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Abstract In this paper, we give sufficient conditions guaranteeing the validity of the
well-known minimax theorem for the lower Snell envelope. Such minimax results
play an important role in the characterisation of arbitrage-free prices of American
contingent claims in incomplete markets. Our conditions do not rely on the notions
of stability under pasting or time-consistency and reveal some unexpected connec-
tion between the minimax result and path properties of the corresponding process
of densities. We exemplify our general results in the case of families of measures
corresponding to diffusion exponential martingales.
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1 Introduction

Let 0 < T < ∞ and let (�,F , (Ft )0≤t≤T ,P) be a filtered probability space, where
(Ft )0≤t≤T is a right-continuous filtration with F0 containing only the sets of proba-
bility 0 or 1 as well as all the nullsets of FT . In the sequel, we assume without loss
of generality that F = FT . Furthermore, let Q denote a non-empty set of probability
measures on F , all absolutely continuous with respect to P. We denote by L1(Q) the
set of all random variables X on (�,F ,P) which are Q-integrable for every Q ∈ Q
and such that supQ∈QEQ[|X|] < ∞. Let S = (St )0≤t≤T be a P-semimartingale with
respect to (Ft )0≤t≤T whose trajectories are right-continuous and have finite left lim-
its (càdlàg). Consider also another right-continuous (Ft )-adapted stochastic process
Y = (Yt )0≤t≤T with bounded paths, and let T stand for the set of all finite stopping
times τ ≤ T with respect to (Ft )0≤t≤T . We also assume that Y is quasi-left-upper-
semicontinuous with respect to P, i.e., lim supn→∞ Yτn ≤ Yτ P-a.s. holds for any se-
quence (τn)n∈N in T satisfying τn ↗ τ for some τ ∈ T .

The main objective of our work is to find sufficient conditions for the validity of
the minimax result

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = inf
Q∈Q

sup
τ∈T

EQ[Yτ ]. (1.1)

In financial mathematics, this type of result is useful in the characterisation of arbi-
trage-free prices of American contingent claims in incomplete markets. If M stands
for the family of equivalent local martingale measures with respect to S, i.e.,

M = {Q ≈ P : S is a local martingale under Q},
then the set �(Y) of so-called arbitrage-free prices for Y with respect to M can be
defined as the set of all real numbers c fulfilling two properties:

(i) c ≤ EQ[Yτ ] for some stopping time τ ∈ T and a martingale measure Q ∈M;
(ii) for any stopping time τ ′ ∈ T , there exists some Q′ ∈M such that c ≥ EQ′ [Yτ ′ ].
The above definition implies that given c ∈ �(Y), we have

sup
τ∈T

inf
Q∈M

EQ[Yτ ] ≤ c ≤ sup
τ∈T

sup
Q∈M

EQ[Yτ ].

The following important known result shows that we may characterise the set �(Y)

more precisely. It can be found in [23, Theorem 1.20] or [24].

Theorem 1.1 Suppose that {Yτ : τ ∈ T } is uniformly Q-integrable for any Q ∈ M,
and that Y = (Yt )0≤t≤T is upper-semicontinuous in expectation from the left with
respect to every Q ∈ M, that is, lim supn→∞ EQ[Yτn ] ≤ EQ[Yτ ] for any increasing
sequence (τn)n∈N converging to some τ ∈ T . If M denotes the set of equivalent local
martingale measures with respect to S, then the set �(Y) of arbitrage-free prices for
Y corresponding to M is a real interval with endpoints

πinf(Y ) := inf
Q∈M

sup
τ∈T

EQ[Yτ ] = sup
τ∈T

inf
Q∈M

EQ[Yτ ]
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and

πsup(Y ) := sup
Q∈M

sup
τ∈T

EQ[Yτ ] = sup
τ∈T

sup
Q∈M

EQ[Yτ ].

For a set Q of P-equivalent probability measures, the so-called lower Snell enve-
lope of Y (with respect to Q) is the stochastic process (U

↓,Y
t )0≤t≤T defined via

U
↓,Y
t = ess inf

Q∈Q
ess sup
τ∈T ,τ≥t

EQ[Yτ |Ft ], t ∈ [0, T ].

Then Theorem 1.1 tells us that the lower Snell envelope with respect to M at time 0
gives the greatest lower bound for the arbitrage-free price of the corresponding Amer-
ican option.

A natural question is whether a similar characterisation of the lower Snell envelope
at time 0 can be proved for sets Q of equivalent measures which are strictly “smaller”
than M. This question can be interesting for at least two reasons. First, the buyer (or
the seller) of the option may have some preferences about the set of pricing measures
Q resulting in some additional restrictions on Q such that Q ⊆ M. Second, the set
of all martingale measures M may be difficult to describe in a constructive way, as
typically only sufficient conditions for the relation Q ∈ M are available.

A careful inspection of the proof of Theorem 1.1 reveals that it essentially relies
on the minimax identity (1.1) with Q = M which is routinely proved in the liter-
ature using a special property of M which is known as stability under pasting. To
recall, a set Q of probability measures on F is called stable under pasting with re-
spect to (�,F , (Ft )0≤t≤T ,P) if all measures in Q are equivalent to P and for every
Q1,Q2 ∈ Q as well as τ ∈ T , the pasting of Q1 and Q2 in τ , that is, the probability
measure Q3 defined by the pasting procedure

Q3[A] := EQ1

[
Q2[A|Fτ ]

]
, A ∈ F ,

belongs to Q. Stability under pasting implies that the set Q is rather “big” if we
exclude the trivial case where it consists of only one element. Let us mention that the
property of stability under pasting is closely related to the concept of time-consist-
ency. As in [10], we call a set Q of probability measures on F which are all equivalent
to P time-consistent with respect to (�,F , (Ft )0≤t≤T ,P) if for any τ, σ ∈ T with
τ ≤ σ and any P-essentially bounded random variables X,Z, we have the implication

ess inf
Q∈Q

EQ[X|Fσ ] ≤ ess inf
Q∈Q

EQ[Z|Fσ ] =⇒ ess inf
Q∈Q

EQ[X|Fτ ] ≤ ess inf
Q∈Q

EQ[Z|Fτ ].

Other contributions to the minimax-relationship (1.1) use the property of recursive-
ness (see [3, 4, 5, 9])

ess inf
Q∈Q

EQ

[
ess inf
Q∈Q

EQ[X|Fσ ]
∣∣∣∣Fτ

]
= ess inf

Q∈Q
EQ[X|Fτ ],

assumed for stopping times σ, τ ∈ T with τ ≤ σ and any P-essentially bounded ran-
dom variable X. It may be easily verified that recursiveness and time-consistency are
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equivalent (see e.g. [10, proof of Theorem 12]). Moreover, stability under pasting
generally implies time-consistency (see Proposition 4.1 below and also [11, Theo-
rem 6.51] for the time-discrete case). To the best of our knowledge, all studies of the
minimax-relationship (1.1) so far considered only time-consistent sets Q (see Sect. 4
for a further discussion on this issue).

In this paper, we formulate conditions of a different kind on the family Q which
do not rely on the notions of consistency or stability, but still ensure the minimax
relation (1.1). The key is to impose a certain condition on the range of the mapping

μQ : F → �∞(Q), μQ(A)(Q) := Q[A],

where �∞(Q) denotes the space of all bounded real-valued mappings on Q. This
μQ is a so-called vector measure satisfying μQ(A1 ∪ A2) = μQ(A1) + μQ(A2) for
disjoint sets A1,A2 ∈F . We refer to μQ as the vector measure associated with Q.

The paper is organised as follows. In Sect. 2, we present our main result con-
cerning the sets Q whose associated vector measures have relatively compact range.
Next we deduce another criterion in terms of path properties of the corresponding
process of densities (dQ/dP)Q∈Q. The latter characterisation is especially useful for
the case of suitably parametrised families of local martingale measures. Specifically
in Sect. 3, we formulate an easy-to-check criterion for the case of processes of den-
sities corresponding to nearly sub-Gaussian families of local martingales. In Sect. 4,
we discuss related results from the literature. Section 5 contains a general minimax
result for lower Snell envelopes. The proofs of all relevant results are gathered in
Sect. 6, whereas the Appendix presents some auxiliary results on path properties of
nearly sub-Gaussian random fields.

2 Main results

Let us emphasise that Q consists of probability measures on F which are absolutely
continuous to P, but need not be equivalent. Throughout this paper, we assume that

(�,Ft ,P|Ft
) is atomless for every t > 0. (2.1)

Concerning the process Y , we assume that

Y ∗ := sup
t∈[0,T ]

|Yt | ∈ L1(Q), (2.2)

and often also

lim
a→∞ sup

Q∈Q
EQ[Y ∗1{Y ∗>a}] = 0. (2.3)

Moreover, the space �∞(Q) is endowed with the sup-norm ‖ · ‖∞. Using the notation
co(Q) for the convex hull of Q, our main minimax result reads as follows.
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Theorem 2.1 Let the range of μQ be relatively ‖ · ‖∞-compact. If Y = (Yt )0≤t≤T

fulfils (2.3) and if (2.1) holds, then

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈co(Q)

EQ[Yτ ] = inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ]. (2.4)

The proof of Theorem 2.1 may be found in Sect. 6.4.

Remark 2.2 Obviously, condition (2.3) implies (2.2). On our way to verifying Theo-
rem 2.1, we establish some auxiliary results which are interesting in their own right.
They rely on the weaker condition (2.2) only.

