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Abstract In this paper, which is a continuation of the discrete-time paper (Björk
and Murgoci in Finance Stoch. 18:545–592, 2004), we study a class of continuous-
time stochastic control problems which, in various ways, are time-inconsistent in the
sense that they do not admit a Bellman optimality principle. We study these prob-
lems within a game-theoretic framework, and we look for Nash subgame perfect
equilibrium points. For a general controlled continuous-time Markov process and a
fairly general objective functional, we derive an extension of the standard Hamilton–
Jacobi–Bellman equation, in the form of a system of nonlinear equations, for the
determination of the equilibrium strategy as well as the equilibrium value function.
The main theoretical result is a verification theorem. As an application of the gen-
eral theory, we study a time-inconsistent linear-quadratic regulator. We also present
a study of time-inconsistency within the framework of a general equilibrium produc-
tion economy of Cox–Ingersoll–Ross type (Cox et al. in Econometrica 53:363–384,
1985).
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1 Introduction

The purpose of this paper is to study a class of stochastic control problems in con-
tinuous time which have the property of being time-inconsistent in the sense that
they do not allow a Bellman optimality principle. As a consequence, the very con-
cept of optimality becomes problematic, since a strategy which is optimal given a
specific starting point in time and space may be non-optimal when viewed from a
later date and a different state. In this paper, we attack a fairly general class of time-
inconsistent problems by using a game-theoretic approach; so instead of searching for
optimal strategies, we search for subgame perfect Nash equilibrium strategies. The
paper presents a continuous-time version of the discrete-time theory developed in our
previous paper [5]. Since we build heavily on the discrete-time paper, the reader is
referred to that for motivating examples and more detailed discussions on conceptual
issues.

1.1 Previous literature

For a detailed discussion of the game-theoretic approach to time-inconsistency using
Nash equilibrium points as above, the reader is referred to [5]. A list of some of the
most important papers on the subject is given by [2, 6, 8–14, 16, 18–25].

All the papers above deal with particular model choices, and different authors
use different methods in order to solve the problems. To our knowledge, the present
paper, which is the continuous-time part of the working paper [4], is the first attempt
to study a reasonably general (albeit Markovian) class of time-inconsistent control
problems in continuous time. We should, however, like to stress that for the present
paper, we have been greatly inspired by [2, 9, 11].

1.2 Structure of the paper

The structure of the paper is roughly as follows.

– In Sect. 2, we present the basic setup, and in Sect. 3, we discuss the concept of equi-
librium. This replaces in our setting the optimality concept for a standard stochastic
control problem, and in Definition 3.4, we give a precise definition of the equilib-
rium control and the equilibrium value function.
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– Since the equilibrium concept in continuous time is quite delicate, we build the
continuous-time theory on the discrete-time theory previously developed in [5]. In
Sect. 4, we start to study the continuous-time problem by going to the limit for a
discretized problem, and using the results from [5]. This leads to an extension of
the standard HJB equation to a system of equations with an embedded static opti-
mization problem. The limiting procedure described above is done in an informal
manner. It is largely heuristic, and it thus remains to clarify precisely how the de-
rived extended HJB system is related to the precisely defined equilibrium problem
under consideration.

– The needed clarification is in fact delivered in Sect. 5. In Theorem 5.2, which is
the main theoretical result of the paper, we give a precise statement and proof of a
verification theorem. This theorem says that a solution to the extended HJB system
does indeed deliver the equilibrium control and equilibrium value function to our
original problem.

– In Sect. 6, the results of Sect. 5 are extended to a more general reward functional.
– Section 7 treats the infinite-horizon case.
– In Sect. 8, we study a time-inconsistent version of the linear-quadratic regulator to

illustrate how the theory works in a concrete case.
– Section 9 is devoted to a rather detailed study of a general equilibrium model for a

production economy with time-inconsistent preferences.
– In Sect. 10, we review some remaining open problems.

For extensions of the theory as well as worked out examples such as point process
models, non-exponential discounting, mean-variance control, and state-dependent
risk, see the working paper overview [3].

2 The model

We now turn to the formal continuous-time theory. In order to present this, we need
some input data.

Definition 2.1 The following objects are given exogenously:

1. A drift mapping μ : R+ ×R
n ×R

k → R
n.

2. A diffusion mapping σ : R+ ×R
n ×R

k → M(n,d), where M(n,d) denotes the
set of all n × d matrices.

3. A control constraint mapping U :R+ ×R
n → 2R

k
.

4. A mapping F :Rn ×R
n →R.

5. A mapping G : Rn ×R
n →R.

We now consider, on the time interval [0, T ], a controlled SDE of the form

dXt = μ(t,Xt , ut )dt + σ(t,Xt , ut )dWt , (2.1)

where the state process X is n-dimensional, the Wiener process W is d-dimensional,
and the control process u is k-dimensional, with the constraint ut ∈ U(t,Xt ).
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Loosely speaking, our objective is to maximize, for every initial point (t, x), a
reward functional of the form

Et,x [F(x,XT )] + G(x,Et,x [XT ]).

This functional is not of a form which is suitable for dynamic programming, and this
will be discussed in detail below, but first we need to specify our class of controls. In
this paper, we restrict the controls to admissible feedback control laws.

Definition 2.2 An admissible control law is a map u : [0, T ] ×R
n → R

k satisfying
the following conditions:

1. For each (t, x) ∈ [0, T ] ×R
n, we have u(t, x) ∈ U(t, x).

2. For each initial point (s, y) ∈ [0, T ] ×R
n, the SDE

dXt = μ
(
t,Xt ,u(t,Xt )

)
dt + σ

(
t,Xt ,u(t,Xt )

)
dWt, Xs = y

has a unique strong solution denoted by Xu.

The class of admissible control laws is denoted by U. We sometimes use the notation
ut (x) instead of u(t, x).

We now go on to define the controlled infinitesimal generator of the SDE above. In
the present paper, we use the (somewhat non-standard) convention that the infinitesi-
mal operator acts on the time variable as well as on the space variable; so it includes
the term ∂

∂t
.

Definition 2.3 Consider the SDE (2.1), and let ′ denote matrix transpose.

– For any fixed u ∈R
k , the functions μu, σu and Cu are defined by

μu(t, x) = μ(t, x,u), σu(t, x) = σ(t, x,u),

Cu(t, x) = σ(t, x,u)σ (t, x,u)′.

– For any admissible control law u, the functions μu, σ u, Cu(t, x) are defined by

μu(t, x) = μ
(
t, x,u(t, x)

)
, σ u(t, x) = σ

(
t, x,u(t, x)

)
,

Cu(t, x) = σ
(
t, x,u(t, x)

)
σ
(
t, x,u(t, x)

)′
.

– For any fixed u ∈R
k , the operator Au is defined by

Au = ∂

∂t
+

n∑

i=1

μu
i (t, x)

∂

∂xi

+ 1

2

n∑

i,j=1

Cu
ij (t, x)

∂2

∂xi∂xj

.

– For any admissible control law u, the operator Au is defined by

Au = ∂

∂t
+

n∑

i=1

μu
i (t, x)

∂

∂xi

+ 1

2

n∑

i,j=1

Cu
ij (t, x)

∂2

∂xi∂xj

.
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3 Problem formulation

In order to formulate our problem, we need an objective functional. We thus consider
the two functions F and G from Definition 2.1.

