 = γ .
The corresponding original parameters are given by β = −(�1 + �2) and bγ = �1�2,

1The Jacobi process has been used in Delbaen and Shirakawa [15] to model the short rate in which case
the risk-free bond prices are given by weighted series of Jacobi polynomials in the short-rate value.
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Fig. 2 Comparison of the one-factor LHC and CIR models. Drift and diffusion functions of the default
intensity for the one-factor LHC model (black line) and affine model (grey line). The parameter values are
�1 = 0.05, �2 = 1 and γ = 0.25

so that the drift of the factor X reads

βYt + BXt = (�1 + �2)

(
�1�2

γ (�1 + �2)
Yt − Xt

)
.

As a sanity check, we verify that the constant default intensity case, λt = γ for all
t ≥ 0, is nested as a special case. This is equivalent to having X = Y , which can be
obtained by specifying the dynamics dXt = −γXt dt for the factor process and the
initial condition X0 = 1. This corresponds to the stationary points �1 = 0 and �2 = γ .

The dynamics of the standard one-factor affine model on R+ is

dλt = �2(�1 − λt ) dt + σ
√

λt dWt ,

where �2 is the mean-reversion speed and �1 the mean-reversion level of λ. Fig-
ure 2 shows the drift and diffusion functions of the default intensity for the one-factor
LHC and affine models. The drift function is affine in the affine model, whereas it
is quadratic in the LHC model. However, for reasonable parameters values, the drift
functions look similar when the default intensity is smaller than the mean-reversion
level λ < �1. On the other hand, when λ > �1, the force of drifting towards �1 is
smaller and concave in the LHC model. The diffusion function is strictly increasing
and concave for the affine model, whereas it has a concave semi-ellipse shape in the
LHC model. The diffusion functions have the same shape on [0, γ /2], but typically
do not scale equivalently in the parameter σ . Note that the parameter γ can always be
set sufficiently large so that the likelihood of λ going above γ /2 is arbitrarily small.

3.2 Option price approximation

We saw in Sects. 2.5 and 2.6 that the pricing of a CDS option, a CDIS option or a
UCVA boils down to computing an Ft -conditional expectation of the form

�(f ; t, tM) = E[f (YtM ,XtM ) |Ft ]
for some continuous function f (y, x) on E. We now show how to approximate
�(f ; t, tM) in closed form by means of a polynomial approximation of f (y, x). The
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methodology presented hereinafter applies to any linear credit risk model which has
a compact state space E and for which the Ft -conditional moments of (YtM ,XtM ) are
computable.

To this end, we first recall how the Ft -conditional moments of (YtM ,XtM ) for
t ≤ tM can be obtained in closed form as described in Filipović and Larsson [23].
Denote by Poln(E) the set of polynomials p(y, x) on E of degree n or less. It is
readily seen that the generator of (Y,X),

Gf (y, x) = ( − γ �x (βy + Bx)�
)∇f (y, x) + 1

2

m∑
i=1

∂2f (y, x)

∂x2
i

σ 2
i xi(y − xi),

is polynomial in the sense that

GPoln(E) ⊆ Poln(E) for any n ∈ N.

Let Nn = ( n+1+m
n

) denote the dimension of Poln(E) and fix a polynomial basis
{h1, . . . , hNn} of Poln(E). We define the function of (y, x)

Hn(y, x) = (
h1(y, x), . . . , hNn(y, x)

)�

with values in RNn . There exists a unique matrix representation Gn of G | Poln(E) with
respect to this polynomial basis such that for any p ∈ Poln(E), we can write

Gp(y, x) = Hn(y, x)�Gnp,

where p is the coordinate representation of p. This implies the moment formula

E[p(YtM ,XtM ) |Ft ] = Hn(Yt ,Xt )
�eGn(tM−t)p (3.7)

for any t ≤ tM ; see [23, Theorem 3.1].

Remark 3.4 The choice for the basis Hn(y, x) of Poln(E) is arbitrary and one may
simply consider the monomial basis,

Hn(y, x) = {1, y, x1, . . . , xm, y2, yx1, x
2
1 , . . . , xn

m}
in which Gn is block-diagonal. There are efficient algorithms to compute the matrix
exponential eGn(tM−t); see for example Higham [30, Sect. 10]. Note that only the
action of the matrix exponential is required, that is, eGn(tM−t)p for some p ∈ Poln(E),
for which specific algorithms exist as well; see for example Al-Mohy and Higham [3]
and Sidje [50] and references within.

Now let ε > 0. From the Stone–Weierstrass approximation theorem [45, Theo-
rem 5.8], there exists a polynomial p ∈ Poln(E) for some n such that

sup
(y,x)∈E

|f (y, x) − p(y, x)| ≤ ε. (3.8)

Combining (3.7) and (3.8), we obtain the desired approximation of �(f ; t, T ).
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Theorem 3.5 Let p ∈ Poln(E) be as in (3.8). Then �(f ; t, tM) is uniformly approx-
imated by

sup
t≤tM

‖�(f ; t, tM) − Hn(Yt ,Xt )
�eGn(tM−t)p‖L∞ ≤ ε. (3.9)

The approximating polynomial p in (3.8) needs to be found case by case. We illus-
trate this for the CDS option in Sect. 4.2 and for the CDIS option on an homogenous
portfolio in Sect. 4.3.

Remark 3.6 Approximating the payoff function f (y, x) on a strict subset of the state
space E is sufficient to approximate an option price. Indeed, for any times t ≤ u ≤ s,
the process (Yu,Xu)t≤u≤s takes values in

{(y, x) ∈ E : Yt ≥ y ≥ e−γ �1(s−t)Yt } ⊆ E.

A polynomial approximation on a compact subset of E can be expected to be more
precise and, as a result, to produce a more accurate price approximation. See Sect. 4.2
for an implementation example.

4 Case studies

We show that the LHC model can reproduce complex term structure dynamics, that
option prices can be accurately approximated, and that the prices of derivatives on ho-
mogeneous portfolios can similarly be computed. First, we fit a parsimonious LHC
model specification to CDS data and discuss the estimated parameters and factors.
Then we accurately approximate the price of CDS options at different moneyness.
Finally, for a homogeneous portfolio, we derive closed-form expressions for the pay-
off function of a CDIS option and for the tranche prices.

4.1 CDS calibration

We calibrate the LHC model to a high-yield firm, Bombardier Inc., and also to an
investment-grade firm, Walt Disney Co., in order to show that the model flexibly
adjusts to different spread levels and dynamics. We also present a fast filtering and
calibration methodology which is specific to LHC models.

Data description The empirical analysis is based on composite CDS spread data
from Markit which are essentially averaged quotes provided by major market makers.
The sample starts on January 1, 2005 and ends on January 1, 2015. The data set con-
tains 552 weekly observations summing up to 3620 observed CDS spreads for each
firm. At each date, we include the available spreads with the modified restructuring
clause on contracts with maturities of 1, 2, 3, 4, 5, 7 and 10 years.

Time series of the 1-year, 5-year and 10-year CDS spreads are displayed in Fig. 3,
as well as the relative changes on the 5-year versus 1-year CDS spread. The two
term structures of CDS spreads exhibit important fluctuations of their level, slope
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Fig. 3 CDS spread data. Panels
in the first row display the CDS
spreads in basis points for the
maturities 1 year (black), 5 years
(grey), and 10 years (light-grey).
Panels in the second row display
the weekly changes in 1-year
versus 5-year CDS spreads

Table 1 CDS spread summary statistics

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

Mean 274.51 144.07 194.80 243.38 279.43 329.40 357.10 373.71

Vol 165.23 156.66 158.95 153.31 147.95 141.14 130.46 121.64

Median 244.76 94.79 145.71 189.55 232.44 295.51 353.01 376.58

Min 28.02 28.02 39.22 59.50 86.64 109.58 146.32 171.29

Max 1288.71 1288.71 1151.92 1092.74 1062.57 1048.33 960.16 887.06

(a) Bombardier Inc.

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

Mean 31.01 11.97 17.53 22.74 28.90 34.59 45.00 56.18

Vol 21.85 12.93 15.73 17.18 18.18 18.15 16.13 15.66

Median 26.30 7.70 12.42 17.39 24.31 30.45 42.98 55.58

Min 1.63 1.63 3.24 4.47 5.81 8.18 12.92 17.51

Max 133.02 79.38 102.20 115.19 120.62 126.43 127.22 133.02

(b) Walt Disney Co.