Remark 2.3 Let Q be relatively compact with respect to the topology of total varia-
tion, that is, the topology with metric dtv defined by

dtv(Q1,Q2) := sup
A∈F

|Q1(A) − Q2(A)|.

Then it is already known that {μQ(A) : A ∈ F} is relatively ‖ · ‖∞-compact (cf. [2]).
Moreover, if each member of Q is equivalent to P, then the set Q is not time-
consistent with respect to (�,F , (Ft )0≤t≤T ,P) whenever it has more than one el-
ement, (�,Ft ,P|Ft

) is atomless and L1(�,Ft ,P|Ft
) is weakly separable for every

t > 0. This is shown in Sect. 6.9. The above conditions on the filtration (Ft )0≤t≤T

are always satisfied if it is assumed to be the standard augmentation of the nat-
ural filtration induced by some d-dimensional right-continuous stochastic process
Z = (Zt )0≤t≤T on the probability space (�,F ,P) such that the marginals Zt have
absolutely continuous distributions for any t > 0, Z0 is constant P-a.s. and F0 is
trivial (see [7, Remark 2.3] or [8, Remark 3]).

Let us now present a simple sufficient criterion guaranteeing the validity of the
minimax relation (2.4). It turns out that under these conditions, Q fails to be time-
consistent.

Theorem 2.4 Let (2.1) and (2.3) be fulfilled. Furthermore, let d denote a totally
bounded semimetric on Q and let (dQ/dP)Q∈Q have P-a.s. d-uniformly continuous
paths. If supQ∈Q(dQ/dP) ≤ U P-a.s. for some P-integrable random variable U , then

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈co(Q)

EQ[Yτ ] = inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ].

If in addition L1(�,Ft ,P|Ft
) is weakly separable for every t > 0, then Q is not time-

consistent with respect to (�,F , (Ft )0≤t≤T ,P) whenever it consists of more than one
element and all elements of Q are equivalent to P.

The proof of Theorem 2.4 is relegated to Sect. 6.5.

Remark 2.5 The most restrictive condition of Theorem 2.4 is the uniform continuity
of paths of the process (dQ/dP)Q∈Q. In order to verify this condition, one obviously
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needs to put some constraints on the complexity of the set Q. In the next section,
we therefore turn to suitably parametrised (possibly by a functional parameter) fami-
lies of measures. Such parametrisations naturally arise in mathematical finance when
considering families of martingale pricing models.

3 Applications to parametrised families

Fix a semimetric space (�,d�) with finite diameter 	. Moreover, let us assume

Q = {Qθ : θ ∈ �} and Qθ �= Qϑ for θ �= ϑ. (3.1)

Then d� induces in a natural way a semimetric d on Q which is totally bounded if
and only if d� fulfils this property. We want to find conditions such that Q meets the
requirements of Theorem 2.4. To this end, we consider a situation where the processes
of densities corresponding to the probability measures from Q are related to a nearly
sub-Gaussian family of (local) martingales Xθ := (Xθ

t )0≤t≤T , θ ∈ �, that is, each
Xθ is a centered (local) martingale for which we assume that there is some C ≥ 1
such that

sup
t∈[0,T ]

E
[
exp

(
λ(Xθ

t − Xϑ
t )

)] ≤ C exp
(
λ2d2

�(θ,ϑ)/2
)

for θ,ϑ ∈ � and λ > 0.

In particular, this means that for fixed t ∈ [0, T ], any process (Xθ
t )θ∈� is a nearly

sub-Gaussian random field in the sense considered in the Appendix. In the case of
C = 1, we end up with the notion of sub-Gaussian families of local martingales.
The following result requires d� to be totally bounded, and it relies on metric en-
tropies with respect to d�. These are the numbers {lnN(�,d�; ε) : ε > 0}, where
N(�,d�; ε) denotes the minimal number of ε-balls needed to cover � with respect
to d�. In addition, we define

D(δ, d�) :=
∫ δ

0

√
lnN(�,d�; ε) dε.

Of special interest is D(δ, d�) for δ = 	, the diameter of � with respect to d�.

Proposition 3.1 Let Q be a parametric family of the form (3.1) such that the con-
ditions (2.3) and (2.1) are fulfilled. Furthermore, let d� be totally bounded and
let there exist a nearly sub-Gaussian family of local martingales Xθ = (Xθ

t )0≤t≤T ,
θ ∈ �, with associated family [Xθ ] = ([Xθ ]t )0≤t≤T , θ ∈ �, of quadratic variation
processes such that the process ([Xθ ]t )θ∈� has d�-uniformly continuous paths for
every t ∈ [0, T ] and

dQθ

dP

∣∣∣∣
Ft

= exp(Xθ
t − [Xθ ]t /2) pointwise in ω for t ∈ [0, T ] and θ ∈ �.

If supt∈[0,T ] E[exp(2Xθ
t )] < ∞ for some θ ∈ � and D(	,d�) < ∞, then

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈co(Q)

EQ[Yτ ] = inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ].



Minimax theorems for American options without time-consistency 215

Moreover, Q is not time-consistent with respect to (�,F , (Ft )0≤t≤T ,P) if each of
its members is equivalent to P, Q has more than one element and L1(�,Ft ,P|Ft

) is
weakly separable for every t > 0.

The proof of Proposition 3.1 may be found in Sect. 6.6.
The following example illustrates how Proposition 3.1 can be applied to practi-

cally interesting cases of diffusion type families of martingales.

Example 3.2 Let Z = (Zs)s≥0 be a Brownian motion on (�,F ,P) such that the pro-
cess (Zt )0≤t≤T is adapted to (Ft )0≤t≤T , and let V = (Vt )0≤t≤T be some R

d -valued
process (volatility) adapted to (Ft )0≤t≤T . Consider a class � of Borel functions
ψ : [0, T ] ×R

d → R such that for every ψ ∈ � ,

sup
x∈Rd

∫ T

0
ψ2(u, x) du < ∞. (3.2)

Then

d� : � × � →R, (ψ,φ) �→ sup
x∈Rd

√∫ T

0
(ψ − φ)2(u, x) du

is a well-defined semimetric on � . Assume that the process (ψ(t,Vt ))0≤t≤T is pro-
gressively measurable for each ψ ∈ � . Then the family of processes Xψ , ψ ∈ � ,
with

X
ψ
t :=

∫ t

0
ψ(u,Vu) dZu, t ∈ [0, T ],

is well-defined and the quadratic variation process of Xψ is given by

[Xψ ]t =
∫ t

0
ψ2(u,Vu) du, t ∈ [0, T ].

So by (3.2), each process (exp(X
ψ
t − [Xψ ]t /2))t∈[0,T ] satisfies the Novikov condi-

tion. Hence it is a martingale and the density process of a probability measure on F
which is absolutely continuous with respect to P.

For arbitrary ψ,ψ,φ ∈ � , we may observe by the Cauchy–Schwarz inequality for
every t ∈ [0, T ] that

|[Xψ ]t − [Xφ]t | ≤
(

d�(ψ,ψ) + d�(φ,ψ) + 2

√

sup
x∈Rd

∫ T

0
ψ

2
(u, x) du

)
d�(ψ,φ).

Hence for fixed t ∈ [0, T ], the process ([(Xψ)]t )ψ∈� has d� -Lipschitz-continuous
paths if d� is totally bounded. Moreover, it can be shown that Xψ , ψ ∈ � , is a nearly
sub-Gaussian family of martingales with respect to d� with C = 2. The proof of this
result can be found in Sect. 6.7.
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4 Discussion

Let us discuss some related results in the literature. In [13] and [14], the mini-
max relationship (1.1) is studied for general convex sets Q of probability measures
which are equivalent to P without explicitly imposing stability under pasting or time-
consistency. However, it is implicitly assumed there (see [13, proof of Lemma B.1]
and [14, proof of Proposition 3.1]) that one can find, for every τ ∈ T and any Q ∈ Q,
a sequence (Qk)k∈N of probability measures from Q which agree with Q on Fτ such
that

ess sup
σ∈T ,σ≥τ

EQk [Yτ |Fτ ] k→∞−−−→ ess inf
Q∈Q

ess sup
σ∈T ,σ≥τ

EQ[Yσ |Fτ ] P-a.s.

It turns out that the above relation can hold in general only for time-consistent sets Q.

Proposition 4.1 Let each member of Q be equivalent to P and define the set S(Q) to
consist of all uniformly bounded adapted càdlàg processes Z = (Zt )0≤t≤T such that
each of the single stopping problems

sup
τ∈T

EQ[Zτ ], Q ∈Q,

has a solution. Consider the following statements:

(1) Q is time-consistent.
(2) infQ∈QEQ[X] ≤ infQ∈QEQ[ess infQ∈QEQ[X|Fτ ]] holds for every P-essentially

bounded random variable X and every stopping time τ ∈ T .
(3) Q̂e := {Q ∈ Q̂ : Q ≈ P} is stable under pasting and

ess inf
Q∈Q

EQ[X|Fτ ] = ess inf
Q∈Q̂e

EQ[X|Fτ ] for P-essentially bounded X and τ ∈ T ,

where Q̂ denotes the set of all probability measures on the σ -algebra F such that
EQ[X] ≥ infQ′∈QEQ′ [X] for any P-essentially bounded random variable X.

(4) For an arbitrary process Z = (Zt )0≤t≤T ∈ S(Q) and for any τ ∈ T as well as
Q ∈ Q, there is some sequence (Qk)k∈N in Q whose elements agree with Q on
Fτ such that

ess sup
σ∈T ,σ≥τ

EQk
[Zσ |Fτ ] k→∞−−−→ ess inf

Q∈Q
ess sup

σ∈T ,σ≥τ

EQ[Zσ |Fτ ] P-a.s.