Definition 3.1 For a fixed (t, x) ∈ [0, T ] ×R
n and a fixed admissible control law u,

the corresponding reward functional J is defined by

J (t, x,u) = Et,x[F(x,Xu
T )] + G(x,Et,x[Xu

T ]). (3.1)

Remark 3.2 In Sect. 6, we consider a more general reward functional. The restriction
to the functional (3.1) above is done in order to minimize the notational complexity
of the derivations below, which otherwise would be somewhat messy.

In order to have a nondegenerate problem, we need a formal integrability assump-
tion.

Assumption 3.3 We assume that for each initial point (t, x) ∈ [0, T ] ×R
n and each

admissible control law u, we have

Et,x[|F(x,Xu
T )|] < ∞, Et,x[|Xu

T |] < ∞
and hence

G(x,Et,x[Xu
T ]) < ∞.

Our objective is loosely that of maximizing J (t, x,u) for each (t, x), but concep-
tually this turns out to be far from trivial, so instead of optimal controls we will study
equilibrium controls. The equilibrium concept is made precise in Definition 3.4 be-
low, but in order to motivate that definition, we need a brief discussion concerning
the reward functional above.

We immediately note that in contrast to a standard optimal control problem, the
family of reward functionals above are not connected by a Bellman optimality prin-
ciple. The reasons for this are as follows:

– The present state x appears in the function F .
– In the second term, we have (even apart from the appearance of the present state x)

a nonlinear function G operating on the expected value Et,x[Xu
T ].

Since we do not have a Bellman optimality principle, it is in fact unclear what we
should mean by the term “optimal”, since the optimality concept would differ at dif-
ferent initial times t and for different initial states x.

The approach of this paper is to adopt a game-theoretic perspective and look for
subgame perfect Nash equilibrium points. Loosely speaking, we view the game as
follows:

– Consider a non-cooperative game where we have one player for each point in
time t . We refer to this player as “Player t”.

– For each fixed t , Player t can only control the process X exactly at time t . He/she
does that by choosing a control function u(t, ·); so the action taken at time t with
state Xt is given by u(t,Xt ).
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– Gluing together the control functions for all players, we thus have a feedback con-
trol law u : [0, T ] ×R

n →R
k .

– Given the feedback law u, the reward to Player t is given by the reward functional

J (t, x,u) = Et,x[F(x,Xu
T )] + G(x,Et,x[Xu

T ]).
A slightly naive definition of an equilibrium for this game would be to say that a
feedback control law û is a subgame perfect Nash equilibrium if for each t , it has the
following property:

– If for each s > t , Player s chooses the control û(s, ·), then it is optimal for Player
t to choose û(t, ·).

A definition like this works well in discrete time; but in continuous time, this is not
a bona fide definition. Since Player t can only choose the control u(t, ·) exactly at
time t , he only influences the control on a time set of Lebesgue measure zero; so for
a controlled SDE of the form (2.1), the control chosen by an individual player will
have no effect on the dynamics of the process. We thus need another definition of the
equilibrium concept, and we in fact follow an approach first taken by [9] and [11].
The formal definition of equilibrium is as follows.

Definition 3.4 Consider an admissible control law û (informally viewed as a candi-
date equilibrium law). Choose an arbitrary admissible control law u ∈ U and a fixed
real number h > 0. Also fix an arbitrarily chosen initial point (t, x). Define the control
law uh by

uh(s, y) =
{

u(s, y) for t ≤ s < t + h,y ∈R
n,

û(s, y) for t + h ≤ s ≤ T ,y ∈R
n.

If

lim inf
h→0

J (t, x, û) − J (t, x,uh)

h
≥ 0

for all u ∈ U, we say that û is an equilibrium control law. Corresponding to the equi-
librium law û, we define the equilibrium value function V by

V (t, x) = J (t, x, û).

We sometimes refer to this as an intrapersonal equilibrium, since it can be viewed
as a game between different future manifestations of your own preferences.

Remark 3.5 This is our continuous-time formalization of the corresponding discrete-
time equilibrium concept.

Note the necessity of dividing by h, since for most models we trivially should have

lim
h→0

(
J (t, x, û) − J (t, x,uh)

) = 0.

We also note that we do not get a perfect correspondence with the discrete-time equi-
librium concept since if the limit above equals zero for all u ∈ U, it is not clear
whether this corresponds to a maximum or just to a stationary point.
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4 An informal derivation of the extended HJB equation

We now assume that there exists an equilibrium control law û (not necessarily
unique), and we go on to derive an extension of the standard Hamilton–Jacobi–
Bellman (henceforth HJB) equation for the determination of the corresponding value
function V . To clarify the logical structure of the derivation, we outline our strategy
as follows:

– We discretize (to some extent) the continuous-time problem. We then use our re-
sults from discrete-time theory to obtain a discretized recursion for û, and we then
let the time step tend to zero.

– In the limit, we obtain our continuous-time extension of the HJB equation. Not
surprisingly, it will in fact be a system of equations.

– In the discretizing and limiting procedure, we mainly rely on informal heuristic
reasoning. In particular, we do not claim that the derivation is rigorous. The deriva-
tion is, from a logical point of view, only of motivational value.

– In Sect. 5, we then go on to show that our (informally derived) extended HJB
equation is in fact the “correct” one, by proving a rigorous verification theorem.

4.1 Deriving the equation

In this section, we derive, in an informal and heuristic way, a continuous-time exten-
sion of the HJB equation. Note again that we have no claims to rigor in the derivation,
which is only motivational. We assume that there exists an equilibrium law û and ar-
gue as follows:

– Choose an arbitrary initial point (t, x). Also choose a “small” time increment h > 0
and an arbitrary admissible control u.

– Define the control law uh on the time interval [t, T ] by

uh(s, y) =
{

u(s, y) for t ≤ s < t + h,y ∈R
n,

û(s, y) for t + h ≤ s ≤ T ,y ∈ R
n.

– If now h is “small enough”, we expect to have

J (t, x,uh) ≤ J (t, x, û),

and in the limit as h → 0, we should have equality if u(t, x) = û(t, x).

We now refer to the discrete-time results, as well as the notation, from Theo-
rem 3.13 of [5], with n and n+ 1 replaced by t and t +h. We then obtain the inequal-
ity

(Au
hV )(t, x) − (Au

hf )(t, x, x) + (Au
hf

x)(t, x) − Au
h (G � g) (t, x) + (Hu

hg)(t, x) ≤ 0.

Here we have used the following notation from [5]:

– For any fixed y ∈R
n, the mapping f y : [0, T ] ×R

n → R is defined by

f y(t, x) = Et,x[F(y,Xû
T )].
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– The function f : [0, T ] ×R
n ×R

n → R is defined by

f (t, x, y) = f y(t, x).

We sometimes also, with a slight abuse of notation, denote the entire family of
functions {f y : y ∈ R

n} by f .
– For any function k(t, x), the operator Au

h is defined by

(Au
hk)(t, x) = Et,x[k(t + h,Xu

t+h)] − k(t, x).

