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Abstract This paper is devoted to studying the difference between the fair strike of
a volatility swap and the at-the-money implied volatility (ATMI) of a European call
option. It is well known that the difference between these two quantities converges to
zero as the time to maturity decreases. In this paper, we make use of a Malliavin cal-
culus approach to derive an exact expression for this difference. This representation
allows us to establish that the order of convergence is different in the correlated and
uncorrelated cases, and that it depends on the behavior of the Malliavin derivative of
the volatility process. In particular, we see that for volatilities driven by a fractional
Brownian motion, this order depends on the corresponding Hurst parameter H. More-
over, in the case H > 1/2, we develop a model-free approximation formula for the
volatility swap in terms of the ATMI and its skew.
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1 Introduction

A volatility swap is a forward contract whose underlying is the future realized volatil-
ity of an asset price. It is well known (see for example Feinstein [11], Friz and
Gatheral [12], Carr and Lee [6, 7]) that the difference between the ATMI of a vanilla
option and the corresponding volatility swap price tends to zero as the time to matu-
rity decreases. Moreover, the sign of the difference between the above two quantities
is related to the skew of the implied volatility (see for example Demeterfi et al. [9]
and Carr and Lee [6]).

This paper is devoted to contributing to the study of the link between volatility
derivatives and the ATMI of vanilla options in the context of stochastic volatility
models. Our analysis does not require a specific model and can be applied to the
case of fractional volatility models, introduced by Comte and Renault [8] (with Hurst
parameter H > 1/2), to explain the long-time behavior of the implied volatility. Alos
et al. [4] proposed to consider volatility models with H < 1/2 to explain the empirical
short-time skew of the ATMI. Recently, fractional models with H < 1/2 have been
further studied by Fukasawa [13] and have been proved to be interesting as a tool to
describe real market data (see for example Gatheral et al. [15]).

Even when the classical literature focuses on volatility models that are diffusion
processes, several recent works include the case of fractional volatilities. Among
them, we can quote the paper by Bergomi and Guyon [5], where the authors pre-
sented a vol-of-vol expansion of the ATMI around the variance swap. More recently,
El Euch et al. [10] proved a small-time Edgeworth expansion of the density of the
asset price, from which they deduced an expansion (again around the variance swap)
of the ATMI, for models with Hurst parameter H € (0, %].

Our approach uses Malliavin calculus techniques that allow us to find an explicit
expression for the difference between the ATMI and the fair strike of the volatil-
ity swap in terms of the Malliavin derivative of the volatility process, both in the
uncorrelated (see Proposition 3.1) and correlated (see Proposition 4.1) cases. As an
application of these explicit decompositions, we compute the rate of convergence
of this difference and see that this rate depends on the regularity properties of the
Malliavin derivative. In particular, for models based on fractional Brownian motion,
we prove that this difference is of the order O(T'*2H) in the uncorrelated case,
where T denotes the time to maturity. In the correlated case, the difference is of the

order O(T*!) if H < 1/2, and of the order O(TH+%) if H > 1/2. These results
give us a tool to estimate the Hurst parameter of fractional volatilities, as we see in
the numerical examples in Sect. 5.

The paper is organized as follows. Section 2 is devoted to introducing the main
concepts and notations. In Sect. 3, we prove a representation of the difference be-
tween the ATMI and the volatility swap in the case when the volatility process and
the asset price are uncorrelated. This representation allows us to deduce the order
of convergence of this difference, in terms of the Hurst parameter of the volatility
process. Moreover, we prove a limit relationship between the implied volatility, its
curvature and the volatility swap. In Sect. 4, we extend the results in Sect. 3 to the
correlated case. Finally, some numerical examples of a fractional volatility model are
presented in Sect. 5.
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Volatility swaps and the Hurst parameter 425

2 The main problem and notations

In this paper, we consider for the log-price of a stock under a risk-neutral probability
measure P the model

1 t t
X, = XO_E/O Uszds—i-/o o5 (pd Wy ++/1 — p2dBy), tel0, T]. (.1

Here, X is the current log-price, W and B are standard Brownian motions defined
on a complete probability space (2, G, P), and o is a square-integrable (meaning
E[ fOT aszds] < 00) and right-continuous stochastic process adapted to the filtration
generated by W. In the following, we denote by " and F5 the filtrations generated
by W and B and define F := F" v FB. We assume the interest rate r to be zero
for the sake of simplicity. The arguments in this paper still hold if there exists a
deterministic drift term in (2.1).
The price of a European call with strike price K is given by the equality

V, = E[(e*T — K)T],

where E; denotes the JF;-conditional expectation with respect to P (meaning that

E[Z] = E[Z|F;]. In the sequel, we use the following notation:

- v(t,Y) = TY 7s where Y; = ftT auzdu. We abbreviate it as v; = v(t, Y;). That is,
v represents the future average volatility, so that it is not an adapted process. Notice
that E;[v;] is the fair strike of a volatility swap with maturity time 7.