The sample contains 552 weekly observations collected between January 1, 2005 and January 1, 2015,
summing up to 3620 CDS spreads in basis points for each firm

and curvature. The time series can be split into three time periods. The first period,
before the subprime crisis, exhibits low spreads in contango and low volatility. The
second period, during the subprime crisis, exhibits high volatility with skyrocketing
spreads temporarily in backwardation. The crisis had a significantly larger impact on
the high-yield firm for which the spreads have more than quadrupled. The third period
is characterised by a steep contango and a lot of volatility. Figure 3 also shows that
CDS spread changes are strongly correlated across maturities. Summary statistics are
reported in Table 1.
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Model specification The risk-neutral dynamics of each survival process is given
by the LHC model of Sect. 3 with two and three factors. We set γ = γ1e1 for some
γ1 ≥ 0 and consider a cascading structure of the form

dXit = κi(θiX(i+1)t − Xit ) dt + σi

√
Xit (Yt − Xit ) dWit (4.1)

for i = 1, . . . ,m − 1 and

dXmt = κm(θmYt − Xmt) dt + σm

√
Xmt(Yt − Xmt) dWmt (4.2)

for some parameters κ, θ, σ ∈ Rm+ satisfying

θi ≤ 1 − γ1

κi

(4.3)

for i = 1, . . . ,m. We have βii = −κi , βi,i+i = κiθi and βij = 0 otherwise, bm = κmθm

and bi = 0 otherwise. It directly follows that

0 ≤ bi −
∑
j �=i

β−
ij = 1{i=m}κmθm = 1{i=m}βmm

and for i = 1, . . . ,m that

0 ≥ γi + βii + bi +
∑
j �=i

(γj + βij )
+ = γ1 − κi + κiθi

= γ1 + βii + 1{i �=m}βi,i+1 + 1{i=m}bm.

This shows that the parameter conditions (3.3) and (3.4) are satisfied. Note that (3.3)
and (3.4) boil down to standard linear parameter constraints when expressed in terms
of β and b. They are therefore compatible with efficient optimisation algorithms.

This specification allows default intensity values to persistently be close to zero
over extended periods of time. It also allows to work with a multidimensional model
parsimoniously as the number of free parameters is equal to 3m + 1, whereas it is
equal to 3m + m2 for the generic LHC model. The default intensity is then propor-
tional to the first factor and given by λ = γ1X1/Y .

We denote the two- and three-factor linear hypercube cascade models by LHCC(2)

and LHCC(3), respectively. In addition, we estimate a three-factor model, denoted by
LHCC(3)∗, where the parameter γ1 is an exogenous fixed parameter. This parameter
value is fixed so as to be about twice as large as the estimated γ1 from the LHCC(3)

model. We estimate the constrained model in order to determine whether the choice
of the default intensity upper bound is critical for the empirical results.

We set the risk-free rate equal to the average 5-year risk-free yield over the sample,
r = 2.52%. We make the usual assumption that the recovery rate is equal to δ = 40%.
We also use Lemma 2.8 to compute efficiently the CDS spreads, which is justified by
the following result.

Lemma 4.1 Assume that r > 0. Then the matrix A∗ = A − r Id with A as in (2.5) is
invertible for the cascade LHCC model defined in (4.1) and (4.2) and with γ = γ1e1.
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Remark 4.2 The drift of the normalised process Z = X/Y admits the stationary
points μ̄t given by the system of equations

μ̄it = (−1)m−i+1
m∏

j=i

κj θj

μ̄1t γ1 − κj

, i = 1, . . . ,m, (4.4)

as shown in Appendix A. In fact, μ̄1t implies the values of μ̄it for i = 2, . . . ,m. The
stationary point of the drift of λ is given by γ1μ̄1t .

Filtering and calibration We present an efficient methodology to filter the factors
from the CDS spreads. We recall that the CDS spread CDS(t, t0, tM) is the strike
spread that renders the initial values of the CDS contract equal to zero. We therefore
obtain the affine equation

ψcds
(
t, t0, tM,CDS(t, t0, tM)

)�
(

1
Zt

)
= 0, (4.5)

conditionally on {τ > t} and with the normalised process Z = X/Y ∈ [0,1]m. There-
fore, in theory, we could extract the value Zt from the observation of at least m

spreads with different maturities. The factor value (St ,Xt ) at time t can in turn be
inferred, for example, by applying the Euler scheme to compute the survival-process
value and then rescaling the pseudo factor Zt , via

Yti = Yti−1 − γ �Xti−1�t and Xti = Yti Zti , (4.6)

for the observation dates ti and with Yt0 = 1. In practice, there might not be a value
Zt such that (4.5) is satisfied for all observed market spreads. Therefore, we consider
all the observable spreads and minimise the weighted mean squared error, i.e.,

min
z

1

2

ni∑
k=1

(
ψcds(ti , ti , t

k
M,CDS(ti , ti , t

k
M))�( 1

z
)

ψprem(ti , ti , t
k
M)�(

1
Zti−1

)

)2

such that 0 ≤ zi ≤ 1, i = 1, . . . ,m,

(4.7)

where t1
M, . . . , t

ni

M are the maturities of the ni observed spreads at date ti , and ti−1 is
the previous observation date. Dividing the CDS price error by an approximation of
the CDS premium leg value gives an accurate approximation of the CDS spread error
when Zti ≈ Zti−1 . The above minimisation problem is a linearly constrained quadratic
optimisation problem which can be numerically solved virtually instantaneously.

For any parameter set, we can extract the observable factor process at each date
by recursively solving (4.7) and applying (4.6). With the parameters and the factor-
process values, we can in turn compute the difference between the model and market
CDS spreads. Therefore, we numerically search the parameter set that minimises
the aggregated CDS spread root-mean-squared error (RMSE) by using the gradient-
free Nelder–Mead algorithm together with a penalty term to enforce the parameter
constraints and starting from several randomised initial parameter sets.
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Table 2 Fitted and fixed (in
bold) parameters for the LHC
models

LHCC(2) LHCC(3) LHCC(3)∗

γ1 0.205 0.201 0.400

κ1 0.546 1.263 1.316

κ2 0.421 0.668 0.884

κ3 0.385 0.668

θ1 0.624 0.841 0.696

θ2 0.512 0.699 0.548

θ3 0.478 0.401

(a) Bombardier Inc.

LHCC(2) LHCC(3) LHCC(3)∗

γ1 0.056 0.064 0.130

κ1 0.167 0.258 0.294

κ2 0.165 0.229 0.280

κ3 0.091 0.212

θ1 0.666 0.753 0.558

θ2 0.662 0.721 0.536

θ3 0.298 0.387

(b) Walt Disney Co.

Note that we do not calibrate the volatility parameters σi for i = 1, . . . ,m since
CDS spreads do not depend on the martingale components with linear credit risk
models and since the factor process is observable directly from the CDS spreads.
Furthermore, we only fit the risk-neutral drift parameters κ and θ implied by the
CDS spreads. The total number of parameters for LHCC(2), LHCC(3) and LHCC(3)∗
model is therefore equal to 5, 7 and 6, respectively. Equipped with a fast filter and a
low-dimensional parameter space, the calibration procedure is swift.

Remark 4.3 Alternatively, one could estimate the parameters by performing a quasi-
maximum-likelihood estimation or a more advanced generalised method of moments
estimation. This can be implemented in a straightforward manner with the LHC
model if the market price of risk specification preserves the polynomial property of
the factors, as the real-world conditional moments of (Y,X) are then given in closed
form; see Appendix B. The availability of conditional moments also enables direct
usage of the unscented Kalman filter to recover the factor values at each date. How-
ever, this approach comes at the cost of more parameters and possibly more stringent
conditions on them, as well as unnecessary computational costs if we are only inter-
ested in market prices.