– The function g : [0, T ] ×R
n →R

n is defined by

g(t, x) = Et,x[Xû
T ].

– The function G � g is defined by

(G � g) (t, x) = G
(
x,g(t, x)

)
.

– The term Hu
hg is defined by

(Hu
hg)(t, x) = G

(
x,Et,x[g(t + h,Xu

t+h)]
) − G

(
x,g(t, x)

)
.

We now divide the above inequality by h and let h tend to zero. Then the term
coming from the operator Au

h converges to the infinitesimal operator Au, where
u = u(t, x), but the limit of h−1(Hu

hg)(t, x) requires closer investigation.
From the definition of the infinitesimal operator, we have the approximation

Et,x[g(t + h,Xu
t+h)] = g(t, x) + hAug(t, x) + o(h),

and using a standard Taylor approximation, we obtain

G
(
x,Et,x[g(t + h,Xu

t+h)]
) = G

(
x,g(t, x)

) + Gy

(
x,g(t, x)

)
hAug(t, x) + o(h),

where

Gy(x, y) = ∂G

∂y
(x, y).

We thus obtain

lim
h→0

1

h
(Hu

hg)(t, x) = Gy

(
x,g(t, x)

)
Aug(t, x).

Collecting all results, we arrive at our proposed extension of the HJB equation. To
stress the fact that the arguments above are largely informal, we state the equation as
a definition rather than as proposition.

Definition 4.1 The extended HJB system of equations for V , f and g is defined as
follows:

1. The function V is determined by

sup
u∈U(t,x)

(
(AuV )(t, x) − (Auf )(t, x, x) + (Auf x)(t, x)

−Au(G � g)(t, x) + (Hug)(t, x)
) = 0, 0 ≤ t ≤ T , (4.1)

V (T , x) = F(x, x) + G(x,x).
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2. For every fixed y ∈ R
n, the function (t, x) 	→ f y(t, x) is defined by

Aûf y(t, x) = 0, 0 ≤ t ≤ T ,

f y(T , x) = F(y, x).
(4.2)

3. The function g is defined by

Aûg(t, x) = 0, 0 ≤ t ≤ T ,

g(T , x) = x.
(4.3)

We now have some comments on the extended HJB system:

– The first point to notice is that we have a system of equations (4.1)–(4.3) for the
simultaneous determination of V , f and g.

– In the expressions above, û always denotes the control law which realizes the
supremum in the first equation.

– The equations (4.2) and (4.3) are the Kolmogorov backward equations for the ex-
pectations

f y(t, x) = Et,x[F(y,Xû
T )],

g(t, x) = Et,x[Xû
T ].

– In order to solve the V -equation, we need to know f and g, but these are deter-
mined by the equilibrium control law û, which in turn is determined by the sup-part
of the V -equation.

– We have used the notation

f (t, x, y) = f y(t, x), (G � g) (t, x) = G
(
x,g(t, x)

)
,

Hug(t, x) = Gy

(
x,g(t, x)

)
Aug(t, x), Gy(x, y) = ∂G

∂y
(x, y).

– The operator Au only operates on variables within parentheses. So for instance,
the expression (Auf ) (t, x, x) is interpreted as (Auh) (t, x) with h defined by
h(t, x) = f (t, x, x). In the expression (Auf y) (t, x) the operator does not act on
the upper case index y, which is viewed as a fixed parameter. Similarly, in the
expression (Auf x) (t, x), the operator only acts on the variables t, x within the
parentheses, and does not act on the upper case index x.

– If F(x, y) does not depend on x and there is no G-term, the problem trivializes to
a standard time-consistent problem. The terms (Auf ) (t, x, x) + (Auf x) (t, x) in
the V -equation cancel, and the system reduces to the standard Bellman equation

(AuV )(t, x) = 0, V (T , x) = F(x).

– We note that the g function above appears, in a more restricted framework, already
in [2, 9, 11].
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4.2 Existence and uniqueness

The task of proving existence and/or uniqueness of solutions to the extended HJB
system seems (at least to us) to be technically extremely difficult. We have no idea
about how to proceed, so we leave it for future research. It is thus very much an open
problem. See Sect. 10 for more open problems.

5 A verification theorem

As we have noted above, the derivation of the continuous-time extension of the HJB
equation in the previous section was very informal. Nevertheless, it seems reasonable
to expect that the system in Definition 4.1 will indeed determine the equilibrium value
function V . The following two conjectures are natural:

1. Assume that there exists an equilibrium law û and that V is the corresponding
value function. Assume furthermore that V is in C1,2. Define f y and g by

f y(t, x) = Et,x[F(y,Xû
T )], (5.1)

g(t, x) = Et,x[Xû
T ]. (5.2)

We then conjecture that V satisfies the extended HJB system and that û realizes
the supremum in the equation.

2. Assume that V , f and g solve the extended HJB system and that the supremum in
the V -equation is attained for every (t, x). We then conjecture that there exists an
equilibrium law û, and that it is given by the maximizing u in the V -equation. Fur-
thermore, we conjecture that V is the corresponding equilibrium value function,
and f and g allow the interpretations (5.1) and (5.2).

In this paper, we do not attempt to prove the first conjecture. Even for a standard
time-consistent control problem within an SDE framework, it is well known that
this is technically quite complicated, and it typically requires the theory of viscosity
solutions. It is thus left as an open problem. We shall, however, prove the second con-
jecture. This obviously has the form of a verification result, and from standard theory,
we should expect that it can be proved with a minimum of technical complexity. We
now give the precise formulation and proof of the verification theorem, but first we
need to define a function space.

Definition 5.1 Consider an arbitrary admissible control u ∈ U. We say that a function
h :R+ ×R

n →R belongs to the space L2
T (Xu) if it satisfies the condition

Et,x

[∫ T

t

‖hx(s,X
u
s )σ u(s,Xu

s )‖2ds

]
< ∞

for every (t, x). In this expression, hx denotes the gradient of h in the x-variable.

We can now state and prove the main result of the present paper.

Theorem 5.2 (Verification theorem) Assume that (for all y) the functions V (t, x),
f y(t, x), g(t, x) and û(t, x) have the following properties:
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1. V , f y and g solve the extended HJB system in Definition 4.1.
2. V (t, x) and g(t, x) are smooth in the sense that they are in C1,2, and f (t, x, y) is

in C1,2,2.
3. The function û realizes the supremum in the V -equation, and û is an admissible

control law.
4. V , f y , g and G � g as well as the function (t, x) 	→ f (t, x, x) all belong to the

space L2
T (Xû).

Then û is an equilibrium law, and V is the corresponding equilibrium value function.
Furthermore, f and g can be interpreted according to (5.1) and (5.2).

Proof The proof consists of two steps:

– We start by showing that f and g have the interpretations (5.1) and (5.2) and that
V is the value function corresponding to û, i.e., that V (t, x) = J (t, x, û).

– In the second step, we then prove that û is indeed an equilibrium control law.

