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Abstract We revisit the problem of maximising expected utility of terminal wealth
in a Black–Scholes market with proportional transaction costs. While it is known that
the value function of this problem is the unique viscosity solution of the HJB equation
and that the HJB equation admits a classical solution on a reduced state space, it has
been an open problem to verify that these two coincide. We establish this result by
devising a verification procedure based on superharmonic functions. In the process,
we construct optimal strategies and provide a detailed analysis of the regularity of the
value function.
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1 Introduction

The aim of this paper is to solve the problem of maximising expected utility of ter-
minal wealth for an investor facing proportional transaction costs in a Black–Scholes
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market. While this problem has been studied extensively in the literature, it is still
an open problem in the finite-horizon case to construct optimal strategies and verify
their optimality. The aim of this paper is to close this gap.

Starting with the seminal contribution of Magill and Constantinides [15], the
continuous-time optimal investment problem with proportional transaction costs has
been studied extensively over the last decades, and three different approaches to
tackle this type of problem have emerged: (1) The primal approach based on stochas-
tic control and viscosity solution theory, in which one studies the Hamilton–Jacobi–
Bellman (HJB) equation of the problem; (2) the dual approach based on shadow
prices, in which one determines an auxiliary frictionless market with unfavourable
price processes yielding the same optimal strategy as the original problem; and (3)
asymptotics for vanishing costs.

For the problem of optimal consumption over an infinite horizon, the primal ap-
proach was utilised, among others, by Davis and Norman [23], Shreve and Soner [37],
Akian et al. [1], Kabanov and Klüppelberg [32] and de Vallière et al. [25], whereas
Kallsen and Muhle-Karbe [34], Choi et al. [13] and Herczegh and Prokaj [29] used
the dual approach to solve this problem. Asymptotic optimality results were obtained
by Janeček and Shreve [31] and Gerhold et al. [27]. Moreover, Akian et al. [3] use
the primal approach and Gerhold et al. [28] and Gerhold et al. [26] the dual approach
to determine closed-form solutions for the problem of maximising the asymptotic
growth rate under (small) transaction costs.

In the present paper, we focus on the finite-horizon optimal terminal wealth prob-
lem without intermediate consumption in a Black–Scholes market, which was intro-
duced in Akian et al. [2]. The HJB equation of this problem has also been studied
in Davis et al. [24] in the context of utility indifference pricing. An adaptation of the
results of Davis et al. [24] implies that the value function is a viscosity solution of
the HJB equation, and uniqueness holds in the case of bounded utility functions. Be-
lak et al. [9] extend the uniqueness result to more general utility functions including
log and power utility. Dai and Yi [21] show that the HJB equation admits a classical
solution in the case of log and power utility if the state space is reduced to positive
stock holdings, and Dai et al. [20] and Chen et al. [12] extend this result to the prob-
lem with intermediate consumption and CARA utility, respectively. Moreover, Czi-
chowsky et al. [19] and Czichowsky and Schachermayer [16, 17, 18] use the shadow
price approach to establish existence of optimal strategies for general price processes
extending beyond semimartingales. Numerical schemes in the Black–Scholes setting
can be found in Kunisch and Sass [36], Dai and Zhong [22] and Herzog et al. [30]. Fi-
nally, Bichuch [11] in the Black–Scholes setting and Kallsen and Muhle-Karbe [35]
and Kallsen and Li [33] for more general price processes solve the finite-horizon
problem asymptotically for small transaction costs. Summing up the results on the
finite-horizon problem, it is known that

1) the value function V is the unique viscosity solution of the HJB equation;
2) there exists a classical solution V of the HJB equation if the state space is

reduced to positive stock holdings; and
3) there exists a frictionless market in which the optimal strategy coincides with

the optimal strategy in the transaction costs market.
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It is, however, not immediate that the classical solution V coincides with the value
function V , nor if the optimal strategy obtained from the dual approach is a reflected
diffusion in the no-trading region implied by the HJB equation. More precisely:

1) V is a classical solution on the reduced state space, whereas the value function
V is a viscosity solution on the entire state space. While it is not particularly difficult
to verify that the classical solution V is also a viscosity solution on the reduced state
space, this does not imply that V = V on the reduced state space since the existing
literature only provides uniqueness results for viscosity solutions on the entire state
space. Thus, in order to rigorously conclude that V = V , one either needs to (a)
prove uniqueness of viscosity solutions on the reduced state space, or (b) show that
V extends to a viscosity solution on the entire state space. In both cases, a careful
inspection of the behaviour of V and V at the boundary of the reduced state space is
necessary.

2) No link between the auxiliary frictionless market and the HJB equation is
known. Hence, while existence of an optimal strategy is guaranteed by the dual ap-
proach, it is an open question whether optimal strategies are determined by the trading
regions implied by the HJB equation. In particular, without establishing this link, it is
not clear if the trading regions obtained from solving the HJB equation numerically
determine an optimal strategy.

3) The classical approach of verifying optimality of candidate strategies via the
primal approach requires a sufficiently smooth value function V to justify the appli-
cation of Itô’s formula along all controlled state processes (and hence on the entire
state space). We shall see, however, that the value function is not of class C1,2 ev-
erywhere (see Theorem 4.14 for the precise statement), and thus there is a need for a
verification argument requiring less regularity on V .

To show that V and V coincide and that optimal strategies are determined by the HJB
equation, we devise a novel verification procedure which only requires to evaluate
the candidate value function along the uncontrolled state process. Since the uncon-
trolled state process naturally avoids states in which the HJB equation degenerates
(i.e., regularity fails), this puts Itô’s formula at our disposal to establish the claims.
For this, we characterise the value function as the smallest continuous function which
is superharmonic with respect to the uncontrolled state process and nondecreasing in
the direction of transactions. More precisely, we proceed as follows:

1) We define trading regions in terms of the classical solution V of the HJB equa-
tion and show that for every initial state, there exists a trading strategy which turns
the corresponding state process into a diffusion reflected at the boundaries between
the trading regions.

2) We define a function h0 which maps the initial state to the expected utility
obtained by following the trading strategy constructed in Step 1) and show that h0 is
superharmonic and nondecreasing in the direction of transactions. A simple argument
shows that h0 coincides with the classical solution V on the reduced state space, and
by construction, h0 is dominated by the value function V .

3) We argue that every superharmonic function which is nondecreasing in the di-
rection of transactions is a viscosity supersolution of the HJB equation. By the previ-
ous step and the comparison principle in Belak et al. [9], this implies that h0 domi-
nates the value function. By Step 2), this shows that h0 and V coincide, yielding that
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V and V are equal on the reduced state space and the trading strategies constructed
in Step 1) are optimal.

In particular, as we characterise the value function as the smallest superharmonic
function, our approach may be seen as an alternative duality theory for singular con-
trol problems. Moreover, since our approach naturally avoids points of singularity
of the infinitesimal generator of the underlying stochastic process (which are typi-
cally the points at which it is difficult to verify regularity of the value function), it is
conceivable that the verification argument can be applied to other singular control
problems as well.

Our verification argument is inspired by recent results of Christensen [14] and
Belak et al. [8] in the context of stochastic impulse control. However, since optimal
trading regions for singular control problems are given in terms of first-order deriva-
tives of the value function, as opposed to the value function itself for impulse control
problems, the mathematical analysis in the present paper differs significantly from
the corresponding impulse control results.

Moreover, our superharmonic function approach can be seen as a version of the
stochastic Perron method; see Bayraktar and Sîrbu [4, 5, 6] for early developments
and Bayraktar and Zhang [7] for the case of a singular control problem with transac-
tion costs. In contrast to the stochastic Perron method, we require the superharmonic-
ity property along the uncontrolled state process together with the monotonicity in
the direction of transactions, whereas for the stochastic Perron method, one would
typically ask for superharmonicity along every controlled state process (or at least a
subset of state processes containing a maximising sequence). As a consequence, it is
more involved in our setting to argue that the superharmonic functions dominate the
value function (we rely on viscosity arguments for this, whereas it is immediate in the
setting of [7]). On the other hand, our definition makes verification significantly eas-
ier since we only need to verify superharmonicity for the uncontrolled state process.
We note, however, that our setup implies superharmonicity along any state processes
obtained from a piecewise constant strategy (see Remark 4.2 below) and hence the
two concepts coincide as soon as there exists a maximising sequence consisting of
piecewise constant strategies.