(5) Q is stable under pasting.

Then the statements (1)–(3) are equivalent and (4) follows from (5). Moreover, the
implication (4) ⇒ (1) holds.

The proof of Proposition 4.1 is relegated to Sect. 6.8.
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5 An abstract minimax result

Using the notation from (2.2), let us define the set X of all random variables X on
(�,F ,P) satisfying

|X| ≤ C(Y ∗ + 1) P-a.s. for some C > 0.

Note that X is a Stone vector lattice containing the set {Yτ : τ ∈ T } and the space
L∞(�,F ,P) of all P-essentially bounded random variables. Moreover, X ⊆ L1(Q)

is valid under (2.2), and in this case, we may introduce the mapping

ρQ : X →R, X �→ sup
Q∈Q

EQ[X].

We call ρQ continuous from above at 0 if ρQ(Xn) ↘ 0 for Xn ↘ 0 P-a.s.
In this section, we want to present a general abstract minimax relation (1.1) which

will be the starting point to derive the main result Theorem 2.1. It relies on the fol-
lowing key assumption.

(A) There exists some λ ∈ (0,1) such that for every τ1, τ2 ∈ Tf \ {0},

inf
A∈Fτ1∧τ2

ρQ
(
(1A − λ)(Yτ2 − Yτ1)

) ≤ 0,

where Tf denotes the set of stopping times from T with finitely many values.

Theorem 5.1 If Y = (Yt )0≤t≤T fulfils (2.2) and if ρQ is continuous from above at 0,
then under the assumption (A),

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈co(Q)

EQ[Yτ ] = inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ].

The proof of Theorem 5.1 is relegated to Sect. 6.2.
At this place, we may invoke the assumption of Theorem 2.1 that the range of

the vector measure μQ associated with Q is relatively compact with respect to the
sup-norm ‖ · ‖∞. As the following result shows, this condition essentially implies
assumption (A).

Proposition 5.2 Let Y = (Yt )0≤t≤T satisfy (2.2) and let ρQ be continuous from
above at 0. Suppose furthermore that {μQ(A) : A ∈ F} is relatively ‖ · ‖∞-compact.
If for τ1, τ2 ∈ Tf \ {0} the probability space (�,Fτ1∧τ2 ,P|Fτ1∧τ2

) is atomless, then

inf
A∈Fτ1∧τ2

ρQ
(
(1A − 1/2)(Yτ2 − Yτ1)

) ≤ 0.

The proof of Proposition 5.2 may be found in Sect. 6.3.
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6 Proofs

Let (2.2) be fulfilled. Note that under (2.2),

Yτ ∈ L1(Q) for τ ∈ T . (6.1)

Condition (6.1) implies that its Radon–Nikodým derivative dQ/dP satisfies for any
Q ∈ co(Q) that

Yτ

dQ

dP
is P-integrable for every τ ∈ T .

Let the set X and the mapping ρQ be defined as at the beginning of Sect. 5.

6.1 A topological closure of Q

Let M1(�,X ) denote the set of all probability measures Q on F such that X is
Q-integrable for every X ∈ X . Set

Q :=
{

Q ∈M1(�,X ) : sup
X∈X

(
EQ[X] − ρQ(X)

) ≤ 0
}
.

Obviously, co(Q) ⊆Q and

Q is convex and sup
Q∈Q

EQ[X] = ρQ(X) for all X ∈X . (6.2)

We endow Q with the coarsest topology σ(Q,X ) such that the mappings

ϕX : Q → R, Q �→ EQ[X], X ∈ X ,

are continuous. In the next step, we investigate when Q is compact with respect to
σ(Q,X ), with co(Q) being a dense subset.

Lemma 6.1 If (2.2) holds and if ρQ is continuous from above at 0, then Q is compact
with respect to σ(Q,X ) and Hausdorff. Moreover, co(Q) is a σ(Q,X )-dense subset
of Q, and Q is dominated by P.

Proof The topology σ(Q,X ) is Hausdorff because the set {ϕX : X ∈ X } is separating
points in Q. Let us now equip the algebraic dual X ∗ of X with the coarsest topology
σ(X ∗,X ) such that the mappings

hX : X ∗ →R,� �→ �(X), X ∈X ,

are continuous. The functional ρQ is sublinear. Then by a version of the Banach–
Alaoglu theorem (cf. [19, Theorem 1.6]), the set

	Q :=
{
� ∈ X ∗ : sup

X∈X
(
�(X) − ρQ(X)

) ≤ 0
}
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is compact with respect to σ(X ∗,X ). Moreover, ρQ is assumed to be continuous
from above at 0. This implies that every � ∈ 	Q satisfies �(Xn) ↘ 0 whenever
Xn ↘ 0. Since X is a Stone vector lattice containing the P-essentially bounded map-
pings on �, it generates the σ -algebra F , and an application of the Daniell–Stone
representation theorem yields that each � ∈ 	Q is uniquely representable by a prob-
ability measure Q�, namely

Q� : F → [0,1], A �→ �(1A).

Hence by the definition of Q, we obtain

	Q = {�Q : Q ∈Q} and �Q �= �Q̃ for Q �= Q̃, (6.3)

where

�Q :X → R, X �→ EQ[X] for Q ∈Q.

Obviously, we may define a homeomorphism from 	Q onto Q with respect to the
topologies σ(X ∗,X ) and σ(Q,X ). In particular, Q is compact with respect to the
topology σ(Q,X ).

Next, {�Q : Q ∈ co(Q)} is a convex subset of X ∗. We may draw on a version of
the bipolar theorem (cf. [19, Consequence 1.5]) to observe that the σ(X ∗,X )-closure
cl({�Q : Q ∈ co(Q)}) of {�Q : Q ∈ co(Q)} coincides with 	Q. Therefore (6.3) en-
ables us to define a homeomorphism from cl({�Q : Q ∈ co(Q)}) onto Q with respect
to the topologies σ(X ∗,X ) and σ(Q,X ). Thus co(Q) is a σ(Q,X )-dense subset of
Q, and by the definition of the topology σ(Q,X ), it may be verified easily that Q is
dominated by P. This completes the proof. �

Consider now the new optimisation problems

maximise inf
Q∈Q

EQ[Yτ ] over τ ∈ T (6.4)

and

minimise sup
τ∈T

EQ[Yτ ] over Q ∈Q. (6.5)

In view of (6.2), we obtain that (6.4) has the same optimal value as the corresponding
one with respect to Q and co(Q) instead of Q.

Proposition 6.2 Under assumption (2.2), we have

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈co(Q)

EQ[Yτ ].

The comparison of the optimal value of problem (6.5) with the corresponding
one with respect to co(Q) instead of Q is more difficult to handle. For preparation,

let us introduce a sequence (Y
k
)k∈N of stochastic processes Y

k := (Y
k

t )0≤t≤T via

Y
k

t := (Yt ∧ k) ∨ (−k). They all are adapted to (Ft )0≤t≤T .
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Lemma 6.3 If (2.2) is satisfied and if ρQ is continuous from above at 0, then

lim
k→∞ sup

Q∈Q

∣∣∣
∣ sup
τ∈T

EQ[Yτ ] − sup
τ∈T

EQ
[
Y

k

τ

]
∣∣∣
∣ = 0.

Proof For τ ∈ T and k ∈ N, we may observe that Y ∗ ∈ X by (2.2) and

∣∣Yτ − Y
k

τ

∣∣ ≤ 1{Y ∗>k}(Y ∗ − k).

Then due to (6.2),

sup
Q∈Q

∣∣∣∣ sup
τ∈T

EQ[Yτ ] − sup
τ∈T

EQ
[
Y

k

τ

]
∣∣∣∣ ≤ sup

Q∈Q
sup
τ∈T

EQ
[|Yτ − Y

k

τ |
]

≤ sup
Q∈Q

EQ
[
1{Y ∗>k}(Y ∗ − k)

]

= ρQ
(
1{Y ∗>k}(Y ∗ − k)

)

holds for any k ∈ N. Finally, 1{Y ∗>k}(Y ∗ − k) ↘ 0, and thus the statement of
Lemma 6.3 follows because ρQ is continuous from above at 0. �

In the next step, we replace in (6.5) the process Y with the processes Y
k
. We

want to examine when the optimal value coincides with the optimal value of the
corresponding problem with respect to co(Q) instead of Q.

Lemma 6.4 If (2.2) holds and if ρQ is continuous from above at 0, then

inf
Q∈Q

sup
τ∈T

EQ
[
Y

k

τ

] = inf
Q∈co(Q)

sup
τ∈T

EQ
[
Y

k

τ

]
for every k ∈ N.