To show that f and g have the interpretations (5.1) and (5.2), we apply the Itô for-
mula to the processes f y(s,Xû

s ) and g(s,Xû
s ). Using (4.2) and (4.3) and the assumed

integrability conditions for f y and g, it follows that the processes f y(s,Xû
s ) and

g(s,Xû
s ) are martingales; so from the boundary conditions for f y and g, we obtain

our desired representations of f y and g as

f y(t, x) = Et,x[F(y,Xû
T )], (5.3)

g(t, x) = Et,x[Xû
T ]. (5.4)

To show that V (t, x) = J (t, x, û), we use the V -equation (4.1) to obtain

(AûV )(t, x) − (Aûf )(t, x, x) + (Aûf x)(t, x)

− Aû(G � g)(t, x) + (Hûg)(t, x) = 0, (5.5)

where

Hûg(t, x) = Gy

(
x,g(t, x)

)
Aûg(t, x).

Since f and g satisfy (4.2) and (4.3), we have

(Aûf x)(t, x) = 0,

Aûg(t, x) = 0,

so that (5.5) takes the form

(AûV )(t, x) = (Aûf )(t, x, x) + Aû(G � g)(t, x) (5.6)

for all t and x.
We now apply the Itô formula to the process V (s,Xû

s ). Integrating and taking
expectations gives

Et,x[V (T ,Xû
T )] = V (t, x) + Et,x

[∫ T

t

AûV (s,Xû
s )ds

]
,



342 T. Björk et al.

where the stochastic integral part has vanished because of the integrability condition
V ∈ L2

T (Xû). Using (5.6), we thus obtain

Et,x[V (T ,Xû
T )] = V (t, x) + Et,x

[∫ T

t

Aûf (s,Xû
s ,Xû

s ds)

]

+ Et,x

[∫ T

t

Aû (G � g) (s,Xû
s )ds

]
.

In the same way, we obtain

Et,x

[∫ T

t

Aûf (s,Xû
s ,Xû

s )ds

]
= Et,x[f (T ,Xû

T ,Xû
T )] − f (t, x, x),

Et,x

[∫ T

t

Aû (G � g) (s,Xû
s )ds

]
= Et,x

[
G

(
XT ,g(T ,Xû

T )
)] − G

(
x,g(t, x)

)
.

Using this and the boundary conditions for V , f and g, we get

Et,x[F(Xû
T ,Xû

T ) + G(Xû
T ,Xû

T )] = V (t, x) + Et,x[F(Xû
T ,Xû

T )] − f (t, x, x)

+ Et,x[G(Xû
T ,Xû

T )] − G
(
x,g(t, x)

)
,

i.e.,

V (t, x) = f (t, x, x) + G
(
x,g(t, x)

)
. (5.7)

Plugging (5.3) and (5.4) into (5.7), we get

V (t, x) = Et,x[F(x,Xû
T )] + G

(
x,Et,x[Xû

T ])),
and so we obtain the desired result

V (t, x) = J (t, x, û).

We now go on to show that û is indeed an equilibrium law, but first we need a
small temporary definition. For any admissible control law u, we define f u and gu

by

f u(t, x, y) = Et,x[F(y,Xu
T )],

gu(t, x) = Et,x[Xu
T ],

so that in particular, we have f = f û and g = gû. For any h > 0 and any admissible
control law u ∈ U, we now construct the control law uh as in Definition 3.4. From
Lemmas 3.3 and 8.8 in [5], applied to the points t and t + h, we obtain

J (t, x,uh) = Et,x[J (t + h,X
uh

t+h,uh)]
− (

Et,x[f uh(t + h,X
uh

t+h,X
uh

t+h)] − Et,x[f uh(t + h,X
uh

t+h, x)])

−
(
Et,x

[
G

(
X

uh

t+h, g
uh(t + h,X

uh

t+h)
)]

− G
(
x,Et,x[guh(t + h,X

uh

t+h)]
))

.
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Since uh = u on [t, t +h), we have by continuity that X
uh

t+h = Xu
t+h, and since uh = û

on [t + h,T ], we have

J (t + h,X
uh

t+h,uh) = V (t + h,Xu
t+h),

f uh(t + h,X
uh

t+h,X
uh

t+h) = f (t + h,Xu
t+h,X

u
t+h),

f uh(t + h,X
uh

t+h, x) = f (t + h,Xu
t+h, x),

guh(t + h,X
uh

t+h) = g(t + h,Xu
t+h).

Therefore we obtain

J (t, x,uh) = Et,x[V (t + h,Xu
t+h)]

− (
Et,x[f (t + h,Xu

t+h,X
u
t+h)] − Et,x[f (t + h,Xu

t+h, x)])

−
(
Et,x

[
G

(
Xu

t+h, g(t + h,Xu
t+h)

)] − G
(
x,Et,x[g(t + h,Xu

t+h)]
))

.

Furthermore, from the V -equation (4.1), we have

(AuV )(t, x) − (Auf )(t, x, x) + (Auf x)(t, x) − Au(G � g)(t, x) + (Hug)(t, x) ≤ 0,

where we have used the notation u = u(t, x). This gives

Et,x[V (t + h,Xu
t+h)] − V (t, x) − (

Et,x[f (t,Xu
t+h,X

u
t+h)] − f (t, x, x)

)

+ Et,x[f (t,Xu
t+h, x)] − f (t, x, x)

− Et,x

[
G

(
t + h,g(t + h,Xu

t+h)
)] + G

(
x,g(t, x)

)

+ G
(
x,Et,x

[
g(t + h,Xu

t+h)
]) − G

(
x,g(t, x)

) ≤ o(h),

or, after simplification,

V (t, x) ≥ Et,x[V (t + h,Xu
t+h)] − Et,x[f (t,Xu

t+h,X
u
t+h)] + Et,x[f (t,Xu

t+h, x)]
− Et,x

[
G

(
t + h,g(t + h,Xu

t+h)
)] + G

(
x,Et,x[g(t + h,Xu

t+h)]
) + o(h).

Combining this with the expression for J (t, x,uh) above, and with the fact that (as
we have proved) V (t, x) = J (t, x, û), we obtain

J (t, x, û) − J (t, x,uh) ≥ o(h),

so

lim inf
h→0

J (t, x, û) − J (t, x,uh)

h
≥ 0,

and we are done. �
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6 The general case

We now turn to the most general case of the present paper, where the functional J is
given by

J (t, x,u) = Et,x

[∫ T

t

H
(
t, x, s,Xu

s ,us(X
u
s )

)
ds + F(t, x,Xu

T )

]

+ G(t, x,Et,x[Xu
T ]). (6.1)

To study this reward functional, we need a slightly modified integrability assumption.

Assumption 6.1 We assume that for each initial point (t, x) ∈ [0, T ] ×R
n and each

admissible control law u, we have

Et,x

[∫ T

t

∣∣H
(
t, x, s,Xu

s ,us(X
u
s )

)∣∣ds + |F(x,Xu
T )|

]
< ∞,

Et,x[|Xu
T |] < ∞.

The treatment of this case is very similar to the previous one; so we directly give
the final result, which is the relevant extended HJB system.