The remainder of this article is structured as follows. In Sect. 2, we set up the
market model, recall existing results from the literature, and discuss implications of
our results. In Sect. 3, we construct the candidate optimal strategies as well as the
corresponding reflected diffusions. Our main results can be found in Sect. 4, where
we present the verification theorem to show that these candidate optimal strategies
are indeed optimal, analyse the regularity of the value function in detail, and prove
that the classical solution of Dai and Yi [20] coincides with the value function on the
reduced state space.

2 Market model and problem formulation

2.1 The market model

We let W = (W(t))t≥0 be a standard Brownian motion defined on the canonical
Wiener space (�,F ,P). For each t ≥ 0, we denote the augmented filtration gen-



Construction of optimal strategies under transaction costs 865

erated by (W(u) − W(t))u≥t by F
t = (F t (u))u≥t and set F := F

0. Moreover, we fix
some terminal time T > 0 as well as some initial time t ∈ [0, T ).

We consider a Black–Scholes market (P 0,P 1) = (P 0(u),P 1(u))u∈[t,T ] with

dP 0(u) = 0, u ∈ [t, T ], P 0(t) = 1,

dP 1(u) = αP 1(u)du + σP 1(u)dW(u), u ∈ [t, T ], P 1(t) = 1.

Here, α > 0 and σ > 0 denote the excess return and volatility of the stock, respec-
tively. With this, we assume that the investor buys shares of the stock at the ask price
(1 + λ)P 1, where λ > 0, and sells shares of the stock at the bid price (1 − μ)P 1,
where μ ∈ (0,1).

Next, to model trading strategies, we take F
t -adapted, nondecreasing, càdlàg pro-

cesses L = (L(u))u∈[t,T ] and M = (M(u))u∈[t,T ] with L(t−) = M(t−) = 0. Here,
L and M represent the cumulative units of money used for purchases and sales
of the stock, respectively. With this, we denote by B = B

L,M
t,b = (B

L,M
t,b (u))u∈[t,T ]

and S = S
L,M
t,s = (S

L,M
t,s (u))u∈[t,T ] the investor’s wealth invested in the bond and the

stock, respectively. Assuming that the strategy (L,M) is self-financing, the evolution
of B and S can be written as

dB(u) = −(1 + λ)dL(u) + (1 − μ)dM(u), u ∈ [t, T ],
dS(u) = αS(u)du + σS(u)dW(u) + dL(u) − dM(u), u ∈ [t, T ],

where the initial values are given by B(t−) = b and S(t−) = s, respectively. The net
wealth X = X

L,M
t,b,s = (X

L,M
t,b,s (u))u∈[t,T ] of the investor after liquidation of the stock

position is then given by

X(u) := B(u) + (1 − μ)S(u)1{S(u)>0} + (1 + λ)S(u)1{S(u)≤0}, u ∈ [t, T ].
We say that a trading strategy is admissible if the corresponding net wealth process
is nonnegative. For this, we define the solvency cone

S := {(b, s) ∈R
2 : b + (1 + λ)s > 0, b + (1 − μ)s > 0}.

With this, whenever (b, s) ∈ S , the investor can liquidate her stock holdings to end
up with nonnegative wealth. A trading strategy (L,M) is therefore admissible for an
initial position (b, s) ∈ S if the corresponding pair (B

L,M
t,b , S

L,M
t,s ) takes values in S .

The set of all admissible trading strategies of this form is denoted by A(t, b, s).
The objective of the investor is to maximise expected utility of the net terminal

wealth after liquidation, i.e.,

V(t, b, s) := sup
(L,M)∈A(t,b,s)

E
[
Up

(
X

L,M
t,b,s (T )

)]
, (2.1)

where the utility function Up : (0,∞) → R is defined as

Up(x) :=
{

xp/p if p < 1,p �= 0,

logx if p = 0.

We extend Up to [0,∞) by setting Up(0) := limx↓0 Up(x).
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2.2 Overview of existing results

As pointed out in Sect. 1, the portfolio problem defined in (2.1) has received consid-
erable interest in the past. In this section, we briefly summarise the results which will
be needed in the sequel.

First, it is easy to see that the value function V defined in (2.1) is finite on
[0, T ] × S . More specifically, we have (see Belak et al. [9])

Up

(
b + min{(1 − μ)s, (1 + λ)s}) ≤ V(t, b, s) ≤ ϕp(t, b, s),

where for γ ∈ (1 − μ,1 + λ) and K > 1, the function ϕp : [0, T ] × S → R is given
by

ϕp(t, b, s) := Up

(
(b + γ s)f (t)

)

with f : [0, T ] → R given by

f (t) := exp

(
K

1

2(1 − p)

α2

σ 2
(T − t)

)
.

Davis et al. [24] (with some adaptations) and Belak et al. [9, 10] establish that the
value function V is continuous and the unique viscosity solution of the HJB equation

0 = min{LntV(t, b, s),LbuyV(t, b, s),LsellV(t, b, s)} (2.2)

on [0, T ) × S with terminal condition

V(T , b, s) = Up

(
b + min{(1 − μ)s, (1 + λ)s}), (b, s) ∈ S,

and boundary condition

V(t, b, s) = Up(0), (t, b, s) ∈ [0, T ] × ∂S.

The differential operators Lnt, Lbuy and Lsell in (2.2) are given by

LntV(t, b, s) := −∂tV(t, b, s) − αs∂sV(t, b, s) − 1

2
σ 2s2∂2

s V(t, b, s),

LbuyV(t, b, s) := (1 + λ)∂bV(t, b, s) − ∂sV(t, b, s),

LsellV(t, b, s) := −(1 − μ)∂bV(t, b, s) + ∂sV(t, b, s).

The uniqueness of the value function is a consequence of the following compari-
son principle, obtained in Belak et al. [9, Theorem 4.4].

Theorem 2.1 Let u,v : [0, T ] × S → R and fix ε > 0. Assume that u is an upper
semicontinuous viscosity subsolution and v is a lower semicontinuous viscosity su-
persolution of (2.2) such that

Up

(
b + min{(1 − μ)s, (1 + λ)s}) ≤ u(t, b, s), v(t, b, s) ≤ ϕp(t, b, s).

If u(T , b, s) ≤ v(T , b + ε, s) and u(t, b, s) ≤ Up(0) for every (b, s) ∈ ∂S , then
u(t, b, s) ≤ v(t, b + ε, s) on [0, T ] × S .
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It is expected that the operators Lnt, Lbuy and Lsell determine the optimal strate-
gies. To be more precise, given a smooth solution v of (2.2), we define

Rbuy(v) := {(t, b, s) ∈ [0, T ) × S : Lbuyv(t, b, s) = 0},
Rsell(v) := {(t, b, s) ∈ [0, T ) × S : Lsellv(t, b, s) = 0},
Rnt(v) := ([0, T ) × S) \ (Rbuy ∪Rsell).

We expect that the optimal strategy keeps the process (B,S) inside the no-trading
region Rnt(v) by reflecting (B,S) at the boundary ∂Rnt(v). Note that we do not
include the terminal time T in the definition of the trading regions since we require
the investor to liquidate her holdings in the stock at time T , and we do not include
the boundary ∂S since the only admissible, and hence optimal, strategy on ∂S is to
instantly close the stock position and refrain from further trading; see Lemma 3.1
below.

While with the previous result, the value function V is completely characterised
(and can be computed numerically), it does not suffice to construct and verify the
optimal strategies. It is therefore necessary to study the HJB equation in more detail
for the existence of a regular solution.

We denote by S0 and S0 the restrictions to positive stock holdings of the solvency
region and of its closure, respectively, i.e.,

S0 := {(b, s) ∈ S : s > 0} and S0 := {(b, s) ∈ S : s > 0}.
Dai and Yi [21, Theorem 5.1] show that the HJB equation admits a classical solution
on the restricted solvency region:

Theorem 2.2 There exists a continuous function V : [0, T ] × S0 → R such that
V ∈ C1,2(([0, T ) × S0) \ F) and ∂tV ≤ 0 which solves the HJB equation (2.2) in
the classical sense. Here, the set F is given by

F :=

⎧
⎪⎨

⎪⎩

∅ if πM < 1,

{(t, b, s) ∈ [0, T ) × S0 : b = 0} if πM = 1,

{(t, b, s) ∈ [0, T ) × S0 : b = 0, t = tup} if πM > 1,

(2.3)

where

tup := T − log(1 + λ) − log(1 − μ)

α − (1 − p)σ 2
(2.4)

and πM := α/((1 − p)σ 2) denotes the Merton fraction.