Proof Let k ∈N and fix Q0 ∈ Q. In view of Lemma 6.1, its Radon–Nikodým deriva-
tive dQ0/dP is in the weak closure of {dQ/dP : Q ∈ co(Q)}, viewed as a subset of
the L1-space on (�,F ,P). Moreover, by Lemma 6.1, the set {dQ/dP : Q ∈ co(Q)}
is a relatively weakly compact subset of the L1-space on (�,F ,P). Then by the
Eberlein–Šmulian theorem (cf. e.g. [20]), we may select a sequence (Qn)n∈N in
co(Q) such that

lim
n→∞EQn[X] = lim

n→∞E

[
X

dQn

dP

]
= E

[
X

dQ0

dP

]
= EQ0 [X] (6.6)

for every P-essentially bounded random variable X.
Let us introduce the set Pe of probability measures on F which are equiva-

lent to P. Then for any Q ∈ Pe, the σ -algebra F0 contains all Q-nullsets of F
and Q[A] ∈ {0,1} for every A ∈ F0. In particular, the set T Q of all stopping times
with respect to (�,FT , (Ft )0≤t≤T ,Q) coincides with T for Q ∈ Pe. Note also that

(Y
k

t + k)0≤t≤T is a nonnegative, bounded, right-continuous and (Ft )-adapted pro-
cess which is quasi-left-upper-semicontinuous with respect to every Q ∈ Pe. Here
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quasi-left-upper-semicontinuity with respect to Q is understood as we have defined it

with respect to P. Hence by Fatou’s lemma, lim supm→∞ EQ[Y k

τm
+ k] ≤ EQ[Y k

τ + k]
for every Q ∈ Pe whenever (τm)m∈N is a sequence in T satisfying τm ↗ τ for some
τ ∈ T . Then we may draw on [16, Proposition B.6] to conclude that

∀ Q ∈ Pe ∃τ ∈ T : EQ
[
Y

k

τ + k
] = sup

τ∈T
EQ

[
Y

k

τ + k
]
. (6.7)

Let us define for Q ∈ co(Q) and λ ∈ (0,1) the probability measure Qλ on F by
Qλ := λQ + (1 − λ)P and the sets

Qλ := {Qλ : Q ∈ co(Q)}, λ ∈ (0,1).

Obviously, these sets are contained in Pe. Now define for λ ∈ (0,1) the sequence
(fn,λ)n∈N of mappings

fn,λ : T → R, τ �→ EQλ
n

[
Y

k

τ + k
]
.

Notice that the sequence (fn,λ)n∈N is uniformly bounded for λ ∈ (0,1) because

|Y k

τ + k| ≤ 2k for every τ ∈ T . (6.8)

We want to apply Simons’ lemma (cf. [22, Lemma 2]) to each sequence (fn,λ)n∈N.
For this purpose, it remains to show for fixed λ ∈ (0,1) that we may find for any
countable convex combination of (fn,λ)n∈N some maximiser. So let (λn)n∈N be a
sequence in [0,1] with

∑∞
n=1 λn = 1. We may define by

∞∑

n=1

λnQλ
n(A) =: Q(A) for every A ∈ F

a probability measure on F which belongs to Pe. Then by monotone convergence,

∞∑

n=1

λnfn,λ(τ ) =
∞∑

n=1

λn

∫ ∞

0
Qλ

n

[
Y

k

τ + k > x
]
dx

=
∫ ∞

0
Q

[
Y

k

τ + k > x
]
dx

= EQ
[
Y

k

τ + k
]

for τ ∈ T .

Moreover, by (6.7), there exists some τ∗ ∈ T such that

∞∑

n=1

λnfn,λ(τ∗) = EQ
[
Y

k

τ∗ + k
] = sup

τ∈T
EQ

[
Y

k

τ + k
] = sup

τ∈T

∞∑

n=1

λnfn,λ(τ ).

Therefore, the assumptions of [22, Lemma 2] are satisfied, and we obtain

sup
τ∈T

lim sup
n→∞

fn,λ(τ ) ≥ inf
f ∈co({fn,λ :n∈N}) sup

τ∈T
f (τ).
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For any finite convex combination f = ∑r
i=1 λifni ,λ, the probability measure

Q := ∑r
i=1 λiQni

is a member of co(Q) and

f (τ) = EQλ

[
Y

k

τ + k
]

for τ ∈ T .

Therefore, on the one hand,

sup
τ∈T

lim sup
n→∞

EQλ
n

[
Y

k

τ + k
] ≥ inf

Q∈Qλ
sup
τ∈T

EQ
[
Y

k

τ + k
]
.

On the other hand, by (6.6),

sup
τ∈T

lim sup
n→∞

EQλ
n

[
Y

k

τ + k
] = sup

τ∈T
(
λEQ0

[
Y

k

τ + k
] + (1 − λ)E

[
Y

k

τ + k
])

.

Hence by (6.8) and nonnegativity of (Y
k

t + k)0≤t≤T ,

λ sup
τ∈T

EQ0

[
Y

k

τ + k
] + (1 − λ)2k ≥ sup

τ∈T
(
λEQ0

[
Y

k

τ + k
] + (1 − λ)E

[
Y

k

τ + k
])

≥ inf
Q∈Qλ

sup
τ∈T

EQ
[
Y

k

τ + k
]

= inf
Q∈co(Q)

sup
τ∈T

(
λEQ

[
Y

k

τ + k
] + (1 − λ)E

[
Y

k

τ + k
])

≥ λ inf
Q∈co(Q)

sup
τ∈T

EQ
[
Y

k

τ + k
]
.

Then by sending λ ↗ 1,

sup
τ∈T

EQ0

[
Y

k

τ + k
] ≥ inf

Q∈co(Q)
sup
τ∈T

EQ
[
Y

k

τ + k
]
,

and thus

sup
τ∈T

EQ0

[
Y

k

τ

] ≥ inf
Q∈co(Q)

sup
τ∈T

EQ
[
Y

k

τ

]
.

This completes the proof because Q0 was arbitrarily chosen from Q ⊇ co(Q). �

We are ready to provide the following criterion which ensures that the optimal
value of (6.5) coincides with the optimal value of the corresponding problem with
respect to co(Q) instead of Q.

Proposition 6.5 Let (2.2) be fulfilled. If ρQ is continuous from above at 0, then

inf
Q∈Q

sup
τ∈T

EQ[Yτ ] = inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ].
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Proof Firstly, we have infQ∈Q supτ∈T EQ[Yτ ] ≤ infQ∈co(Q) supτ∈T EQ[Yτ ] because

co(Q) ⊆Q. Then we obtain by Lemma 6.4 for every k ∈N that

0 ≤ inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ] − inf
Q∈Q

sup
τ∈T

EQ[Yτ ]

= inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ] − inf
Q∈co(Q)

sup
τ∈T

EQ
[
Y

k

τ

]

+ inf
Q∈Q

sup
τ∈T

EQ
[
Y

k

τ

] − inf
Q∈Q

sup
τ∈T

EQ[Yτ ]

≤ 2 sup
Q∈Q

∣∣∣∣ sup
τ∈T

EQ[Yτ ] − sup
τ∈T

EQ
[
Y

k

τ

]
∣∣∣∣.

The statement of Proposition 6.5 follows now immediately from Lemma 6.3. �

6.2 Proof of Theorem 5.1

Let Q be defined as in the previous subsection. The idea of the proof is to verify first
duality of the problems (6.4) and (6.5), and then to apply Propositions 6.2 and 6.5.
Concerning the minimax relationship of the problems (6.4) and (6.5), we may reduce
considerations to stopping times with finite range if ρQ is continuous from above
at 0.

Lemma 6.6 If Y fulfils (2.2) and if ρQ is continuous from above at 0, then

(i) supτ∈T infQ∈QEQ[Yτ ] = supτ∈Tf
infQ∈QEQ[Yτ ].

(ii) infQ∈Q supτ∈T EQ[Yτ ] = infQ∈Q supτ∈Tf
EQ[Yτ ].

Here Tf denotes the set of all stopping times from T with finite range.

Proof For τ ∈ T , we may define by

τ [j ](ω) := min{k/2j : k ∈ N, τ (ω) ≤ k/2j } ∧ T

a sequence (τ r [j ])j∈N in Tf satisfying τ [j ] ↘ τ pointwise, and by right-continuity
of the paths of Y ,

lim
j→∞Yτ [j ](ω)(ω) = Yτ(ω)(ω) for any ω ∈ �. (6.9)

For the proof of (i), fix any τ ∈ T . Then |Yτ − Yτ [j ]| → 0 pointwise for j → ∞ due
to (6.9). Set

Ŷk := sup
j≥k

|Yτ − Yτ [j ]| for k ∈N.

This defines a sequence (Ŷk)k∈N of random variables Ŷk on (�,F ,P) which satisfy
|Ŷk| ≤ 2 supt∈[0,T ] |Yt | so that they belong to X . Since Ŷk ↘ 0 for k → ∞ and since
ρQ is continuous from above at 0, we obtain

0 ≤ ρQ(|Yτ − Yτ [j ]|) ≤ ρQ(Ŷj )
j→∞−−−→ 0.
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Hence by (6.2),

0 ≤
∣∣∣∣ inf

Q∈Q
EQ[Yτ ] − inf

Q∈Q
EQ[Yτ [j ]]

∣∣∣∣ ≤ ρQ(|Yτ − Yτ [j ]|) j→∞−−−→ 0,

and thus

sup
τ∈Tf

inf
Q∈Q

EQ[Yτ ] ≥ lim
j→∞ inf

Q∈Q
EQ[Yτ [j ]] = inf

Q∈Q
EQ[Yτ ].

Since τ was arbitrary, we may conclude that

sup
τ∈Tf

inf
Q∈Q

EQ[Yτ ] ≥ sup
τ∈T

inf
Q∈Q

EQ[Yτ ] ≥ sup
τ∈Tf

inf
Q∈Q

EQ[Yτ ],

where the last inequality is obvious due to Tf ⊆ T . So (i) is shown.
In order to prove (ii), fix any ε > 0. Then for arbitrary Q ∈ Q, we may find some

τ0 ∈ T such that

sup
τ∈T

EQ[Yτ ] − ε < EQ[Yτ0 ]. (6.10)

We have Yτ0[j ] → Yτ0 pointwise for j → ∞ and |Yτ0[j ]| ≤ supt∈[0,T ] |Yt | for every
j ∈ N. So in view of (2.2), we may apply the dominated convergence theorem to
conclude that

lim
j→∞EQ[Yτ0[j ]] = EQ[Yτ0 ],

and thus by (6.10),

sup
τ∈Tf

EQ[Yτ ] ≥ lim
j→∞EQ[Yτ0[j ]] = EQ[Yτ0 ] > sup

τ∈T
EQ[Yτ ] − ε.