Definition 6.2 Given the objective functional (6.1), the extended HJB system for V

is given by (6.2)–(6.7) below:

1. The function V is determined by

sup
u∈Rk

(
(AuV )(t, x) + H(t, x, t, x,u) − (Auf )(t, x, t, x) + (Auf tx)(t, x)

− Au (G � g) (t, x) + (Hug)(t, x)
) = 0, (6.2)

with boundary condition

V (T , x) = F(T ,x, x) + G(T ,x, x). (6.3)

2. For each fixed s and y, the function f sy(t, x) is defined by

Aûf sy(t, x) + H
(
s, y, t, x, ût (x)

) = 0, 0 ≤ t ≤ T , (6.4)

f sy(T , x) = F(s, y, x). (6.5)

3. The function g(t, x) is defined by

Aûg(t, x) = 0, 0 ≤ t ≤ T , (6.6)

g(T , x) = x. (6.7)
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In the definition above, û always denotes the control law which realizes the supre-
mum in the V -equation, and we have used the notation

f (t, x, s, y) = f sy(t, x),

(G � g) (t, x) = G
(
t, x, g(t, x)

)
,

Hug(t, x) = Gy

(
t, x, g(t, x)

)
Aug(t, x),

Gy(t, x, y) = ∂G

∂y
(t, x, y).

Also for this case, we have a verification theorem. The proof is almost identical to
that of Theorem 5.2, so we omit it.

Theorem 6.3 (Verification theorem) Assume that for all (s, y), the functions V (t, x),
f sy(t, x), g(t, x) and û(t, x) have the following properties:

1. V , f sy and g are a solution to the extended HJB system in Definition 6.2.
2. V , f sy and g are smooth in the sense that they are in C1,2.
3. The function û realizes the supremum in the V -equation, and û is an admissible

control law.
4. V , f sy , g and G� g as well as the function (t, x) 	→ f (t, x, t, x) all belong to the

space L2
T (Xû).

Then û is an equilibrium law, and V is the corresponding equilibrium value function.
Furthermore, f and g have the probabilistic representations

f sy(t, x) = Et,x

[∫ T

t

H
(
s, y, r,Xû

r , ûr (X
û
r )

)
dr + F(s, y,Xû

T )

]
,

g(t, x) = Et,x[Xû
T ], 0 ≤ t ≤ T .

7 Infinite horizon

The results above can easily be extended to the case with infinite horizon, i.e., when
T = +∞. The natural reward functional then has the form

J (t, x,u) = Et,x

[∫ ∞

t

H
(
t, x, s,Xu

s ,us(X
u
s )

)
ds

]
,

so that the functions F and G are not present. In this case, V (t, x) = f (t, x, t, x) and
hence (AuV ) (t, x) = (Auf )(t, x, t, x). The extended HJB system is thus reduced to
the system

sup
u∈Rk

(
(Auf tx)(t, x) + H(t, x, t, x,u)

) = 0,

Aûf sy(t, x) + H
(
s, y, t, x, ût (x)

) = 0,

lim
T →∞Et,x[f sy(T ,Xû

T )] = 0.

We also have an obvious verification theorem, where the relevant integrability con-
dition is that for each (s, y), the function f sy(t, x) must belong to L2

T (Xû) for all
finite T . The proof is almost identical to the earlier case.
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8 Example: the time-inconsistent linear-quadratic regulator

To illustrate how the theory works in a simple case, we consider a variation of the
classical linear-quadratic regulator. Other “quadratic” control problems are consid-
ered in [2, 6, 8], which study mean-variance problems within the present game-
theoretic framework. In the papers [19] and [20], the authors study the mean-
variance criterion where you are continuously rolling over instantaneously updated
pre-committed strategies.

The model we consider is specified as follows:

– The value functional for Player t is given by

Et,x

[
1

2

∫ T

t

u2
s ds

]
+ γ

2
Et,x[(XT − x)2],

where γ is a positive constant.
– The state process X is scalar with dynamics

dXt = (aXt + but )dt + σdWt,

where a, b and σ are given constants.
– The control u is scalar with no constraints.

This is a time-inconsistent version of the classical linear-quadratic regulator. The
time-inconsistency stems from the fact that the target point x = Xt is changing as
time goes by. In discrete time, this problem is studied in [5]. For this problem, we
have

F(x, y) = γ

2
(y − x)2, H(u) = 1

2
u2,

and as usual we introduce the functions f y(t, x) and f (t, x, x) by

f y(t, x) = Et,x

[∫ T

t

1

2
û2

s (X
û
s )ds + (Xû

T − y)2
]
, f (t, x, y) = f y(t, x).

In the present case, we have V (t, x) = f (t, x, x) and it is easy to see that the extended
HJB system of Sect. 6 takes the form

inf
u

(
1

2
u2 + Auf x(t, x)

)
= 0, 0 ≤ t ≤ T ,

Aûf y(t, x) + 1

2
û2

t (x) = 0, 0 ≤ t ≤ T ,

f y(T , x) = γ

2
(x − y)2.

From the X-dynamics, we see that

Au = ∂

∂t
+ (ax + bu)

∂

∂x
+ 1

2
σ 2 ∂2

∂x2
.
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Denoting for shortness of notation partial derivatives by lower case indices (so, for
example, fx = ∂f

∂x
), we thus obtain the extended HJB equation

inf
u

(
1

2
u2 + ft (t, x, x) + (ax + bu)fx(t, x, x) + 1

2
σ 2fxx(t, x, x)

)
= 0,

f (T , x, x) = 0.

The coupled system for f y is given by

f
y
t (t, x) + (

ax + bû(t, x)
)
f

y
x (t, x) + 1

2
σ 2f

y
xx(t, x) + 1

2
û2(t, x) = 0,

f y(T , x) = γ

2
(x − y)2.

The first order condition in the HJB equation gives û(t, x) = −bfx(t, x, x), and in-
spired by the standard regulator problem, we now make the ansatz

f (t, x, y) = A(t)x2 + B(t)y2 + C(t)xy + D(t)x + F(t)y + H(t), (8.1)

where all coefficients are deterministic functions of time. We now insert the ansatz
into the HJB system, and perform a number of extremely boring calculations. As a
result, it turns out that the variables separate in the expected way and we have the
following result.

Proposition 8.1 For the time-inconsistent regulator, the function f is given by (8.1),
and the equilibrium control is given by

û(t, x) = −b (2A + 2B + C)x − b (D + F) , (8.2)

where the coefficient functions solve the following system of ODEs:

At + 2aA − 2b2A(2A + C) + 1

2
b2(2A + C)2 = 0,

Bt = 0,

Ct + aC − b2C(2A + C) = 0,

Dt + aD − 2b2AD = 0,

Ft − b2CD = 0,

Ht − 1

2
b2D2 + σ 2A = 0,

with boundary conditions

A(T ) = γ

2
, B(T ) = γ

2
, C(T ) = −γ,

D(T ) = 0, F (T ) = 0, H(T ) = 0.
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Proof It remains to check that the technical conditions of the verification theorem
are satisfied. Firstly we need to check that the candidate equilibrium control in (8.2)
is admissible. Since the equilibrium control is linear, the equilibrium state dynamics
are linear; so admissibility is clear. Secondly we need to check that the functions
V (t, x), f (t, x, x) and f y(t, x) are in L2

T (Xû). Since the state dynamics are linear
with constant diffusion term, the condition for a function h(t, x) to be in L2

T (Xû) is
simply that

Et,x

[∫ T

t

h2
x(s,X

û
s )ds

]
< ∞.