Let us emphasise here that the combination of the fact that V is a viscosity solution
of the HJB equation on [0, T ) × S , the fact that V is a classical solution of the HJB
equation on [0, T ) × S0, and the uniqueness result implied by the comparison prin-
ciple in Theorem 2.1 do not imply that V = V on [0, T ) × S0; some additional work
is necessary to arrive at this conclusion. Indeed, while it is not too difficult to show
that V is also a viscosity solution on [0, T ) × S0 (which is in particular immediate
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outside the set F ), one would need to extend V to a continuous viscosity solution de-
fined on the entire state space [0, T ) ×S to apply the comparison theorem. Verifying
that such an extension exists, however, requires additional work including a careful
study of the behaviour of V (and its partial derivatives) as s ↓ 0. While we believe
that it is possible to follow this direct approach, we shall nevertheless take a different
route which has the advantage of additionally verifying optimality of our candidate
optimal trading strategies. These candidate strategies are defined in terms of trading
regions implied by the classical solution V . More precisely, Theorem 2.2 allows us
to define the reduced trading regions

Rbuy
0 := {(t, b, s) ∈ [0, T ) × S0 : LbuyV (t, b, s) = 0},

Rsell
0 := {(t, b, s) ∈ [0, T ) × S0 : LsellV (t, b, s) = 0},
Rnt

0 := ([0, T ) × S0) \ (Rbuy
0 ∪Rsell

0 ).

Note that we must have LntV = 0 on Rnt
0 . In order to construct the optimal strategies,

it is important to determine the geometry of these sets and the location of the bound-
aries between them. Dai and Yi [21, Theorems 4.3, 4.5 and 4.7] provide the following
characterisation of these free boundaries.

Theorem 2.3 1) There exist nonnegative, nonincreasing functions π : [0, T ) →R

and π : [0, T ) → R with π(t) < π(t) for all t ∈ [0, T ) such that

Rbuy
0 =

{
(t, b, s) ∈ [0, T ) × S0 : s

b + s
≤ π(t)

}
,

Rsell
0 =

{
(t, b, s) ∈ [0, T ) × S0 : s

b + s
≥ π(t)

}
,

Rnt
0 =

{
(t, b, s) ∈ [0, T ) × S0 : π(t) <

s

b + s
< π(t)

}
.

Moreover, V is of class C∞ on Rnt
0 .

2) The function π is continuous and satisfies

π(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 1 if πM ≤ 1,

> 1 if πM > 1, t < tup,

= 1 if πM > 1, t = tup,

< 1 if πM > 1, t > tup,

where tup is defined in (2.4). Furthermore, π(t) = 0 for t ∈ [tdown, T ), where

tdown := T − log(1 + λ) − log(1 − μ)

α
.
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3) It holds that

π(t)

⎧
⎪⎨

⎪⎩

< 1 if πM < 1,

= 1 if πM = 1,

> 1 if πM > 1,

and π ∈ C∞([0, T )).

Remark 2.4 A close inspection of the results in Dai and Yi [21] implies that

inf
t∈[0,T )

|π(t) − π(t)| > 0.

Indeed, Dai and Yi [21, Sect. 5] show that the HJB equation (2.2) can be transformed
into a double obstacle problem with obstacles given by 1/(x +1+λ) (determining π )
and 1/(x + 1 − μ) (determining π ), respectively. Since V is continuous and the
distance between the obstacles is strictly positive, this implies that the above infimum
is also strictly positive.

Figures 1–3 below sketch the different scenarios for the location of the free bound-
aries. Note that tup is the time point at which the lower free boundary is equal to
one, i.e., π(tup) = 1 (this may only happen if πM > 1), and tdown is the time point
from which onwards the lower free boundary is equal to zero, i.e., π(t) = 0 for all
t ∈ [tdown, T ].

For obvious reasons, we refer to π and π as the buy and sell boundary, respec-
tively. If our conjecture that the buy and sell boundaries characterise the optimal
strategies is indeed correct (which will be rigorously proved in Sect. 4), Theorem 2.3
has the following implications:

1) If πM < 1 (cf. Fig. 1), i.e., if borrowing is not optimal in the absence of costs,
then it is also not optimal in the presence of costs.

2) If πM = 1 (cf. Fig. 2), i.e., if it is optimal to invest all money in the stock in the
absence of transaction costs, then two cases must be distinguished in the presence of
costs. If the initial position of the investor is such that b ≤ 0, then the bond position is
closed and all money is kept in the stock (since π = 1). However, if the initial position
is such that b > 0, then it is not optimal to close the bond position. This is because
we force the investor to close the stock position at the terminal time T , and hence it
is too expensive to first buy shares of the stock at the initial time just to liquidate the
stock position once the investment horizon is reached.

Fig. 1 The trading regions for
πM < 1
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Fig. 2 The trading regions for
πM = 1

Fig. 3 The trading regions for
πM > 1

3) If πM > 1 (cf. Fig. 3), i.e., if borrowing is optimal without costs, we need
to distinguish three cases. Since the investor never switches from borrowing to no-
borrowing or vice versa after the initial transaction (π > 1 and π is nonincreasing),
the initial transaction determines whether borrowing or no-borrowing is optimal:

tup > 0. In this case, borrowing is optimal since π(0) > 1.
tup = 0. If the initial position is such that b < 0, then borrowing is optimal. Other-

wise the investor invests all her wealth in the stock (since π(0) = 1).
tup < 0. In this case, borrowing is optimal if b < 0 and no-borrowing is optimal if

b ≥ 0. This is because π(t) < 1 < π(t) for all t ∈ [0, T ).
4) In any case, as soon as t ≥ tdown, the investor refrains from buying shares of the

stock since π(t) = 0.
5) If the initial position (b, s) is such that s ≤ 0, then whenever π(t) = 0, it is

optimal to liquidate the stock position and refrain from further trading. Whenever
π(t) > 0, the investor performs an initial transaction which takes her position to the
boundary of the no-trading region. This is proved in Sect. 4, but intuitively this be-
haviour is clear: Since the excess return α is positive and the investor has to liquidate
her stock holdings at time T , it should never be optimal to have a short position in
the stock.

3 Construction of the optimal strategies

We proceed with the construction of the candidate optimal strategies. For this,
we fix an arbitrary initial datum (t0, b0, s0) ∈ [0, T ) × S . We first observe that if
(b0, s0) ∈ ∂S , then the only admissible and hence optimal strategy is to immediately
close the position and refrain from further trading. The proof follows as in Shreve
and Soner [37, Remark 2.1].

Lemma 3.1 Let (b0, s0) ∈ ∂S . Then the only admissible strategy is to instantly jump
to the position (0,0) and remain there.
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In what follows, we may thus assume (b0, s0) ∈ S . For the construction of
the optimal strategy, we need to prove the existence of nondecreasing processes
L∗ = (L∗(u))u∈[t,T ] and M∗ = (M∗(u))u∈[t,T ] which turn the controlled wealth pro-

cess (B∗, S∗) := (B
L∗,M∗
t0,b0

, S
L∗,M∗
t0,s0

) into a diffusion reflected at the boundary of Rnt
0 .

We first observe that we can without loss of generality assume that the initial posi-
tion (t0, b0, s0) is an element of the closure of the no-trading region Rnt

0 . Indeed,

if (t0, b0, s0) �∈ Rnt
0 , then we can find (b∗, s∗) and (minimal) �,m ≥ 0 such that

(t0, b
∗, s∗) ∈ ∂Rnt

0 and

b∗ = b0 − (1 + λ)� + (1 − μ)m, s∗ = s0 + � − m.

With this, if (L∗,M∗) is the candidate optimal strategy for (t0, b
∗, s∗), the pair

(L∗ + �,M∗ + m) is the candidate optimal strategy for (t0, b0, s0). In other words,
by a suitable initial transaction, we can always ensure that we start within the closure
of the no-trading region.

Next, we observe that in the following, we can rule out all cases in which the
investor liquidates either the bond or the stock position at time t0 and refrains from
further transactions. Comparing with Figs. 1–3 and recalling that we may assume
(t0, b0, s0) ∈ Rnt

0 , these cases are

(a) πM arbitrary, t0 ≥ tdown and s0 = 0;
(b) πM = 1 with s0 > 0 and b0 = 0;
(c) πM > 1 with s0 > 0, b0 = 0, and t0 ≥ tup;
(d) πM > 1 with s0 = 0, b0 > 0, and t0 = tup.

The remaining cases are given by

(e) πM < 1 with s0, b0 > 0;
(f) πM = 1 with s0, b0 > 0;
(g) πM > 1 with s0, b0 > 0 and t0 > tup;
(h) πM > 1 with s0 > 0, b0 < 0.