— BS(t,T,x,k,o0) denotes the price of a European call option under the classical
Black—Scholes model with constant volatility o, current log stock price x, time to
maturity T — ¢ and strike price K = exp(k). Recall that in this case,

BS(t,T,x,k,0) =" N(dy(k,0)) — e N(d_(k, 0)),
where N is the cumulative distribution function of the standard normal law and

kf
dy(k,0):= + —
( _T = v
where k;° denotes the at-the-money strike, which coincides with x when the interest
rate is zero.
— The inverse function BS~!(z, T, x, k, -) of the Black=Scholes formula with respect
to the volatility parameter is defined, for all A > 0, via

BS(t,T,x,k, BS™'(t, T, x,k, 1)) = A

We also use the simplified notation BS~ Yk, ) :=BS~L(@t, T, X, k, M.
— For any fixed 7, T, X;, k, we define the implied volatility I (¢, T, X;, k) as the
quantity such that

BS(t, T, X, k, 12, T, Xt,k)) =V
Notice that I (¢, T, X;, k) = BS_I(t, T, X, k,V;) is the implied volatility for the
model price V;, which only depends ont, T, X;, k.
- H@t,T,x,k,0) —(———)BS(t T,x,k,0).

9x3
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426 E. Alos, K. Shiraya

We assume that the reader is familiar with the elementary results of the Malli-
avin calculus as given, for instance, in Nualart [16]. In the remainder of this paper,
]D)é{,z denotes the domain of the Malliavin derivative operator D" with respect to the
Brownian motion W. It is well known that ]D)]w’,2 is a dense subset of LZ(Q) and that
DV is a closed and unbounded operator from ID):,[’} to L2([0, T] x ). We also con-
sider the iterated derivatives D" for n > 1 whose domains are denoted by D’ff. We
use the notation L'v"’,2 = L%([0,T]; ]D)';",z).

We use the following anticipating Itd formula (see for example Alos [2]).

Proposition 2.1 Assume (2.1) and o* € }L;’,z. Let F :[0,T] x R? — R be a func-
tion in Cl'z([O, T] x Rz) such that for all t € [0, T], F and its partial derivatives
evaluated in (t, X;, Y;) are bounded by one positive constant C. Then it follows that

t 2

t
F(t. X, Y;) = F(0, Xo. Yo) + / 8y F (s, Xy, Yy)ds — f axF<s,xx,m"—;ds
0 0

t
+/ o F (s, X, Ys)as(des + 1_;02st)
0
t t
_/ ayF(s,Xx,Ys)aSzds—i—p/ 02, F (s, Xy, ¥,)O,ds
0 0
l t
+5 /0 9% F(s, Xy, Yy)o 2ds, (2.2)

where O := (f; DY a?dr)oy.

3 The uncorrelated case

Let us consider the following hypotheses:

(H1) There exist positive constants a, b such thata <o; <b forall ¢ € [0, T].
(H2) 02 eL!2,

The key tool in our analysis is the following relationship between the ATMI and the
volatility swap fair strike.
Proposition 3.1 Consider the model (2.1) with p = 0 and assume that (H1) and (H2)
hold. Then the at-the-money implied volatility admits the representation

I(Ia T» X[sk[*)

TN S [
LY Yoy U, (N'(dy (K, W,)))?

( [ \ fTD,WoEdsDZ ]
X | E-| N'(dy(kF, v)Z—L——"1) dr|,
V.

t
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Volatility swaps and the Hurst parameter 427

where
Ay :=E.[BSt,T,X;, k', v)l,

U, .= BSTL(k*, Ay).

Proof Notice that in the uncorrelated case, the Hull and White formula gives us that
the option price can be written as

V, = E/[BS(t, T, X;, k¥, v)].
Then the implied volatility is such that
1(t,T, X, k") = BS™V(kF, V)

= E[BS™'(kf, E(BS(t, T, X;, k', v)])]

= E[BS™'(kf, E[BS(t, T, X;, k", v)])
— BST'(k}, BS(t, T, X, k', vy))
+BST' (k. BS(t, T, X, k', v))]

= E[BS™' (k' E\(BS(t, T, X;, k", v)1)

— BS™' (K, BS(, T, X1, k', v)) ] + E:ilv,].

Now, as in Alos and Ledn [3], we can write
T
BS(ts T7 X[vkt*i vl) = EI[BS(tv Ts Xl‘sk;ks Uf)] +/ USdWS7
t

where U, can be computed by the Clark—Ocone formula and W is the Brownian
motion that drives the volatility process. Then

E[BS™'(k,E/(BS(t,T, X, k}', v)1) — BS~ ' (k, BS(t, T, X, , k', vp))]

= E[BS k), Ay) — BST (K}, A7)]

T 1 T
= —E, [/ (BS*I)/(k;*,A,)U,dW,JFE/ (le)”(k;*,A,)der], (3.1
t t

where (BS ') and (BS ~1)” denote, respectively, the first and second derivatives
of BS~! with respect to the last variable A. Notice that

r

w * / * fT Drwo—szds
U= E,[D) (BSt, T, X, k', v))]| = E, |:exp(X,)N (dy (K], v,))ﬁ],

which jointly with (H1) implies that
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428 E. Alos, K. Shiraya

T T T 2
EIU ((BS*)/(k;‘,Ar)Ur)zdr}swa[ / <E / D,Wazds> dri|
! 4T —1) p - §

<C(T,t).

