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Abstract We apply the multilevel Monte Carlo method for option pricing problems
using exponential Lévy models with a uniform timestep discretisation. For look-
back and barrier options, we derive estimates of the convergence rate of the error
introduced by the discrete monitoring of the running supremum of a broad class of
Lévy processes. We then use these to obtain upper bounds on the multilevel Monte
Carlo variance convergence rate for the variance gamma, NIG and α-stable processes.
We also provide an analysis of a trapezoidal approximation for Asian options. Our
method is illustrated by numerical experiments.
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1 Introduction

Exponential Lévy models are based on the assumption that asset returns follow a
Lévy process [25, 10]. The asset price follows

St = S0 exp(Xt )
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where X is an (m,σ, ν)-Lévy process, i.e.,

Xt = mt + σBt +
∫ t

0

∫
{|z|≥1}

z J (dz,ds) +
∫ t

0

∫
{|z|<1}

z
(
J (dz,ds) − ν(dz)ds

)
,

where m is a constant, B is a Brownian motion, J is the jump measure and ν is the
Lévy measure (cf. [24, Theorem I.42]).

Models with jumps give an intuitive explanation of implied volatility skews and
smiles in the index option market and foreign exchange market ([10, Chap. 11]). The
jump fear is mainly on the downside in the equity market which produces a premium
for low-strike options; the jump risk is symmetric in the foreign exchange market so
that the implied volatility has a smile shape. Chapter 7 in [10] shows that models
building on pure jump processes can reproduce the stylised facts of asset returns, like
heavy tails and the asymmetric distribution of increments. Since pure jump processes
of finite activity without a diffusion component cannot generate a realistic path, it is
natural to allow the jump activity to be infinite. In this work, we deal with infinite-
activity pure jump exponential Lévy models, in particular models driven by variance
gamma (VG), normal inverse Gaussian (NIG) and α-stable processes which allow
direct simulation of increments.

We are interested in estimating the expected payoff value E[f (S)] in option pric-
ing problems. In the case of European options, it is possible to directly sample the fi-
nal value of the underlying Lévy process, but for Asian, lookback and barrier options,
the option value depends on functionals of the Lévy process and so it is necessary to
approximate those. In the case of a VG model with a lookback option, the conver-
gence results in [13] show that to achieve an O(ε) root mean square (RMS) error
using a standard Monte Carlo method with a uniform timestep discretisation requires
O(ε−2) paths, each with O(ε−1) timesteps, leading to a computational complexity
of O(ε−3).

In the case of a simple Brownian diffusion, Giles [16, 17] introduced a multilevel
Monte Carlo (MLMC) method, reducing the computational complexity from O(ε−3)

to O(ε−2) for a variety of payoffs. The objective of this paper is to investigate whether
similar benefits can be obtained for exponential Lévy processes.

Various researchers have investigated simulation methods for the running maxi-
mum of Lévy processes. Reference [15] develops an adaptive Monte Carlo method
for functionals of killed Lévy processes with a controlled bias. Small-time asymp-
totic expansions of the exit probability are given with computable error bounds. For
evaluating the exit probability when the barrier is close to the starting point of the
process, this algorithm outperforms a uniform discretisation significantly. Reference
[21] develops a novel Wiener–Hopf Monte Carlo method to generate the joint distri-
bution of (XT , sup0≤t≤T Xt ) which is further extended to MLMC in [14], obtaining
an RMS error ε with a computational complexity of O(ε−3) for Lévy processes with
bounded variation, and O

(
ε−4

)
for processes with infinite variation. The method

currently cannot be directly applied to VG, NIG and α-stable processes. References
[12, 11] adapt MLMC to Lévy-driven SDEs with payoffs which are Lipschitz with
respect to the supremum norm. If the Lévy process does not incorporate a Brownian
process, reference [11] obtains an O(ε−(6β)/(4−β)) upper bound on the worst case
computational complexity, where β is the BG index which will be defined later.
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In contrast to those advanced techniques, we take the discretely monitored maxi-
mum based on a uniform timestep discretisation of the Lévy process as the approxi-
mation. The outline of the work is as follows. First we review the multilevel Monte
Carlo method and present the three Lévy processes we consider in our numerical
experiments. To prepare for the analysis of the multilevel variance of lookback and
barrier, we bound the convergence rate of the discretely monitored running maximum
for a large class of Lévy processes whose Lévy measures have a power law behaviour
for small jumps, and have exponential tails. Based on this, we conclude by bounding
the variance of the multilevel estimators. Numerical results are then presented for the
multilevel Monte Carlo method applied to Asian, lookback and barrier options, using
the three different exponential Lévy models.

2 Multilevel Monte Carlo (MLMC) method

For a path-dependent payoff P based on an exponential Lévy model on the time in-
terval [0, T ], let P̂� denote its approximation using a discretisation with M� uniform
timesteps of size h� = M−� T on level �; in the numerical results reported later, we
use M = 2. Due to the linearity of the expectation operator, we have the identity

E[P̂L] = E[P̂0] +
L∑

�=1

E[P̂� − P̂�−1].

Let Ŷ0 denote the standard Monte Carlo estimate for E[P̂0] using N0 paths, and for
� > 0, we use N� independent paths to estimate E[P̂� − P̂�−1] using

Ŷ� = N−1
�

N�∑
i=1

(
P̂

(i)
� − P̂

(i)
�−1

)
.

For a given path generated for P̂
(i)
� , we can calculate P̂

(i)
�−1 using the same underlying

Lévy path. The multilevel method exploits the fact that V� := V[P̂� − P̂�−1] decreases
with �, and adaptively chooses N� to minimise the computational cost to achieve a
desired RMS error. This is summarised in the following theorem in [18, Theorem 1]
and [19, Theorem 1].

Theorem 2.1 Let P denote a functional of (St ), and let P̂� denote the correspond-
ing approximation using a discretisation with uniform timestep h� = M−� T . If there
exist independent estimators Ŷ� based on N� Monte Carlo samples, each with com-
plexity C�, and positive constants α,β, c1, c2, c3 such that α ≥ 1

2 min(1, β) and

i) |E[P̂� − P ]| ≤ c1 hα
� ,

ii) E[Ŷ�] =
{
E[P̂0], � = 0,

E[P̂� − P̂�−1], � > 0,

iii) V[Ŷ�] ≤ c2 N−1
� h

β
� ,

iv) C� ≤ c3 N� h−1
� ,
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then there exists a positive constant c4 such that for any ε < e−1, there are values L

and N� for which the multilevel estimator

Ŷ =
L∑

�=0

Ŷ�

has a mean square error with bound

MSE := E
[
(Ŷ −E[P ])2] < ε2

with a computational complexity C with bound

C ≤

⎧⎪⎨
⎪⎩

c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.

We focus on the multilevel variance convergence rate β in the following numerical
results and analysis since it is crucial in determining the computational complexity.