Letting ε ↘ 0, we obtain

sup
τ∈Tf

EQ[Yτ ] ≥ sup
τ∈T

EQ[Yτ ] ≥ sup
τ∈Tf

EQ[Yτ ],

where the last inequality is trivial due to Tf ⊆ T . Since Q was arbitrary, (ii) follows
immediately. The proof is complete. �

In the next step, we show supτ∈Tf
infQ∈QEQ[Yτ ] = infQ∈Q supτ∈Tf

EQ[Yτ ].

Proposition 6.7 Let (2.2) be fullfilled. If ρQ is continuous from above at 0, then
under assumption (A) from Sect. 5,

sup
τ∈Tf

inf
Q∈Q

EQ[Yτ ] = inf
Q∈Q

sup
τ∈Tf

EQ[Yτ ].

Proof By assumption,

Y1/k → Y0 pointwise for k → ∞.
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Then

sup
�≥k

|Y1/� − Y0| ↘ 0 pointwise for k → ∞,

and sup�≥k |Y1/� − Y0| ∈ X due to sup�≥k |Y1/� − Y0| ≤ 2 supt∈[0,T ] |Yt |. Since ρQ is
continuous from above at 0, we may conclude from (6.2) that

0 ≤
∣∣∣
∣ inf

Q∈Q
EQ[Y1/k] − inf

Q∈Q
EQ[Y0]

∣∣∣
∣ ≤ sup

Q∈Q
EQ[|Y1/k − Y0|]

≤ ρQ
(

sup
�≥k

|Y1/� − Y0|
)

k→∞−−−→ 0.

In particular,

sup
τ∈Tf

inf
Q∈Q

EQ[Yτ ] = sup
τ∈Tf \{0}

inf
Q∈Q

EQ[Yτ ] (6.11)

and

inf
Q∈Q

sup
τ∈Tf

EQ[Yτ ] = inf
Q∈Q

sup
τ∈Tf \{0}

EQ[Yτ ]. (6.12)

We want to apply König’s minimax theorem (cf. [17, Theorem 4.9]) to the mapping

h : Q× Tf \ {0} → R, (Q, τ ) �→ EQ[−Yτ ].

For preparation, we endow Q with the topology σ(Q,X ) as defined in Sect. 6.1.
Then by the definitions of σ(Q,X ) and X along with (6.1), we may observe that

h(·, τ ) is continuous with respect to σ(Q,X ) for τ ∈ Tf \ {0}. (6.13)

By convexity of Q (see (6.2)), we also get for Q1,Q2 ∈Q, λ ∈ [0,1], τ ∈ Tf that

h
(
λQ1 + (1 − λ)Q2, τ

) = λh(Q1, τ ) + (1 − λ)h(Q2, τ ). (6.14)

In view of König’s minimax result along with (6.13), (6.14) and Lemma 6.1, it re-
mains to investigate when the following property is satisfied:

There exists some λ ∈ (0,1) such that for every τ1, τ2 ∈ Tf \ {0},
inf

τ∈Tf \{0}
sup
Q∈Q

(
h(Q, τ ) − λh(Q, τ1) − (1 − λ)h(Q, τ2)

) ≤ 0. (6.15)

By assumption (A), there exists some λ ∈ (0,1) such that for τ1, τ2 ∈ Tf \ {0},
inf

A∈Fτ1∧τ2

ρQ
(
(1A − λ)(Yτ2 − Yτ1)

) ≤ 0. (6.16)

Next, define for arbitrary τ1, τ2 ∈ Tf \ {0} and A ∈ Fτ1∧τ2 the stopping time
τA := 1Aτ1 + 1�\Aτ2 ∈ Tf \ {0}. In view of (6.2) and (6.16), we then get
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inf
τ∈Tf \{0}

sup
Q∈Q

(
h(Q, τ ) − λh(Q, τ1) − (1 − λ)h(Q, τ2)

)

≤ inf
A∈Fτ1∧τ2

sup
Q∈Q

(
h(Q, τA) − λh(Q, τ1) − (1 − λ)h(Q, τ2)

)

= inf
A∈Fτ1∧τ2

ρQ
(
(1A − λ)(Yτ2 − Yτ1)

) ≤ 0.

This shows (6.15), and by König’s minimax theorem, we obtain

inf
τ∈Tf \{0}

sup
Q∈Q

h(Q,τ) = sup
Q∈Q

inf
τ∈Tf \{0}

h(Q, τ ).

In view of (6.11) along with (6.12), this completes the proof of Proposition 6.7. �

Now we are ready to show Theorem 5.1.

Proof of Theorem 5.1 Under the assumptions of Theorem 5.1, we may apply Propo-
sitions 6.2 and 6.5 to obtain

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈T

inf
Q∈co(Q)

EQ[Yτ ]

and

inf
Q∈Q

sup
τ∈T

EQ[Yτ ] = inf
Q∈co(Q)

sup
τ∈T

EQ[Yτ ].

Moreover, in view of Lemma 6.6 along with Proposition 6.7, we have

sup
τ∈T

inf
Q∈Q

EQ[Yτ ] = sup
τ∈Tf

inf
Q∈Q

EQ[Yτ ] = inf
Q∈Q

sup
τ∈Tf

EQ[Yτ ] = inf
Q∈Q

sup
τ∈T

EQ[Yτ ].

Now the statement of Theorem 5.1 follows immediately. �

6.3 Proof of Proposition 5.2

Let the assumptions of Proposition 5.2 be fulfilled. Fix ε > 0. Observe that we have
|Yτ1 − Yτ2 |1{|Yτ1 −Yτ2 |>k} ↘ 0 for k → ∞. Since ρQ is continuous from above at 0,
we may select some k0 ∈ N such that

ρQ
(|Yτ1 − Yτ2 |1{|Yτ1 −Yτ2 |>k0}

) ≤ ε/3. (6.17)

The random variable |Yτ1 − Yτ2 |1{|Yτ1 −Yτ2 |≤k0} is bounded so that we may find some
random variable X on (�,F ,P) with finite range satisfying

sup
ω∈�

∣∣(Yτ2(ω) − Yτ1(ω)
)
1{|Yτ1 −Yτ2 |≤k0}(ω) − X(ω)

∣∣ ≤ ε/3

(cf. e.g. [18, Proposition 22.1]). In particular with Ỹ := Yτ2 − Yτ1 ,

ρQ
(∣∣Ỹ1{|Ỹ |≤k0} − X

∣∣) ≤ sup
ω∈�

∣∣Ỹ (ω)1{|Ỹ |≤k0}(ω) − X(ω)
∣∣ ≤ ε/3. (6.18)
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Since X has finite range, there exist pairwise disjoint B1, . . . ,Br ∈F and in addition
λ1, . . . , λr ∈ R such that X = ∑r

i=1 λi1Bi
. Now let (Ak)k∈N be any sequence in F .

We may observe by assumption that any sequence (μQ(Ak ∩ Bi))k∈N is relatively
‖ · ‖∞-compact for i = 1, . . . , r so that there exist a subsequence (Aϕ(k))k∈N and
f1, . . . , fr ∈ �∞(Q) such that

‖μQ(Aϕ(k) ∩ Bi) − fi‖∞
k→∞−−−→ 0 for every i ∈ {1, . . . , r}.

Then

sup
Q∈Q

∣∣∣∣EQ[1Aϕ(k)
X] −

r∑

i=1

λifi(Q)

∣∣∣∣ ≤
r∑

i=1

|λi |‖μQ(Aϕ(k) ∩ Bi) − fi‖∞
k→∞−−−→ 0.

This means that

{
(EQ[1AX])Q∈Q : A ∈F

}
is relatively‖ · ‖∞-compact. (6.19)

Next, let L1(�,Fτ1∧τ2 ,P|Fτ1∧τ2
) denote the L1-space on (�,Fτ1∧τ2 ,P|Fτ1∧τ2

) and
write L∞(�,Fτ1∧τ2 ,P|Fτ1∧τ2

) for the space of all P|Fτ1∧τ2
-essentially bounded ran-

dom variables. The latter is equipped with the weak* topology σ(L∞
τ1∧τ2

,L1
τ1∧τ2

).
Since the probability space (�,Fτ1∧τ2 ,P|Fτ1∧τ2

) is assumed to be atomless, we al-

ready know from [15, Lemma 3] that {1A : A ∈ Fτ1∧τ2} is a σ(L∞
τ1∧τ2

,L1
τ1∧τ2

)-dense
subset of the set 	 defined to consist of all Z ∈ L∞(�,Fτ1∧τ2 ,P|Fτ1∧τ2

) satisfying
0 ≤ Z ≤ 1 P-a.s. In particular, we may find a net (Ai)i∈I such that (1Ai

)i∈I con-
verges to 1/2 with respect to σ(L∞

τ1∧τ2
,L1

τ1∧τ2
). In view of (6.19), there is a subnet

(1Ai(j)
)j∈J such that

lim
j→∞ sup

Q∈Q
|EQ[1Ai(j)

X] − f (Q)| = 0 for some f ∈ �∞(Q).