This gives that the expectation of the stochastic integral in (3.1) is zero. Then we get

E[BS™' (X, E[(BS(t, T, Xs. kf, v)l) — BS™ (X, BS(t, T, X, k' v)) ]

1 T
=_§E,[/ (Bs—‘)”(k;",A,)U,Zdr].

t

Now, as
7

BS™YHY'(k*, Ay) = 4 , 3.2

(BS A 4(exp(X,)N'(d4 (k}, W1)))? G2
the proof is complete. d

In order to prove our limit results, we need the following hypotheses.

(H3) Hypothesis (H2) holds, and there exist two constants § € (—%, %) and C >0
such that forany 0 <r <s < T,

E DV} 1<C(s—r)°.

(H4) Hypotheses (H2) and (H3) hold, and the term

1 T T ) 2
7(T—t)3+25 Et|:/z (Er/ D,Was ds) dr]
r

has a finite a.s. limit as T — t.

The following theorem gives us that with reasonable parameters, the difference
between the volatility swap and the ATM implied volatility is very small, extending
the results by Carr and Lee [7].

Theorem 3.2 Consider the model (2.1) with p = 0 and assume that hypotheses (H1)—
(H4) hold. Then

. I(t,T,Xt,k;k)—Et[U[]
lim
T (T =12t

1 1 T g w_2 ?
- E E. | DYo2ds) a 5.
320, Tt (T — 1)3+2 ’[/t ( r-/r ro s) r] “
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Proof Proposition 3.1 gives us that

I(tv Ta Xl‘ak;k)

—E ! E ' b
R A T t[/ (N'(d4- (k. W)

T W _2 2
x (E, [N/(d+(k;", m)MD dri|.

Ut

Here, using similar arguments as in the proof of Proposition 3.1, we see that W, can
be expanded as

v, = E;[V,]

T
= E,[BS”(XZ,AT —/ USdWSﬂ
r

1 r — 1IN/ % 2
=E/[Yr]— EEr (BS™)"(k;, Ap)Ujd0
r
1 r — 1IN/ % 2
=Er[vt]_§Er (BS™)"(k;, Ap)Upd0 | .
r
Notice that (BS™!)"(k}", -) is bounded. This comes from hypothesis (H1) and (3.2).

Moreover, (H1) and (H3) imply that

fT erzs lys
TV | S C(T —1)27°,
2«/T—tv,

where C; is a positive constant. Then we get

U =E, |:exp(Xt)N’(d+(k*, )

v, = E[v]+ O((T — r)2+26) a.s.,
which jointly with (H1) and dominated convergence implies that

i LT X0 kD) — Eqlo]
Tt (T —1)2+2
LI N S

32 Tt (T — 1)3+25

T T nw_ 2 2
<i[ [ w (B ow (g - o) 225 o]
t 8 Uy

1 1 T T ow o\
— i E E. | DYolds) ar|.
320, Tt (T — 1)3+2 ’Ut ( / ros s) r}

Now the proof is complete. O
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430 E. Alos, K. Shiraya

Corollary 3.3 Assume a fractional volatility model of the form oy = f (BtH ), where
f e C; is a function with range in a compact set of Ry and BY is a fractional
Brownian motion with Hurst parameter H (see for example Alos et al. [4]). Then
(H1)-(H4) hold with § = H — 1/2, and then Theorem 3.2 implies that

1, T, X, k) — Eud=0((T —0'"?")  as.asT — 1.
Remark 3.4 Alos and Leén [3, Corollary 3.10] show that under some regularity con-
ditions,
2

I
lim — > . T, X, k*
T = a2 ¢ 0 ki)

1 1
lim DY o2d s.
~ dop T (T — )32 U ( / S) } .
Then Theorem 3.2 gives us that in the uncorrelated case,

1(t,T, X¢, kf) — E;[v] o} i 3k2 L, T, X, k)
1m = —— s
Tt (T —1)2+28 8 Tt (T —1)%

That is,

14, T, X, k) — Ey[v;] I T, X, k)* L 8L, T, X, k)
im =—— lim a.s.
T—t (T —1)2+28 8 Tt (T —1)%

Remark 3.5 Assume that (H3) holds with § = 0 and that for every ¢ € [0, T], there
exists a random variable D+ ~ such that

lim sup |E,[D)0?]1—Dfo?=0 as. (3.3)
T—tre(r,T]

Then Theorem 3.2 gives us that a.s.,

. I(t,T,Xt,k;k)—E[[vt]
lim
T—t (T — l)2
(D o)?
96(71‘

1
— lim
326[ T—t (T — t)3

x E{/T ((E /T D,Wovfds)2 - (/T Dja,zds)2>dr]. (3.4)
t r r

Now notice that
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Volatility swaps and the Hurst parameter 431
T T 2 T 2
E,I:/ ((Er/ DZVUSst) — (/ Dfafds) )dri|
t r r
T T T
= Et|:/ Er|:</ DrWaszds —/ D;"atzds>
t r r
T T
X </ Drwaszds +/ Dt+at2ds)i|dri|,
r r

which jointly with (3.3) and (3.4) gives us that

. 1@, T, X, k) — Ef[v] (Dt+‘7t2)2
lim =— a.s.
T—t (T —1)? 9607

4 The correlated case

We now consider the following hypotheses:
(H2) o e Ly
(H3') Hypothesis (H2) holds, and there exist two constants § € (—%, %) and C >0
such that forany 0 <r <s < T,
E,[D)o21<C(s—r)°,
E DYDY < C(s—r)P(s—0)°,
E,[DYDYDYo21<C(s —r)°(s —0)°(s —u)°.

