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Abstract This paper provides the mathematical foundation for polynomial diffu-
sions. They play an important role in a growing range of applications in finance,
including financial market models for interest rates, credit risk, stochastic volatil-
ity, commodities and electricity. Uniqueness of polynomial diffusions is established
via moment determinacy in combination with pathwise uniqueness. Existence boils
down to a stochastic invariance problem that we solve for semialgebraic state spaces.
Examples include the unit ball, the product of the unit cube and nonnegative orthant,
and the unit simplex.
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1 Introduction

This paper provides the mathematical foundation for polynomial diffusions on a large
class of state spaces in R

d . A polynomial diffusion is characterized by having a linear
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drift and quadratic diffusion function. In consequence, moments are given in closed
form. Such processes represent an extension of the affine class. They play an im-
portant role in a growing range of applications in finance, including financial market
models of interest rates, credit risk, stochastic volatility, and commodities and elec-
tricity.

An arbitrage-free financial market model is determined by a state price den-
sity, i.e., a positive semimartingale ζ defined on a filtered probability space
(Ω,F ,Ft ,P). The model price Π(t, T ) at time t of any time T cash-flow CT is
given by

Π(t, T ) = 1

ζt

E
[
ζT CT

∣∣Ft

]
. (1.1)

We may interpret P as the historical measure, or more generally as an auxiliary mea-
sure possibly different from, but equivalent to, the historical measure. A polynomial
diffusion model consists of a polynomial diffusion X as factor process, along with
a positive polynomial p on the state space. The state price density is specified by
ζt = e−αtp(Xt ), where α is a real parameter chosen to control the lower bound on im-
plied interest rates. We let the time T cash-flow of a security be given by CT = q(XT )

for some polynomial q . The polynomial property of X along with the elementary fact
that pq is a polynomial implies that Π(t, T ) becomes a rational function in Xt with
coefficients given in closed form in terms of a matrix exponential. Polynomial dif-
fusion models thus yield closed form expressions for any security with cash-flows
specified as polynomial functions of X, which makes them universally applicable in
finance. This includes financial market models for interest rates (with CT = 1), credit
risk in a doubly stochastic framework (with CT the conditional survival probability),
stochastic volatility (with CT the spot variance), and commodities and electricity
(with CT the spot price).

While polynomial diffusions have appeared in the literature since Wong [48], so
far no existence and uniqueness theory has been available beyond the scalar case. This
paper fills this gap and thus provides the mathematical foundation for polynomial
diffusion models in finance.

Our main uniqueness result (Theorem 4.2) is based on the classical theory of the
moment problem. Since the mixed moments of all finite-dimensional marginal dis-
tributions of a polynomial diffusion are uniquely determined by its generator (Theo-
rem 3.1 and Corollary 3.2), uniqueness follows whenever these moments determine
the underlying distribution. This is often true, for instance in the affine case or when
the state space is compact, or more generally if exponential moments exist; Theo-
rem 3.3 provides sufficient conditions. There are, however, situations where the mo-
ment problem approach fails. We therefore provide two additional results based on
Yamada–Watanabe type arguments, which give uniqueness in the one-dimensional
case (Theorem 4.3) as well as when the process dynamics exhibits a certain hierarchi-
cal structure (Theorem 4.4). These uniqueness results do not depend on the geometry
of the state space.

In order to study existence, we assume that the state space is a basic closed semi-
algebraic set, i.e., the nonnegativity set of a finite family of polynomials. Existence
reduces to a stochastic invariance problem that we solve under suitable geometric



Polynomial diffusions and applications in finance 933

and algebraic conditions on the state space (Theorem 5.3). We also study boundary
attainment. In applications, it is frequently of interest to know whether the trajectories
of a given process may hit the boundary of the state space. In particular, simulating
trajectories becomes a much more delicate task if the boundary is attained; see Lord
et al. [35]. We present sufficient conditions for both attainment and non-attainment
that are tight (Theorem 5.7).