The cases (e)–(g) are no-borrowing cases, whereas we expect borrowing to be optimal
in the case (h). It turns out that for the construction of the reflected diffusions, it is
advantageous to consider the change of variables s/b in the no-borrowing case and
s/(−b) in the borrowing case. For this, we define

S+ := {(b, s) ∈ S : b > 0, s > 0} , S− := {(b, s) ∈ S : b < 0, s > 0} .

In the sequel, we work on the reduced state space [0, T ] × S+ in the no-borrowing
cases (e)–(g) and [0, T ] × S− in the borrowing case (h).

3.1 Construction in the no-borrowing case (e)

The main idea for the construction of the optimal strategy is to find a suitable trans-
formation of the state space so that the problem of constructing an obliquely reflected
diffusion in an unbounded and time-dependent cone simplifies to normal reflection
in a time-dependent interval. The transformation and construction is based on ideas
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from Gerhold et al. [26], and hence we keep the exposition to a minimum. We restrict
ourselves to the case p < 1, p �= 0 (power utility) and remark that the construction
for the case p = 0 (log utility) follows similarly.

In the situation of case (e), i.e., πM < 1 with s0, b0 > 0, we first observe that
V ∈ C1,2([0, T ) × S0) by Theorem 2.2. We define

�(t) := π(t)

1 − π(t)
and u(t) := π(t)

1 − π(t)
, (3.1)

and note that � and u constitute the buy and sell boundaries under the change of
variables (b, s) �→ s/b, i.e.,

Rnt
0 =

{
(t, b, s) ∈ [0, T ) × S : �(t) <

s

b
< u(t)

}
.

By Theorem 2.3, we see that � < u, � ∈ C([0, T )) and u ∈ C∞([0, T )).
On the set [0, T ] × S+ we consider the transformation

V (t, b, s) = bp exp

(
− p

∫ 0

log s
bu(t)

w(t, y)dy

)
= bp exp

(
− p

∫ 0

x

w(t, y)dy

)
,

where

x = x(t, b, s) := log
s

bu(t)
.

With this and using that V satisfies LbuyV ≥ 0 and LsellV ≥ 0, we see that w satisfies

1 − μ ≤ w(t, x)

u(t)(1 − w(t, x))ex
≤ 1 + λ, (3.2)

and equality holds if and only if LsellV = 0 or LbuyV = 0, respectively. Moreover,
since LntV = 0 whenever LbuyV > 0 and LsellV > 0, we have

0 =
∫ 0

x

∂tw(t, y)dy −
(

α − 1

2
σ 2 − u′(t)

u(t)

)
w(t, x)

− 1

2
pσ 2w(t, x)2 − 1

2
σ 2∂xw(t, x)

whenever w/(u(1 − w)ex) �∈ {1 − μ,1 + λ}. Taking the derivative with respect to x

in the last equation, we obtain

1

2
σ 2∂2

xw(t, x) = −∂tw(t, x) −
(

α − 1

2
σ 2 − u′(t)

u(t)

)
∂xw(t, x)

− pσ 2w(t, x)∂xw(t, x).

Consider again the fraction in (3.2), i.e.,

f (t, x) := w(t, x)

u(t)(1 − w(t, x))ex
.
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Since by (3.1) the points x = 0 and x = log(�(t)/u(t)) constitute the boundary points
of the no-trading region in the new variables, we must have

f (t, x) = 1 − μ if x ≥ 0, (3.3)

f (t, x) = 1 + λ if x ≤ log
�(t)

u(t)
. (3.4)

Moreover, note that for the point x = log(�(t)/u(t)), these considerations are only
valid for t ∈ [0, tdown) since otherwise log(�(t)/u(t)) = −∞.

Remark 3.2 We have

f (t, x) = w(t, x)

u(t)(1 − w(t, x))ex
∈ [1 − μ,1 + λ]

and f (t, x) ∈ {1 − μ,1 + λ} inside the buy and sell regions. This suggests that

f
(
t,X∗(t)

)
P 1(t) with X∗(t) = log

S∗(t)
B∗(t)u(t)

(where (B∗, S∗) is the optimally controlled portfolio process) is the shadow price in
our problem. This can be confirmed as in Gerhold et al. [26].

The next step is to construct a reflected diffusion in the time-dependent interval
[log(�/u),0].

Lemma 3.3 There exist a process � = (�(t))t∈[t0,T ) and nondecreasing processes
L = (L(t))t∈[t0,T ) and M = (M(t))t∈[t0,T ) such that L is constant on [tdown, T ) and

d�(t) =
(

α − 1

2
σ 2 − u′(t)

u(t)

)
dt + σ dW(t) + dL(t) − dM(t), (3.5)

with

�(t0) = log
s0

b0u(t0)
,

and such that � is a diffusion reflected on the boundaries of the time-dependent
interval [log(�/u),0].

Proof This follows from Słomiński and Wojciechowski [38, Theorem 3.3] together
with Remark 2.4. �

Let us now define a process N = (N(t))t∈[t0,T ) by N(t0) = s0/P
1(t0) and, for

t ∈ [t0, T ),

dN(t) = N(t)

(
1 − w

(
t, log

�(t)

u(t)

))
dL(t) − N(t)

(
1 − w(t,0)

)
dM(t). (3.6)
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Remark 3.4 Comparing with Gerhold et al. [26], we interpret ue� as the optimal
stock-to-bond ratio and N as the optimal cumulative number of shares of the stock
bought up to time t . Furthermore, again as in Gerhold et al. [26], the function w

can be interpreted as the optimal risky fraction, and hence 1 − w coincides with the
optimal fraction of wealth invested into the bond which gives a nice interpretation for
all the terms occurring in (3.6).

With this, we now have all the tools at hand to construct the optimal strate-
gies. Let us define a process S∗ = (S∗(t))t∈[t0,T ) through S∗(t) := N(t)P 1(t). Then
S∗(t0) = N(t0)P

1(t0) = s0 and

dS∗(t) = αS∗(t)dt + σS∗(t)dW(t)

+ S∗(t)
(

1 − w
(
t, log

�(t)

u(t)

))
dL(t)

− S∗(t)
(
1 − w(t,0)

)
dM(t), t ∈ [t0, T ).

Also define B∗ = (B∗(t))t∈[t0,T ) by B∗(t) := S∗(t)e−�(t)/u(t) so that
B∗(t0) = S∗(t0)/(u(t0)e

�(t0)) = b0 and

dB∗(t) = −w

(
t, log

�(t)

u(t)

)
B∗(t)dL(t) + w(t,0)B∗(t)dM(t), t ∈ [t0, T ).

Using the definition of B∗, (3.3) and (3.4), we see that

w(t,0)B∗(t) = w(t,0)S∗(t)
u(t)e0

= (1 − μ)S∗(t)
(
1 − w(t,0)

)
,

and similarly

w

(
t, log

�(t)

u(t)

)
B∗(t) = w(t, log(�(t)/u(t)))S∗(t)

u(t)elog(�(t)/u(t))

= (1 + λ)S(t)∗
(

1 − w
(
t, log

�(t)

u(t)

))
.

So in total, the dynamics of B∗ simplify to

dB∗(t) = −(1 + λ)S∗(t)
(

1 − w
(
t, log

�(t)

u(t)

))
dL(t)

+ (1 − μ)S∗(t)
(
1 − w(t,0)

)
dM(t), t ∈ [t0, T ).

Hence, if we define

dL∗(t) = N(t)P 1(t)

(
1 − w

(
t, log

�(t)

u(t)

))
dL(t), t ∈ [t0, T ),

dM∗(t) = N(t)P 1(t)
(
1 − w(t,0)

)
dM(t), t ∈ [t0, T ),
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with L∗(t0) = 0, M∗(t0) = 0 and if we set (liquidation at the terminal time)

L∗(T ) = L∗(T −) + S∗(T −)1{S∗(T −)<0},

M∗(T ) = M∗(T −) + S∗(T −)1{S∗(T −)>0},

S∗(T ) = 0,

B∗(T ) = B∗(T −) + min{(1 − μ)S∗(T −), (1 + λ)S∗(T −)},
then (L∗,M∗) ∈ A(t0, b0, s0), and (B∗, S∗) is a diffusion reflected at ∂Rnt

0 .

3.2 Construction in the other cases

The construction in the other cases (f)–(h) follows in a similar way as the construction
in the case (e). Let us outline the critical differences.

Assume first that we are in one of the no-borrowing cases (f) or (g). That is, we
either have πM = 1 with s0, b0 > 0, or πM > 1 with s0, b0 > 0 and t0 > tup. While
the construction here is similar to the case (e), we have to be more careful since the
upper boundary in terms of the transformation s/b is now equal to infinity which
does not allow us to consider the transformation x = log(s/(bu(t))). However, since
the upper boundary is now equal to infinity, we deal with one-sided reflection which
simplifies matters again (we never have to sell shares of the stock!). As before, we de-
fine the lower boundary as �(t) := π(t)/(1 −π(t)) and consider the slightly different
transformation

V (t, b, s) = bp exp

(
− p

∫ 0

log(s/b)

w(t, y)dy

)
.