(H5) Hypotheses (H1), (H2'), (H3) and (H4) hold, and the terms

(T—t)2+8 |:/ / DYo 2drds}
it ([ [ ororaras) |

1
WE/, (/ D, ordr) ds:|

! o W AW _2
mE’_/, / / D)D) Oududrds]

all have finite a.s. limits as 7 — ¢.

The following result gives us an exact decomposition for the at-the-money implied
volatility. This is the main tool in this section.

Proposition 4.1 Consider the model (2.1) and assume that hypotheses (H1), (H2')
and (H3') hold for some 8 € (—%, 1). Then
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432 E. Alos, K. Shiraya

1, T, X, k) =10, T, X, k")
T
Y —1\//7.% *
—Et[/ (BS™Y (K, Ty H s, T,Xs,kt,vs><1>sds},(4.1)
t

where 1 O(I, T, X;, k) denotes the implied volatility in the uncorrelated case p =0,

N
FS = E[[BS(I, T, X[,kt*, U;)] + gE[ [/ H(r, T, Xr, kl*’ Ur)q)rdr] s
t

and ®; := oy, ftT DtWUrzdr.
Proof We can write (see Alos et al. [4])
Vi= EBS(t, T, X1, kf, o)l + Af |
where
T p g *
A; =§E, H(s, T, X5, k[, v5)Pyds |.
t
Thus,
I, T, X, k)= BS™ (&}, Vi) = E([BS™' (k;'. V) + A])],

where V,O = E[BS(t, T, X;, kf, v;)]. Notice that because of the Hull and White for-
mula, this expression coincides with the option price in the uncorrelated case p = 0.
Then it follows that

E(BS7 k', VO + ATY — BST k!, vO))
_p T I *
_EEZ (BS ) (k 7FS)H(sa T’ XSak[avS)CDSdS )
t
which proves (4.1). Il

Theorem 3.2 and Proposition 4.1 allow us to prove the following result.

Theorem 4.2 Consider the model (2.1) and assume that hypotheses (H1), (H2'),
(H3), (H4) and (HS) hold for some § € (=1, 1). Then:

— If 6 <0, we have

. I(thaXl‘ak[*)_Ef[vt]
lim
T—1 (T —1)!+28

3p2
=lim———F©>1 DW zdrds
T—1 803 (T — t)*+2 t)4+25
p2 T
—lim—__F, D¥o,dr) d
T2t 200 (T — 1)3+2 [/, <fy s Or r) S}
p2 T T T W oW 2
—lim—2F __E DY DY o 2dudrd 5.
121 20,(T — )22 [/ / / s P quhar S] “
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— If 6 > 0, we have

I, T, X,k — E rer
lim ( ! ’)1 E vl _ lim P —E, [/ f DSWo—fdrds] a.s.
T—1 (T — )t T—t 4(T — )%t o Js

— If 6 =0, we have

. 1@, T, X, kf) — Ei[v]
lim
T—t (T —1)

_ W _2
= SR (T 803(T—t)4 [(f / Ds drds) ]
02 T

— lim ———FE, / / Dy crrdr> ds
Tt 204(T — t)‘ [ (
T t20’ (T 1)3 [/ / / DWDW 2dudrds:|
— t —

-I—} t4(T— )2 [/ / DW 2drds] a.s.

Proof The main idea of the proof is to see that I (¢, T, X;, k) — E[v] is a sum of
terms of a.s. order O ((T — 1)!19), terms of a.s. order O ((T —t)!+2%) and a.s. higher-
order terms. Then if § < 0, we have 1 +§ > 1 + 26 and the leading terms will be
those of order O((T — 1)'12%), while if § > 0, the leading terms will be those of
order O((T —t)'*?%). Notice that Proposition 4.1 gives us

I(ta T? Xl5k;k) - E[vl] = T] + Tza
where
Ty =1, T, X, k) — E[v,],

T
=LE, [/ (BS™VY (k' Ty)H (s, T, Xy, k¥, vs)cbsds} .
t

We know from Theorem 3.2 that 7} = O (T —¢)*12%). Then the proof reduces to see-
ing that 7> is a sum of terms of the orders O (T —)'*%) and O ((T —1)!+%%). To this
end, we apply the anticipating It6 formula (2.2) to the process H (s, T, X, k", vs) Js,
where J; = f YT (BS~YY (k*, T,)®udu. Then taking conditional expectations, we
get
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T
OZEt[H(taTvxl’kjavl)Jl_Ff H(SvTaXS’k;kva)dJS
t

T 2

3

+/ H(s, T, Xé,kt*,vé)JS (DWY)oAa’s
; 0xdo

T
0
—}—f a—H(s T, X5, k, Y)(D Js)ogds
t
Ty
+/ —H(S, T7 XSsk;kva)JSds
; Ot
T 3 v
+ —H(s, T, X, kf vs) Jsds
; 00 at
L
+/ B_H(S T, X, k; ) JYdY
'