A semialgebraic state space is a natural choice for at least three reasons. First, pos-
itive semidefiniteness of the quadratic diffusion matrix boils down to nonnegativity
constraints on polynomials. Second, polynomial diffusion models in finance involve
polynomials that are required to be positive on the state space. And third, semial-
gebraic sets turn out to be an ideal setting for employing tools from real algebraic
geometry to verify the hypotheses of our existence and boundary attainment results.

We give a detailed analysis of some specific semialgebraic state spaces that do
and will play an important role in financial applications, and that illustrate the scope
of polynomial diffusions. Specifically, we consider certain quadric sets including the
unit ball {x ∈ R

d : ‖x‖ ≤ 1}, the product space [0,1]m × R
n+, and the unit simplex

{x ∈ R
d+ : x1 + · · · + xd = 1}. We also elaborate on polynomial diffusion models in

finance, and show how to specify novel stochastic models for interest rates, stochastic
volatility, and stock markets.

Polynomial processes have been studied in various degrees of generality by several
authors, for instance Wong [48], Mazet [38], Zhou [49], Forman and Sørensen [24],
among others. The first systematic accounts treating the time-homogeneous Markov
jump-diffusion case are Cuchiero [9] and Cuchiero et al. [10]. The use of polynomial
diffusions in financial modeling goes back at least to the early 2000s. Zhou [49] used
one-dimensional polynomial (jump-)diffusions to build short rate models that were
estimated to data using a generalized method-of-moments approach, relying crucially
on the ability to compute moments efficiently. A short rate model based on the Jacobi
process was presented by Delbaen and Shirakawa [15], and Larsen and Sørensen
[33] used the same process for exchange rate modeling. The multidimensional Ja-
cobi process was studied by Gouriéroux and Jasiak [27], who constructed a stock
price model with smooth transitions of drift and volatility regimes. More recently,
polynomial diffusions have featured in the context of financial applications in several
papers; see Filipović et al. [23, 21] for models of the term structure of variance swap
rates and interest rates, respectively, models, and Cuchiero et al. [10] for variance
reduction for option pricing and hedging, among other applications. There are sev-
eral reasons for moving beyond the affine class. In particular, nontrivial dynamics on
compact state spaces become a possibility, which together with the polynomial prop-
erty fits well with polynomial expansion techniques; see also Filipović et al. [20].
Also on non-compact state spaces, one can achieve richer dynamics than in the affine
case. Examples of non-affine polynomial processes include multidimensional Jacobi
or Fisher–Wright processes (Ethier [18], Gouriéroux and Jasiak [27]), Pearson diffu-
sions (Forman and Sørensen [24]), and Dunkl processes (Dunkl [17], Gallardo and
Yor [25]).

The rest of the paper is structured as follows. In Sect. 2, we define polynomial
diffusions. Section 3 is concerned with power and exponential moments. In Sect. 4,
we discuss uniqueness. In Sect. 5, we treat existence and boundary attainment. Sec-
tion 6 contains examples of semialgebraic state spaces. Section 7 outlines various
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polynomial diffusion models in finance. For the sake of readability, most proofs are
given in Appendices A–I. Some basic notions from algebraic geometry are reviewed
in Appendix J.

We end this introduction with some notational conventions that will be used
throughout this paper. For a function f : Rd → R, we write {f = 0} for the set
{x ∈ R

d : f (x) = 0}. A polynomial p on R
d is a map R

d → R of the form∑
α cαx

α1
1 · · ·xαd

d , where the sum runs over all multi-indices α = (α1, . . . , αd) ∈ N
d
0

and only finitely many of the coefficients cα are nonzero. Such a representation is
unique. The degree of p is the number degp = max{α1 + · · · + αd : cα �= 0}. We
let Pol(Rd) denote the ring of all polynomials on R

d , and Poln(Rd) the subspace
consisting of polynomials of degree at most n. Let E be a subset of Rd . A polyno-
mial on E is the restriction p = q|E to E of a polynomial q ∈ Pol(Rd). Its degree is
degp = min{degq : p = q|E,q ∈ Pol(Rd)}. We let Pol(E) denote the ring of poly-
nomials on E, and Poln(E) the subspace of polynomials on E of degree at most n.
Both Poln(Rd) and Poln(E) are finite-dimensional real vector spaces, but if there are
nontrivial polynomials that vanish on E, their dimensions will be different. If E has a
nonempty interior, then Poln(Rd) and Poln(E) can be identified. The set of real sym-
metric d × d matrices is denoted S

d , and the subset of positive semidefinite matrices
is denoted S

d+.