Setting x = log(s/b) and arguing in a similar fashion as before, the existence of the
candidate optimal strategy follows. Note, however, that the process � now has to be
constructed without the u′(t)/u(t) term in its drift (see (3.5)).

Let us now turn to the borrowing case (h). That is, assume πM > 1, s0 > 0, b0 < 0
and t0 ∈ [0, T ). Since b0 < 0 and we want the optimally controlled bond wealth B∗
to satisfy B∗ < 0, we have to consider a different transformation. More precisely, we
consider the transformation s/(−b) instead. We first define the trading boundaries
to be

�(t) := − π(t)

1 − π(t)
and u(t) := − π(t)

1 − π(t)
.

Theorem 2.3 implies 0 < �(t) < u(t) ≤ ∞, � ∈ C∞([0, T )) and u ∈ C([0, T )) (note,
however, that in this case the lower boundary � is defined by means of π instead
of π ). The transformation of the function V is then chosen to be

V (t, b, s) = (−b)p exp

(
− p

∫ log s
−b�(t)

0
w(t, y)dy

)
,

where we restrict V to the set S−. This leads to similar calculations as in the case (e),
but with the lower boundary � in place of the upper boundary u in the drift term of
the process � (see (3.5)).
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4 Verification and value function regularity

We now proceed by verifying that the strategies constructed in the previous section
are indeed optimal. Since V is only defined on [0, T ] × S0, classical verification
arguments are difficult (it will turn out that V is not sufficiently regular everywhere,
see Theorem 4.14). Instead, we adapt the approach introduced in Christensen [14] for
impulse control problems to our setting. The idea is to show that the value function
is the pointwise minimum of a suitable set of superharmonic functions.

More precisely, let H be the set of all continuous functions h : [0, T ] × S → R

satisfying the following properties:

(i) h(T , b, s) ≥ V(T , b, s) on {T } × S .
(ii) h is nonincreasing in the direction of transactions, i.e., for all

(t, b, s) ∈ [0, T ] × S and �,m ≥ 0 with (b − (1 + λ)� + (1 − μ)m, s + � − m) ∈ S , it
holds that

h(t, b, s) ≥ h
(
t, b − (1 + λ)� + (1 − μ)m, s + � − m

)
.

(iii) h is space-time superharmonic with respect to the uncontrolled portfolio
process. More precisely, denote by (B0, S0) = (B0

t,b, S
0
t,s) the wealth process cor-

responding to the strategy L ≡ M ≡ 0 and let ϑ be the first hitting time of ∂S . Then
h is called space-time superharmonic if

h(t, b, s) ≥ E
[
h
(
τ ∧ ϑ,B0

t,b(τ ∧ ϑ),S0
t,s(τ ∧ ϑ)

)]

for every [t, T ]-valued stopping time τ .
(iv) h satisfies the bounds

Up

(
b + min{(1 − μ)s, (1 + λ)s}) ≤ h(t, b, s) ≤ ϕp(t, b, s).

We expect that V is the pointwise minimum of the elements of H. If this is true,
we can prove the optimality of (L∗,M∗) as follows:

1) Show that every h ∈H dominates V .
2) Define the function

h0(t, b, s) := E
[
Up

(
X

L∗,M∗
t,b,s (T )

)]

and show that h0 ∈ H.

It then follows that V ≤ h0, but h0 ≤ V since (L∗,M∗) is admissible. Hence h0 = V
and (L∗,M∗) is optimal.

The advantage of this approach is that h0 (and hence V) need not be of class
C1,2 everywhere for the above argument to work. Indeed, in order to show that h0
satisfies the monotonicity property (ii), we only require piecewise continuous differ-
entiability in certain spatial directions for each fixed time point t , and to verify the
superharmonicity property (iii), we only require some regularity along the paths of
the uncontrolled state process, which naturally avoid the points of degeneracy of the
infinitesimal generator Lnt (and hence the points on the b- and s-axes where regular-
ity fails).
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In Lemma 4.1 below, we show that every h ∈ H dominates V . Then we proceed
by analysing the regularity of h0 and use these results to show that h0 is superhar-
monic (Proposition 4.11) and nonincreasing in the direction of transactions (Proposi-
tion 4.12). The optimality of (L∗,M∗) then follows in Theorem 4.13.

Lemma 4.1 Let h ∈H. Then V ≤ h.

Proof We show that h is a viscosity supersolution of the HJB equation (2.2). By
Theorem 2.1 (comparison principle), it then follows that for every ε > 0, we have
V(t, b, s) ≤ h(t, b + ε, s) everywhere, and by the continuity of h, we can send ε ↓ 0
to conclude.

Let us therefore fix (t0, b0, s0) ∈ [0, T ) × S and let ϕ ∈ C1,2([0, T ) × S) be such
that ϕ ≤ h and ϕ(t0, b0, s0) = h(t0, b0, s0). We have to show that

min{Lntϕ(t0, b0, s0),Lbuyϕ(t0, b0, s0),Lsellϕ(t0, b0, s0)} ≥ 0.

Let � > 0 be such that (b0 − (1 + λ)�, s + �) ∈ S . Then

ϕ(t0, b0, s0) − ϕ
(
t0, b0 − (1 + λ)�, s + �

)

≥ h(t0, b0, s0) − h
(
t0, b0 − (1 + λ)�, s + �

) ≥ 0

since ϕ(t0, b0, s0) = h(t0, b0, s0), ϕ ≤ h and h is nonincreasing in the direction of
transactions. Now divide by � and send � ↓ 0 to obtain Lbuyϕ(t0, b0, s0) ≥ 0. By
similar arguments, we have Lsellϕ(t0, b0, s0) ≥ 0, and hence it only remains to show
that Lntϕ(t0, b0, s0) ≥ 0.

Suppose that on the contrary, we have Lntϕ(t0, b0, s0) < 0. Then there ex-
ist ε, δ > 0 such that t0 + ε < T , Bε(b0, s0) ⊆ S and Lntϕ(t, b, s) < −δ for all
(t, b, s) ∈ [t0, t0 + ε] × Bε(b0, s0). Now define the stopping time

τε := inf
{
u ≥ t0 : (B0

t0,b0
(u), S0

t0,s0
(u)

) �∈ Bε(b0, s0)
} ∧ (t0 + ε).

Since h is space-time superharmonic and by Itô’s formula, we have

ϕ(t0, b0, s0) = h(t0, b0, s0)

≥ E
[
h
(
τε,B

0
t0,b0

(τε), S
0
t0,s0

(τε)
)]

≥ E
[
ϕ
(
τε,B

0
t0,b0

(τε), S
0
t0,s0

(τε)
)]

= ϕ(t0, b0, s0) −E

[∫ τε

t0

Lntϕ
(
u,B0

t0,b0
(u), S0

t0,s0
(u)

)
du

]
,

i.e., E[∫ τε

t0
Lntϕ(u,B0

t0,b0
(u), S0

t0,s0
(u))du] ≥ 0. This, however, must imply that

max
u∈[t0,t0+ε], (b,s)∈Bε(b0,s0)

Lntϕ(u, b, s) ≥ 0.

Sending ε ↓ 0 implies that Lntϕ(t0, b0, s0) ≥ 0 which is a contradiction. �
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Remark 4.2 From the superharmonicity and the monotonicity in the direction of
transactions, it is easily seen that h(·,BL,M,SL,M) is a supermartingale for any h ∈H

and any piecewise constant trading strategy (L,M) and thus

h(t, b, s) ≥ E
[
Up

(
X

L,M
t,b,s (T )

)]
for any piecewise constant (L,M) ∈A(t, b, s).

In the context of the closely related stochastic Perron method, one studies instead
the set of all functions h̄ for which h̄(·,BL,M,SL,M) is a supermartingale for all
(L,M) ∈ A(t, b, s) and shows that the pointwise infimum of this set coincides with
the value function as a means of obtaining the viscosity characterisation of V .