T
0
+/ O H(s, T, Xy K, 03) Jsd X,
; 0Xx

1

T 82
+§/; ﬁH(S9TaXSsk[*1US)JSd(X>S}'

Now, using the relationships

1 9 2 9
—BS(t, T,x,k,0)= _8 —— |BS(t,T,x,k,0),
X

o(T —1) do X2 9
d 1,93 1 520

- BS(t, T, x, k,
<8t+ 27 9 2% gy ) B T ko)=

T
Dy Ji=p f (BS™Y (k. T)DY @, dr,
s
T
DYy, = ,o/ DY o2dr,
s
we obtain

T
0= Et [H(t’ T’ Xta k:: UI)JI - / H(Sv Ta XS’k;ka vS)(BS_l)/(le FS)CDst
t

0 T 83 82
+§ i ﬁ ax ) H(S T X“, Y)qu) ds

T 9 T
“1‘,0/ EH(S’ T’ X57kt*7vs) </ (BS—I)/(k*’Fr)(DSVVqu)dr> Usds}’
t s
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Volatility swaps and the Hurst parameter 435

which implies that

T = Et[gH(r, T, X,k vy

+—/ <8x3 >H(s T, X, ki, v5) Js@yds

102 T 9 T
+2 [ et Xk ([ BT T DY 0dr ) ovds
2 J; ox s
=T +T5+T5.

Now the proof is decomposed into three steps.
Step 1. Here we claim that T21 is of the a.s. order O ((T — 1)'1%). As
1
eXeN/(dy (kF, BS~V(k*, TONVT — 1
XN'(dy (Kf v) (1 dy (K, v»)

VUt T —1t Ut T —1t

(BS™Y (K}, Ty) =

H(ts TaXtvkt*vvl):

we have that
Tl
lim —2
Tt (T —t)1+8

1
:}%lm [ H(t T, Xt,kt,v,)./,:|

o P [eXfN/<d+(k;*:v,>) <l_d+(k,*,vt))

= lim
T—t 2(T —t)1+3 vT —t /T —t

T 1
X dods
/t eXiN/(dy (kif, BSTV kS, TONNT —1 :|

r T
[
= lim LEI / —ds
I AT -0 L),

. 1Y T Os T w2
=lim —————F; — D o7 drds
Tt 4T —0)> 7 ) v Jg

P r T T
= }E}tmbjt l / D;/VO"?dVdS] a.s. (42)
L N

Step 2. In this step, we show that T22 and T23 are the sum of terms of a.s. order

O((T — 1)1+20) plus terms of a.s. order O ((T — t)%+3‘3). We remark that we have
% + 36 > max (1 4+ 8, 1 +26). Applying again the anticipating It6 formula to the pro-
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436 E. Alos, K. Shiraya

cesses
33 92 OH
<@_@> H(S7 Ta XSvk;kva)ZS and a(sa Tﬂxé‘ak[*’vS)RS’
where
T
=/ o, Judu,
T T
:/ (/ (BS_l)/(k*,F,)(DSder)dr> oudu,
u
we get
5 ,02 33 82
T2 = ZE,‘ ﬁ ax Py} H(t T Xt, ,vt)Zt
T 3 2\ 2
P a a
+ 5/[ <@ - ﬁ) H(s, T, Xs’k;k’ v5) ZsDyds
T 3 2
0 0 0 w
+p0 — | — H(s, T, X5, ki, v5)(Dy' Zs)ogds | (4.3)
Loax \ax3 ax?
and

2
0 dH
T23 :—Et[a(t, T, X[1 kl*’ UI)RI

2

+p/T ¢ 8H( T, X,, k*, vs) Ry ®yd

= — — = S, , s
2/, \ox3  ox2 s Kt s

T9’H
+p[ W(S’ T7XS’k;k’UA‘)

T T
X (/ / (BS™Y (K7, I‘M)(DSWDrWd),,)dudr> asds]

4.4)

Alos et al. [4, Lemma 4.1] gives us that the last two terms in (4.3) and (4.4) are
as. O((T — 1)3+3%). Now, as

93 52 1 eXiN/ (dy (kS5 vr)) 4 2
<@ Y 2>H(t T Xt,k[,vt) 16 \/T——)S ( f(T_t) _48)’

1eX: N’ (d+(k*, v,))
4 T =07

(z T, X, k', vp) = (VAT —1) —4),
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it follows that
T2

lim ——2

50 (T — 1)1+25

)02 83
S — o
AT — 2 523

1 X N'(dy (kF, v))

Ay
4T -8 16

82
- 2)H(z T, X,,k,*,vt)Z,]

5 (T —1)?