3 Lévy models

The numerical results to be presented later use the following three models.

3.1 Variance gamma (VG)

The VG process with parameter set (σ, θ, κ) is the Lévy process X with characteristic
function E[ exp(iuXt )] = (1 − iuθκ + 1

2σ 2u2κ)−t/κ . The Lévy measure of the VG
process is ([10, Table 4.5])

ν(x) = 1

κ |x|e
A−B|x| with A = θ

σ 2
and B =

√
θ2 + 2σ 2/κ

σ 2
.

One advantage of the VG process is that its additional parameters make it possible
to fit the skewness and kurtosis of the stock returns ([10, Sect. 7.3]). Another is that
it is easily simulated as we have a subordinator representation Xt = θGt + σBGt ,
in which B is a Brownian process and the subordinator G is a gamma process with
parameters (1/κ,1/κ).

For ease of computation, we use the mean-correcting pricing measure in
[25, Sect. 6.2.2], with risk-free interest rate r = 0.05. Let (exp(−rt)St ) be a mar-
tingale. This results in the drift being

m = r + κ−1 log

(
1 + θκ − 1

2
σ 2κ

)
.

After transforming the parameter representation to the definition we use, the calibra-
tion in [25, Table 6.3] gives σ = 0.1213, θ = −0.1436, κ = 0.1686.
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3.2 Normal inverse Gaussian (NIG)

The NIG process with parameter set (σ, θ, κ) is the Lévy process X with character-
istic function E[ exp(iuXt )] = exp( t

κ
− t

κ

√
1 − 2iuθκ + κσ 2u2) and Lévy measure

ν(x) = C

κ|x|e
AxK1(B|x|)

with

A = θ

σ 2
, B =

√
θ2 + σ 2/κ

σ 2
, C =

√
θ2 + 2σ 2/κ

2πσ
√

κ
,

where K1(x) is the modified Bessel function of the second kind (see [10, Sect. 4.4.3]).
As x → 0, K1 (x) ∼ 1

x
+O (1), while as x → ∞, K1(x) ∼ e−x

√
π

2|x| (1 +O( 1
|x| )).

In terms of simulation, the NIG process can be represented as Xt = θIt + σBIt ,
where the subordinator I is an inverse Gaussian process with parameters ( 1

κ
,1). Al-

gorithm 6.9 in [10] can be used to generate inverse Gaussian samples.
Using the mean-correcting pricing measure leads to

m = r − κ−1 + πCBκ−1
√

B2 − (A + 1)2.

Following the calibration in [25], we use the parameters σ = 0.1836, θ = −0.1313,
κ = 1.2819, and again use the risk-free interest rate r = 0.05.

3.3 Spectrally negative α-stable process

The scalar spectrally negative α-stable process has a Lévy measure of the form
([23, Sect. 1.2.6])

ν(x) = B

|x|α+1
1{x<0}

for 0 < α < 2 and some nonnegative B . We follow [23] to discuss another parametri-
sation of the α-stable process with characteristic function

E[ exp(iuXt )] = exp

(
− tBα|u|α

(
1 + isgn(u) tan

πα

2

))
if α �= 1,

E[ exp(iuXt )] = exp

(
− tB|u|

(
1 + i

2

π
sgn(u) log |u|

))
if α = 1,

where sgn(u) = |u|/u if u �= 0 and sgn(0) = 0. There are no positive jumps for the
spectrally negative process, which has a finite exponential moment E[ exp(uXt )] [4].

For this case, the mean-correcting drift is

m = r + Bα sec
απ

2
.

Sample paths of α-stable processes can be generated by the algorithm in [5]. Follow-
ing [4], we use the parameters α = 1.5597 and B = 0.1486.
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4 Key numerical analysis results

The variance V� = V[P̂� − P̂�−1] of the multilevel correction depends on the be-
haviour of the difference between the continuously and discretely monitored suprema
of X, defined for a unit time interval as

Dn = sup
0≤t≤1

Xt − max
i=0,1,...,n

Xi/n.

To derive the order of weak convergence for lookback-type payoffs, we are concerned
with E [Dn], which is extensively studied in the literature. For example, [13, 8, 9]
derive asymptotic expansions for jump-diffusion, VG, NIG processes, as well as es-
timates for general Lévy processes, by using Spitzer’s identity [26].

A key result due to Chen [8, Theorem 5.2.1] is the following:

Theorem 4.1 Suppose X is a scalar Lévy process with triple (m,σ, ν), with finite
first moment, i.e., ∫

{|x|>1}
|x|ν(dx) < ∞.

Then Dn = sup
0≤t≤1

Xt − max
i=0,1,...,n

Xi/n satisfies the following:

1. If σ > 0, then

E [Dn] = O(1/
√

n).

2. If σ = 0 and X is of finite variation, i.e.,
∫
{|x|<1} |x|ν(dx) < ∞, then

E [Dn] = O(logn/n).

3. If σ = 0 and X is of infinite variation, then

E [Dn] = O(n−1/β+δ),

where

β = inf

{
α > 0 :

∫
{|x|<1}

|x|α ν(dx) < ∞
}

is the Blumenthal–Getoor index of X, and δ > 0 is an arbitrarily small strictly
positive constant.

The VG process has finite variation with Blumenthal–Getoor index 0; the NIG
process has infinite variation with Blumenthal–Getoor index 1. They correspond to
the second and third cases of Theorem 4.1, respectively.

For the multilevel variance analysis, we require higher moments of Dn. In the pure
Brownian case, Asmussen et al. [1] obtain the asymptotic distribution of Dn, which
in turn gives the asymptotic behaviour of E[D2

n]. [13] extends their result to finite
activity jump processes with non-zero diffusion.
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However, in this paper we are looking at infinite activity jump processes. Our main
new result is therefore concerned with the Lp convergence rate of Dn for pure jump
Lévy processes. This will be used later to bound the variance of the multilevel Monte
Carlo correction term V� for both lookback and barrier options.

Theorem 4.2 Let X be a scalar pure jump Lévy process, and suppose its Lévy mea-
sure ν(x) satisfies

C2 |x|−1−α ≤ ν(x) ≤ C1 |x|−1−α for |x| ≤ 1,

ν(x) ≤ exp (−C3 |x|) for |x| > 1,

where C1,C2,C3 > 0, 0 ≤ α < 2 are constants. Then for p ≥ 1,

Dn = sup
0≤t≤1

Xt − max
i=0,1,...,n

Xi/n

satisfies

E[Dp
n ] =

{O (1/n) , p > 2α,

O((logn/n)
p
2α ), p ≤ 2α.

If in addition X is spectrally negative, i.e., ν(x) = 0 for x > 0, then

E[Dp
n ] =

{
O(n−p), 0 ≤ α < 1,

O(n−p/α+δ), 1 ≤ α < 2,

for any δ > 0.