In Sect. 3 and Lemma 3.1, we have constructed candidate optimal strategies
(L∗,M∗) = (L∗

t,b,s(u),M∗
t,b,s (u))u∈[t,T ] for every (t, b, s) ∈ [0, T ) × S . Moreover,

it is obvious that a candidate optimal strategy (L∗
T ,b,s(u),M∗

T ,b,s(u)) is the strategy
which merely liquidates the stock position s. This allows us to define the function

h0(t, b, s) := E
[
Up

(
X

L∗,M∗
t,b,s (T )

)]
, (t, b, s) ∈ [0, T ] × S. (4.1)

Our next aim is to show that h0 ∈ H and hence h0 = V and (L∗,M∗) is optimal. As
a first step, we show that h0 coincides with V on [0, T ] × S0.

Proposition 4.3 The function h0 defined in (4.1) coincides with the classical solution
V of the HJB on the reduced state space [0, T ] × S0.

Proof Let (t, b, s) ∈ [0, T ) × S0. If (t, b, s) is such that we are in one of the liquida-
tion cases (a), (b) or (c), then direct computations reveal that h0(t, b, s) = V (t, b, s)

since V is explicitly known at these points (cf. Dai and Yi [21, Proposition 3.2]). For
example, assume that p = 0, πM > 1 and (t, b, s) = (tup,0, s). Then Dai and Yi [21,
Proposition 3.2] show that

V (t, b, s) = log s + log(1 − μ) +
(

α − 1

2
σ 2

)
(T − t)

= E
[
log

(
(1 − μ)S

L∗,M∗
t,s (T )

)]

= E
[
U0

(
b + (1 − μ)S

L∗,M∗
t,s (T )

)] = h0(t, b, s).

We therefore exclude these cases in the sequel. For ease of notation, we denote the
controlled processes (B

L∗,M∗
t,b,s , S

L∗,M∗
t,b,s ) by (B∗, S∗).

First, let us remark that (t, b − (1 + λ)L∗(t) + (1 − μ)M∗(t), s + L∗(t) − M∗(t))
is contained in S0 since (t, b, s) ∈ S0 and Rnt

0 ⊆ [0, T ) × S0. By the fundamental
theorem of calculus for line integrals, we thus have

V (t, b, s) = V
(
t, b − (1 + λ)L∗(t) + (1 − μ)M∗(t), s + L∗(t) − M∗(t)

)

since dL∗(t) �= 0 only if (t, b, s) ∈ Rbuy
0 and dM∗(t) �= 0 only if (t, b, s) ∈ Rsell

0 . For
all n ∈ N, define a stopping time

τn := inf

{
u ≥ t :

∫ u

t

∣∣σS∗(r)∂sV
(
r,B∗(r), S∗(r)

)∣∣2 dr ≥ n

}
∧ T .
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Note that (·,B∗, S∗) ∈ ([0, T ] × S0) \ F after the initial transaction since we have
ruled out the liquidation cases. Thus, using that V is in C1,2(([0, T ) × S0) \ F) and
solves the HJB equation, we obtain

V (t, b, s) = V
(
t, b − (1 + λ)L∗(t) + (1 − μ)M∗(t), s + L∗(t) − M∗(t)

)

= V
(
τn,B

∗(τn), S
∗(τn)

) −
∫ τn

t

σS∗(u)∂sV
(
u,B∗(u), S∗(u)

)
dW(u).

Taking expectations on both sides shows by the definition of τn that

V (t, b, s) = E
[
V

(
τn,B

∗(τn), S
∗(τn)

)]
.

We are left with showing that

lim
n→∞E

[
V

(
τn,B

∗(τn), S
∗(τn)

)] = E
[
Up

(
X

L∗,M∗
t,b,s (T )

)] = h0(t, b, s). (4.2)

We first note that there exist constants C1,C2 > 0 such that

C1V(t, b, s) ≤ V (t, b, s) ≤ C2ϕp(t, b, s) for all (t, b, s) ∈ Rnt
0 . (4.3)

To see this, assume that p �= 0 (the case p = 0 is similar). Since V , V and ϕp are
homogeneous of order p, we can write

V (t, b, s) = (b + s)pV (t,1 − π,π),

V(t, b, s) = (b + s)pV(t,1 − π,π),

ϕp(t, b, s) = (b + s)pϕp(t,1 − π,π),

where π = π(b, s) := s/(b + s). But π(b, s) is bounded on Rnt
0 , and hence so are

V (t,1 − π,π), V(t,1 − π,π) and ϕp(t,1 − π,π), from which we infer (4.3).
Case 1: p ∈ (0,1). We claim that (V (τn,B

∗(τn), S
∗(τn)))n∈N is uniformly inte-

grable, in which case (4.2) holds. Let ε > 0 be such that p(1 + ε) < 1. Then

0 ≤ E
[∣∣V

(
τn,B

∗(τn), S
∗(τn)

)∣∣1+ε]

≤ (C2)
1+ε

E
[∣∣ϕp

(
τn,B

∗(τn), S
∗(τn)

)∣∣1+ε]

= (C2)
1+ε 1 + ε

pε
E

[
ϕp(1+ε)

(
τn,B

∗(τn), S
∗(τn)

)]

≤ (C2)
1+ε 1 + ε

pε
ϕp(1+ε)(t, b, s).

Here, we have used that Up = (1 + ε)p−εUp(1+ε) for the equality in the third line,
and the fact that ϕp(1+ε)(·,B∗, S∗) is a supermartingale (compare with the proof of
Lemma 2.2 in Belak et al. [9]) to arrive at the last inequality.

Case 2: p < 0. We write

E
[
V

(
τn,B

∗(τn), S
∗(τn)

)]

= E
[
V

(
τn,B

∗(τn), S
∗(τn)

)
1{τn<T }

] +E
[
V

(
τn,B

∗(τn), S
∗(τn)

)
1{τn=T }

]
.
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Since monotone convergence gives

lim
n→∞E

[
V

(
τn,B

∗(τn), S
∗(τn)

)
1{τn=T }

] = lim
n→∞E

[
Up

(
X

L∗,M∗
t,b,s (T )

)
1{τn=T }

]

= E
[
Up

(
X

L∗,M∗
t,b,s (T )

)]
,

we only have to show that limn→∞ E[V (τn,B
∗(τn), S

∗(τn))1{τn<T }] = 0. But this
follows from admissibility of (L∗,M∗) and monotone convergence since

0 ≥ lim
n→∞E

[
V

(
τn,B

∗(τn), S
∗(τn)

)
1{τn<T }

]

≥ C1 lim
n→∞E

[
V

(
τn,B

∗(τn), S
∗(τn)

)
1{τn<T }

]

≥ C1 lim
n→∞E

[
Up

(
X

L∗,M∗
t,b,s (T )

)
1{τn<T }

] = 0.

Case 3: p = 0. This follows in a similar fashion as in Cases 1 and 2 by splitting
V (τn,B

∗(τn), S
∗(τn)) into its positive and negative parts and using that we have the

estimate −x−p/p ≤ logx ≤ xp/p for every p ∈ (0,1). �

Proposition 4.3 proves the regularity of h0 on [0, T ) × S0. The following lemmas
investigate the regularity of h0 for s ≤ 0.

Lemma 4.4 It holds that h0 ∈ C1,2([0, tdown) × (S \ S0)). Moreover, for every
(t, b, s) ∈ [0, tdown) × (S \ S0) and �∗ > 0 with (t, b − (1 + λ)�∗, s + �∗) ∈ Rbuy

0
and s + �∗ > 0, we have

∂th0(t, b, s) = ∂tV (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗),

∂bh0(t, b, s) = ∂bV (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗),

∂sh0(t, b, s) = ∂sV (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗),

∂2
s h0(t, b, s) = ∂2

s V (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗).

Proof The idea is to bootstrap the regularity of h0 for nonpositive s from the regu-
larity of h0 = V for positive s inside the buy region Rbuy

0 ; see Fig. 4.