2 Definition of polynomial diffusions

Throughout this paper, we fix maps a :Rd → S
d and b :Rd →R

d with

aij ∈ Pol2(R
d) and bi ∈ Pol1(R

d) for all i, j (2.1)

and a state space E ⊆ R
d . Our goal is to investigate the following issues:

(a) For a suitable class of state spaces E, find conditions on a, b, E that guarantee
the existence of an E-valued solution to the stochastic differential equation

dXt = b(Xt )dt + σ(Xt )dWt (2.2)

for some d-dimensional Brownian motion W and some continuous function
σ :Rd →R

d×d with σσ� = a on E. We shall consider the class of basic closed
semialgebraic sets E, defined using polynomial equalities and inequalities.

(b) Find conditions for uniqueness in law for E-valued solutions to (2.2). By this
we mean that for any x ∈ E and any E-valued solutions X and X′ to (2.2) with
X0 = X′

0 = x, possibly with different driving Brownian motions, X and X′ have
the same law.

(c) Find conditions for a solution to (2.2) to attain the boundary of E.
(d) Find large parametric classes of a, b, E for which (2.2) admits a solution.

Investigating these issues is motivated by the fact that diffusions as in (2.2) admit
closed form conditional moments and have broad applications in finance, as we shall
see below.
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We consider the partial differential operator G given by

G f = 1

2
Tr(a∇2f ) + b�∇f. (2.3)

In view of (2.1), G maps Poln(Rd) to itself for each n ∈ N. As we work on a state
space E ⊆ R

d , we now refine this property. We say that G is well defined on Pol(E)

if G f = 0 on E for any f ∈ Pol(Rd) with f = 0 on E. In this case, G is well defined
as an operator on Pol(E). This always holds if E has a nonempty interior.

Definition 2.1 The operator G is called polynomial on E if it is well defined on
Pol(E), and thus maps Poln(E) to itself for each n ∈ N. In this case, we call any
E-valued solution to (2.2) a polynomial diffusion on E.

It is a simple matter to verify that any second order partial differential operator
that maps Poln(E) to itself for each n ∈ N is necessarily of the form (2.1) and (2.3)
on E.

Lemma 2.2 Let G̃ f = 1
2 Tr(̃a∇2f ) + b̃�∇f be a partial differential operator for

some maps ã : Rd → S
d and b̃ : Rd → R

d . Assume G̃ is well defined on Pol(E).
Then the following are equivalent:

(i) G̃ maps Poln(E) to itself for each n ∈N.
(ii) G̃ maps Poln(E) to itself for n ∈ {1,2}.

(iii) The components of ã and b̃ restricted to E lie in Pol2(E) and Pol1(E), respec-
tively.

In this case, ã and b̃ restricted to E are uniquely determined by the action of G̃ on
Pol2(E).

Proof The implications (i) ⇒ (ii) and (iii) ⇒ (i) are immediate, and the implication
(ii) ⇒ (iii) follows upon applying G̃ to the monomials of degree one and two. In
particular, this pins down ã and b̃ on E, and thus also establishes the last part of the
lemma. �

In the one-dimensional case d = 1, one can classify all polynomial diffusions on
intervals E. Indeed, one has a(x) = a + αx + Ax2 and b(x) = b + βx for some
scalars a,α,A,b,β , and E = {x ∈R : a(x) ≥ 0}. See Forman and Sørensen [24] and
Filipović et al. [23] for details.