Notice further that E[X dQ
dP |Fτ1∧τ2 ] is in L1(�,Fτ1∧τ2 ,P|Fτ1∧τ2

) for any Q ∈ Q. This
implies for every Q ∈ Q that

f (Q) = lim
j→∞EQ[1Ai(j)

X] = lim
j→∞E

[
1Ai(j)

X
dQ

dP

]

= lim
j→∞E

[
1Ai(j)

E

[
X

dQ

dP

∣∣∣Fτ1∧τ2

]]

= E

[
E

[
X

dQ

dP

∣∣∣Fτ1∧τ2

]
/2

]
= EQ[X/2].

Hence

sup
Q∈Q

|EQ[1Ai(j0)
X] −EQ[X/2]| < ε/3 for some j0 ∈ J. (6.20)

We may observe directly by the sublinearity of ρQ along with (6.17), (6.18) and
(6.20) that
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ρQ
(
(1Ai(j0)

− 1/2)(Yτ2 − Yτ1)
)

≤ ρQ
(
(1Ai(j0)

− 1/2)Ỹ>k0

) + ρQ
(
(1Ai(j0)

− 1/2)(Ỹ≤k0 − X)
)

+ ρQ
(
(1Ai(j0)

− 1/2)X
)

≤ ρQ
(|Ỹ>k0 |

) + ρQ
(|Ỹ≤k0 − X|) + ρQ

(
(1Ai(j0)

− 1/2)X
)

≤ ε/3 + ε/3 + ε/3 = ε,

where Ỹ>k0 := Ỹ1{|Ỹ |>k0} and Ỹ≤k0 := Ỹ1{|Ỹ |≤k0}. Hence we have shown that

inf
A∈Fτ1∧τ2

ρQ
(
(1A − 1/2)(Yτ2 − Yτ1)

) ≤ ε

which completes the proof by sending ε ↘ 0.

6.4 Proof of Theorem 2.1

Note first that for τ1, τ2 ∈ Tf \ {0}, there is some t > 0 such that Ft ⊆ Fτ1∧τ2 . There-
fore by assumption (2.1), the probability space (�,Fτ1∧τ2 ,P|Fτ1∧τ2

) is atomless for
τ1, τ2 ∈ Tf \ {0}. Then in view of Proposition 5.2 along with Theorem 5.1, it remains
to show the following auxiliary result.

Lemma 6.8 Let (2.2) be fulfilled and let the range of μQ be relatively ‖ · ‖∞-com-
pact. If ρQ(Y ∗1{Y ∗>a}) → 0 for a → ∞, then ρQ is continuous from above at 0.

Proof Let (Xn)n∈N be any nonincreasing sequence in X with Xn ↘ 0 P-a.s. and let
ε > 0. Then by the definition of X , we may find some C > 0 such that

0 ≤ Xn ≤ X1 ≤ C(Y ∗ + 1) P-a.s. for n ∈N.

Then for any n ∈ N and every k ∈ N, we may observe by sublinearity of ρQ that

0 ≤ ρQ(Xn) ≤ ρQ(Xn1{Y ∗≤k}) + ρQ(Xn1{Y ∗>k})

≤ ρQ(Xn1{Y ∗≤k}) + ρQ(C(Y ∗ + 1)1{Y ∗>k})

≤ ρQ(Xn1{Y ∗≤k}) + 2CρQ(Y ∗1{Y ∗>k}). (6.21)

Next, observe that (Xn1{Y ∗≤k})n∈N is uniformly bounded by some constant, say Ck ,
for any k ∈N. Then with Xk,n := Xn1{Y ∗≤k}, we obtain for k,n ∈ N that

0 ≤ ρQ
(
Xk,n

) = sup
Q∈Q

∫ ∞

0
Q

[
Xk,n > x

]
dx ≤

∫ Ck

0
sup
Q∈Q

Q
[
Xk,n > x

]
dx. (6.22)

Now fix k ∈ N and x ∈ (0,Ck). Since the range of μQ is relatively compact with
respect to ‖ · ‖∞, we may find for any subsequence (μQ({Xk,i(n) > x}))n∈N a further
subsequence (μQ({Xk,j (i(n)) > x}))n∈N such that

lim
n→∞ sup

Q∈Q

∣
∣μQ({Xk,j (i(n)) > x})(Q) − fk(Q)

∣
∣ = 0
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for some fk ∈ �∞(Q). Furthermore, Q[Xk,j (i(n)) > x] ↘ 0 for n → ∞ if Q ∈ Q.
This implies fk ≡ 0, and thus supQ∈Q Q[Xk,n > x] ↘ 0 for n → ∞. Hence in view
of (6.22), an application of the dominated convergence theorem yields

ρQ(Xn1{Y ∗≤k})
n→∞−−−→ 0 for k ∈ N.

Then by (6.21),

0 ≤ lim sup
n→∞

ρQ(Xn) ≤ 2CρQ(Y ∗1{Y ∗>k}) for k ∈ N.

Finally, by assumption, CρQ(Y ∗1{Y ∗>k}) → 0 for k → ∞ so that

0 ≤ lim sup
n→∞

ρQ(Xn) ≤ 0.

This completes the proof. �

Proof of Theorem 2.1 As discussed before Lemma 6.8, the statement of Theorem 2.1
follows directly by combining Proposition 5.2 and Theorem 5.1 with Lemma 6.8. �

6.5 Proof of Theorem 2.4

Since d is totally bounded, the completion (Q̌, ď) of (Q, d) is compact (see [26,
Sect. 9.2, Problem 2]). Since (dQ/dP)Q∈Q has P-almost surely d-uniformly con-
tinuous paths, we may find some A ∈ F with P[A] = 1 such that we may define a
nonnegative stochastic process (ZQ̌)Q̌∈Q̌ such that Z := Z•(ω) is continuous for any
ω ∈ A and ZQ = dQ/dP holds for Q ∈ Q (see [26, Theorem 11.3.4]).

Now let (Qn)n∈N be any sequence in Q. By compactness, we may select a sub-
sequence (Qi(n))n∈N which converges to some Q̌ ∈ Q̌ with respect to ď (see [26,
Theorem 7.2.1]). Since the process Z has ď-continuous paths on A, we obtain

dQi(n)

dP
(ω) = ZQi(n)

(ω)
n→∞−−−→ ZQ̌(ω) for all ω ∈ A.

Moreover, by assumption, (dQi(n)/dP)n∈N is dominated by some P-integrable ran-
dom variable U . Then an application of the dominated convergence theorem yields

E

[∣∣∣
∣
dQi(n)

dP
− ZQ̌

∣∣∣
∣

]
n→∞−−−→ 0.

Thus we have shown that Q is relatively compact with respect to the topology of total
variation as defined in Remark 2.3, and Theorem 2.4 may be concluded by combining
Remark 2.3 with Theorem 2.1.

6.6 Proof of Proposition 3.1

Fix t ∈ [0, T ]. By assumption, (Xθ )θ∈� is a nearly sub-Gaussian random field in
the sense of the Appendix. Then by Proposition A.2, we may fix some separable
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version (X̂θ
t )θ∈� of (Xθ

t )θ∈�. It is also assumed that there is some θ ∈ � such that

E[exp(2X̂θ
t )] = E[exp(2Xθ

t )] < ∞. In addition, by Proposition A.2 again, we may

find a nonnegative random variable Uθ
t and some At ∈F with P[At ] = 1 such that

E[exp(pUθ
t )] < ∞ for every p ∈ (0,∞), (6.23)

sup
θ∈�

exp
(
X̂θ

t (ω)
) ≤ exp

(
Uθ

t (ω)
)

exp
(
X̂θ

t (ω)
)

for ω ∈ At . (6.24)

By assumption and since At ∈ Ft , for every θ ∈ �,

Mθ
t := exp

(
X̂θ

t − [Xθ ]t /2
)
1At

defines a Radon–Nikodým derivative of Qθ |Ft
. Then due to the nonnegativity of the

process ([Xθ ]t )θ∈�, (6.24) yields

sup
θ∈�

Mθ
t ≤ exp(Uθ

t ) exp(X̂θ
t ) pointwise.

By (6.23) along with the assumptions on Xθ
t , the random variables exp(2Uθ

t ) and

exp(X̂θ
t ) are square-integrable. By the Cauchy–Schwarz inequality, exp(Uθ

t ) exp(X̂θ
t )

is therefore integrable so that (Mθ
t )θ∈� is dominated by some P-integrable random

variable. Thus by Theorem 2.4, it remains to show that (Mθ
t )θ∈� has d�-uniformly

continuous paths. For θ,ϑ ∈ �, we may conclude from (6.24) and the nonnegativity
of the process ([Xθ ]t )θ∈� that

|Mθ
t − Mϑ

t | ≤ (
exp(X̂θ

t ) + exp(X̂ϑ
t )

)(|X̂θ
t − X̂ϑ

t | + |[Xθ ]t /2 − [Xϑ ]t /2|)1At

≤ 2 sup
θ∈�

exp(X̂θ
t )

(
|X̂θ

t − X̂ϑ
t | + 1

2
|[Xθ ]t − [Xϑ ]t |

)
1At

≤ 2 exp(Uθ
t ) exp(X̂θ

t )
(
|X̂θ

t − X̂ϑ
t | + 1

2
|[Xθ ]t − [Xϑ ]t |

)
1At . (6.25)

In view of Proposition A.2, the process (X̂θ
t )θ∈� has d�-uniformly continuous paths

and ([Xθ ]t )θ∈� satisfies this property by assumption. Thus by (6.25), (Mθ
t )θ∈� has

d�-uniformly continuous paths.