Fig. 4 Bootstrapping the
regularity of h0
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Fix (t0, b0, s0) ∈ [0, T ] × (S \ S0) (in particular s0 ≤ 0) with t0 < tdown and
let δ > 0 be such that t0 + δ < tdown and Bδ(b0, s0) ⊆ S . By making δ smaller if
necessary, we may furthermore assume that [t0, t0 + δ) × Bδ(b0, s0) ⊆ Rbuy

0 . Now,
for every (t, b, s) ∈ [t0, t0 + δ) × Bδ(b0, s0), there exists some �0 > 0 such that
(b − (1 + λ)�0, s + �0) ∈ ∂Rnt

0 ∩ ∂Rbuy
0 and s + �0 > 0 (since t < tdown and hence

π(t) > 0 by Theorem 2.3). Moreover, by the construction of h0,

h0(t, b, s) = h0
(
t, b − (1 + λ)�, s + �

)

for every � ∈ [0, �0]. By the monotonicity of the buy boundary, making δ even
smaller if necessary, we can therefore find some �∗ ∈ (0, �0) such that the interval
[t0, t0 + δ) × Bδ(b0 − (1 + λ)�∗, s0 + �∗) is contained in the interior of Rbuy

0 and
s > 0 for all (b, s) ∈ Bδ(b0 − (1 + λ)�∗, s0 + �∗). Note that by construction and
Proposition 4.3, we have

h0(t, b, s) = h0
(
t, b − (1 + λ)�∗, s + �∗) = V

(
t, b − (1 + λ)�∗, s + �∗)

for all (t, b, s) ∈ [t0, t0 + δ) × Bδ(b0, s0). Since

V ∈ C1,2
(
[t0, t0 + δ) × Bδ

(
b0 − (1 + λ)�∗, s0 + �∗)),

the result follows. �

Proposition 4.5 The function h0 satisfies

Lnth0(t, b, s) ≥ 0, Lbuyh0(t, b, s) = 0 and Lsellh0(t, b, s) > 0

in the classical sense on [0, tdown) × (S \ S0).

Proof It follows immediately from Lemma 4.4 for all (t, b, s) ∈ [0, tdown) × (S \ S0)

that

Lbuyh0(t, b, s) = LbuyV
(
t, b − (1 + λ)�∗, s + �∗) = 0, (4.4)

Lsellh0(t, b, s) = LsellV
(
t, b − (1 + λ)�∗, s + �∗) > 0, (4.5)

for a suitable choice of �∗. From (4.4), we obtain

∂sh0(t, b, s) = (1 + λ)∂bh0(t, b, s).

Plugging this into (4.5) yields

(1 − μ)∂bh0(t, b, s) < ∂sh0(t, b, s) = (1 + λ)∂bh0(t, b, s)

which implies ∂bh0(t, b, s) > 0 and thus ∂sh0(t, b, s) > 0 for all (b, s) ∈ (S \ S0).
It only remains to show that

Lnth0(t, b, s) ≥ 0.
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Case 1: s = 0. Fix some �∗ > 0 such that (t, b, �∗) ∈Rbuy
0 so that

∂th0(t, b,0) = ∂tV
(
t, b − (1 + λ)�∗, �∗) ≤ 0

by Theorem 2.2. Therefore,

Lnth0(t, b,0) = −∂th0(t, b,0) ≥ 0. (4.6)

Case 2: s < 0. For some suitable �∗ > 0, we have

∂th0(t, b, s) = ∂tV (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗) = ∂th0
(
t, b − (1 + λ)s,0

)
,

∂sh0(t, b, s) = ∂sV (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗) = ∂sh0
(
t, b − (1 + λ)s,0

)
,

∂2
s h0(t, b, s) = ∂2

s V (t, b, s)|(b,s)=(b−(1+λ)�∗,s+�∗) = ∂2
s h0

(
t, b − (1 + λ)s,0

)
.

Therefore,

Lnth0(t, b, s) = −∂th0(t, b, s) − αs∂sh0(t, b, s) − 1

2
σ 2s2∂2

s h0(t, b, s)

= −∂th0
(
t, b − (1 + λ)s,0

) − αs∂sh0
(
t, b − (1 + λ)s,0

)

− 1

2
σ 2s2∂2

s h0
(
t, b − (1 + λ)s,0

)
.

By (4.6), we have

−∂th0
(
t, b − (1 + λ)s,0

) = Lnth0
(
t, b − (1 + λ)s,0

) ≥ 0.

Moreover, since s < 0 and ∂sh0(t, b − (1 + λ)s,0) > 0, we have

−αs∂sh0
(
t, b − (1 + λ)s,0

)
> 0,

and since ∂2
s h0(t, b − (1 + λ)s,0) ≤ 0 (V is concave; see Dai and Yi [21, Re-

mark 4.2]), we see that

−1

2
σ 2s2∂2

s h0
(
t, b − (1 + λ)s,0

) ≥ 0.

Putting the pieces together, we obtain Lnth0(t, b, s) > 0. �

We have similar statements for the case t ≥ tdown with s < 0; the proofs are how-
ever significantly easier.

Lemma 4.6 We have h0 ∈ C∞([tdown, T ) × (S \ {(b, s) ∈ S : s ≥ 0})), and h0 is
given explicitly as

h0(t, b, s) = Up

(
b + (1 + λ)s

)

on [tdown, T ) × S \ {(b, s) ∈ S : s > 0}.
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Proof This is an immediate consequence of the definition of h0 and (L∗,M∗). In-
deed, if (t, b, s) ∈ [tdown, T ) × (S \ {(b, s) ∈ S : s > 0}), then (L∗,M∗) is such that
the stock position is immediately liquidated and the investor refrains from further
trading. That is,

h0(t, b, s) = h0
(
t, b + (1 + λ)s,0

)

= E
[
Up

(
B

L∗,M∗
t,b+(1+λ)s(T ) + 0

)] = Up

(
b + (1 + λ)s

)
,

from which the assertion of the lemma follows. �

Proposition 4.7 The function h0 satisfies

Lnth0(t, b, s) > 0, Lbuyh0(t, b, s) = 0 and Lsellh0(t, b, s) > 0

in the classical sense on [tdown, T ) × (S \ {(b, s) ∈ S : s ≥ 0}).

Proof This follows directly since h0(t, b, s) = Up(b + (1 + λ)s) by Lemma 4.6. �

Corollary 4.8 For every t ∈ [tdown, T ), we have h0(t, ·) ∈ C(S).

Proof It suffices to show that (b, s) �→ h0(t, b, s) is continuous at (b,0) for every
b > 0. By Lemma 4.6, h0(t, b,0) is given explicitly as h0(t, b,0) = Up(b). Moreover,
for s > 0, h0(T , b, s) = Up(b + (1 − μ)s) and ∂th0 ≤ 0 and thus

h0(t, b, s) ≥ h0(T , b, s) ≥ h0(t, b,0) = Up(b) for all s > 0,

which implies that h0 is at least lower semi-continuous at (b,0) for every b > 0. By
Theorems 2.2 and 2.3, h0 = V is C1,2 and satisfies

∂th0(t, b, s) = −αs∂sh0(t, b, s) − 1

2
σ 2s2∂2

s h0(t, b, s) ≥ −αs∂sh0(t, b, s) (4.7)

for t ∈ [tdown, T ), b > 0 and s > 0 sufficiently small (so that (t, b, s) is in the no-
trading region) since ∂2

s h0 ≤ 0. An argument as in Lemma 3.4 in Dai and Yi [21]
shows that ∂sh0(t, ·) is bounded from above on (b − δ, b + δ) × (0, s̄] for every
0 < δ < b and s̄ > 0, uniformly in t ∈ [tdown, T ). Thus (4.7) implies that

lim inf
b̂→b,s↓0

∂th0(t, b̂, s) ≥ 0 uniformly in t ∈ [tdown, T ).

But since ∂th0 ≤ 0, we must have

lim
b̂→b,s↓0

∂th0(t, b̂, s) = 0 uniformly in t ∈ [tdown, T ). (4.8)

Now choose (bk, sk)k∈N with bk, sk > 0 and (bk, sk) → (b,0). Then (4.8) implies that
for every ε > 0, there exists some K ∈N such that

h0(t, bk, sk) ≤ h0(T , bk, sk) + ε = Up

(
bk + (1 − μ)sk

) + ε for all k ≥ K,
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from which we conclude that

lim sup
k→∞

h0(t, bk, sk) ≤ lim
k→∞Up

(
bk + (1 − μ)sk

) = Up(b) = h0(t, b,0),

i.e., h0 is also upper semi-continuous at (b,0). �

Remark 4.9 We cannot expect more regularity of h0 at s = 0. Indeed, taking the
derivative with respect to s in the equality in (4.7) and formally sending s > 0 to zero
shows that ∂sh0(t, b,0+) solves

0 = −∂t ∂sh0(t, b,0+) − α∂sh0(t, b,0+),

h0(T , b,0+) = ∂sUp

(
b + (1 + λ)s

)∣∣
s=0,

i.e., ∂sh0(t, b,0+) = eα(T −t)∂sUp(b + (1 + λ)s)|s=0. This is in contrast to

∂sh0(t, b,0−) = ∂sUp

(
b + (1 + λ)s

)∣∣
s=0,

suggesting that ∂sh0 is not continuous at s = 0.

We are now ready to prove that h0 ∈ H. By construction, we already know that
h0 ≤ V ≤ ϕp . Moreover, it is clear from the above analysis that

h0(t, b, s) ≥ Up

(
b + min{(1 − μ)s, (1 + λ)s})

since this is clearly satisfied for t = T and h0 is nonincreasing in t .
We proceed in three steps. First we show that h0 is continuous, then we show that

h0 is superharmonic, and finally we show that h0 is nonincreasing in the direction of
transactions.