We give the proof of this result later in Sect. 7.6. Note that for p = 1, the general
bound in Theorem 4.2 is slightly sharper than Chen’s result for α < 1

2 , is the same
for α = 1

2 , and is not as tight as Chen’s result for 1
2 < α < 2; the spectrally negative

bound is slightly sharper than Chen’s result for α < 1, and the bound is the same for
1 ≤ α < 2.

5 MLMC analysis

5.1 Asian options

We consider the analysis for a Lipschitz arithmetic Asian payoff P = P(S), where

S = S0 T −1
∫ T

0
exp (Xt )dt

and P is Lipschitz such that |P(S1) − P(S2)| ≤ LK |S1 − S2|. We approximate the
integral using a trapezoidal approximation

Ŝ := S0 T −1
n−1∑
j=0

1

2
h
(

exp(Xjh) + exp(X(j+1)h)
)
,

and the approximated payoff is then P̂ = P(Ŝ).
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Proposition 5.1 Let X be a scalar Lévy process underlying an exponential Lévy

model. If Ŝ, S are as defined above and
∫
{|z|>1} e

2z ν(dz) < ∞, then

E
[
(Ŝ − S)2] = O(h2).

The proof will be given later in Sect. 7.1. Using the Lipschitz property, the weak
convergence for the numerical approximation is given by

|E[P̂� − P ]| ≤ LKE[|Ŝ� − S|] ≤ LK

(
E[(Ŝ − S)2])1/2

,

while the convergence of the MLMC variance follows from

V� ≤ E[(P̂� − P̂�−1)
2]

≤ 2E[(P̂� − P)2] + 2 E[(P̂�−1 − P)2]
≤ 2L2

K E[(Ŝ� − S)2] + 2L2
K E[(Ŝ�−1 − S)2].

5.2 Lookback options

In exponential Lévy models, the moment generating function E[exp(q sup0≤t≤T Xt )]
can be infinite for a large value of q . To avoid problems due to this, we consider a
lookback put option which has a bounded payoff

P = exp(−rT )
(
K − S0 exp(m)

)+
, (5.1)

where m = sup0≤t≤T Xt . Note that P is a Lipschitz function of m, since we have
|P ′(x)| ≤ K . Without loss of generality, we assume T = 1 in the following.

Because of the Lipschitz property, we have the estimate |E[P − P̂�]| ≤ K E[Dn],
where n = M� = h−1

� . Therefore we obtain weak convergence for the processes cov-
ered by Theorem 4.1, with the convergence rate given by that theorem.

To analyse the variance, V� = V[P̂� − P̂�−1], we first note that

0 ≤ max
0≤i≤M�

Xi/M� − max
0≤i≤M�−1

Xi/M�−1 ≤ sup
0≤t≤1

Xt − max
0≤i≤M�−1

Xi/M�−1 = Dn,

where n = M�−1. Hence, we have

V� ≤ E[(P̂� − P̂�−1)
2] ≤ K2

E[D2
n].

Theorem 4.2 then provides the following bounds on the variance for the VG, NIG
and spectrally negative α-stable processes.

Proposition 5.2 Let X be a scalar Lévy process underlying an exponential Lévy
model. For the Lipschitz lookback put payoff (5.1), we have the following multilevel
variance convergence rate results:

1. If X is a variance gamma (VG) process, then V� = O (h�).
2. If X is a normal inverse Gaussian (NIG) process, then V� = O(h�| logh�|).
3. If X is a spectrally negative α-stable process with α > 1, then V� = O(h

2/α−δ
� ),

for any small δ > 0.
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5.3 Barrier options

We consider a bounded up-and-out barrier option with discounted payoff

P = exp(−rT )f (ST ) 1{sup0<t<T St<B} = exp(−rT )f (ST ) 1{m<log(B/S0)}, (5.2)

where again m = sup0<t<T Xt , and |f (x)| ≤ F is bounded. On level �, the numerical
approximation is

P̂� = exp(−rT ) f (ST ) 1{m̂�<log(B/S0)}, (5.3)

where m̂� = max0≤i≤M� Xih�
.

Our analysis for NIG and the spectrally negative α-stable processes requires the
following quite general result.

Proposition 5.3 If m is a random variable with a locally bounded density in a neigh-
bourhood of B and m̂ is a numerical approximation to m, then for any p > 0, there
exists a constant Cp(B) such that

E[|1{m<B} − 1{m̂<B}|] < Cp(B)‖m − m̂‖p/(p+1)
p .

Proof This result was first proved by Avikainen (Lemma 3.4 in [2]), but we give here
a simpler proof. If, for some fixed X > 0, we have |m − B| > X and |m − m̂| < X,
then 1{m<B} − 1{m̂<B} = 0. Hence,

E[|1{m<B} − 1{m̂<B}|] ≤ P[|m − B| ≤ X] + P[|m − m̂| ≥ X]
≤ 2ρsup(B)X + X−p ‖m − m̂‖p

p,

with the first term being due to the local bound ρsup(B) of the density of m and the
second to the Markov inequality. Differentiating the upper bound with respect to X,
we find that it is minimised by choosing Xp+1 = p

2ρsup(B)
‖m − m̂‖p

p , and we then
get the desired bound. �

Our analysis for the variance gamma process requires a sharper result customised
to the properties of Lévy processes.

Proposition 5.4 If X is a scalar pure jump Lévy process satisfying the conditions
of Theorem 4.2 with 0 ≤ α ≤ 1

2 and m and m̂n are the continuously and discretely
monitored suprema of X and m has a locally bounded density in a neighbourhood
of B , then

E[|1{m<B} − 1{m̂<B}|] = O
(
n−1/(1+2α)+δ

)
,

for any δ > 0.

The proof is given later in Sect. 7.7.
Both of the above propositions require the condition that the supremum m has a

locally bounded density for all strictly positive values. There is considerable current
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research on the supremum of Lévy processes [6, 7, 20, 22]. In particular, the com-
ments following [7, Proposition 2] indicate that the condition is satisfied by stable
processes, and by a wide class of symmetric subordinated Brownian motions. Un-
fortunately, the VG and NIG processes in the current paper are not symmetric, so at
present they lie outside the range of current theory, but new theory under develop-
ment [3] will extend the property to a larger class of Lévy processes including both
VG and NIG.

We now bound the weak convergence of the estimator and the multilevel variance
convergence.

Proposition 5.5 Let X be a scalar Lévy process underlying an exponential Lévy
model. For the up-and-out barrier option payoff (5.2) with the numerical approxima-
tion (5.3), we have the following rates of convergence for the multilevel correction
variance and the weak error, assuming that m has a bounded density:

1. If X is a variance gamma (VG) process, then

V� = O(h1−δ
� ),

|E[P̂ − P ]| = O(h1−δ
� ),

where δ is an arbitrary positive number.
2. If X is a NIG process, then

V� = O(h
1/2−δ
� ),

|E[P̂ − P ]| = O(h
1/2−δ
� ),

where δ is an arbitrary positive number.
3. If X is a spectrally negative α-stable process with α > 1, then

V� = O(h
1
α
−δ

� ),

|E[P̂ − P ]| = O(h
1
α
−δ

� ),

where δ is an arbitrary positive number.