The multidimensional case is less trivial. For example, let d = 2, E = R × {0},
and consider the operator G f (x, y) = 1

2∂xxf (x, y) + ∂yf (x, y). This operator is
not well defined on Pol(E), since the polynomial f (x, y) = y vanishes on E, but
G f (x, y) = 1. On the other hand, G is the generator of the diffusion dXt = (dBt , dt),
where B is a one-dimensional Brownian motion. This process immediately leaves E

for any starting point x ∈ E. If, however, an E-valued solution to (2.2) exists for
any starting point x ∈ E, then G is well defined on Pol(E). This follows from the
following basic positive maximum principle.
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Lemma 2.3 Consider f ∈ C2(Rd) and suppose x ∈ E is a maximizer of f over E.
If (2.2) admits an E-valued solution with X0 = x, then G f (x) ≤ 0.

Proof Let X be an E-valued solution to (2.2) with X0 = x, and assume for contra-
diction that G f (x) > 0. By the definition of a global maximizer, f (x) ≤ f (x) for all
x ∈ E. Let τ = inf{t ≥ 0 : G f (Xt ) ≤ 0}, and note that τ > 0. Then for t ∈ (0, τ ), we
have f (Xt ) ≤ f (x) and G f (Xt ) > 0, which implies

f (Xt∧τ ) − f (x) −
∫ t∧τ

0
G f (Xs)ds < 0

for all t > 0. Thus the left-hand side is a local martingale starting from zero, strictly
negative for all t > 0. This contradiction proves that G f (x) ≤ 0. �

Regarding uniqueness, it is crucial to restrict attention to E-valued solutions. To
illustrate what can otherwise go wrong, consider the stochastic differential equation

dXt = −2
√

X−
t dt + 2

√
X+

t dWt , which is well known to have a unique R+-valued
solution: the zero-dimensional squared Bessel process. However, this stochastic dif-
ferential equation admits other solutions that do not remain in R+, for example
Xt = Yt1{t≤τ } −(t −τ)21{t>τ }, where Y is a zero-dimensional squared Bessel process
with Y0 ≥ 0 and τ = inf{t : Yt = 0}. Here τ is finite almost surely.

Note that in Definition 2.1, we require neither uniqueness of solutions to (2.2),
nor that G be the generator of a Markov process on E. There are two reasons for
this. First, existence of E-valued solutions to (2.2) does not in itself imply that those
solutions are Markovian. Second, in the context of Markov processes, the polynomial
property holds if and only if the corresponding semigroup leaves Poln(E) invariant
for each n ∈ N. However, this fact, properly phrased, does not require the Markov
property. Only Itô calculus is needed. This observation is crucial for our approach
to proving uniqueness. Finally, we remark that a polynomial diffusion that is also a
Markov process is a “polynomial process” in the terminology of Cuchiero et al. [10],
with vanishing killing rate and no jumps.

3 Power and exponential moments

Throughout this section, we assume that G is polynomial on E and let X be an
E-valued solution to (2.2) realized on a filtered probability space (Ω,F ,Ft ,P).

For any n ∈ N, we let N = N(n,E) denote the dimension of Poln(E). We fix a
basis of polynomials h1, . . . , hN for Poln(E) and write

H(x) = (h1(x), . . . , hN(x)
)�

.

Then for each p ∈ Poln(E), there exists a unique vector �p ∈R
N such that

p(x) = H(x)� �p. (3.1)
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The restriction of G to Poln(E) has a unique matrix representation G ∈R
N×N , char-

acterized by the property that G �p is the coordinate vector of G p whenever �p is the
coordinate vector of p. That is, we have

G p(x) = H(x)�G �p. (3.2)

We now show that E[p(XT ) |Ft ] is indeed well defined as a polynomial function
of Xt . Recall that we do not assume uniqueness of solutions to (2.2), and we do not
require X to be Markov. The proof is given in Appendix B.

Theorem 3.1 If E[‖X0‖2n] < ∞, then for any p ∈ Poln(E) with coordinate repre-
sentation �p ∈ R

N , we have

E[p(XT ) |Ft ] = H(Xt)
�e(T −t)G �p, t ≤ T .

The following result is a direct consequence of Theorem 3.1. Its statement and
proof use standard multi-index notation: For a multi-index k = (k1, . . . , kd) ∈N

d
0 , we

write |k| = k1 + · · · + kd and xk = x
k1
1 · · ·xkd

d .