Parameters, fitted spreads and factors The fitted parameters are reported in Ta-
ble 2. An important observation is that the parameter constraint in (4.3) is binding for
each dimension in all the fitted models. The calibrated parameter values are similar
across the different specifications which is comforting, and the calibrated default in-
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Table 3 Comparison of CDS spread fits for the LHC models

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

LHCC(2) RMSE 26.24 23.87 31.79 24.13 12.31 24.36 27.70 33.33

Median −0.22 −13.90 −3.16 −1.23 4.63 20.20 −0.17 −18.90

Min −83.96 −64.23 −83.96 −65.09 −22.09 −20.50 −38.64 −79.80

Max 123.86 123.86 43.98 32.90 39.31 57.07 75.58 54.45

LHCC(3) RMSE 16.10 8.90 19.63 19.46 11.01 17.35 15.93 16.94

Median −0.25 1.14 −7.69 −5.47 1.06 16.46 2.06 −9.42

Min −56.64 −24.62 −56.64 −52.93 −31.01 −0.66 −12.85 −46.56

Max 107.23 107.23 23.86 15.42 20.38 41.61 49.57 31.94

LHCC(3)∗ RMSE 21.87 9.07 23.52 24.01 12.67 16.56 25.15 32.37

Median −0.42 0.02 −4.22 −3.94 −3.12 14.22 −0.66 −4.80

Min −82.13 −24.32 −66.96 −68.24 −32.91 −31.95 −54.44 −82.13

Max 67.51 24.43 25.10 26.16 22.24 42.51 67.51 59.33

(a) Bombardier Inc.

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

LHCC(2) RMSE 2.88 3.09 1.66 2.73 2.82 2.82 2.00 4.30

Median −0.33 −0.13 −0.86 −1.99 −1.40 −0.43 1.40 1.10

Min −12.65 −12.65 −4.15 −5.21 −4.34 −4.32 −5.54 −12.64

Max 8.81 3.58 5.11 8.81 8.70 8.22 4.62 6.43

LHCC(3) RMSE 1.06 0.85 1.09 1.02 0.89 1.31 1.33 0.75

Median −0.03 0.35 0.19 −0.55 −0.43 0.14 0.70 −0.26

Min −5.57 −4.87 −5.57 −3.53 −3.55 −4.34 −4.62 −1.97

Max 4.94 2.74 4.94 3.58 4.34 3.85 3.53 2.68

LHCC(3)∗ RMSE 1.17 1.02 1.11 0.98 1.15 1.62 1.07 1.12

Median 0.01 0.47 0.35 −0.62 −0.60 −0.06 0.48 −0.02

Min −5.48 −5.45 −5.48 −3.49 −3.78 −4.83 −3.92 −4.65

Max 4.63 2.68 4.49 3.28 4.63 3.98 2.98 4.15

(b) Walt Disney Co.

The tables report the minimal, maximal, median and root-mean-squared errors in basis points by maturity
over the entire time period for the three different specifications

tensity upper bounds appear large enough to cover the high spread values observed
during the subprime crisis.

The fitted factors extracted from the calibration are used as input to compute the
fitted spreads. With these, we compute the fitting errors for each date and maturity.
Not surprisingly, the more flexible specification LHCC(3) performs best. Estimating
the default intensity upper bound γ1 instead of setting an arbitrarily large value im-
proves the calibration. Table 3 reports summary statistics of the errors by maturity.
The LHCC(3) model has the smallest RMSE for each maturity. In particular, its over-
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Fig. 4 CDS spread fits and errors. Panels in the first row display the fitted CDS spreads in basis points
with maturities 1 year (black), 5 years (grey) and 10 years (light-grey) for the three specifications. Panels in
the second row display the root-mean-squared error (in basis points) computed every day and aggregated
over all the maturities

all RMSE is half the one of the two-factor model. The LHCC(3)∗ model faces diffi-
culties in reproducing long-term spreads; for example, its RMSE is twice as large as
the one of the unconstrained LHCC(3) for the 10-year maturity spread for both firms.
Figure 4 displays the fitted spreads and the RMSE time series. Again, the LHCC(3)

appears to have the smallest level of errors over time. The two other models do not
perform as well during the low-spreads period before the financial crisis, and during
the recent volatile period. Overall, the fitted models appear to reproduce relatively
well the observed CDS spread values.

Figure 5 shows the estimated factors. They are remarkably similar across the
different specifications. The default intensity explodes and the survival process de-
creases rapidly during the financial crisis. The mth factor controls the long-term de-
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Fig. 5 Factors fitted from CDS spreads. The filtered factors of the three estimated specifications are
displayed over time. Panels in the first row display the drift-only survival process, panels in the second
row the implied default intensity and panels in the last row the process X3 in black and the process X2 in
grey for the three-factor models
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fault intensity level. The second factor controls the medium-term behaviour of the
term structure of credit risk in the LHCC(3) and LHCC(3)∗ models. The LHCC(2)

model requires a default intensity almost equal to zero to capture the steep contango
of the term structure at the end of the sample period, even lower than before the finan-
cial crisis. This seems counterfactual and illustrates the limitations of the LHCC(2)

model in capturing changing dynamics. The mth factor visits the second half of its
support [0, Yt ] and appears to stabilise in this region for the three models.

4.2 CDS option pricing

We describe an accurate and efficient methodology to price CDS options that builds
on the payoff approximation approach presented in Sect. 3.2 and illustrate it with
numerical examples. The model used for the numerical illustration is the one-factor
LHC model from Sect. 3.1 with stylised but realistic parameters γ = 0.25, �1 = 0.05,
�2 = 1, σ = 0.75, X0 = 0.2 and r = 0.

From Sect. 2.5, we know that the time-t CDS option price with strike spread k is
of the form

VCDSO(t, t0, tM, k) = 1{τ>t}E
[
f

(
Z(t0, tM, k)

) ∣∣Ft

]
with the payoff function f (z) = e−r(t0−t)z+/Yt and where the random variable
Z(t0, tM, k) is defined by

Z(t0, tM, k) = ψcds(t0, t0, tM, k)�
(

Yt0

Xt0

)

with ψcds(t0, t0, tM, k) as in (2.18). Furthermore, the random variable Z(t0, tM, k)

takes values in the interval [bmin, bmax], which is with the LHC model given by

bmin =
m+1∑
i=1

min
(
0,ψcds(t0, t0, tM, k)i

)
,

bmax =
m+1∑
i=1

max
(
0,ψcds(t0, t0, tM, k)i

)
.

We now show how to approximate the payoff function f with a polynomial by
truncating its Fourier–Legendre series, and then how the conditional moments of
Z(t0, tM, k) can be computed recursively from the conditional moments of (Yt0 ,Xt0).

Let Len(x) denote the generalised Legendre polynomials defined on the closed
interval [bmin, bmax] and given by

Len(x) =
√

1 + 2n

2σ 2
Len

(
x − μ

σ

)
,

where μ = (bmax + bmin)/2, σ = (bmax − bmin)/2 and the standard Legendre polyno-
mials Len(x) on [−1,1] are defined recursively by

Len+1(x) = 2n + 1

n + 1
xLen(x) − n

n + 1
Len−1(x)
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with Le0 ≡ 1 and Le1(x) = x. The generalised Legendre polynomials form a com-
plete orthonormal system on [bmin, bmax] in the sense that the mean squared error
of the Fourier–Legendre series approximation f (n)(x) of any piecewise continuous
function f (x), defined by

f (n)(x) =
n∑

k=0

fnLen(x), where fn =
∫ bmax

bmin

f (x)Len(x) dx, (4.8)

converges to zero,

lim
n→∞

∫ bmax

bmin

(
f (x) − f (n)(x)

)2
dx = 0.

The coefficients for the CDS option payoff are given in closed form by

fn = 1{τ>t}
e−r(t0−t)

Yt

∫ bmax

0
zLen(z) dz,

since the integrands are polynomial functions. Note that a similar approach is fol-
lowed in Ackerer et al. [1] on the unbounded interval R with a Gaussian weight
function.

The Ft -conditional moments of Z(t0, tM, k) can be computed recursively from the
conditional moments of (Yt0 ,Xt0). Let π : E �→ {1, . . . ,Nn} be an enumeration of the
set of exponents with total order less or equal to n, that is,

E =
{
α ∈N1+m :

1+m∑
i=1

αi ≤ n

}
.