— 48
V; )

T T
X / oy (f Dswarzdr>
t t

3p2

=lim —(/———
T—t 40[ (T _ t)4+28

3p2

= lim
T—1 4o (T — 1)4+2

T ¢r
X
(/s eX1N'(dy (kf', BS~'(k{'. T))))

E, [/tT (/XT Dswarzdr) ([f q>,.dr>asds]

ar )as|

T/ pT T T
x E; |:f (/ Dswarzdr> (f o,/ D,Woﬁd@dr)asds]
t s S r

302

= lim ———————
REENPrE (T — z)4+25

and
T’;
lim ——=————
Tt (T — t)1+25

Py

= l.
T2y 2(T — 1)1 +25

T T T T
E, [ / ( f pY¥ a}dr) ( / / i agdedr>ds]
t A} r
W _2
}Ln; 80, (T t)4+25 [(/ / Dy drds) ] a.s.

4.5)

oH i
E/| —@T, X, k', v)R;
0x

I
T 2T — 1)1 +28

02

2

lim ————
Tt 20,(T — 1)3+2

02

—lim ————
Tt 20,(T —t)3+28

0* [1 X N'(dy (K}, vr)
=
4

— lim ——~%
Tt 202(7‘ — 1)3+28

T T4

1
X/t /; eXr N'(dy(kf, BS~1(k}, TONVT — ¢

T
x <Dsw<c7,/ Dswauzdu>>drasds]
r
T
[/ / DWU,/ DY o2dudrds
f ]

Drwauzdudrds]

T T
E,[/ </ DAWU,dr) ds]
t s
T T T
E, |:/ / / DSWDrW(fuzdudrds:| a.s.
t s r

(4.6)
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Step 3. From the results in the last steps, we deduce that I (t, T, X;, k}') — E[v,] is
the sum of terms of the orders O((T — 1)), O((T — 1)'*2%) and higher-order
terms. Then we conclude that for § <0, I(¢,T, X;, k) — E[v] is of the order
O((T —1)'*?%), and that if § > 0, this difference is of the order O((T — r)!*?).
Taking into account (4.2), (4.5) and (4.6), the result follows. O

Corollary 4.3 Assume that oy = f (B,H ), where f € C; with range in a compact set
of Ry and (B,H ) is a fractional Brownian motion with Hurst parameter H. Then
6 = H — 1/2 and Theorem 4.2 proves that in the correlated case,

— ifH<1/2,then I(t,T, X;, k) — E/[v,]= O((T —t)*") as.as T — t;
—ifH>1/2,then I(t,T, X;, k") — E/[v,]= O((T —)"*1/2) as.as T — t.

Notice that if we compare with Corollary 3.3, we see that the order of convergence
is affected not only by the Hurst parameter, but also by the correlation. This result is
in line with the results by Fukasawa [14], where it was established that the leverage
effect (the negative correlation observed between the asset price and its volatility)
plays a crucial role in the ATM short-time behavior of the implied volatility.

Remark 4.4 Theorem 4.2 gives us thatif § > 0, a.s. as p — 0,

. I, T, X, k) — Ev]  p . 1 Tt W )
fm (T — 1)1+ :Z}Tfm/, /S D opdrds +0(p%).

Now taking into account the representation of the short-time limit skew in terms of
the Malliavin derivative of the volatility process (see Alos et al. [4]), we get

LT X k) — B _of @ T X k) 2
1 =— s+ 0 S. 0.
o (T — 1)1+ 2 imT g o TOWD asases

4.7
This equality is in line with the previous results in Carr and Lee [6, Sect. 6.5] on
the impact of correlation on volatility swap prices. Moreover, (4.7) gives in the case

H > 1/2 the model-free approximation formula

o 1T, X K901 .
E/vl~I1¢,T, X, k') — fﬁ(h T,X:, k(T —1), 4.8)
which is similar to the model-free first-order vol-of-vol expansion around the variance
swap by Bergomi and Guyon [5]. In the case § < 0, the obtained limit expressions are
more complex. Even when they would allow us to construct an approximation for the
volatility swap fair strike, it is not easy to establish a model-free relationship between

the fair strike of the volatility swap and the implied volatility skew.

Remark 4.5 Hypotheses (H1)—-(HS5) have been chosen for the sake of simplicity.
The same results can be extended to other stochastic volatility models (see (5.1) in
Sect. 5).
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5 Numerical examples

Consider the model (2.1) whose volatility process is given in the form
p252H

4H

0y = 0pexp (qu”— ) se[0,T], (5.1)

for some positive constants v and oy and where

§ aw,
H .
W, .=/ ’l_H
0 (s—r)2

for some Hurst parameter H € (0, 1). Also, we assume t < T < oo. This model is
similar to the fractional SABR model (see e.g. Akahori et al. [1]). We can prove
that this model satisfies (H2'), (H4) and (HS5). Nevertheless, it does not satisfy
(H1) or (H3). In order to see that the results in Theorem 4.2 still hold, we can
make use of an approximation argument. Let us define ¢ (x) := ogexp(x). For every
n > 1, consider a function ¢, € Cﬁ satisfying that ¢, (x) = ¢ (x) for any x € [—n, n],

$n(x) € [Pp(=2n) V ¢(x), p(=n)] for x < —n, and ¢, (x) € [p(n), P (x) A $(2n)] for

x > n. We define
2.2H
_ g Vs
o) =y <vWS T )