Proof The variance of the multilevel correction term is bounded by

V� ≤ E[(P̂� − P̂�−1)
2] ≤ 2 E[(P̂� − P)2] + 2 E[(P̂�−1 − P)2].

For an up-and-out barrier option, since the payoff is bounded, we have

E[(P̂� − P)2] ≤ F 2
E[1{m̂n<log(B/S0)} − 1{m<log(B/S0)}],

|E[P̂� − P ]| ≤ F E[1{m̂n<log(B/S0)} − 1{m<log(B/S0)}],
where n = M�.
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The bounds for the VG process come from Proposition 5.4 together with the results
from Theorem 4.2.

The bounds for the NIG come from taking p = 1 in Proposition 5.3 together with
Chen’s result in Theorem 4.1.

The bounds for the spectrally negative α-stable process come from Proposition 5.3
together with the results from Theorem 4.2. The latter gives

‖m − m̂‖p/(p+1)
p = (E[|m − m̂|p])1/(p+1) = O(h

p
(p+1)α

− δ
p+1 ).

We then obtain the desired bound by taking p to be sufficiently large. �

6 Numerical results

We have numerical results for three different Lévy models: variance gamma, normal
inverse Gaussian and α-stable processes, and three different options: Asian, lookback
and barrier.

The current code is based on Giles’ MATLAB code [17], using which we generate
standardised numerical results and a set of four figures. The top two plots correspond
to a set of experiments to investigate how the variance and mean for both P̂� and
P̂� − P̂�−1 vary with level �. The top left plot shows the values for log2 variance, so
that the absolute value of the slope of the line for log2 V[P̂� − P̂�−1] indicates the
convergence rate β of V� in condition iii) of Theorem 2.1. Similarly, the absolute
value of the slope of the line for log2 |E[P̂� − P̂�−1]| in the top right plot indicates the
weak convergence rate α in the condition i) of Theorem 2.1.

The bottom two plots correspond to a set of MLMC calculations for different val-
ues of the desired accuracy ε. Each line in the bottom left plot corresponds to one
multilevel calculation and displays the number of samples N� on each level. Note
that as ε is varied, the MLMC algorithm automatically decides how many levels
are required to reduce the weak error appropriately. The optimal number of samples
on each level is based on an empirical estimation of the multilevel correction vari-
ance V�, together with the use of a Lagrange multiplier to determine how best to
minimise the overall computational cost for a given target accuracy. A complete de-
scription of the algorithm is given in [19, Sect. 3.1, Algorithm 1]. The bottom right
plots show the variation of the computational complexity C with the desired accu-
racy ε. In the best cases, the MLMC complexity is O(ε−2), and therefore the plot
is of ε2 C versus ε so that we can see whether this is achieved, and compare the
complexity to that of the standard Monte Carlo method.

6.1 Asian option

The Asian option we consider is an arithmetic Asian call option with discounted
payoff

P = exp(−rT ) max(0, S − K),
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where T = 1, r = 0.05, S0 = 100, K = 100 and

S = S0 T −1
∫ T

0
exp (Xt )dt.

For a general Lévy process, it is not easy to directly sample the integral process. We
use the trapezoidal approximation

Ŝ := S0 T −1
n−1∑
j=0

1

2
h
(

exp(Xjh) + exp(X(j+1)h)
)
,

where n = T/h is the number of timesteps. The payoff approximation is then

P̂ = exp(−rT ) max(0, Ŝ − K).

Fig. 1 Asian option in variance gamma model
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Fig. 2 Asian option in normal inverse Gaussian model

In the multilevel estimator, the approximation P̂� on level � is obtained using n� := 2�

timesteps.
Figures 1, 2, 3 are for the VG, NIG and α-stable models, respectively. The nu-

merical results in the top right plots indicate approximately second order weak
convergence. With the standard Monte Carlo method, the top left plots show
that the variance is approximately independent of the level, or equivalently the
timestep, and therefore, the standard Monte Carlo calculation has computational cost
O(ε−2n�) = O(ε−2.5). Multiplying this cost by ε2 to create the bottom right com-
plexity plots, the scaled cost is O(n�) and therefore goes up in steps as ε is reduced,
when decreasing ε requires an increase in the value of the finest level L. On the other
hand, the convergence rate of the variance of the MLMC estimator is approximately
1.2 for VG, 2.0 for NIG and 2 for the α-stable model. Since in all three cases we have
β > 1, the MLMC theorem gives a complexity which is O(ε−2) which is consistent
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Fig. 3 Asian option in spectrally negative α-stable model

with the results in the bottom right plots which show little variation in ε2 C for the
MLMC estimator.

For this Asian option, MLMC is 3–8 times more efficient than standard MC. The
gains are modest because the high rate of weak convergence means that only 4 levels
of refinement are required in most cases, so there is only a 24 = 16 difference in cost
between each MC path calculation on the finest level, and each of the MLMC path
calculations on the coarsest level.

6.2 Lookback option

The lookback option we consider is a put option on the floating underlying,

P = exp(−rT )

(
K − sup

0≤t≤T

St

)+
= exp(−rT )

(
K − S0 exp(m)

)+
,
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Fig. 4 Lookback option with variance gamma model

where m = sup0≤t≤T Xt , with T = 1, r = 0.05, S0 = 100, K = 110. We use the
discretely monitored maximum as the approximation, so that

P̂� = exp(−rT )
(
K − S0 exp(m̂�)

)+
, m̂� = max

0≤j≤n�

Xjh�
.

Figures 4, 5, 6 show the numerical results for the VG, NIG and α-stable mod-
els. The most obvious difference compared to the Asian option is a greatly reduced
order of weak convergence, approximately 1, 0.8 and 0.6 in the respective cases.
This reduced weak convergence leads to a big increase in the finest approximation
level, which in turn greatly increases the standard MC cost but does not significantly
change the MLMC cost. Hence, the computational savings are much greater than for
the Asian option, with savings of up to a factor of 30.