Define the polynomials

hπ(α)(s, x) = sα1

m∏
i=1

x
α1+i

i ,

which form a basis of Poln(E). Denote by 1 the (1 + m)-dimensional vector of ones
and by ei the (1 + m)-dimensional vector whose ith coordinate is equal to one and
zero otherwise.

Lemma 4.4 For all n ≥ 2, we have

E[Z(t0, tM, k)n |Ft ] =
∑

α�1=n

cπ(α)E[hπ(α)(Yt0 ,Xt0) |Ft ],

where the coefficients cπ(α) are recursively given by

cπ(α) =
1+m∑
i=1

1{αi−1≥0}cπ(α−ei )ψcds(t0, t0, tM, k)i .
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Fig. 6 CDS option payoff approximations. Panels in the first row display the polynomial interpolation of
the payoff function approximation with the Fourier–Legendre approach at the order 1 (light-grey), 5 (grey)
and 30 (black). Panels in the second row display the price error bound with the Fourier–Legendre approach
(black) and with the Chebyshev approach (grey) as functions of the polynomial interpolation order. The
first (second and third) column corresponds to a CDS option with a strike spread of 250 (300 and 350)
basis points. All values are reported in basis points

We now report the main numerical findings. We take t0 = 1, tM = t0 + 5 and three
reference strike spreads k ∈ {250,300,350} basis points that represent in-, at- and
out-of-the-money CDS options. The first row in Fig. 6 shows the payoff approxima-
tion f (n)(z) in (4.8) for the polynomial orders n ∈ {1,5,30} and the strike spreads
k ∈ {250,300,350}. A more accurate approximation of the hockey-stick payoff func-
tion is naturally obtained by increasing the order n, especially around the kink. The
width of the support [bmin, bmax] increases with the strike spread k; hence the uni-
form error bound should be expected to be larger for out-of-the-money options. This
is confirmed by the second row of Fig. 6 that shows the error bound (3.9) as a function
of the approximation order n for the Fourier–Legendre approach described above. It
also displays the error bound when the CDS option payoff function is interpolated by
means of Chebyshev polynomials; see Appendix C for more details. The error bound
is approximated by taking the maximum distance between the payoff function and
the polynomial approximation on a regular grid of 104 points over [bmin, bmax]. We
remark that the error bound of the Chebyshev approach is oscillating around the error
bound of the Fourier–Legendre approach. This seems to be caused by variation of the
polynomial approximation accuracy around the payoff kink as the Chebyshev nodes
change. Note that the error bound is typically non-tight in practice, as illustrated in
the following pricing application in which the pricing error is far lower than the error
bound, at least for n ≤ 20.

Figure 7 shows the price approximation as a function of the polynomial order,
up to n = 30. The price approximations stabilise rapidly with the Fourier–Legendre
approach so that a price approximation using the first n = 10 moments appears to
be accurate up to a basis point. On the other hand, the price approximations exhibit
large oscillations with the Chebyshev approach. Figure 7 also shows that it takes
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Fig. 7 CDS option price
approximations and CPU times.
The top and bottom-left panels
display the price approximation
with the Fourier–Legendre
approach (black) and with the
Chebyshev approach (grey) as
functions of the polynomial
interpolation order. The top-left
(top-right and bottom-left) panel
corresponds to a CDS option
with a strike spread of 250 (300
and 350) basis points. All values
are reported in basis points. The
bottom-right panel displays the
CPU times in seconds needed to
compute the price
approximation as functions of
the polynomial interpolation
order

Fig. 8 CDS option price
sensitivities. The figure on the
left (right) displays the CDS
option price as a function of the
volatility parameter (the initial
risk factor position) for the strike
spread 250 (black), 300 (grey)
and 350 (light-grey). All values
are reported in basis points

a fraction of a second on a standard desktop to compute the price approximation.
Note that almost all of the CPU time is spent on the computation of the moments of
Z(t0, tM, k).

We recall that the volatility parameter σ of the LHC model does not affect the
CDS spreads and can therefore be used to improve the joint calibration of CDS and
CDS options. We illustrate this in the left panel of Fig. 8 where the CDS option price
is displayed as a function of the volatility parameter for different strike spreads. As
expected, the option price is an increasing function of the volatility parameter. The
right panel of Fig. 8 also shows that X0 has an almost linear impact on the CDS
option price.

Note that the dimension ( 1+m+n
n

) of the polynomial basis becomes a programming
and computational challenge when both the expansion order n and the number of fac-
tors 1 +m are large. For example, for n = 20 and 1 +m = 2, the basis has dimension
231, whereas it has dimension 10 626 when 1 + m = 4. In practice, we successfully
implemented examples with 1 + m = 4 and n = 50 on a standard desktop computer,
in which case the basis dimension is 31 6251.

4.3 CDIS option pricing

We discuss the approximation of the payoff function by means of Chebyshev polyno-
mials for a CDIS option on a homogeneous portfolio. Let Nt = ∑N

i=0 1{τi≤t} denote
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the number of firms which have defaulted by time t . Consider a CDIS option on a ho-
mogeneous portfolio so that Si

t = a�Yt for all i = 1, . . . ,N . From Proposition 2.12,
it follows that the time-t price of the CDIS option is given by

VCDISO(t, t0, tM, k) = e−r(t0−t)

N

N−Nt∑
j=0

E
[(

V∗(j, t0, tm)
)+

q(j, t, t0)
∣∣Ft

]

with the conditional payoffs

V∗(j, t0, tm) = j

a�Yt0

ψcds(t0, t0, tM, k)�
(

Yt0

Xt0

)
+ (1 − δ)(N − j)

and the conditional probabilities

q(j, t, t0) =
(

N − Nt

j

)
(a�Yt0)

j (a�Yt − a�Yt0)
N−Nt−j

(a�Yt )N−Nt
, (4.9)

with the notable difference that now the summation contains at most N + 1 terms
because the defaults are symmetric and thus interchangeable. Define the random vari-
ables

Y(t0) = a�Yt0 , X(t0, tM, k) = ψcds(t0, t0, tM, k)�
(

Yt0

Xt0

)
.

The CDIS option price can then be rewritten as

VCDISO(t, t0, tM, k) = E
[
f

(
Y(t0),X(t0, tM, k)

) ∣∣Ft ∨ Nt

]
,

where the payoff function f (y, x) is given by

f (y, x) = e−r(t0−t)

N(a�Yt )N−Nt

(
(1 − δ)N(a�Yt − y)N−Nt

+
N−Nt∑
j=1

(
N − Nt

j

)(
jx + y(1 − δ)(N − j)

)+
yj−1(a�Yt − y)N−Nt−j

)
.

The Ft -conditional moments of (Y (t0),X(t0, tM, k)) can be computed recursively in
a similar way as in Lemma 4.4. The payoff function f (y, x) can be approximated us-
ing Chebyshev polynomials and nodes, see Appendix C, or using its two-dimensional
Fourier–Legendre series representation.

4.4 CDIS tranche pricing

As in Sect. 4.3, we consider a homogeneous portfolio so that Si = a�Y for all
i = 1, . . . ,N . In this case, a simpler expression for (2.16) can be derived, namely

Q[Nu = j |F∞ ∨ Gt ] = Q[N − Nu = N − j |F∞ ∨ Gt ] = q(N − j, t, u) (4.10)
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for u > t and j = Nt, . . . ,N , and where q(N − j, t, u) is defined as in (4.9). We fix
the attachment point Ka = na(1 − δ)/N and the detachment point Kd = nd(1 − δ)/N ,
for some integers 0 ≤ na < nd ≤ N . Assuming for simplicity that Nt ≤ na , we obtain
from (2.17) and (4.10) that

E[Tu |F∞ ∨ Gt ] =
N∑

j=na+1

(1 − δ)min(j − na,nd − na)

N
q(N − j, t, u),

and by differentiating with respect to u that

dE[Tu |F∞ ∨ Gt ]

du
=

N∑
j=na+1

(1 − δ)min(j − na,nd − na)

N

×
(

N − Nt

N − j

)
(a�Yu)

N−j−1(a�Yt − a�Yu)
j−Nt−1

(a�Yt )N−Nt

× (
(N − j)a�Yt − (N − Nt)a

�Yu

)
a�(cYu + γXu)

for any u > t . The protection and premium legs in (2.13), (2.14) can thus in principle
be computed in closed form using the moment formula (3.7).