It is easy to see that o” satisfies (H1) and (H3') with 6 = H — % Then we can write
(we consider ¢ = 0 for the sake of simplicity)
10, T, Xo, k) — Elvol = 10, T, Xo, k) — I"(0, T, Xo, k)
+1"(0, T, Xo, ky) — E[vg]
+ Elvg] — E[vo]
=TT+ T+ T3,

where 1" and E[v;] denote, respectively, the implied volatility and the fair price of
the volatility swap under the volatility process o”. Now Theorem 4.2 gives us that (in

the correlated case p #0) T» = O(TZH) if H < %, and T, = 0(TH+%) if H> %
On the other hand,

P B e L :
v = 7/0 (o)2ds = 7/0 (¢n (@) ds,

v2s2H

where ag := vWSH — - Now, as ¢, (x) < max(¢(x), p(—n)) < ¢(x) + ¢(—n),
2(a*> 4+ b*) > (a+b)* and \Ja + b > Va+ b fora, b > 0, we get that
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; 1 (7 2
vy < 7/0 (¢(as) + ¢(—n)) ds

< ~/§<\/ % /O " (btan) s + \/ % fo ' (¢><—n>)2ds)

=v2(vo + ¢(—n)).

Then |vf} — vo| < (1 ++/2)vg + +/2¢(—n), which implies that
|T3] < E[lvy — vol]
<1+ ﬁ)E[lvo + 00 exp(_n)u{supsg[o‘ﬂ \ln(ax/oo)\>n}]

<(14++2) (E[(vo + 09 exp(—n))z])%

1

V2g2H !
H
X<P|: sup |vW;' — > n:|> . 5.2)
5€[0.T] 4H
Then if T < 1, taking n > 2, it follows that

1

oo )’
Pl sup (W= |) .
5€[0,7T] 2v
Now Markov’s inequality gives

H n 2v\7” 7\’
P| sup W) |>—|=<|—) E sup |W,"| . (5.3)
5€[0,T] 2v n 5€[0,T]

Moreover, by Nualart and Réagcanu [17, Lemma 7.4], we can easily deduce that for
any p > 4, there exists a positive constant C; such that

14
E[( sup |WSH|> ]§C1T”H.
s€[0,T]

This jointly with (5.2) and (5.3) gives T3 = O(T#). Then taking p > 4, it follows
that the order of this term is higher than the order of 75. Next, by the mean value
theorem, there exists a point & € (V', Vp) such that

02—

T3] < (1++/2) (E[(vo + 00 exp(—n))2]>

Ty =1(0.T, Xo.k3) — I"(0. T, Xo. kg) = (BS™1Y (k. £) (Vo — V).
where V' is the option premium with the approximated volatility o”. Then we get

. I(0,T, Xo, k) — I"(0, T, Xo, k%) . V-V
lim =Cy lim ———
T—0 T¢ T—0 Tat;
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for any o and for some C,. Now let us consider the following extension of the Hull
and White formula (see Willard [19] and Romano and Touzi [18]):

Vi = E[BS(t, T, X, k', /1= p2v)],
V' = E[BSGt, T, X! ki /1 —p2v])],

where
X, = Xt—l—p/ oy d Wy — / (05)2ds,
1 n 1 ny\2
X=X +p Udes_E (O'S)dS.
t 1

. . . 2
Then similar arguments as for 73 give thatif T < 1 and n > Z"—H,

Vo — V| < E[leX0 — X6+ E[eXo,/T(1 = p2)[up — v2]]
v o 1 1
< (E[@** +¢*0)*])? (E[1isup, 0.1, 1103 fo0) 151 ]) 2

RN
+.4/1— ,OZ(E[EZXO]) 2 (E[|U() - U(r)l|21{8upse[0.7‘] Hn(Us/O'O)‘>n}])

(ST

1

v on 1 1
= (E[(exo + eXO)Z]) : (E[l{supse[o,r] |1ﬂ(0s/<70)|>"}]) :
+/1= p2(ELeX0))?
2
x (1+ ﬁ)(E[(vo + oo exp(—n)) Lisup, 0.1 \ln(av/ao)|>n}])
1
I
§C3<P|: sup >ni|>
s€[0,T]
1
H no\*
< C3<P|: sup |[W,'| > —i|>
5€[0.T] 2v

for some C3 > 0. Then Markov’s inequality gives

D=

v2g2H

4H

Wi —

2w\ ¥ )’ 3
|V0—V61|§C3<—> E[( sup |W; |> } ,
n s€[0,T]
which implies that
pH _1
T1=0(T+72) a.s.,

and taking p > —+, the order of T is also higher than that of 75.
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5.1 Estimating the Hurst parameters

Hereafter, we use the parameters og = 10%, v = 0.2, and the correlation between the
asset price and its volatility is p = —0.8.
Let us consider a linear regression analysis with dependent variable

In|1(0, T, Xo, ky) — E[vol|

and independent variable In 7. According to our previous results, the correspond-
ing slope will be approximately 2H for H < 1/2 and 1/2 + H for H > 1/2. This
gives us a tool to estimate the Hurst parameter of the fractional volatility model. In
fact, if the obtained slope a is less than 1, we estimate H as a/2, while if a > 1,
the Hurst parameter is estimated as a — 1/2. In order to check the goodness of this
methodology, we have checked it numerically for different Hurst parameters. The re-
sults have been compared with the estimate obtained from the fact that the skew is
of the order H — 1/2 (which implies that a linear regression with dependent variable
g—,{(O, T, Xo, ki) and independent variable In 7" will have a slope equal to H — 1/2).