Corollary 3.2 For any time points 0 ≤ t1 < · · · < tm and for any multi-indices
k(1), . . . ,k(m) such that

E
[‖X0‖2|k(1)|+···+2|k(m)|]< ∞,

the expectation E[Xk(1)
t1

· · ·Xk(m)
tm

] is uniquely determined by G and the law of X0.

Proof We prove the result for m = 2; the general case follows by iteration. Set
j = k(1), k = k(2), and n = |j| + |k|. Since E[‖X0‖2|k|] < ∞, Theorem 3.1 yields
X

j
t1
E[Xk

t2
|Ft1] = p(Xt1) for some polynomial p ∈ Poln(E) whose coordinate repre-

sentation �p only depends on G. Since E[‖X0‖2n] < ∞, another application of Theo-
rem 3.1 yields

E[Xj
t1
Xk

t2
] = E

[
E[p(Xt1) |F0]

]= E[H(X0)
�et1G �q].

This proves the corollary. �

We next provide conditions under which XT admits finite exponential moments.
This result will be used in connection with proving uniqueness in Theorem 4.2 below,
but is also of interest on its own for applications in finance.1 Its proof is given in
Appendix C.

Theorem 3.3 If

E
[
eδ‖X0‖]< ∞ for some δ > 0 (3.3)

1We thank Mykhaylo Shkolnikov for suggesting a way to improve an earlier version of this result.
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and the diffusion coefficient satisfies the linear growth condition

‖a(x)‖ ≤ C(1 + ‖x‖) for all x ∈ E (3.4)

for some constant C, then for each t ≥ 0, there exists ε > 0 with E[eε‖Xt‖] < ∞.

4 Uniqueness

Throughout this section, we assume that G is polynomial on E. We present three
results regarding uniqueness in law for E-valued solutions to (2.2). Recall that this
notion of uniqueness pertains to deterministic initial conditions, as defined under (b)
in Sect. 2.

The first result relies on the fact that the joint moments of all finite-dimensional
marginal distributions of a polynomial diffusion are uniquely determined by G ; see
Corollary 3.2. Thus uniqueness in law follows if the finite-dimensional marginal dis-
tributions are the only ones with these moments. This property is known as deter-
minacy in the literature on the moment problem, a classical topic in mathematics;
references include Stieltjes [45], Akhiezer [3], Berg et al. [5], Schmüdgen [43], Stoy-
anov [46], Kleiber and Stoyanov [32] and many others.

Lemma 4.1 Let X be an E-valued solution to (2.2). If for each t ≥ 0, there exists
ε > 0 with E[exp(ε‖Xt‖)] < ∞, then any E-valued solution to (2.2) with the same
initial law as X has the same law as X. In particular, this holds if (3.3) and (3.4) are
satisfied.

Proof For any t ≥ 0 and i ∈ {1, . . . , d}, the hypothesis yields E[exp(ε|Xi,t |)] < ∞
for some ε > 0. As a consequence, the moment-generating function of Xi,t exists and
is analytic in (−ε, ε), hence equal to its power series expansion, and thus determined
by the moments of Xi,t . By Curtiss [11, Theorem 1], the moment-generating function
determines the law of Xi,t , which thus satisfies the determinacy property. Now, ac-
cording to Petersen [40, Theorem 3], determinacy of the (one-dimensional) marginals
of a measure on R

m implies determinacy of the measure itself. It follows that deter-
minacy holds for the law of each collection (Xt1 , . . . ,Xtm), 0 ≤ t1 < · · · < tm. By
Corollary 3.2, the corresponding moments are the same for any E-valued solution
to (2.2) with the same initial law as X. This proves the theorem. �

If X0 = x is deterministic, then (3.3) holds and Lemma 4.1 directly yields our first
result.

Theorem 4.2 If the linear growth condition (3.4) is satisfied, then uniqueness in law
for E-valued solutions to (2.2) holds.

Theorem 4.2 assumes the linear growth condition (3.4) to ensure existence of
exponential moments. While valid for all affine diffusions, as well as when E is
compact, this condition excludes some interesting examples, in particular geometric
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Brownian motion.2 Uniqueness for the geometric Brownian motion holds of course,
and can be established via the Yamada–Watanabe pathwise uniqueness theorem for
one-dimensional diffusions. Our second result records this fact.