5 Extensions

We present several model extensions offering additional features. We first construct
multi-name models, then include stochastic interest rates possibly correlated with
credit spreads, and conclude by discussing jumps and stochastic clocks to generate
simultaneous defaults.

5.1 Multi-name models

We build upon the LHC model to construct multi-name models with correlated de-
fault intensities and which can easily accommodate the inclusion of new factors and
firms. This approach can be applied to other linear credit risk models as long as they
belong to the class of polynomial models. We consider n independent LHC processes

(Y 1,X1), . . . , (Y n,Xn), (5.1)

with each (Y j,Xj ) as in (3.1), (3.2), and define the stacked processes Y= (Y 1, . . . , Y n)

with Y0 = 1 and X = (X1, . . . ,Xn) with X0 ∈ [0,1]m, where m = ∑n
j=1 mj . We de-

note by E the state space of (Y,X).
Let h = (h1, . . . , hn) be the Rn+-valued process whose j th component is given by

h
j
t = γ j �

X
j
t

Y
j
t

, t ≥ 0, (5.2)

where the vector γ j ∈Rmj is the drift parameter of Y j ; see (3.1).
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Linear construction The survival process of the firm i = 1, . . . ,N can be defined
as in (2.1) by Si = a�

i Y for some vector ai ∈ Rn+ satisfying a�1 = 1. The correspond-
ing default intensity λi of firm i is for all t ≥ 0 given by a weighted sum of h, that is,

λi
t = wi

t
�
ht with stochastic weights wi

jt = aijY
j
t /Si

t > 0 satisfying
∑d

j=1 wi
jt = 1.

Polynomial construction Fix a degree d and define the survival process Si

of each firm i = 1, . . . ,N by Si
t = pi(Yt ) for all t ≥ 0, for some polynomial

pi(y) ∈ Pold([0,1]n) which is componentwise nonincreasing and positive on [0,1]n
and such that pi(1) = 1. Let Hd(y, x) be a polynomial basis of Pold(E) stacked
in a row vector and of the form Hd(y, x) = (Hd(y),H ∗

d (y, x)), where Hd(y) is
itself a polynomial basis of Pold([0,1]n). The survival process of firm i then be-
comes Si = a�

i Y with the finite variation process Y = Hd(Y ), the factor process
X = H ∗

d (Y,X) and where the vector ai is given by the equation pi(y) = Hd(y)ai .
It follows from the polynomial property that the process (Y,X ) has a linear drift as
in (2.2) and (2.3); see [24, Theorem 4.3]. The specific values for the drift of (Y,X )

depend on the choice of the polynomial basis Hd(y, x).

Example 5.1 Take p(y) = yα = ∏n
i=1 y

αi

i for some α ∈ Nn; then the implied default
intensity is a weighted sum λt = α�ht with ht as defined in (5.2). The weights are
constant, as opposed to the stochastic weights in the linear construction.

Remark 5.2 The dimension of Hd(y, x) is ( d+n+m
d

) and may be large depending

on the values of m + n and d . However, given that the pairs (Y i
t ,X

i
t ) in (5.1) are

independent, the conditional expectation of a monomial in (Yu,Xu) can be rewritten
as

E

[ n∏
i=1

(Y i
u)

αi (Xi
u)

βi

∣∣∣∣Ft

]
=

n∏
i=1

E[(Y i
u)

αi (Xi
u)

βi |Ft ], u > t,

for some αi ∈ N and βi ∈ Nmj for all i = 1, . . . , n. Hence, to compute bonds and
CDSs prices, we only need to consider n independent polynomial bases of total di-
mension equal to

∑n
i=1(

d+1+m
d

).

5.2 Stochastic interest rates

We next include stochastic interest rates possibly correlated with credit spreads. We
denote the discount process by Dt = exp(− ∫ t

0 rs ds) for t ≥ 0, where rs is the short
rate value at time s. We specify that D = a�

r Y for some vector ar ∈ Rn. This is
similar to the specification of the survival process of a firm, but we do not require
that D is nonincreasing. That is, we allow negative interest rates. We follow Sect. 5.1
and let H2(y, x) be a polynomial basis of Pol2(E) which defines a new linear credit
risk model (Y,X ) = (H2(Y ),H ∗

2 (Y,X)) whose linear drift is given by a matrix A as
in (2.5).

Proposition 5.3 The pricing formulas (2.6), (2.7) and (2.9) also apply with (Yt ,Xt )

in place of (Yt ,Xt ), by using the vector

ψZ(t, tM)� = (a�
Z 0)eA(tM−t),
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where the vector aZ is given by H2(y)�aZ = (a�
r y)(a�y), and the vectors

ψD(t, tM)� = a�
D

∫ tM

t

eA(s−t) ds,

ψD∗(t, tM)� = a�
D

∫ tM

t

seA(s−t) ds,

where the vector aD is given by H2(y, x)aD = (a�
r y)(−a�(cyγ x)).

In practice, it can be sufficient to consider a basis strictly smaller than H2(y, x),
as the following example suggests.

Example 5.4 Consider two independent LHC processes (Y j ,Xj ) with mj = 1 for
j ∈ {1,2} and consider the linear credit risk model with stochastic interest rate given
by

Dt = Y 1
t and St = νY 1

t + (1 − ν)Y 2
t for all t ≥ 0,

for some parameter ν ∈ (0,1). The calculation of bond and CDS prices only requires
the subbases

H0(y, x) = (y2
1y1y2), H1(y, x) = (y1x1 y1x2 x1y2 x2

1 x1x2),

whose total dimension is dim((H0(y, x),H1(y, x))) = 7 < dim(Pol2(E)) = 15. The
drift term of the process (H0(Y,X),H1(Y,X)) is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −2γ1 0 0 0 0
0 0 0 −γ2 −γ1 0 0
b1 0 β1 0 0 −γ1 0
0 b2 0 β2 0 0 −γ1
0 b1 0 0 β1 0 0
σ 2

1 0 2b1 − σ 2
1 0 0 2β1 0

0 0 0 b1 b2 0 β1 + β2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the parameters with subscripts j ∈ {1,2} correspond to the LHC process
(Y j ,Xj ). The pricing vectors in this basis are

aZ = (ν 1 − ν) and aD = (
0 0 −νγ1 −(1 − ν)γ2 0 0 0

)
.

5.3 Jumps and simultaneous defaults

There are two ways to include jumps in the survival process dynamics that may
result in the simultaneous default of several firms. The first is to let the martin-
gale part of Y be driven by a jump process so that multiple survival processes may
jump at the same time. The second is to let time run with a stochastic clock leaping
forward, hence producing synchronous jumps in the factors and the survival pro-
cesses.
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The survival process remains defined as in (2.1), but the factors are extensions of
the LHC process in what follows. For simplicity, we discuss a unique pair (Y,X) as
in (3.1) whose parameters γ,β,B satisfy (3.3) and (3.4). Let Z be a nondecreasing
Lévy process with Lévy measure νZ(dζ ) and drift bZ ≥ 0 that is independent from
the Brownian motion W and the uniform random variables U1, . . . ,UN .

Jump-diffusion model Assume that �Zt ≤ 1 for all t ≥ 0. We define the dynamics
of the LHC model with jumps as

d

(
Yt

Xt

)
=

(−c −γ � − δ�E[Z1]
b β − diag(ν)E[Z1]

)(
Yt−
Xt−

)
dt +

(
0

�(Yt−,Xt−)

)
dWt

−
(

cYt− + δ�Xt−
diag(ν)Xt−

)
dNt

with the martingale N given by Nt = Zt −E[Z1]t for t ≥ 0, for some c > 0, δ ∈ Rm+
and ν ∈Rm+ such that

c + δ�1 < 1, c + δ�1 ≤ νi ≤ 1, i = 1, . . . ,m, (5.3)

and νi < 1 if (3.5) applies, i = 1, . . . ,m. (5.4)

Conditions (5.3) and (5.4) ensure that the process always jumps inside its state space.
Note that the same process Z can affect the dynamics of multiple LHC processes
(Y i,Xi).