The small erratic fluctuation in N� on levels greater than 5 is due to poor estimates
of the variance due to a limited number of samples. This also appears later for the
barrier option.
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Fig. 5 Lookback option with normal inverse Gaussian model

6.3 Barrier option

The barrier option is an up-and-out call with payoff

P = exp(−rT ) (ST − K)+ 1{sup0≤t≤T S(t)<B} = exp(−rT ) (ST − K)+ 1{m<log(B/S0)},

with T = 1, r = 0.05, S0 = 100, K = 100, B = 115. The discretely monitored ap-
proximation is

P̂� = exp(−rT ) (ST − K)+ 1{m̂�<log(B/S0)}, m̂� = max
0≤j≤n�

Xjh�

With the barrier option (Figs. 7, 8, 9), the most noticeable change from the previ-
ous options is a reduction in the rate of convergence β of the MLMC variance, with
β ≈ 0.75,0.5,0.6 in the three cases. For β < 1, the MLMC theorem proves a com-
plexity which is O(ε−2−(1−β)/α), with α here being the rate of weak convergence.
The fact that the MLMC complexity is not O(ε−2) is clearly visible from the bottom
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Fig. 6 Lookback option with spectrally negative α-stable model

right complexity plots, but there are still significant savings compared to the standard
MC computations.

6.4 Summary and discussion

Table 1 summarises the convergence rates for the weak error E[P̂� − P ] and the
MLMC variance V� = V[P̂� − P̂�−1] given by Propositions 5.1, 5.2, 5.5, and the
empirical convergence rates observed in the numerical experiments.

In general, the agreement between the analysis and the numerical rates of conver-
gence is quite good, suggesting that in most cases the analysis may be sharp. The most
obvious gap between the two is with the weak order of convergence for the Asian op-
tion with all three models; the analysis proves an O(h) bound, whereas the numerical
results suggest it is actually O(h2). The numerical results are perhaps not surprising
as O(h2) is the order of convergence of trapezoidal integration of a smooth function,
and therefore it is the order one would expect if the payoff was simply a multiple
of S.
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Fig. 7 Barrier option in variance gamma model

7 Proofs

7.1 Proof of Proposition 5.1

We decompose the difference between the true value and approximation into parts
which we can bound separately by writing

|S − Ŝ|

= S0 T −1
∣∣∣∣
∫ T

0
exp(Xt )dt −

n−1∑
j=0

1

2
h
(

exp(Xjh) + exp(X(j+1)h)
)∣∣∣∣

= S0 T −1
∣∣∣∣
n−1∑
j=0

exp(Xjh)

∫ (j+1)h

jh

(
exp(Xt − Xjh) − 1

)
dt − 1

2
h exp(XT ) + 1

2
h

∣∣∣∣.
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Fig. 8 Barrier option in normal inverse Gaussian model

If we define

bj = exp(Xjh),

Ij =
∫ (j+1)h

jh

(
exp(Xt − Xjh) − 1

)
dt,

RA = −1

2
h exp(XT ) + 1

2
h,

then

E
[
(Ŝ − S)2] = T −2S2

0 E

[∣∣∣∣
n−1∑
j=0

bj Ij + RA

∣∣∣∣
2]

≤ 2T −2S2
0

(
E

[∣∣∣∣
n−1∑
j=0

bj Ij

∣∣∣∣
2]

+E[R2
A]
)

.
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Fig. 9 Barrier option in spectrally negative α-stable model

We have E[R2
A] = O(h2), and due to the independence of bj and Ij , we obtain

E

[∣∣∣∣
n−1∑
j=0

bj Ij

∣∣∣∣
2]

= E

[ n−1∑
j=0

b2
j I

2
j + 2

n−1∑
m=1

m−1∑
j=0

bmImbj Ij

]

=
n−1∑
j=0

E[b2
j ]E[I 2

j ] + 2
n−1∑
m=1

m−1∑
j=0

E[bmImbj Ij ]. (7.1)

Defining A = 2m + ∫
(e2z − 1 − 2z1{|z|<1})ν(dz), we have E[b2

j ] = eAjh. Further-
more, by the Cauchy–Schwarz inequality,

E[I 2
j ] ≤ h E

[∫ (j+1)h

jh

(
exp(Xt − Xjh) − 1

)2dt

]

= h

∫ h

0
E
[(

exp(Xt ) − 1
)2]dt

= h

(
1

A
(eAh − 1 − Ah) − 2

1

r
(erh − 1 − rh)

)
.
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Table 1 Convergence rates of
weak error and variance V� for
VG, NIG and α-stable
processes; δ can be any small
positive constant. The numerical
values are estimates based on
the numerical experiments

Option VG

numerical analysis

weak var weak var

Asian O(h2) O(h2) O(h) O(h2)

lookback O(h) O(h1.2) O(h| logh|) O(h)

barrier O(h0.8) O(h0.9) O(h1−δ) O(h1−δ)

Option NIG

numerical analysis

weak var weak var

Asian O(h2) O(h2) O(h) O(h2)

lookback O(h0.8) O(h1.2) O(h1−δ) O(h| logh|)
barrier O(h0.4) O(h0.5) O(h0.5−δ) O(h0.5−δ)

Option spectrally negative α-stable with α > 1

numerical for α = 1.5597 analysis

weak var weak var

Asian O(h2) O(h2) O(h) O(h2)

lookback O(h0.6) O(h1.6) O(h1/α−δ) O(h2/α−δ)

barrier O(h0.5) O(h0.6) O(h1/α−δ) O(h1/α−δ)

Note that 1 + x < ex < 1 + x + x2 for 0 < x < 1, and therefore for h < 1/A, we have
E[I 2

j ] < Ah3 and hence

n−1∑
j=0

E[b2
j ]E[I 2

j ] < Ah3
n−1∑
j=0

eAjh = A
eAT − 1

eAh − 1
h3 < (eAT − 1) h2.

Now we calculate the second term in (7.1). Note that for m > j , Im is independent
of bmbj Ij , and bm/bj+1 is independent of bj+1bj Ij , so

n−1∑
m=1

m−1∑
j=0

E[bmImbj Ij ] =
n−1∑
m=1

E[Im]
m−1∑
j=0

E[bm/bj+1]E[bj+1bj Ij ].

Firstly, for h < 1/r ,

E[Im] =
∫ h

0
(ert − 1) dt = r−1(erh − 1 − rh) < r h2.
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Moreover, we have E[bm/bj+1] = er(m−j−1)h and

E[bj+1bj Ij ] = E

[
exp(2Xjh) exp(X(j+1)h − Xjh)

×
∫ (j+1)h

jh

(
exp(Xt − Xjh) − 1

)
dt

]

= E[exp(2Xjh)] E
[

exp(Xh)

∫ h

0

(
exp(Xt ) − 1

)
dt

]

= eAjh

∫ h

0

(
E[exp(Xh − Xt)]E[exp(2Xt)] −E[exp(Xh)]

)
dt

= eAjh

∫ h

0
(er(h−t)eAt − erh) dt

= eAjherh e(A−r)h − 1 − (A − r)h

A − r
.

Thus, for h < 1/(A − r),

n−1∑
m=1

m−1∑
j=0

E[bm/bj+1]E[bj+1bj Ij ] = e(A−r)h − 1 − (A − r)

A − r

n−1∑
m=1

m−1∑
j=0

er(m−j)heAjh

= e(A−r)h − 1 − (A − r)h

(A − r) (e(A−r)h − 1)

n−1∑
m=1

(eAmh − ermh)

< h
eAT − 1

eAh − 1

< A−1(eAT − 1).