First we obtain the ATM option premiums whose maturities are from 0.0001 to
0.5 by using Monte Carlo simulation with 500 time steps for one year (the number of
partitions is max{500T, 100}) and 10° trials. Then the ATM implied volatilities are
calculated by the bisection method. The ATM skews % are obtained by the difference
method from the implied volatilities. The volatility swaps are also calculated by the
Monte Carlo method. We apply the Black—Scholes model as control variate to the
Monte Carlo simulations for calculating option premiums. The Hurst parameters are
setas 0.1,0.3,0.5,0.6 and 0.9. In order to estimate the Hurst parameters, we calculate
the ATM implied volatilities, volatility swaps and ATM skews with these steps, and
the results are shown in Table 1.

The linear regressions with dependent variable In|/(0, T', Xo, k5) — E[vol| and
independent variable In T give us the slopes used for estimating the Hurst parameter.
Moreover, we also estimate H from the obtained skew. The results are summarised
in Table 2.

Here T < x means that the maturities of the data which are used for the linear
regression are less than or equal to x years. For example, in the case of 7 < (0.2, the
linear regression analysis uses the data whose maturities are 0.2, 0.1, 0.01, 0.001,
0.0001. Furthermore, (A) shows the results estimated from the implied volatilities
and volatility swaps, and (B) shows those estimated from the skews. In (A), the Hurst
parameter estimates (the values in the estimated H rows) are calculated by “slope/2”
if the slope is less than 1, and by “slope — 0.5”, for slopes greater than 1. In (B), the
Hurst parameter estimates are calculated by “slope + 0.5”.

The results show that most of the Hurst parameters are estimated accurately. In
particular, the Hurst parameters estimated by skews are more precise than those es-
timated by implied volatilities and volatility swaps. However, volatility swaps and
at-the-money implied volatilities are directly observable from the market, while the
implied volatility skew needs to be computed from the implied volatility surface. We
also notice that the estimates obtained from the implied volatilities and the volatil-
ity swaps tend to be more accurate when we only use very short times to maturity.
The techniques presented in this paper could have a potential interest in FX markets,
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Table 2 Hurst parameters obtained from linear regressions

True H Maturities T <05 T<04 T <03 T <02 T <0.1 T <0.01
0.1 (A)  Slopes 0.244 0.241 0.237 0.232 0.227 0.215
estimated H 0.122 0.120 0.118 0.116 0.113 0.107

(B)  Slopes —0.401 —0.401 —0.401 —0.402 —0.401 —0.401

estimated H 0.099 0.099 0.099 0.098 0.099 0.099

0.3 (A)  Slopes 0.655 0.654 0.652 0.649 0.646 0.638
estimated H 0.328 0.327 0.326 0.325 0.323 0.319

(B)  Slopes —0.200 —0.200 —0.200 —0.200 —0.200 —0.200

estimated H 0.300 0.300 0.300 0.300 0.300 0.300

0.5 (A)  Slopes 1.002 1.002 1.002 1.001 1.002 1.002
estimated H 0.502 0.502 0.502 0.501 0.502 0.502

(B)  Slopes 0.000 0.000 0.000 0.000 0.000 0.000

estimated H 0.500 0.500 0.500 0.500 0.500 0.500

0.7 (A)  Slopes 1.242 1.241 1.240 1.238 1.235 1.229
estimated H 0.742 0.741 0.740 0.738 0.735 0.729

(B)  Slopes 0.200 0.200 0.200 0.200 0.200 0.200

estimated H 0.700 0.700 0.700 0.700 0.700 0.700

0.9 (A)  Slopes 1.427 1.424 1.421 1.416 1.408 1.388
estimated H 0.927 0.924 0.921 0.916 0.908 0.888

(B)  Slopes 0.400 0.400 0.400 0.400 0.400 0.400

estimated H 0.900 0.900 0.900 0.900 0.900 0.900

where volatility swaps are more popular than variance swaps and where maturities
can be very short.

5.2 Approximation of volatility swaps

Even when formula (4.8) is only valid in the case H > %, Theorem 3.2 gives us
that, in the uncorrelated case p = 0, the ATM implied volatility (which coincides in
this case with (4.8)) must be an accurate approximation for the volatility swap fair
price. In this subsection, we compare the values of our formula (4.8) with those of the
ATM implied volatility as the approximated values of volatility swaps. Tables 3 and
4 show the approximated volatility swaps using the ATM implied volatility (ATMI)
and our correction (formula (4.8)) for p = —0.8 and p = 0, respectively. The rows of
“volatility swap” are the original volatility swap values obtained by the Monte Carlo
simulation.

The rows named “error” are calculated as

(approximated value — volatility swap value)/(volatility swap value),

and are expressed as a percentage.
In the correlated case (i.e., p = —0.8), we can see that all errors of the new approx-
imation are lower than those obtained via the ATM implied volatility. In the uncor-
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related case, as predicted and according to Carr and Lee [7], the differences between
the volatility swap and the ATMI are much smaller than in the correlated case.
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