Stochastic clock We consider the time-changed process (Ȳt ,X̄t )t≥0 = (YZt ,XZt )t≥0
that directly feeds into (2.1) in place of (Yt ,Xt ) and whose factor dynamics is given
by

(
dȲt

dX̄t

)
= Ā

(
Ȳt

X̄t

)
dt +

(
dMȲ

t

dMX̄
t

)
,

where the (m + n) × (m + n)-matrix Ā is now given by

Ā = bZA +
∫ ∞

0
(eAζ − Id)νZ(dζ ) (5.5)

with the matrix A as in (2.5); see [46, Chap. 6] and [24, Theorem 6.1]. The time-
changed LHC model remains a linear credit risk model. The background filtration
F is now the natural filtration of the process (YZ,XZ). Denote by �(·) the Laplace
exponent of Z defined by E[exp(−uZt )] = exp(−t�(u)). The following proposition
shows that the matrix Ā may be computed in closed form.2

Proposition 5.5 Assume that A = UDU−1, where U is a unitary matrix and D a
diagonal matrix with nonpositive entries. Then Ā = −U�(−D)U−1.

2We thank an anonymous referee for suggesting this result.
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In some cases, the expression for Ā simplifies and does not require factoring the
matrix A as shown in the following example.

Example 5.6 Let Z be a gamma process so that νZ(dζ ) = γZζ−1e−λZζ dζ for some
constants λZ,γZ > 0 and bZ = 0. If the eigenvalues of the matrix A have nonpositive
real parts, the drift of the time changed process (YZ,XZ) is then equal to

Ā = −γZ log(Id−Aλ−1
Z ), (5.6)

as shown in Appendix A.

Survival processes built from independent LHC models can be time-changed with
the same stochastic clock Z in order to generate simultaneous defaults and thus de-
fault correlation. Note that the idea of using a time change to generate simultaneous
jumps in the cumulative hazard or the survival processes is not new; see for exam-
ple Mendoza-Arriaga and Linetsky [43] for an earlier contribution where a multi-
name unified credit–equity model with simultaneous defaults is developed.

Remark 5.7 One could use the additive subordinators presented in Li et al. [42] in
order to increase the model’s flexibility. These subordinators are time-dependent and
may therefore help to better fit term structures, at the cost of introducing additional
parameters. In this case, the drift of the factor process (Ȳ , X̄) remains linear, but
the matrix Ā in (5.5) may then be time-dependent and need not have a closed-form
representation, which would in turn lead to higher computational costs.

6 Conclusion

The class of linear credit risk models is rich and offers new modelling possibilities.
The survival process and its drift are linear in the factor process whose drift is also lin-
ear. Consequently, the prices of defaultable bonds, credit default swaps (CDSs) and
credit default index swaps (CDISs) become linear–rational expressions in the fac-
tors. We introduce and study the single-name linear hypercube (LHC) model which
consists of a diffusive factor process with a quadratic diffusion function and taking
values in a compact state space. These features are employed to develop an effi-
cient European option pricing methodology. By building upon the LHC model, we
construct parsimonious and versatile multi-name models. The setup can accommo-
date stochastic interest rates correlated with credit spreads by constructing the dis-
count process similarly as a survival process. Jumps in the factor dynamics as well as
stochastic clocks can be used to generate simultaneous defaults. An empirical analy-
sis shows that the LHC model can reproduce complex CDS term structure dynamics.
We numerically verify that CDS option prices at different moneyness can be accu-
rately approximated for the LHC model. We also show that CDIS option prices and
tranche prices on a homogeneous portfolio can be approximated with the same ap-
proach. Future research directions include the development of efficient algorithms to
price multi-name credit derivatives, and the joint empirical study of single-name and
multi-name credit contracts.
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Appendix A: Proofs

This appendix contains the proofs of all theorems and propositions in the main text.

Proof of (2.4) This follows as in [25, Lemma 3]. �

Proof of Example 2.3 The autonomous process X admits a solution which takes val-
ues in [−e−εt , e−εt ] at time t with ε > 0 and X0 ∈ [−1,1] if and only if κ > ε;
see [23, Theorem 5.1]. The two coordinates of Y are bounded below by X. Indeed,
we have for i = 1,2 that

dYit

dt
= −ε

2
(Yit ± Xt) ≥ −ε

2
(Yit + e−εt ), t ≥ 0.

The solution of dZt = −(ε/2)(Zt + e−εt ) dt with Z0 = 1 is given by Zt = e−εt ,
t ≥ 0, which proves that Yit ≥ Zt ≥ |Xt | for i = 1,2. Finally, by applying Itô’s
lemma, we obtain

d〈λ1, λ2〉t
dt

= −ε2

4

σ 2(e−εt − Xt)(e−εt + Xt)

Y1t Y2t

,

which is negative with positive probability. The dynamics of λi is given by

dλi
t = (ε2/4)

( ± (1 − 2κ/ε)(Xt/Yit ) + (Xt/Yit )
2)dt ± dMit

= (
(ε/2)(1 − 2κ/ε)(λi

t − ε/2) + (λi
t − ε/2)2)dt ± dMit ,

where dMit = εσ/(2Yit )
√

(e−εt − Xt)(e−εt + Xt)dWt and κ > ε. The quadratic
drift of λi has two positive roots κ and ε/2, is positive at zero and negative at ε.
Since κ > ε, this shows that λi mean-reverts towards ε/2 for i = 1,2. �

Proof of Proposition 2.4 Proposition 2.4 is an immediate consequence of (2.4) and
the following lemma.

Lemma A.1 Let Y be a nonnegative F∞-measurable random variable. Then for any
time t ≤ tM < ∞, we have

E[1{τ>tM }Y |Gt ] = 1{τ>t}
1

St

E[StM Y |Ft ].

Note that tM < ∞ is essential unless we assume that S∞ = 0.
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Lemma A.1 follows from [7, Corollary 5.1.1]. For the convenience of the reader,
we provide here a sketch of its proof. As in [7, Lemma 5.1.2], one can show that for
any nonnegative random variable Z, we have

E[1{τ>t}Z |Ht ∨Ft ] = 1{τ>t}
1

St

E[1{τ>t}Z |Ft ].

Setting Z = 1{τ>tM }Y , we can now derive

E[1{τ>tM }Y |Gt ] = E[1{τ>t}Y1{τ>tM } |Gt ] = 1{τ>t}
1

St

E[1{τ>tM }Y |Ft ]

= 1{τ>t}
1

St

E
[
E[1{τ>tM } |F∞]Y ∣∣Ft

]

= 1{τ>t}
1

St

E[StM Y |Ft ]. �

Proof of Proposition 2.5 The subsequent proofs build on the following lemma that
follows from [7, Proposition 5.1.1].

Lemma A.2 Let Z be a bounded F-predictable process. For any t ≤ tM < ∞, we
have

E[1{t<τ≤tM }Zτ |Gt ] = 1{t<τ }
1

St

E

[∫
(t,tM ]

−Zu dSu

∣∣∣∣Ft

]
.

Note that tM < ∞ is essential unless we assume that S∞ = 0.

We can now proceed to the proof of Proposition 2.5. The value of the contingent
cash flow is given by the expression

CD(t, tM) = E[e−r(τ−t)1{t≤τ≤tM } |Gt ].

By applying Lemma A.2, we get

CD(t, tM) = 1{τ>t}
St

E

[∫ tM

t

−e−r(s−t) dSs

∣∣∣∣Ft

]

= 1{τ>t}
St

∫ tM

t

e−r(s−t)E[−a�(cYs + γXs) |Ft ]ds

= 1{τ>t}
St

∫ tM

t

(
e−r(s−t) − a�(c γ )eA(s−t)

(
Yt

Xt

))
ds,

where the second equality comes from the fact that
∫

e−ru dMS
u is a martingale. The

third equality follows from (2.4). �
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Proof of Corollary 2.6 The value of this contingent bond is given by

CD∗(t, tM) = E[τe−r(τ−t)1{t<τ≤tM } |Gt ] = 1{τ>t}
St

E

[∫ tM

t

−se−r(s−t) dSs

∣∣∣∣Ft

]
,

and the result follows as in the proof of Proposition 2.5. �

Proof of Lemma 2.8 Observe that for any matrix A and real r , we have ereA =
ediag(r)+A and that the matrix exponential integration can be computed in closed form
as ∫ u

0
eAs ds =

∫ u

0

(
I + As + A2 s2

2
+ · · ·

)
ds

= Iu + A
u2

2
+ A2 u3

6
+ · · · = A−1(eAu − I ).