In our case, V (t, x) = f (t, x, x) which is quadratic in x. This implies that V 2
x (t, x) is

quadratic in x, and since the dynamics for Xû are linear, we have square-integrability;
so the integrability condition above is satisfied. The same argument applies to
f y(t, x) for every fixed y. �

9 Example: a Cox–Ingersoll–Ross production economy
with time-inconsistent preferences

In this section, we apply the previously developed theory to a rather detailed study of
a general equilibrium model for a production economy with time-inconsistent pref-
erences. The model under consideration is a time-inconsistent analogue of the classic
Cox–Ingersoll–Ross model in [7]. Our main objective is to investigate the structure
of the equilibrium short rate, the equilibrium Girsanov kernel, and the equilibrium
stochastic discount factor.

There are a few earlier papers on equilibrium with time-inconsistent preferences.
In [1] and [17], the authors study continuous-time equilibrium models of a particular
type of time-inconsistency, namely non-exponential discounting. While [1] considers
a deterministic neoclassical model of economic growth, [17] analyze general equilib-
rium in a stochastic endowment economy.

Our present study is much inspired by the earlier paper [15] which in very great
detail studies equilibrium in a very general setting of an endowment economy with
dynamically inconsistent preferences that are not limited to the particular case of
non-exponential discounting.

Unlike the papers mentioned above, which all studied endowment models, we
study a stochastic production economy of Cox–Ingersoll–Ross type.

9.1 The model

We start with some formal assumptions concerning the production technology.

Assumption 9.1 We assume that there exists a constant-returns-to-scale physical
production technology process S with dynamics

dSt = αStdt + StσdWt .

The economic agents can invest unlimited positive amounts in this technology, but
since it is a matter of physical investment, short positions are not allowed.
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From a purely formal point of view, investment in the technology S is equivalent
to investing in a risky asset with price process S, with the constraint that short selling
is not allowed.

We also need a risk-free asset, and this is provided by the next assumption.

Assumption 9.2 We assume that there exists a risk-free asset in zero net supply with
dynamics

dBt = rtBtdt,

where r is the short rate process, which will be determined endogenously. The risk-
free rate r is assumed to be of the form

rt = r(t,Xt ),

where X denotes the portfolio value of the representative investor (to be defined be-
low).

Interpreting the production technology S as above, the wealth dynamics is given
by

dXt = Xtut (α − rt )dt + (rtXt − ct )dt + XtutσdWt,

where u is the portfolio weight on production, so 1 − u is the weight on the risk-free
asset. Finally, we need an economic agent.

Assumption 9.3 We assume that there exists a representative agent who at every
point (t, x) wishes to maximize the reward functional

Et,x

[∫ T

t

U(t, x, s, cs)ds

]
.

9.2 Equilibrium definitions

We now go on to study equilibrium in our model. We shall in fact have two equilib-
rium concepts:

– intrapersonal equilibrium;
– market equilibrium.

The intrapersonal equilibrium is related to the lack of time-consistency in prefer-
ences, whereas the market equilibrium is related to market clearing. We now discuss
these concepts in more detail.

9.2.1 Intrapersonal equilibrium

Consider, for a given short rate function r(t, x), the control problem with reward
functional

Et,x

[∫ T

t

U(t, x, s, cs)ds

]
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and wealth dynamics

dXt = Xtut (α − rt )dt + (rtXt − ct )dt + XtutσdWt,

where rt is shorthand for r(t,Xt ). If the agent wants to maximize the reward func-
tional for every initial point (t, x), then, because of the appearance of (t, x) in the
utility function U , this is a time-inconsistent control problem. In order to handle this
situation, we use the game-theoretic setup and results developed in Sects. 1–6 above.
This subgame perfect Nash equilibrium concept is henceforth referred to as the in-
trapersonal equilibrium.

9.2.2 Market equilibrium

By a market equilibrium, we mean a situation where the agent follows an intraper-
sonal equilibrium strategy and the market clears for the risk-free asset. The formal
definition is as follows.

Definition 9.4 A market equilibrium of the model is a triple of real-valued functions
ĉ(t, x), û(t, x), r(t, x) such that the following hold:

1. Given the risk-free rate of the functional form r(t, x), the intrapersonal equilib-
rium consumption and investment are given by ĉ and û respectively.

2. The market clears for the risk-free asset, i.e.,

û(t, x) ≡ 1.

9.3 Main goals of the study

As will be seen below, there is a unique equilibrium martingale measure Q with
corresponding likelihood process Lt = dQ

dP
|Ft

, where L has dynamics

dLt = LtϕtdWt .

The process ϕ is referred to as the equilibrium Girsanov kernel. There is also an
equilibrium short rate process r , which is related to ϕ by the standard no-arbitrage
relation

r(t, x) = α + ϕ(t, x)σ, (9.1)

which says that S/B is a Q-martingale. There is also a unique equilibrium stochastic
discount factor M defined by

Mt = e− ∫ t
0 rsdsLt .

For ease of notation, however, we only identify the stochastic discount factor M up to
a multiplicative constant; so for any arbitrage-free (non-dividend) price process (pt ),
we have the pricing equation

ps = 1

Ms

EP
[
Mtpt |Fs

]
.

Our goal is to obtain expressions for ϕ, r and M .
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9.4 The extended HJB equation

In order to determine the intrapersonal equilibrium, we use the results from Sect. 6.
At this level of generality, we are not able to provide a priori conditions on the model
which guarantee that the conditions of the verification theorem are satisfied. For the
general theory below (but of course not for the concrete example presented later), we
are thus forced to make the following ad hoc assumption.

Assumption 9.5 We assume that the model under study is such that the verification
theorem is in force.

This assumption of course has to be checked for every concrete application. In Sect.
9.8.2, we consider the example of power utility and for this case, we can in fact prove
that the assumption is satisfied.

In the present case, we have V (t, x) = f (t, x, t, x) and it is easy to see that we
can write the extended HJB equation as

sup
u≥0,c≥0

(
U(t, x, t, c) + Au,cf tx(t, x)

) = 0

and f sy is determined by

Aû,ĉf sy(t, x) + U
(
s, y, t, ĉ(t, x)

) = 0

with the probabilistic representation

f sy(t, x) = Et,x

[∫ T

t

U
(
s, y, τ, ĉ(τ,Xû

τ )
)
dτ

]
, 0 ≤ t ≤ T .

The term Au,cf tx(t, x) is given by

Au,cf tx(t, x) = ft + xu (α − r) fx + (rx − c)fx + 1

2
x2u2σ 2fxx,

where f and the derivatives are evaluated at (t, x, t, x) and we use the notation

f (t, x, s, y) = f sy(t, x),

ft (t, x, s, y) = ∂f

∂t
(t, x, s, y),

fx(t, x, s, y) = ∂f

∂x
(t, x, s, y),

fxx(t, x, s, y) = ∂2f

∂x2
(t, x, s, y).

The first order conditions for an interior optimum are

Uc(t, x, t, ĉ) = fx(t, x, t, x), û = −α − r

σ 2

fx(t, x, t, x)

xfxx(t, x, t, x)
. (9.2)
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9.5 Determining market equilibrium

In order to determine the market equilibrium, we use the equilibrium condition û = 1.
Plugging this into (9.2), we immediately obtain our first result.