6.7 Proof for Example 3.2

Firstly, each Xψ is a centered martingale. Secondly, by a time change, we may
construct an enlargement (�,FT , (F t )0≤t≤T ,P) of (�,F , (Ft )0≤t≤T ,P) with
� = � × �̃ for some set �̃ such that for every fixed pair ψ,φ ∈ � , there exists a

Brownian motion Z
ψ,φ

with (Z
ψ,φ

t )0≤t≤T adapted to (F t )0≤t≤T and such that for
every t ∈ [0, T ],

X
ψ

t − X
φ

t = Z
ψ,φ∫ t

0 (ψ−φ)2(u,Vu) du
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(see e.g. [21, proof of Theorem V.1.7]). Here we set for each ω = (ω, ω̃) ∈ �

X
ψ

t (ω) − X
φ

t (ω) = X
ψ

t (ω, ω̃) − X
φ

t (ω, ω̃) := X
ψ
t (ω) − X

φ
t (ω).

Then for fixed λ > 0, t ∈ [0, T ] and ψ,φ ∈ � , we obtain

E
[

exp
(
λ(X

ψ
t − X

φ
t )

)] = EP

[
exp

(
λZ

ψ,φ∫ t
0 (ψ−φ)2(u,Vu) du

)]

≤ EP

[
exp

(
λ max

0≤s≤d(ψ,φ)2
Z

ψ,φ

s

)]
.

Now we derive by the reflection principle for Brownian motion that

EP

[
exp

(
λ max

0≤s≤d(ψ,φ)2
Z

ψ,φ

s

)]
≤ 2EP

[
exp

(
λZ

ψ,φ

d(ψ,φ)2

)] = 2 exp
(
λ2d(ψ,φ)2/2

)
.

Hence (X
ψ
t ,ψ ∈ �) is a nearly sub-Gaussian family of local martingales with con-

stant C = 2.

6.8 Proof of Proposition 4.1

Let Q̂ and Q̂e be defined as in Proposition 4.1. Furthermore, let Lp(�,F ,P) denote
the classical Lp-space on (�,F ,P) for p ∈ [1,∞]. We need the following auxiliary
result for preparation.

Lemma 6.9 The set FQ̂ := {dQ/dP : Q ∈ Q̂} is closed with respect to the L1-norm.
It is even compact with respect to the L1-norm if Q is relatively compact with respect
to the topology of total variation. In this case, FQ̂e := {dQ/dP : Q ∈ Q̂e} is relatively

compact with respect to the L1-norm.

Proof The set FQ̂ is obviously convex, and it is also known to be the topologi-
cal closure of the convex hull co(FQ) of FQ with respect to the weak topology
on L1(�,F ,P) (see [19, Theorem 1.4]). Thus by convexity, FQ̂ is also the closed
convex hull of FQ with respect to the L1-norm topology. Moreover, if Q is rela-
tively compact with respect to the topology of total variation, the set FQ is relatively
L1-norm-compact so that its L1-norm-closed convex hull FQ̂ is L1-norm-compact
(see e.g. [1, Theorem 5.35]). This completes the proof because FQ̂e ⊆ FQ̂. �

Proof of Proposition 4.1 The implication (5) ⇒ (4) is already known (see [23,
Lemma 5.3], and [11, Lemma 6.48] for the discrete-time case). Concerning the impli-
cation (1) ⇒ (2), let τ ∈ T and X∈ L∞(�,F ,P). Then Z := ess infQ∈QEQ[X|Fτ ]
is in L∞(�,F ,P) and Fτ -measurable so that

ess inf
Q∈Q

EQ[X|Fτ ] = ess inf
Q∈Q

EQ[Z|Fτ ].

Then by the time-consistency in (1), we get
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inf
Q∈Q

EQ[X] = inf
Q∈Q

EQ[Z]

which shows (2).
Next, we want to show (2) ⇒ (3). Firstly, (2) obviously implies

inf
Q∈Q

EQ[X] = inf
Q∈Q

EQ

[
ess inf
Q∈Q

EQ[X|Fτ ]
]

for τ ∈ T and X ∈ L∞(�,F ,P),

which may be rewritten as

ρ0(X) = ρ0
( − ρτ (X)

)
for τ ∈ T and X ∈ L∞(�,F ,P), (6.26)

where

ρs(X) := ess sup
Q∈Q

EQ[−X|Fs] for X ∈ L∞(�,F ,P), s ∈ {0, τ }, τ ∈ T .

Since each member of Q is equivalent to P, we may observe from (6.26) that for
every τ ∈ T \ {0}, the functions ρ0, ρτ fulfil the assumptions and statement (a) from
[11, Theorem 11.22]. Then in the proof of this theorem, it is shown that

ρτ (X) = ess sup
Q∈Q̂e

EQ[−X|Fτ ] for X ∈ L∞(�,F ,P)

so that

ess inf
Q∈Q

EQ[X|Fτ ] = ess inf
Q∈Q̂e

EQ[X|Fτ ] for τ ∈ T and X ∈ L∞(�,F ,P). (6.27)

In order to verify (3), it remains to show that Q̂e is stable under pasting. So take
Q1,Q2 ∈ Q̂e, τ ∈ T , and let Q denote the pasting of Q1,Q2 in τ . Then for any
P-essentially bounded random variable X, (6.27) yields

EQ[X] = EQ1

[
EQ2[X|Fτ ]

]
≥ EQ1

[
ess inf
Q∈Q̂e

EQ[X|Fτ ]
]

= EQ1

[
ess inf
Q∈Q

EQ[X|Fτ ]
]

≥ inf
Q∈Q̂e

EQ

[
ess inf
Q∈Q

EQ[X|Fτ ]
]

= inf
Q∈Q

EQ

[
ess inf
Q∈Q

EQ[X|Fτ ]
]
.

Hence EQ[X] ≥ infQ∈QEQ[X] holds due to (2). Therefore Q belongs to Q̂, and thus

also to Q̂e.
Let us now turn to the implication (3) ⇒ (1). So take X,X ∈ L∞(�,F ,P) and

σ, τ ∈ T with σ ≤ τ such that

ess inf
Q∈Q

EQ[X|Fτ ] ≤ ess inf
Q∈Q

EQ[X|Fτ ].
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In view of (6.27), this means that

ess inf
Q∈Q̂e

EQ[X|Fτ ] ≤ ess inf
Q∈Q̂e

EQ[X|Fτ ]. (6.28)

Let ε > 0 with |X| ≤ ε P-a.s. and define the uniformly bounded, nonnegative càdlàg
process H = (Ht )0≤t≤T via Ht := 1{T }(t)(ε − X). Since Q̂e is stable under pasting
by (3), applying [23, Lemma 4.17] to H yields

ess sup
Q∈Q̂e

EQ[ε − X|Fσ ] = ess sup
Q∈Q̂e

EQ

[
ess sup
Q∈Q̂e

EQ[ε − X|Fτ ]
∣∣∣∣Fσ

]
.

In particular, we obtain

ess inf
Q∈Q̂e

EQ[X|Fσ ] = ess inf
Q∈Q̂e

EQ

[
ess inf
Q∈Q̂e

EQ[X|Fτ ]
∣∣∣
∣Fσ

]
.

In view of (6.27) along with (6.28), this implies

ess inf
Q∈Q

EQ[X|Fσ ] ≤ ess inf
Q∈Q

EQ[X|Fσ ].

For the implication (4) ⇒ (2), let X ∈ L∞(�,F ,P). There is some C > 0 such
that X + C ≥ 1 P-a.s. Then Zt := 1{T }(t)(X + C) defines a uniformly bounded,
nonnegative adapted càdlàg process Z = (Zt )0≤t≤T from S(Q). Furthermore, fix
Q ∈Q and τ ∈ T . By (4), we can find some sequence (Qk)k∈N in Q whose members
coincide with Q on Fτ such that

EQk
[X + C|Fτ ] = ess sup

σ∈T ,σ≥τ

EQk
[Zσ |Fτ ] k→∞−−−→ ess inf

Q∈Q
ess sup

σ∈T ,σ≥τ

EQ[Zσ |Fτ ] P-a.s.

Since in addition ess supσ∈T ,σ≥τ EQ[Zσ |Fτ ] = EQ[X + C|Fτ ] for every Q ∈ Q, we
obtain by dominated convergence that

EQ

[
ess inf
Q∈Q

EQ[X + C|Fτ ]
]

= lim
k→∞EQ

[
EQk

[X + C|Fτ ]
]

= lim
k→∞EQk

[
EQk [X + C|Fτ ]

]

= lim
k→∞EQk [X + C]

≥ inf
Q∈Q

EQ[X + C].

For the second equality, we have invoked that Qk|Fτ
= Q|Fτ

for every k ∈ N. Then
(2) is obvious, and the proof is complete. �

6.9 Proof for Remark 2.3

If the sets Q̂ and Q̂e are defined as in Proposition 4.1, then in view of Proposition 4.1,
it remains to show that under the assumptions of Remark 2.3, the set Q̂e is not stable
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under pasting with respect to (�,F , (Ft )0≤t≤T ,P). Since the set of all probability
measures on F which are equivalent to P is stable under pasting with respect to
(�,F , (Ft )0≤t≤T ,P) and contains Q̂e, we may define the minimal set Q̂st which is
stable under pasting and contains Q̂e . We want to show that Q̂e is a proper subset of
Q̂st within the setting of Remark 2.3. The argumentation is based on the following
observation.