By a change of variable u = s − t , we obtain∫ tM

t

seA∗(s−t) ds =
∫ tM−t

0
ueA∗u du + t

∫ tM−t

0
eA∗u du,

where the second term on the RHS is given in Lemma 2.5. The first term can be
derived using integration by parts as∫ tM−t

0
ueA∗u du = (tM − t)A−1∗ eA∗(tM−t) − A−1∗ A−1∗ (eA∗(tM−t) − I ). �

Proof of Proposition 2.9 The calculation of the protection leg V i
prot(t, t0, tM) and the

coupon part V i
coup(t, t0, tM), respectively, follows from Propositions 2.4 and 2.5. The

accrued interest V i
ai(t, t0, tM) is given by the sum of contingent cash flows and of

weighted zero-recovery coupon bonds, and thus its calculation follows from Propo-
sitions 2.5 and 2.6. The series of contingent cash flows is in fact equal to a single
contingent payment paying τ at default, so that

CD∗(t, tM) =
M∑

j=1

E[τe−r(τ−t)1{tj−1<τ≤tj } |Gt ] = E[τe−r(τ−t)1{t<τ≤tM } |Gt ].

Using the identity 1{tj−1<τ≤tj } = 1{τ>tj−1} − 1{τ>tj }, we obtain that the second term
of V i

ai(t, t0, tM) is given by

−
M∑

j=1

E[e−r(τ−t)tj−11{tj−1<τ≤tj } |Gt ] =
M∑

j=1

tj−1
(
CD(t, tj ) − CD(t, tj−1)

)

= tM−1CD(t, tM) − T0CD(t, t0)

−
M−1∑
j=1

(tj − tj−1)CD(t, tj ). �
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Proof of Proposition 2.11 The conditional characteristic function of Nu is given by

φ(t, ξ) = E[exp(iξNu) |F∞ ∨ Gt ]

= E

[
exp

(
iξ

N∑
i=1

1{τi≤u}
)∣∣∣∣F∞ ∨ Gt

]

= E

[ N∏
i=1

(
1{τi>u} + eiξ (1 − 1{τi>u})

) ∣∣∣∣F∞ ∨ Gt

]

=
N∏

i=1

(
1{τi>t}

Si
t

(
Si

u + eiξ (Si
t − Si

u)
) + 1{τi≤t}eiξ

)

=
N∏

i=1

(
eiξ + 1{τi>t}(1 − eiξ )

Si
u

Si
t

)
,

where the third equality follows from [7, Lemma 9.1.3], which gives the expression

E[1{τ1>t0,...,τN>t0} |Ft0 ∨ Gt ] =
N∏

i=1

1{τi>t}
Si

t0

Si
t

. (A.1)

The expression (2.16) then directly follows by applying the discrete Fourier trans-
form; see [2, Sect. 3] for more details. �

Proof of Proposition 2.12 The payoff at time t0 of the CDIS option can always be
decomposed into 2N terms by conditioning on all the possible default events via
writing

q(α) =
N∏

i=1

(
(1{τi>t0})αi + (1{τi≤t0})1−αi

)
(A.2)

for α ∈ {0,1}N and with the convention 00 = 0, so that the payoff function can be
rewritten as

( N∑
i=1

1{τi>t0}
Si

t0

ψi
cds(t0, t0, tM, k)�

(
Yt0

Xt0

)
+ (1 − δ)1{τi≤t0}

)+

=
∑

α∈{0,1}N

( N∑
i=1

αi

Si
t0

ψi
cds(t0, t0, tM, k)�

(
Yt0

Xt0

)
+ (1 − δ)(1 − αi)

)+
q(α).

We can apply [7, Lemma 9.1.3] to compute the probability (A.1) so that by writ-
ing (A.2) as a linear combination of indicator functions, we obtain

q(α, t, t0) = E[q(α) |Ft0 ∨Gt ] =
N∏

i=1

(
(Si

t0
)αi (Si

t − Si
t0
)1−αi

Si
t

1{τi>t} + (1{τi≤t})1−αi

)
,

which completes the proof. �



208 D. Ackerer, D. Filipović

Proof of Theorem 3.1 We define the bounded continuous map (Y,X ):R1+m →R1+m

by

Y(y, x) = y+ ∧ 1, Xi (y, x) = x+
i ∧ y+ ∧ 1, i = 1, . . . ,m,

so that (Y,X )(y, x) = (y, x) on E. In a similar vein, extend the dispersion matrix
�(y,x) to a bounded continuous mapping �((Y,X )(y, x)) on R1+m. The stochastic
differential equation (3.1) then extends to R1+m by

dYt = −γ �X (Yt ,Xt ) dt,

dXt = (
bY(Yt ) + βX (Yt ,Xt )

)
dt + �

(
(Y,X )(Yt ,Xt )

)
dWt .

(A.3)

Since drift and dispersion of (A.3) are bounded and continuous on R1+m, there exists
a weak solution (Y,X) of (A.3) for any initial law of (Y0,X0) with support in E; see
[36, Theorem V.4.22].

We now show that any weak solution (Y,X) of (A.3) with (Y0,X0) ∈ E stays in E,
i.e.,

(Yt ,Xt ) ∈ E for all t ≥ 0. (A.4)

To this end, for i = 1, . . . ,m, note that

�ii

(
(Y,X )(y, x)

) = 0 for all (y, x) with xi ≤ 0 or xi ≥ y. (A.5)

Condition (3.3) implies that
(
bY(y) + βX (y, x)

)
i
≥ 0 for all (y, x) with xi ≤ 0. (A.6)

For δ, ε > 0, we define

τδ,ε = inf{t ≥ 0 : Xit ≤ −ε and − ε < Xis < 0 for all s ∈ [t − δ, t)}.
Then on {τδ,ε < ∞}, we have, in view of (A.5) and (A.6), that

0 > Xiτδ,ε − Xiτδ,ε−δ =
∫ τδ,ε

τδ,ε−δ

(
bY(Yu) + βX (Yu,Xu)

)
i
du ≥ 0,

which is absurd. Hence τδ,ε = ∞ a.s. and therefore Xit ≥ 0 for all t ≥ 0. Similarly,
condition (3.4) implies that

−γ �X (y, x) − (
bY(y) + βX (y, x)

)
i
≥ 0 for all (y, x) with xi ≥ y. (A.7)

Using the same argument as above for Yt − Xit instead of Xit , and (A.7) instead
of (A.6), we see that Yt − Xit ≥ 0 for all t ≥ 0. Note that 0 ≤ γ �X (y, x) ≤ γ �1y+
for all (y, x), and thus 1 ≥ Yt ≥ e−γ �1t > 0 for all t ≥ 0. This proves (A.4) and thus
the existence of an E-valued solution of (3.1).

Uniqueness in law of the E-valued solution (Y,X) of (3.1) follows from [23, The-
orem 4.2] and the fact that E is relatively compact.

The boundary non-attainment conditions (3.5), (3.6) follow from [23, Theo-
rem 5.7(i) and (ii)] for the polynomials p(y, x) = xi and y −xi , for i = 1, . . . ,m. �
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Proof of Lemma 4.1 The matrix A∗ in the LHCC model is given by

A∗ =

⎛
⎜⎜⎜⎜⎝

−r −γ1 0 0

0 −(κ1 + r) κ1θ1 0
...

...
. . .

θm 0 −(κm + r)

⎞
⎟⎟⎟⎟⎠ ,

and its determinant is therefore equal to

|A∗| = −r

∣∣∣∣∣∣∣∣
−(κ1 + r) κ1θ1 0

...
...

. . .

0 0 −(κm + r)

∣∣∣∣∣∣∣∣

+ (−1)m

∣∣∣∣∣∣∣∣∣∣

−γ1 0 0

−(κ1 + r) κ1θ1 0
...

...
. . .

0 −(κm + r) κmθm

∣∣∣∣∣∣∣∣∣∣
.