Proposition 9.6 With the assumptions as above, the following hold:

– The equilibrium short rate is given by

r(t, x) = α + σ 2 xfxx(t, x, t, x)

fx(t, x, t, x)
. (9.3)

– The equilibrium Girsanov kernel ϕ is given by

ϕ(t, x) = σ
xfxx(t, x, t, x)

fx(t, x, t, x)
. (9.4)

– The extended equilibrium HJB system has the form

U(t, x, t, ĉ) + ft + (αx − ĉ)fx + 1

2
x2σ 2fxx = 0,

Aĉf sy(t, x) + U
(
s, y, t, ĉ(t, x)

) = 0.
(9.5)

– The equilibrium consumption ĉ is determined by the first order condition

Uc(t, x, t, ĉ) = fx(t, x, t, x).

– The term Aĉf tx(t, x) is given by

Aĉf tx(t, x) = ft + x (α − r) fx + (rx − ĉ)fx + 1

2
x2σ 2fxx.

– The equilibrium dynamics for X are given by

dXt = (αXt − ĉt )dt + XtσdWt .

Proof The formula (9.4) follows from (9.3) and (9.1). The other results are obvi-
ous. �

9.6 Recap of standard results

We can compare the above results with the standard case where the utility functional
for the agent is of the time-consistent form

Et,x

[∫ T

t

U(s, cs)ds

]
.

In this case, we have a standard HJB equation of the form

sup
u∈R,c≥0

(
U(t, c) + Au,cV (t, x)

) = 0,
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and the equilibrium quantities are given by the well-known expressions

r(t, x) = α + σ 2 xVxx(t, x)

Vx(t, x)
, (9.6)

ϕ(t, x) = σ
xVxx(t, x)

Vx(t, x)
. (9.7)

We note the strong structural similarities between the old and the new formulas, but
we also note important differences. Let us take the formulas for the equilibrium short
rate r as an example. We recall the standard and the time-inconsistent formulas

r(t, x) = α + σ 2 xVxx(t, x)

Vx(t, x)
, (9.8)

r(t, x) = α + σ 2 xfxx(t, x, t, x)

fx(t, x, t, x)
. (9.9)

For the time-inconsistent case, we have the relation V e(t, x) = f (t, x, t, x) (where
temporarily, and for the sake of clearness, V e denotes the equilibrium value function);
so it is tempting to think that we should be able to write (9.9) as

r(t, x) = α + σ 2 xV e
xx(t, x)

V e
x (t, x)

which would be structurally identical to (9.8). This, however, turns out to be incor-
rect: Since V e(t, x) = f (t, x, t, x), we have V e

x (t, x) = fx(t, x, t, x) + fy(t, x, t, x),
where fy is the partial derivative ∂f

∂y
(t, x, s, y), and a similar argument holds for the

term V e
xx . We thus see that formally replacing V by V e in (9.8) does not give (9.9).

9.7 The stochastic discount factor

We now go on to investigate our main object of interest, namely the equilibrium
stochastic discount factor M . We recall from general arbitrage theory that

Mt = e− ∫ t
0 ruduLt ,

where L is the likelihood process Lt = dQ
dP

|Ft
, with dLt = LtϕtdWt . This immedi-

ately gives the dynamics of M as

dMt = −rtMtdt + MtϕtdWt , (9.10)

so we can identify the short rate r and the Girsanov kernel ϕ from the dynamics of M .
From Proposition 9.6, we know r and ϕ, so in principle we have in fact already

determined M ; but we now want to investigate the relation between M , the direct
utility function U , and the indirect utility function f in the extended HJB equation.

We recall from standard theory that for the usual time-consistent case, the (non-
normalized) stochastic discount factor M is given by

Mt = Vx(t,Xt ),
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or equivalently by

Mt = Uc(t, ct )

along the equilibrium path. In our present setting, we have

V (t, x) = f (t, x, t, x),

so a conjecture could perhaps be that the stochastic discount factor for the time-
inconsistent case is given by one of the formulas

Mt = Vx(t,Xt ), Mt = fx(t,Xt , t,Xt ), Mt = Uc(t,Xt , t, ct )

along the equilibrium path. In order to check if any of these formulas are correct,
we only have to compute the corresponding differential dMt and check whether it
satisfies (9.10). It is then easily seen that none of the above formulas for M is cor-
rect. The situation is thus more complicated, and we now go on to derive the correct
representation of the stochastic discount factor.

9.7.1 A representation formula for M

We now go back to the time-inconsistent case with utility of the form

Et,x

[∫ T

t

U(t, x, s, cs)ds

]
.

We present below a representation for the stochastic discount factor M in the produc-
tion economy, but first we need to introduce some new notation.

Definition 9.7 Let X be a (possibly vector-valued) semimartingale and Y an optional
process. For a C2 function f (x, y) we introduce the “partial stochastic differential”
∂x by the formula

∂xf (Xt , Yt ) = df (Xt , y), evaluated at y = Yt .

The intuitive interpretation of this is that

∂xf (Xt , Yt ) = f (Xt+dt , Yt ) − f (Xt ,Yt ),

and we have the following proposition, which generalizes the standard result for the
time-consistent theory.

Theorem 9.8 The stochastic discount factor M is determined by

d (lnMt) = ∂t,x

(
lnfx(t,Xt , t,Xt )

)
, (9.11)

where the partial differential ∂t,x only operates on the variables (t, x) in fx(t, x, s, y).
Alternatively, we can write

Mt = Uc(t,Xt , t, ĉt )e
Zt , (9.12)

where Z is determined by

dZt = ∂tx

(
lnfx(t,Xt , t,Xt )

) − d
(

lnfx(t,Xt , t,Xt )
)
. (9.13)



Time-inconsistent control 355

Remark 9.9 Note again that the operator ∂tx in (9.13) only acts on the first occurrence
of t and Xt in fx (t,Xt , t,Xt ), whereas the operator d acts on the entire process
t 	→ fx (t,Xt , t,Xt ).

Proof of Theorem 9.8 Formulas (9.12) and (9.13) follow from (9.11) and the first
order condition Uc(t,Xt , t, ĉt ) = fx(t,Xt , t,Xt ). It thus remains to prove (9.11).

From (9.10), it follows that we need to show that

∂t,x

(
lnfx(t,Xt , t,Xt )

) = −
(

rt + 1

2
ϕ2

t

)
dt + ϕtdWt ,

where r and ϕ are given by (9.3) and (9.4). Applying Itô’s formula and the definition
of ∂t,x , we obtain

∂t,x lnfx(t,Xt , t,Xt ) = A(t,Xt )dt + B(t,Xt )dWt ,

where

A(t, x) = 1

fx

(
fxt + (αx − ĉ)fxx + 1

2
σ 2x2fxxx − 1

2
σ 2x2 f 2

xx

fx

)
, (9.14)

B(t, x) = σx
fxx

fx

.