Hence,

E

[ n−1∑
m=1

m−1∑
j=0

bmImbj Ij

]
=

n−1∑
m=1

E[Im]
m−1∑
j=0

E[bm/bj+1]E[bj+1bj Ij ] = O(h2),

and we can therefore conclude that E[(Ŝ − S)2] = O(h2). �

7.2 Lévy process decomposition

The proofs rely on a decomposition of the Lévy process into a combination of a finite
activity pure jump part, a drift part, and a residual part consisting of very small jumps.

Let X be an (m,0, ν)-Lévy process, i.e.,

Xt = mt +
∫ t

0

∫
{|z|≥1}

z J (dz,ds) +
∫ t

0

∫
{|z|<1}

z
(
J (dz,ds) − ν(dz)ds

)
.
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The finite activity jump part is defined by

Xε
t =

∫ t

0

∫
{ε<|z|}

z J (dz,ds) =
Nt∑
i=1

Yi,

which is the compound Poisson process truncating the jumps of X smaller than ε,
which is assumed to satisfy 0 < ε < 1. The intensity of (Nt ) and the c.d.f. of Yi

are

λε =
∫

{ε<|z|}
ν(dz),

P
[
Yi < y

] = λ−1
ε

∫
{z<y}

1{ε<|z|}ν(dz).

The drift rate for the drift term is defined to be

με = m −
∫

{ε<|z|<1}
z ν(dz),

so that the residual term is then a martingale, given by

Rε
t :=

∫ t

0

∫
{|z|≤ε}

z
(
J (dz,ds) − ν(dz)ds

)
.

We define

σ 2
ε =

∫
{|z|≤ε}

z2ν(dz), (7.2)

so that V[Rε
t ] = σ 2

ε t . The three quantities με , λε and σε all play a major role in the
subsequent numerical analysis.

We bound Dn by the difference between continuous maxima and 2-point maxima
over all timesteps via

Dn = sup
0≤t≤1

Xt − max
i=0,1,...,n

X i
n

≤ max
i=0,...,n−1

D(i)
n ,

where the random variables

D(i)
n = sup

[ i
n
, i+1

n
]
Xt − max

(
Xi+1

n
,X i

n

)

are independent and identically distributed. If we now define

�(i)Xt = X i
n
+t

− X i
n
, �(i)Xε

t = Xε
i
n
+t

− Xε
i
n

,

�(i)t = t − i
n
, �(i)Rε

t = Rε
i
n
+t

− Rε
i
n

,
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then

D(i)
n = sup

[0, 1
n
]
�(i)Xt − (�(i)X 1

n
)+

= sup
[0, 1

n
]
(�(i)Xε

t + �(i)Rε
t + με�

(i)t) −
(

�(i)Xε
1
n

+ �(i)Rε
1
n

+ με

1

n

)+

≤ sup
[0, 1

n
]
(�(i)Xε

t + �(i)Rε
t ) − (�(i)Xε

1
n

+ �(i)Rε
1
n

)+ + |με|
n

≤ sup
[0, 1

n
]
�(i)Xε

t − (�(i)Xε
1
n

)+ + |με|
n

+ sup
[0, 1

n
]
�(i)Rε

t + (−�(i)Rε
1
n

)+

≤ sup
[0, 1

n
]
�(i)Xε

t − (�(i)Xε
1
n

)+ + |με|
n

+ 2 sup
[0, 1

n
]
|�(i)Rε

t |, (7.3)

where we use (a + b)+ ≤ a+ + b+ with a = �(i)Xε
1
n

+ �(i)Rε
1
n

+ με
1
n

, b = −με
1
n

in

the first inequality, and a = �(i)Xε
1
n

+ �(i)Rε
1
n

, b = −�(i)Rε
1
n

in the second.

Let Z
(i)
n := sup[0, 1

n
] �

(i)Xε
t − (�Xε

1
n

)+ and S
(i)
n := sup[0, 1

n
] |�(i)Rε

t |. Then for

p ≥ 1, Jensen’s inequality gives

E[Dp
n ] ≤ E

[
max

0≤i<n
(Z(i)

n + |με|
n

+ 2S(i)
n )p

]

≤ 3p−1
E

[
max

0≤i<n
(Z(i)

n )p + (|με|/n)p + 2p max
0≤i<n

(S(i)
n )p

]

≤ 3p−1n E

[(
sup
[0, 1

n
]
Xε

t − (Xε
1
n

)+
)p]+ 3p−1(|με|/n)p

+3p−12p
E

[
max

0≤i<n
(S(i)

n )p
]
, (7.4)

where in the final step we have used the fact that all of the �(i)Xε
t have the same

distribution as Xε
t .

The task now is to bound the first and third terms in the final line of (7.4).

7.3 Bounding moments of sup[0, 1
n ] X

ε
t − (Xε

1
n

)+

Theorem 7.1 Let X be a scalar Lévy process with triple (m,0, ν), and let Xε
t , με ,

λε and σε be defined as in Sect. 7.2. Then provided λε ≤ n, for any p > 1, there exists
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Fig. 10 Behaviour of (Xε
t ) in the case of one or two jumps in the interval [0, 1

n ]

a constant Kp such that

E

[(
sup
[0, 1

n
]
Xε

t − (Xε
1
n

)+
)p] ≤ Kp

(
εp + Lε(p)

λ2
ε

)
λ2

ε

n2
, (7.5)

where Lε (p) = p
∫
{x>ε} x

p−1λ2
x dx is a function depending on the Lévy measure

ν(x).

Proof Let

Z = sup
[0, 1

n
]
Xε

t − (Xε
1
n

)+.

We determine an upper bound on E[Zp] by analysing the jump behaviour of the finite
activity process (Xε

t ) in a single interval [0, 1
n
].

Let N be the number of jumps. If N ≤ 1, then Z = 0, while if N = 2, then
Z ≤ min (|Y1| , |Y2|). This can be seen from the behaviour of (Xε

t ) in the different
scenarios illustrated in Fig. 10. More generally, if N = k, k ≥ 2, then

Z > x =⇒ ∃ 1 ≤ j ≤ k − 1 such that

∣∣∣∣
j∑

�=1

Y�

∣∣∣∣ > x,

∣∣∣∣
k∑

�=j+1

Y�

∣∣∣∣ > x

=⇒ ∃ j1, j2 such that |Yj1 | >
x

k − 1
, |Yj2 | >

x

k − 1
.