With r > 0, the first term on the right-hand side is nonzero with sign equal to (−1)1+m

and the second element also has a sign equal to (−1)1+m. This is because the deter-
minant of a triangular matrix is equal to the product of its diagonal elements. As a
result, the determinant of A∗ is nonzero, which concludes the proof. �

Proof of (4.4) For i = 1, . . . ,m, we have that d(1/Yt ) = (γ1Z1t /Yt ) dt for all t ≥ 0.
The dynamics of Z is thus given by

dZit = (κiθiZ(i+1)t − κiZit + γ1Z1tZit ) dt + σi

√
Zit (1 − Zit ) dWit

for i = 1, . . . ,m − 1 and

dZmt = (κmθm − κmZmt + γ1Z1tZmt ) dt + σm

√
Zmt(1 − Zmt) dWmt .

Fixing Z1t = μ̄1t and solving for the value of Zmt which cancels its drift, we obtain

μ̄mt = −κmθm

μ̄1t γ1 − κm

,

and solving recursively for i = m − 1, . . . ,1 gives (4.4). �

Proof of Lemma 4.4 The nth power of Z(t0, tM, k) is given by

Z(t0, tM, k)n =
(

ψcds(t0, t0, tM, k)�
(
Yt0

Xt0

))n

= ψcds(t0, t0, tM, k)�
(

Yt0
Xt0

) ∑
α�1=n−1

cπ(α)hπ(α)(Yt0 ,Xt0)

=
1+m∑
i=1

∑
α�1=n−1

cπ(α)ψcds(t0, t0, tM, k)ihπ(α+ei )(Yt0 ,Xt0),
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which is a polynomial containing all and only the monomials in (Yt0 ,Xt0) of degree n.
The lemma follows by rearranging the terms. �

Proof of Proposition 5.3 The time-t price of the zero-coupon zero-recovery bond is
now given by

BZ(t, tM) = E

[
DtM

Dt

1{τ>tM }
∣∣∣∣Gt

]

= 1{τ>t}
DtSt

E[DtM StM |Ft ]

= 1{τ>t}
(a�

r Yt )(a�Yt )
E[(a�

r YtM )(a�YtM ) |Ft ]

= 1{τ>t}
a�
ZYt

(a�
Z 0)eA(tM−t)

(
Yt

Xt

)
,

by applying Lemma A.1. Applying Lemma A.2, we show that the price of a security
paying 1 or τ at the default time τ if default happens before maturity is given by

E

[
DtM

Dt

1{t≤τ≤tM }
∣∣∣∣Gt

]
= 1{τ>t}

StDt

E

[∫ tM

t

−sDs dSs

∣∣∣∣Ft

]

= 1{τ>t}
(a�

r Yt )(a�Yt )

∫ tM

t

sE[−(a�
r Ys)(cYs + γXs) |Ft ]ds

= 1{τ>t}
a�
ZYt

∫ tM

t

sa�
D eA(s−t) ds

(
Yt

Xt

)
,

which completes the proof. �

Proof of Proposition 5.5 The Lévy–Khintchine theorem shows that

�(u) = bZu +
∫ ∞

0
(1 − e−uξ )νZ dξ. (A.8)

We conclude the proof by applying Sylvester’s formula eUDU−1 = UeDU−1 and by
using (A.8) in (5.5) to get

Ā = bZUDU−1 +
∫ ∞

0
(eUDU−1ξ − Id)νZ dξ

= bZUDU−1 +
∫ ∞

0
(UeDξU−1 − UU−1)νZ dξ

= −U

(
bZ(−D) +

∫ ∞

0

(
Id−e−(−D)ξ

)
νZ dξ

)
U−1

= −U�(D)U−1. �
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Proof of (5.6) The matrix Ā in (5.5) can be rewritten as

Ā =
∫ ∞

0
(eAt − Id)γZt−1e−λZt dt = γZ

∞∑
k=1

Ak

k!
∫ ∞

0
tk−1e−λZt dt

= γZ

∞∑
k=1

Ak

k!
�(k)

λk
Z

= γZ

∞∑
k=1

(Aλ−1
Z )k

k
= −γZ log(Id−Aλ−1

Z ),

where the second equality follows from the definition of the matrix exponential, the
third from the definition of the gamma function and its values for integer values, and
the last one from the definition of the matrix logarithm. �

Appendix B: Market price of risk specifications

We discuss market price of risk (MPR) specifications such that X has a linear drift
also under the real-world measure P ≈ Q. This may further facilitate the empirical
estimation of the LHC model.

Let �(Yt ,Xt ) denote the time-t MPR such that the drift of X under P becomes

μP

t = bYt + βXt + �(Yt ,Xt )�(Yt ,Xt ).

This is linear in (Yt ,Xt ) of the form

μP

t = bPYt + βPXt

for some vector bP ∈ Rm and matrix βP ∈Rm×m if and only if

�i(y, x) = ((bP − b)s + (βP − β)x)i

σi

√
xi(y − xi)

, i = 1, . . . ,m. (B.1)

In order to have that �(Yt ,Xt ) is well defined and induces an equivalent measure
change, that is, the candidate Radon–Nikodým density process

exp

(∫ t

0
�(Yu,Xu)dWu − 1

2

∫ t

0
‖�(Yu,Xu)‖2 du

)
(B.2)

is a uniformly integrable Q-martingale, we need that (Y,X) does not reach all parts
of the boundary of E. This is clarified by the following theorem, which follows from
Cheridito et al. [13].

Theorem B.1 The MPR �(Yt ,Xt ) in (B.1) is well defined and induces an equivalent
measure P ≈ Q with Radon–Nikodým density process (B.2) if for all i = 1, . . . ,m,
we have Xi0 ∈ (0, Y0) and (3.5), (3.6) hold for the Q-drift parameters β,b and for
the P-drift parameters βP, bP instead of β,b.
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If for some i = 1, . . . ,m, βP

ij = βij for all j �= i and

(i) bPi = bi such that

�i(y, x) = (βP

ii − βii)
√

xi

σi
√

y − xi

,

then it is enough if Xi0 ∈ [0, Y0) instead of Xi0 ∈ (0, Y0) and (3.3) instead of (3.5)
holds for βij , bi , and thus for βP

ij , b
P

i .

(ii) bPi − bi = βP

ii − βii such that

�i(y, x) = (βP

ii − βii)
√

y − xi

σi
√

xi

,

then it is enough if Xi0 ∈ (0, Y0] instead of Xi0 ∈ (0, Y0) and (3.4) instead of (3.6)
holds for βij , bi , and thus for βP

ij , b
P

i .

The assumption of a linear-drift-preserving change of measure is often made for
parsimony and to facilitate the empirical estimation procedure. For example, the spec-
ification of MPRs that preserve the affine nature of risk factors has been theoretically
and empirically investigated in Duffee [18], Duarte [17] and Cheridito et al. [12],
among others.

Appendix C: Chebyshev interpolation

This appendix describes how to perform a Chebyshev interpolation of an arbitrary
function on a rectangle [a, b] × [c, d] ⊆ R2. The Chebyshev polynomials of the first
kind take values in [−1,1], but can be shifted and scaled so as to form a basis on
[a, b]. In this case, they are given by the recursion formula

T
a,b

0 (x) = 1,

T
a,b

1 (x) = x − μ

σ
,

T
a,b
n+1(x) = 2(x − μ)

σ
T a,b

n (x) − T
a,b
n−1(x),

with μ = (a + b)/2 and σ = (b − a)/2. The Chebyshev nodes for the interval [a, b]
are then given by

x
a,b
j = μ + σ cos(zj ), zj = (1/2 + j)π

N + 1
, for j = 0, . . . ,N .

The polynomial interpolation of order N is

pN(s, x) =
N∑

n=0

N∑
m=0

cn,mT a,b
n (s)T c,d

m (x),
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where the coefficients are given by

cn,m = 21{n�=0}+1{m�=0}
N∑

i=0

N∑
j=0

f (x
a,b
i , x

c,d
j ) cos(nzi) cos(mzj )

(N + 1)2
.

The coefficients can be computed in an effective way by applying Clenshaw’s method
or by applying the discrete cosine transform. This straightforward interpolation has
the advantage to prevent Runge’s phenomenon. We refer to Gaß et al. [28] for more
details on the multidimensional Chebyshev interpolation and for an interesting fi-
nancial application of multivariate function interpolation in the context of fast model
estimation or calibration.
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