From (9.4), we see that indeed B(t, x) = ϕ(t, x); so, using (9.3), it remains to show
that

A(t, x) = −
(

α + σ 2x
fxx

fx

+ 1

2
σ 2x2 fxx

fx

)
. (9.15)

To show this, we differentiate the equilibrium HJB equation (9.5), use the first order
condition Uc = fx , and obtain

Ux + fty + ftx + (αx − ĉ)fxx + (αx − ĉ)fxy + αfx

+ σ 2xfxx + 1

2
σ 2x2fxxy + 1

2
σ 2x2fxxx = 0, (9.16)

where ftx = ftx(t, x, t, x) and similarly for other derivatives, ĉ = ĉ(t, x) and
Ux = Ux(t, x, t, ĉ(t, x)). From the extended HJB system, we also recall the PDE
for f sy as

f
sy
t (t, x) + (αx − ĉ)f

sy
x (t, x) + 1

2
σ 2x2f

sy
xx (t, x) + U(s, y, t, ĉ) = 0.

Differentiating this equation with respect to the variable y and evaluating at (t, x, t, x)

and ĉ(t, x), we obtain

fty + (αx − ĉ)fxy + 1

2
σ 2x2fxxy + Ux = 0.

We can now plug this into (9.16) to obtain

ftx + (αx − ĉ)fxx + αfx + σ 2xfxx + 1

2
σ 2x2fxxx = 0.
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Plugging this into (9.14), we can write A as

A(t, x) = −
(

α + σ 2x
fxx

fx

+ 1

2
σ 2x2 f 2

xx

fx

)
,

which is exactly (9.15). �

9.8 Production economy with non-exponential discounting

A case of particular interest occurs when the utility function is of the form

U(t, x, s, cs) = β(s − t)U(cs),

so the utility functional has the form

Et,x

[∫ T

t

β(s − t)U(cs)ds

]
.

9.8.1 Generalities

In the case of non-exponential discounting, it is natural to consider the case with
infinite horizon. We thus assume that T = ∞ so that we have the functional

Et,x

[∫ ∞

t

β(τ − t)U(cτ )dτ

]
.

The function f (t, x, s, y) will now be of the form f (t, x, s), and because of the time-
invariance, it is natural to look for time-invariant equilibria where

û(t, x) = û(x),

V (t, x) = V (x),

f (t, x, s) = g(t − s, x), s ≤ t < ∞,

V (x) = g(0, x).

Observing that fx(t, x, t) = gx(0, x) = Vx(x) and similarly for second order deriva-
tives, we may now restate Proposition 9.6.

Proposition 9.10 With the assumptions as above, the following hold:

– The equilibrium short rate is given by

r(x) = α + σ 2 xVxx(x)

Vx(x)
.

– The equilibrium Girsanov kernel ϕ is given by

ϕ(x) = σ
xVxx(x)

Vx(x)
.
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– The extended equilibrium HJB system has the form

U(ĉ) + gt (0, x) + (αx − ĉ)gx(0, x) + 1

2
x2σ 2gxx(0, x) = 0,

Aĉg(t, x) + β(t)U
(
ĉ(x)

) = 0.

– The function g has the representation

g(t, x) = E0,x

[∫ ∞

0
β(t + s)U(ĉs)ds

]
.

– The equilibrium consumption ĉ is determined by the first order condition

Uc(ĉ) = gx(0, x). (9.17)

– The term Aĉg(t, x) is given by

Aĉg(t, x) = gt (t, x) + (
αx − ĉ(x)

)
gx(t, x) + 1

2
x2σ 2gxx(t, x).

– The equilibrium dynamics of X are given by

dXt = (αXt − ĉt )dt + XtσdWt . (9.18)

We see that the short rate r and the Girsanov kernel ϕ have exactly the same
structural form as the standard case formulas (9.6) and (9.7). We now move to the
stochastic discount factor and after some calculations, we have the following version
of Theorem 9.8.

Proposition 9.11 The stochastic discount factor M is determined by

d(lnMt) = d
(

lngx(t,Xt )
)
,

where gx is evaluated at (0,Xt ). Alternatively, we can write M as

Mt = Uc(ĉt ) exp

(∫ t

0

gxt (0,Xs)

gx(0,Xs)
ds

)
.

9.8.2 Power utility

We now specialize to the case of a constant relative risk aversion (CRRA) utility of
the form

U(c) = c1−γ − 1

1 − γ

with γ > 0, γ �= 1. We make the obvious ansatz

g(t, x) = a(t)U(x) + b(t), (9.19)

where a and b are deterministic functions of time. The natural boundary conditions
are

lim
t→∞a(t) = 0, lim

t→∞b(t) = 0.
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From the first order condition (9.17) for c, we have the equilibrium consumption
given by

ĉ(x) = Dx,

where

D = (
a(0)

)−1/γ
.

From Proposition 9.10, the short rate and the Girsanov kernel are

ϕ = −γ σ,

r = α − γ σ 2.

The function a is determined by the equilibrium HJB equation for g, which leads us
to the linear ODE

ȧ(t) + Aa(t) + Bβ(t) = 0

with

A = (1 − γ )(α − D − γ σ 2/2), B = D1−γ .

9.8.3 Checking the verification theorem conditions for power utility

We now need to check that he conditions in the verification theorem of Sect. 7 are sat-
isfied, i.e., we have to check that for each s, the function f s(t, x) belongs to L2

T (Xĉ)

for all positive finite T . From the equilibrium dynamics (9.18), we see that a function
h(t, x) belongs to L2

T (Xĉ) if and only if it satisfies the condition

Et,x

[∫ T

t

h2
x(s, X̂s)X̂

2
s ds

]
< ∞,

where X̂ denotes the equilibrium state process. In our case, f s(t, x) = g(t − s, x); so
using (9.19), we only need to check the condition

E0,x

[∫ T

0
X̂

2(1−γ )
s ds

]
< ∞.

Using the equilibrium dynamics of X, it is easy to see that

E0,x

[
X̂

2(1−γ )
s

] = X̂
2(1−γ )

0 eCs,

where

C = 2(α − D)(1 − γ ) + σ 2(1 − γ )(1 − 2γ ).

So the integrability condition is indeed satisfied.
From this example with non-exponential discounting, we see that the risk-free

rate and Girsanov kernel only depend on the production opportunities in the econ-
omy. These objects are unaffected by the time-inconsistency stemming from non-
exponential discounting. The equilibrium consumption, however, is determined by
the discounting function of the representative agent.
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10 Conclusion and open problems

In this paper, we have presented a fairly general class of time-inconsistent stochastic
control problems. Using a game-theoretic perspective, we have derived an extended
HJB system of PDEs for the determination of the equilibrium control as well as for
the equilibrium value function. We have proved a verification theorem, and we have
studied a couple of concrete examples. For more examples and extensions, see the
working paper [3]. Some obvious open research problems are the following:

– A theorem proving convergence of the discrete-time theory to the continuous-time
limit. For the quadratic case, this is done in [8], but the general problem is open.

– An open and difficult problem is to provide conditions on primitives which guar-
antee that the functions V and f are regular enough to satisfy the extended HJB
system.

– A related (hard) open problem is to prove existence and/or uniqueness for solutions
of the extended HJB system.

– Another related problem is to give conditions on primitives which guarantee that
the assumptions of the verification theorem are satisfied.

– The present theory depends critically on the Markovian structure. It would be in-
teresting to see what can be done without this assumption.
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