Theorem 4.3 If the dimension is d = 1, then uniqueness in law for E-valued solu-
tions to (2.2) holds.

Proof Since G is polynomial, the drift b(x) in (2.2) is an affine function on E, and
the dispersion restricted to E is of the form σ(x) = √

α + ax + Ax2 for some real
parameters α,a,A. Hence b(x) is Lipschitz-continuous, and σ(x) satisfies

(
σ(x) − σ(y)

)2 ≤ ρn (|x − y|) , for all x, y ∈ E with |x|, |y| ≤ n,

where ρn(z) = |a + 2nA|z, for any n ≥ 1. A localization argument in conjunction
with Rogers and Williams [42, Theorem V.40.1] shows that pathwise uniqueness
holds for any E-valued solution to (2.2). This in turn implies uniqueness in law;
see Rogers and Williams [42, Theorem V.17.1]. �

Our third result, in combination with Theorems 4.2 and 4.3, yields uniqueness
in a wide range of cases that are encountered in applications. The setup is the
following. We assume that any E-valued solution to (2.2) can be partitioned as
X = (Y,Z), where Y is an autonomous m-dimensional diffusion with closed state
space EY ⊆ R

m, Z is n-dimensional, and m + n = d . That is, (Y,Z) solves the
stochastic differential equation

dYt = bY (Yt )dt + σY (Yt )dWt, (4.1)

dZt = bZ(Yt ,Zt )dt + σZ(Yt ,Zt )dWt, (4.2)

for polynomials bY : Rm → R
m and bZ : Rm × R

n → R
n of degree one, continuous

maps σY :Rm →R
m×d and σZ :Rm ×R

n → R
n×d , and where Y takes values in EY .

The proof of the following theorem is given in Appendix D.

Theorem 4.4 Assume that uniqueness in law for EY -valued solutions to (4.1) holds,
and that σZ is locally Lipschitz in z, locally in y, on E. That is, for each compact

2For geometric Brownian motion, there is a more fundamental reason to expect that uniqueness cannot be
proved via the moment problem: it is well known that the lognormal distribution is not determined by its
moments; see Heyde [29]. It thus becomes natural to pose the following question: Can one find a process Y ,
essentially different from geometric Brownian motion, such that all joint moments of all finite-dimensional
marginal distributions,

E[Yα1
t1

· · ·Yαm
tm

], m ∈ N, (α1, . . . , αm) ∈ N
m,0 ≤ t1 < · · · < tm < ∞,

coincide with those of geometric Brownian motion? We have not been able to exhibit such a process.
Note that any such Y must possess a continuous version. Indeed, the known formulas for the mo-
ments of the lognormal distribution imply that for each T ≥ 0, there is a constant c = c(T ) such that
E[(Yt − Ys)

4] ≤ c(t − s)2 for all s ≤ t ≤ T , |t − s| ≤ 1, whence Kolmogorov’s continuity lemma implies
that Y has a continuous version; see Rogers and Williams [42, Theorem I.25.2].
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subset K ⊆ E, there exists a constant κ such that for all (y, z, y′, z′) ∈ K × K ,

‖σZ(y, z) − σZ(y′, z′)‖ ≤ κ‖z − z′‖. (4.3)

Then uniqueness in law for E-valued solutions to (2.2) holds.

5 Existence and boundary attainment

In this section, we discuss existence of E-valued solutions to (2.2) and give conditions
under which the boundary of the state space is attained. The results are stated and
proved using some basic concepts from algebra and algebraic geometry. Appendix J
provides a review of the required notions.

Existence of a solution to (2.2) with values in R
d is well known to hold under

linear growth conditions; see for instance Ikeda and Watanabe [31, Theorem IV.2.4].
The problem at hand thus boils down to finding conditions under which a solution
to (2.2) takes values in E. This is a stochastic invariance problem. In Appendix A, we
discuss necessary and sufficient conditions for nonnegativity of certain Itô processes,
which is the basic tool we use for proving stochastic invariance.