Lemma 6.10 Let Lp(�,F ,P) denote the classical Lp-space on a probability space
(�,F ,P) for p ∈ [0,∞] and let (An)n∈N be a sequence in F satisfying

lim
n→∞E[1AnZ] = 1

2
E[Z] for every Z ∈ L1(�,F ,P). (6.29)

Then for any Z ∈ L1(�,F ,P) \ {0}, the sequence (1AnZ)n∈N does not have any
accumulation point in L1(�,F ,P) with respect to the L1-norm.

Proof Assume that there is some Z ∈ L1(�,F ,P) \ {0} such that the sequence
(1AnZ)n∈N has an accumulation point X ∈ L1(�,F ,P) with respect to the L1-norm.
By passing to a subsequence, we can assume that

E
[|1AnZ − X|] n→∞−−−→ 0. (6.30)

Therefore by Hölder’s inequality,

lim
n→∞E

[|1AnZW − XW|] = 0 for any W ∈ L∞(�,F,P). (6.31)

Applying (6.29) and (6.31), we get

E

[(
1

2
Z − X

)
W

]
= 0 for any W ∈ L∞(�,F ,P). (6.32)

Setting W := (( 1
2Z−X)∧1)∨(−1) in (6.32), we arrive at X = 1

2Z. Hence, by (6.30),

1

2
E[|Z|] = E

[∣∣
∣∣

(
1An − 1

2

)
Z

∣∣
∣∣

]
n→∞−−−→ 0.

This contradicts P[Z �= 0] > 0 and completes the proof. �

Proof for Remark 2.3 Let us fix different Q1,Q2 ∈Q ⊆ Q̂e. Since Q̂st is stable under
pasting, we may define for every τ ∈ T by

dQτ

dP
:= E[ dQ1

dP |Fτ ]
E[ dQ2

dP |Fτ ]
dQ2

dP

the Radon–Nikodým derivative with respect to P of some probability measure Qτ

which is in Q̂st. In particular, Q0 = Q2 and QT = Q1, and using the càdlàg modifica-
tions of the density processes

(
E

[
dQi

dP

∣∣∣∣Ft

])

0≤t≤T

, i = 1,2,
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we derive

dQt

dP
−→ dQ2

dP
for t ↘ 0.

Therefore, we may find some t0 ∈ (0, T ) such that Qt0 �= QT . Since by assumption
(�,Ft0 ,P|Ft0

) is atomless with L1(�,Ft0,P|Ft0
) being weakly separable, we may

draw on [15, Lemma 3] (or [6, Corollary C.4]) along with [6, Lemma C.1 and Propo-
sition B.1] to find some sequence (An)n∈N in Ft0 such that

lim
n→∞E[1AnZ] = 1

2
E[Z] for any Ft0 -measurable Z which is P -integrable.

In particular,

lim
n→∞E[1AnZ] = lim

n→∞E
[
1AnE[Z|Ft0 ]

] = 1

2
E

[
E[Z|Ft0 ]

] = 1

2
E[Z] (6.33)

holds for every Z ∈ L1(�,F ,P). Moreover, τn := t01An + T 1�\An defines a se-
quence (τn)n∈N in T which induces the sequence (Qτn)n∈N in Q̂st whose Radon–
Nikodým derivatives with respect to P satisfy, by the optional stopping theorem,

dQτn

dP
= E[ dQ1

dP |Ft0 ]1{τn=t0} +E[ dQ1
dP |FT ]1{τn=T }

E[ dQ2
dP |Ft0 ]1{τn=t0} +E[ dQ2

dP |FT ]1{τn=T }
dQ2

dP

= 1An

dQt0

dP
+ 1�\An

dQT

dP

= 1An

(
dQt0

dP
− dQT

dP

)
+ dQT

dP
.

Since Qt0 �= QT , we have dQt0/dP − dQT /dP ∈ L1(�,F ,P) \ {0}. So in view of
Lemma 6.10 along with (6.33), we may observe that the sequence

(
1An

(dQt0

dP
− dQT

dP

))

n∈N

does not have any accumulation point in L1(�,F ,P) with respect to the L1-norm,
and thus the sequence (dQτn/dP)n∈N also has no accumulation point. Hence we have
found a sequence in FQ̂st := {dQ/dP : Q ∈ Q̂st} without any accumulation point with
respect to the L1-norm. This means that FQ̂st is not relatively compact with respect
to the L1-norm. However, the set FQ̂e from Lemma 6.9 has been shown there to
be relatively compact with respect to the L1-norm. Hence FQ̂e �= FQ̂st , and thus Q̂e

is a proper subset of Q̂st. So by the construction of Q̂st, the set Q̂e is not stable
under pasting with respect to (�,F , (Ft )0≤t≤T ,P) so that Q is not time-consistent
with respect to (�,F , (Ft )0≤t≤T ,P) by Proposition 4.1. The proof for Remark 2.3 is
complete. �
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Appendix A: Paths of nearly sub-Gaussian random fields

Let (�,d) be some totally bounded semimetric space with diameter 	. For δ, ε > 0,
the symbols D(δ, d) and N(�,d; ε) are used in an analogous manner as the nota-
tions D(δ, d�) and N(�,d�; ε) from Sect. 3. We call a centered stochastic process
(Xθ )θ∈� a nearly sub-Gaussian random field with respect to d if there is some C ≥ 1
with

E
[

exp
(
λ(Xθ − Xϑ)

)] ≤ C exp
(
λ2 d(θ,ϑ)2/2

)
for θ,ϑ ∈ � and λ > 0. (A.1)

Note that by symmetry, condition (A.1) also holds for arbitrary λ ∈R. For C = 1, this
definition reduces to the ordinary notion of sub-Gaussian random fields. For further
information on sub-Gaussian random fields, see e.g. [12, Sect. 2.3]. By a suitable
change of the semimetric, we may describe any nearly sub-Gaussian random field as
a sub-Gaussian random field.

Lemma A.1 If (Xθ )θ∈� is a nearly sub-Gaussian random field with respect to d ,
then it is a sub-Gaussian random field with respect to d := εd for some ε > 1.

Proof Let C > 1 be such that (Xθ )θ∈� satisfies (A.1). Then ε := √
12(2C + 1) is as

required (cf. [12, Lemma 2.3.2]). �

The following properties of sub-Gaussian random fields are fundamental.

Proposition A.2 Let X = (Xθ )θ∈� be a nearly sub-Gaussian random field on some
probability space (�,F ,P) with respect to d . If D(	,d) < ∞, then X admits a
separable version, and each separable version of X has P-almost surely bounded
and d-uniformly continuous paths. In particular, for any separable version X̂ and for
every θ ∈ �, there is some random variable Uθ on (�,F ,P) such that

sup
θ∈�

X̂θ ≤ Uθ + X̂θ P-a.s. and EP[exp(pUθ)] < ∞ for every p ∈ (0,∞).

Proof In view of Lemma A.1, we may assume without loss of generality that X is
a sub-Gaussian random field with respect to d . It is already known (see [12, Theo-
rem 2.3.7]) that X admits a separable version, and that each such version has P-almost
surely bounded and d-uniformly continuous paths. Now fix any separable version X̂

of X and an arbitrary θ ∈ �. We have

sup
θ∈�

X̂θ ≤ X̂θ + sup
θ∈�

|X̂θ − X̂θ |,
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and the process (|X̂θ − X̂θ |)θ∈� is separable due to the separability of X̂. Then we
may find some at most countable subset �0 ⊆ � such that

sup
θ∈�

|X̂θ − X̂θ | = sup
θ∈�0

|X̂θ − X̂θ | P-a.s.

Hence Uθ := supθ∈�0
|Xθ − Xθ | defines a random variable on (�,F ,P) satisfying

Uθ = sup
θ∈�

|X̂θ − X̂θ | P-a.s.

It remains to show that EP[exp(pUθ )] < ∞ for p ∈ (0,∞). So fix p ∈ (0,∞). First,
observe that X̂ is again a sub-Gaussian random field. Thus by [12, Lemma 2.3.1], we
have

EP

[
exp

(( Xθ − Xϑ

√
6 d(θ,ϑ)

)2
)]

≤ 2 for θ,ϑ ∈ �, d(θ,ϑ) �= 0.

Hence we may apply the results from [25] with respect to the totally bounded semi-
metric d := √

6d . Note that (X̂θ )θ∈� is also separable with respect to d , and that
	 = √

6	 for the diameter 	 with respect to d . Since N(�,d; ε) ≤ N(�,d; ε/√6)

for every ε > 0, we obtain for every δ > 0 that

∫ δ

0

√
lnN(�,d; ε) dε ≤

∫ δ

0

√
lnN(�,d; ε/√6) dε = √

6D(δ/
√

6, d).

Then in view of [25, Corollary 3.2], we may find some constant C > 0 such that

P
[
Uθ > xC

√
6D(	,d)

] ≤ 2 exp(−x2/2) for x ≥ 1.

Furthermore, setting Ĉ := C
√

6D(	,d), we may observe that

∫ ∞

1
P
[
Uθ > xĈ

]
exp(xpĈ) dx ≤

∫ ∞

1
2 exp(−x2/2) exp(xpĈ) dx

≤ 2
√

2π exp(p2Ĉ2/2).

Then applying the change of variables formula several times, we obtain

∫ ∞

exp(pĈ)

P
[

exp(pUθ) > y
]
dy = pĈ

∫ ∞

1
P
[
Uθ > Ĉu

]
exp(pĈu) du < ∞.

Hence

EP[exp(pUθ)] =
∫ ∞

0
P
[

exp(pUθ) > y
]
dy < ∞

which completes the proof. �
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