Since

P

[
∃j1, j2 such that |Yj1 | >

x

k − 1
, |Yj2 | >

x

k − 1

]

≤
∑

(j1,j2)

P

[
|Yj1 | >

x

k − 1
, |Yj2 | >

x

k − 1

]

= k(k − 1)

2
P

[
|Y1| > x

k − 1

]2

,
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it follows that

E[Zp | N = k] = p

∫
xp−1

P[Z > x | N = k]dx

≤ k (k − 1)

2
p

∫
xp−1

P

[
|Y1| > x

k − 1

]2

dx

= k (k − 1)

2

p

λ2
ε

∫
xp−1

(∫
{|z|>x/(k−1)}

1{ε<|z|}ν(dz)

)2

dx

= k (k − 1)p+1

2

p

λ2
ε

∫
xp−1

(∫
{|z|>x}

1{ε<|z|}ν(dz)

)2

dx

=: dk,p

(
εp + Lε(p)

λ2
ε

)
,

where dk,p = 1
2k (k − 1)p+1. We then have

E[Zp] =
∞∑

k=2

E[Zp | N = k] P[N = k]

≤
(

εp + Lε(p)

λ2
ε

)
exp

(
− λε

n

) ∞∑
k=2

dk,p

(
λε

n

)k 1

k! .

For kp = �p� + 2, there exists Cp such that for any k ≥ kp , dk,p ≤ Cp
k!

(k−kp)! , so

∞∑
k=2

dk,p

(
λε

n

)k 1

k! ≤
kp−1∑
k=2

dk,p

(
λε

n

)k 1

k! + Cp

∞∑
k=kp

(
λε

n

)k 1

(k − kp)!

≤
kp−1∑
k=2

dk,p

(
λε

n

)k 1

k! + Cp

(
λε

n

)k

p

exp

(
λε

n

)

≤ Kp

(
λε

n

)2

for some constant Kp , where the last step uses the fact that λε ≤ n. Therefore, we
obtain the final result that

E[Zp] ≤ Kp

(
εp + Lε(p)

λ2
ε

)
λ2

ε

n2
. �

7.4 Bounding moments of sup[0,T ] |Rε
t |

Proposition 7.1 Let X be a scalar Lévy process with triple (m,0, ν) and let Rε
t , με ,

λε and σε be defined as in Sect. 7.2. Then (Rε
t ) satisfies

E

[
sup
[0,T ]

|Rε
t |p

]
≤

{
Kp(T p/2σ

p
ε + T

∫
{|z|≤ε} |z|pν(dx)), p > 2,

Kp T p/2σ
p
ε , 1 ≤ p ≤ 2,

where Kp is a constant depending on p.
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Proof For any 1 ≤ p ≤ 2, by Jensen’s inequality and the Doob inequality,

E

[
sup

0≤t≤T

|Rε
t |p

]
≤ E

[
sup

0≤t≤T

|Rε
t |2

]p/2

≤ 2p
E[|Rε

T |2]p/2 = 2p T p/2σp
ε .

For any p > 2, the Burkholder–Davis–Gundy inequality gives

E

[
sup

0≤t≤1
|Rε

t |p
]

≤ E
[[Rε]p/2

1

]
,

where
[
Rε

]
t

is the quadratic variation of Rε
t . We can use the method in the proof of

[24, Theorem V.66] to get

E
[[Rε]p/2

1

] ≤ Kp

[(∫
{|z|≤ε}

z2ν(dz)

)p/2

+
∫

{|z|≤ε}
|z|pν(dz)

]

= Kp

(
σp

ε +
∫

{|z|≤ε}
|z|pν(dz)

)
,

where Kp is a constant depending on p.
To extend this result to an arbitrary time interval [0, T ], we use a change of time

coordinate t ′ = t/T with associated changed Lévy measure ν′(dz) = T ν(dz) to ob-
tain

E

[
sup
[0,T ]

|Rε
t |p

]
≤ Kp

[
T p/2σp/2

ε + T

∫
{|z|≤ε}

|z|pν(dz)

]
. �

7.5 Bounding moments of max0≤i<n S
(i)
n

Proposition 7.2 Let X be a scalar pure jump Lévy process, with Lévy measure ν(x)

which satisfies

C2 |x|−1−α ≤ ν(x) ≤ C1 |x|−1−α for |x| ≤ 1,

for constants C1,C2 > 0 and 0 ≤ α < 2. If S
(i)
n is defined as in Sect. 7.2 and λε ≤ n,

then for p ≥ 1 and arbitrary δ > 0, there exists a constant Cp,δ , which does not
depend on n, ε, such that

E

[(
max

0≤i<n
S(i)

n

)p]
≤ Cp,δ εp−δ.

In the particular case of α = 0, such a bound holds with δ = 0.

Proof By Proposition 7.1, for q > 2,

E

[(
max

0≤i<n
S(i)

n

)q]
≤ n E

[
sup
[0, 1

n
]
|Rε

t |q
]

≤ Kq

(
n1−q/2σq

ε +
∫

{|z|≤ε}
|z|q ν(dx)

)
.
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Recalling the definition of σε in (7.2), due to the assumption on ν(x), we have

σq
ε ≤

(
2C1

2 − α

)q/2

εq−qα/2,

∫
{|z|≤ε}

|z|q ν(dx) ≤ 2C1

q − α
εq−α.

Given p ≥ 1, for any q > max (2,p), Jensen’s inequality gives

E

[(
max

0≤i<n
S(i)

n

)p]
≤ E

[(
max

0≤i<n
S(i)

n

)q]p/q

≤ K
p/q
q

[(
2C1

2 − α

)q/2 (
ε−α

n

)q/2−1

+ 2C1

q − α

]p/q

εp−αp/q .

If α = 0, then the desired bound is obtained immediately. On the other hand, if
0 < α < 2, then

λε ≥ C2

∫
{ε<|z|<1}

1

|z|α+1
dz = 2C2

α
(ε−α − 1).

Since λε ≤ n, this implies that ε−α ≤ Kα
2C2

n + 1, and thus ε−α/n is bounded. Hence
there exists a constant C such that

E

[(
max

0≤i<n
S(i)

n

)p]
≤ C εp−αp/q,

and by choosing q large enough so that αp/q ≤ δ, we obtain the desired bound. �

7.6 Proof of Theorem 4.2

Provided λε ≤ n, by (7.4) and (7.5) we have

E[Dp
n ] ≺ E

[(
max

0≤i<n
S(i)

n

)p]
︸ ︷︷ ︸

1)

+ εp λ2
ε

n︸ ︷︷ ︸
2)

+ Lε (p)

n︸ ︷︷ ︸
3)

+
( |με|

n

)p

︸ ︷︷ ︸
4)

, (7.6)

where the notation u ≺ v means that there exists a constant c > 0 independent of n

such that u < cv.
We can now bound each term, given the specification of the Lévy measure, and

if we can choose appropriately how ε → 0 as n → ∞ so that the RHS of (7.6) is
convergent, then the convergence rate of E[Dp

n ] can be bounded.
For 0 < x < 1,

λx ≤ C1

∫
{x<|z|<1}

1

|z|α+1
dz +

∫
{1<|z|}

exp (−C3 |z|) dz

≤
{

2C1 log 1
x

+ �1, α = 0,

�2 x−α, 0 < α < 2,
(7.7)
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where �1, �2 are constants with �2 ≥ 2C−1
3 , while for x ≥ 1,

λx ≤
∫

{x<|z|}
exp (−C3 |z|) dz = 2C−1

3 exp(−C3 x).