Proposition 4.10 The function h0 is continuous on [0, T ] × S .

Proof By Proposition 4.3, Lemmas 4.4 and 4.6 and Corollary 4.8, it only remains to
prove that h0 is continuous in (tdown, b,0) for every b ≥ 0. Moreover, by Lemma 4.6
and Corollary 4.8, we can restrict attention to sequences (tn, bn, sn)n∈N converging
to (tdown, b,0) with tn < tdown and sn > 0 for all n ∈ N. Next, we observe that every
such sequence is eventually contained in Rbuy

0 ∪ Rnt
0 since sn → 0 and π > 0, and

we may furthermore assume bn > 0 for all n ∈N. Now, if (tn, bn, sn) ∈ Rbuy
0 , there is

�n > 0 with (tn, bn − (1 + λ)�n, sn + �n) ∈ ∂Rnt
0 and

h0(tn, bn, sn) = h0
(
tn, bn − (1 + λ)�n, sn + �n

)
,

which implies that we may restrict further to sequences in Rnt
0 . But because we have

Lnth0(t, b, s) = LntV (t, b, s) = 0 for all (t, b, s) ∈ Rnt
0 with s > 0, we can argue as

in the proof of Corollary 4.8. �

Proposition 4.11 The function h0 is superharmonic.
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Proof Fix (t, b, s) ∈ [0, T ) ×S , let τ be a [t, T ]-valued stopping time and ϑ the first
exit time of the uncontrolled portfolio process (B0

t,b, S
0
t,s ) from S .

Case 1: s > 0. In this case, S0
t,s(u) > 0 for all u ∈ [t, τ ∧ ϑ] and hence h0 = V is

C1,2 along the paths of (u,B0(u), S0(u)) by Proposition 4.3. Let ε > 0 and denote
by ϑε the first exit time of (B0

t,b + ε,S0
t,s) from S . Then clearly ϑε ≥ ϑ . For every

n ∈N, let us define a stopping time

τn := inf

{
u ≥ t :

∫ u

t

∣∣σS0
t,s(r)∂sh0

(
r,B0

t,b(r) + ε,S0
t,s(r)

)∣∣2 dr ≥ n

}
∧ τ ∧ ϑ.

An application of Itô’s formula shows that

h0(t, b + ε, s) = h0
(
τn,B

0
t,b(τn) + ε,S0

t,s(τn)
)

+
∫ τn

t

Lnth0
(
u,B0

t,b(u) + ε,S0
t,s(u)

)
du

+
∫ τn

t

σS0
t,s(u)∂sh0

(
u,B0

t,b(u) + ε,S0
t,s(u)

)
dW(u).

Taking expectations yields

h0(t, b + ε, s) = E

[
h0

(
τn,B

0
t,b(τn) + ε,S0

t,s(τn)
)

+
∫ τn

t

Lnth0
(
u,B0

t,b(u) + ε,S0
t,s(u)

)
du

]
.

By Proposition 4.3, h0 is a classical solution of the HJB on [0, T ] × S0, and so we
see that

∫ τn

t

Lnth0
(
u,B0

t,b(u), S0
t,s (u)

)
du ≥ 0

and hence

h0(t, b + ε, s) ≥ E
[
h0

(
τn,B

0
t,b(τn) + ε,S0

t,s(τn)
)]

. (4.9)

Next, since ∂th0 ≤ 0 and h0(T , b, s) = V (T , b, s) = Up(b + (1 − μ)s), we have
h0(t, b, s) ≥ Up(b + (1 − μ)s) and hence

h0
(
τn,B

0
t,b(τn) + ε,S0

t,s(τn)
) ≥ Up(ε).

We can therefore send n → ∞ in (4.9), use Fatou’s lemma and ∂bh0 ≥ 0 to obtain

h0(t, b + ε, s) ≥ E
[
h0

(
τ ∧ ϑ,B0

t,b(τ ∧ ϑ) + ε,S0
t,s(τ ∧ ϑ)

)]

≥ E
[
h0

(
τ ∧ ϑ,B0

t,b(τ ∧ ϑ),S0
t,s(τ ∧ ϑ)

)]
.

Sending ε ↓ 0 then shows that h is superharmonic.
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Case 2: s ≤ 0 and t ≥ tdown. For simplicity, we write τ̃ := τ ∧ϑ . If t ≥ tdown, then
(L∗,M∗) performs an initial transaction from (b, s) to (b + (1 + λ)s,0) so that

h0(t, b, s) = h
(
t, b + (1 + λ)s,0

) = Up

(
b + (1 + λ)s

)
. (4.10)

On the other hand, by the same arguments and Jensen’s inequality, we have

E
[
h0

(
τ̃ ,B0

t,b(τ̃ ), S0
t,s(τ̃ )

)] = E
[
h0

(
τ̃ ,B0

t,b(τ̃ ) + (1 + λ)S0
t,s(τ̃ ),0

)]

= E
[
Up

(
B0

t,b(τ̃ ) + (1 + λ)S0
t,s(τ̃ )

)]

≤ Up

(
E[B0

t,b(τ̃ ) + (1 + λ)S0
t,s(τ̃ )])

= Up

(
b + (1 + λ)E[S0

t,s(τ̃ )]).
Now since S0

t,s is a supermartingale for every s ≤ 0, it follows that E[S0
t,s(τ̃ )] ≤ s and

hence

E
[
h0

(
τ̃ ,B0

t,b(τ̃ ), S0
t,s (τ̃ )

)] ≤ Up

(
b + (1 + λ)s

) = h0(t, b, s)

by the monotonicity of Up and (4.10).
Case 3: s ≤ 0 and t < tdown. We have

h0
(
τ̃ ,B0

t,b(τ̃ ), S0
t,s (τ̃ )

) = h0
(
τ̃ ,B0

t,b(τ̃ ), S0
t,s(τ̃ )

)
1{τ̃<tdown}

+ h0
(
τ̃ ,B0

t,b(τ̃ ), S0
t,s (τ̃ )

)
1{τ̃≥tdown}.

On {τ̃ ≥ tdown}, we have as before that

E
[
h0

(
τ̃ ,B0

t,b(τ̃ ), S0
t,s(τ̃ )

)] ≤ Up

(
b + (1 + λ)s

) = h0(t, b, s);

so we may without loss of generality assume that τ̃ < tdown. However, since we know
by Lemma 4.4 and Proposition 4.5 that h0 is C1,2 and satisfies the HJB in the classical
sense, we obtain

h(t, b, s) ≥ E
[
h0

(
τ̃ ,B0

t,b(τ̃ ), S0
t,s(τ̃ )

)]

as in the case s > 0. �

Proposition 4.12 The function h0 is nonincreasing in the direction of transactions.

Proof Fix (t, b, s) ∈ [0, T ] × S and let �,m ≥ 0 be such that
(
b − (1 + λ)� + (1 − μ)m, s + � − m

) ∈ S.

We have to show that

h0(t, b, s) ≥ h0
(
t, b − (1 + λ)� + (1 − μ)m, s + � − m

)
.

However, by Proposition 4.10, h(t, ·) is continuous and satisfies

Lbuyh0(t, b, s) ≥ 0 and Lsellh0(t, b, s) ≥ 0
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for every (t, b, s) ∈ ([0, T ) × S) \ {(t, b, s) ∈ [0, T ) × S : t ≥ tdown, s = 0} and
(t, b, s) �∈ F (defined in (2.3)) by Propositions 4.3, 4.5 and 4.7. Therefore, by the fun-
damental theorem of calculus for line integrals, we immediately obtain the claim. �

Combining Propositions 4.10–4.12 proves the optimality of (L∗,M∗).

Theorem 4.13 We have h0 ∈ H, and thus h0 = V and (L∗,M∗) is optimal.

Since h0 = V , we furthermore have the following regularity result.

Theorem 4.14 The value function V is continuous everywhere and (at least) of class
C1,2 except for possibly the points (t, b, s) for which one of the following statements
is true:

1) b = 0 and (t, b, s) is on the buy boundary.
2) πM = 1 and b = 0.
3) t = tdown and s ≤ 0. However, V(tdown, ·) ∈ C2(S \ {(b, s) ∈ S : s = 0}).
4) t ≥ tdown and s = 0. However, V(·, b,0) ∈ C∞((tdown, T )) for all b ≥ 0.
Moreover, V is of class C∞ on Rnt

0 .
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