If α > 0, then

Lε(p) = p

∫
{x>ε}

xp−1λ2
x dx

≤ �2
2 p

∫
{x>ε}

xp−1(1{x<1}x−2α + 1{x>1} exp(−2C3x)
)
dx

≤

⎧⎪⎨
⎪⎩

�3, p > 2α,

�3 log 1
ε

+ �4, p = 2α,

�3ε
−2α+p + �4, p < 2α,

(7.8)

where �3 and �4 are additional constants. If α = 0, it is easily verified that Lε(p) is
bounded for p ≥ 1, so (7.8) applies equally to this case.

Given 0 < ε < 1, we have

|με| =
∣∣∣∣m −

∫
ε<|z|<1

z ν(dz)

∣∣∣∣ ≤
{

|m| + |C1 − C2| ε1−α−1
α−1 , α �= 1,

|m| + |C1 − C2| log 1
ε
, α = 1.

(7.9)

Subject to the condition that λε ≤ n, we now consider the terms in (7.6).

1. By Proposition 7.2,

E

[(
max

0≤i<n
S(i)

n

)p]
≺ εp−δ, for any δ > 0.

2. By (7.7),

εp λ2
ε

n
≺ n−1 ×

{
εp log 1

ε
, α = 0,

εp−2α, 0 < α < 2.

3. By (7.8),

Lε(p)

n
≺ n−1 ×

⎧⎪⎨
⎪⎩

1, p > 2α,

log 1
ε
, p = 2α,

ε−2α+p, p < 2α.

4. By (7.9),

( |με|
n

)p

≺ n−p ×

⎧⎪⎨
⎪⎩

1 + |C1 − C2|pεp(1−α), α > 1,

1 + (|C1 − C2| log 1
ε
)p, α = 1,

1, α < 1.

In the following, we assume C1 �= C2.
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Suppose p ≥ 2α. If we choose ε = C n−2/p , then λε ≺ ε−α ≺ n2α/p , and the con-
stant C can be taken to be sufficiently small so that λε ≤ n for sufficiently large n.
Taking δ < p/2, we find that the dominant contribution to (7.6) comes from 3), giving
the desired result that

E[Dp
n ] ≺

{
n−1, p > 2α,

logn/n, p = 2α.

If 1 ≤ p < 2α, Hölder’s inequality gives E[Dp
n ] ≤ E[D2α

n ] p
2α ≺ (logn/n)

p
2α .

For a spectrally negative process, sup[0, 1
n
] X

ε
t − (Xε

1
n

)+ = 0, since X does not have

positive jumps, and hence

E[Dp
n ] ≤ E

[(
max

0≤i<n
S(i)

n

)p]
+

( |με|
n

)p

.

We can take ε = Cn−1/α with the constant C again chosen so that λε ≤ n for suffi-
ciently large n. We then obtain

E[Dp
n ] ≺

{
n−p/α+δ, α ≥ 1,

n−p, α < 1,

for any δ > 0. �

7.7 Proof of Proposition 5.4

We decompose the term we want to bound into parts and then balance their asymp-
totic orders to get the desired result.

Note that 1{m̂n<B} − 1{m<B} = 1 only if either m is close to the barrier or the
difference between discretely and continuously monitored maximum Dn = m − m̂n

is large. More precisely,

{
1{m̂n<B} − 1{m<B} = 1

} ⊆ F ∪ G,

where F := {B ≤ m ≤ B +n−r} and G := {Dn > n−r} for an r > 0 to be determined.
Hence

E[1{m̂n<B} − 1{m<B}] ≤ P[F ] + P[G].
Due to the locally bounded density for m, P[F ] = O(n−r ). If we denote

Z(i)
n = sup

[0, 1
n
]
�(i)Xε

t − (�(i)Xε
1
n

)+,

where �(i)Xt is defined as previously in Sect. 7.2, then (7.3) gives

Dn ≤ max
0≤i<n

Z(i)
n + |με|

n
+ max

0≤i<n
S(i)

n .
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For α < 1, με is bounded, so |με| ≤ 1
2n1−r for sufficiently large n. Hence,

P[Dn > n−r ] ≤ P

[
max

0≤i<n
Z(i)

n + max
0≤i<n

S(i)
n >

1

2
n−r

]

≤ P

[
max

0≤i<n
Z(i)

n >
1

4
n−r

]
+ P

[
max

0≤i<n
S(i)

n >
1

4
n−r

]
.

Now, max0≤i<n Z
(i)
n > 0 requires that there are at least two jumps in one of the n

intervals. The probability of two jumps in one particular interval is

1 − exp

(
−λε

n

)(
1 + λε

n

)
≺

(
λε

n

)2

if λε ≤ n, and hence

P

[
max

0≤i<n
Z(i)

n >
1

4
n−r

]
≺ λ2

ε

n
.

We use the Markov inequality for the remaining term. According to Proposition 7.1,
E[max0≤i<n(S

(i)
n )p] ≺ εp−δ and so

P

[
max

0≤i<n
S(i)

n >
1

4
n−r

]
≺ E

[
max

0≤i<n
(S(i)

n )p
] / (

1

4
n−r

)p

≺ εp−δnrp.

Combining these elements, provided λε ≤ n, we have

E[1{m̂n<B} − 1{m<B}] ≺ n−r + εp−δnrp + λ2
ε

n
.

Equating the first two terms on the right-hand side gives ε = n−r(1+p)/(p−δ).
If α = 0, then λε ≺ log 1

ε
≺ logn, so λε = O(n) is satisfied. We also have

λ2
ε

n
≺ (logn)2

n
, and therefore for any r < 1, we have E[1{m̂n<B} − 1{m<B}] ≺ n−r .

If 0 < α < 2, then λε ≺ ε−α ≺ nrα(1+p)/(p−δ), and hence we obtain that
λ2

ε

n
≺ n−1+2rα(1+p)/(p−δ). Balancing n−r and n−1+2rα(1+p)/(p−δ) gives λε = O(n)

and

r =
(

1 + 2α
1 + p

p − δ

)−1

. (7.10)

Since r → 1
1+2α

as δ → 0, and p → ∞, for any fixed value of r < 1
1+2α

, it is possible
to choose appropriate values of p and δ to satisfy (7.10) and thereby conclude that
E[1{m̂n<B} − 1{m<B}] ≺ n−r . �
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