We henceforth assume that the state space E is a basic closed semialgebraic set.
Specifically, let P and Q be finite collections of polynomials on R

d , and define

E = {x ∈ M : p(x) ≥ 0 for all p ∈ P},
where

M = {x ∈ R
d : q(x) = 0 for all q ∈ Q}. (5.1)

In particular, if Q = ∅ then M = R
d . The following result provides simple necessary

conditions for the invariance of E with respect to (2.2).

Theorem 5.1 Suppose there exists an E-valued solution to (2.2) with X0 = x, for
any x ∈ E. Then

(i) a∇p = 0 and G p ≥ 0 on E ∩ {p = 0}, for each p ∈ P ;
(ii) a∇q = 0 and G q = 0 on E, for each q ∈ Q.

Proof Pick any p ∈ P , x ∈ E∩{p = 0}, and let X be a solution to (2.2) with X0 = x.
Then p(Xt) = ∫ t

0 G p(Xs)ds + ∫ t

0 ∇p(Xs)
�σ(Xs)dWs and p(X) ≥ 0, so (i) follows

by Lemma A.1(ii). To prove (ii) for q ∈ Q, simply apply the same argument to q

and −q . �

The necessary condition a∇p = 0 states, roughly speaking, that at any boundary
point of the state space, there can be no diffusive fluctuations orthogonally to the
boundary. The necessary condition G p ≥ 0 can be interpreted as “inward-pointing
adjusted drift” at the boundary. The following example shows that this cannot be
replaced by a simple “inward-pointing drift” condition.
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Example 5.2 Consider the bivariate process (U,V ) with dynamics

dUt = dW1t , U0 ∈R,

dVt = α dt + 2
√

Vt dW2t , V0 ∈R+,

where (W1,W2) is a Brownian motion and α > 0. In other words, U is a Brownian
motion and V is an independent squared Bessel process. The state space is R×R+.
Now consider the process (X,Y ) = (U,V − U2). Its dynamics is

dXt = dW1t ,

dYt = (α − 1)dt − 2Xt dW1t + 2
√

X2
t + Yt dW2t ,

and its state space is E = {(x, y) ∈ R
2 : x2 +y ≥ 0}, the epigraph of the function −x2.

The drift of (X,Y ) is b(x, y) = (0, α−1), which points out of the state space at every
boundary point, provided α < 1. Nonetheless, with p(x, y) = x2 + y, a calculation
yields G p(x, y) = α > 0.

As a converse to Theorem 5.1, we now give sufficient conditions for the existence
of an E-valued solution to (2.2). The proof of the following theorem is given in
Appendix E.

Theorem 5.3 Suppose E satisfies the following geometric and algebraic properties:

(G1) ∇r(x), r ∈ Q, are linearly independent for all x ∈ M ;
(G2) the ideals generated by Q ∪ {p} and M ∩ {p = 0} are equal, i.e., we have

(Q ∪ {p}) = I (M ∩ {p = 0}), for each p ∈ P ;

and the maps a and b satisfy

(A0) a ∈ S
d+ on E;

(A1) a∇p = 0 on M ∩ {p = 0} and G p > 0 on E ∩ {p = 0}, for each p ∈ P ;
(A2) a∇q = 0 and G q = 0 on M , for each q ∈ Q.

Then G is polynomial on E, and there exists a continuous map σ : Rd →R
d×d with

σσ� = a on E and such that the stochastic differential equation (2.2) admits an
E-valued solution X for any initial law of X0. This solution can be chosen so that it
spends zero time in the sets {p = 0}, p ∈ P . That is,

∫ t

0
1{p(Xs)=0} ds = 0 for all t ≥ 0 and all p ∈ P. (5.2)

Conditions (A1) and (A2) should be contrasted with the necessary conditions of
Theorem 5.1. The latter are somewhat weaker, since they only make statements about
a and b on E rather than M , and since the inequality in Theorem 5.1(i) is weak. Theo-
rem 5.3 can be generalized to allow a weak inequality in (A1), at the cost of allowing
absorption of the process at the boundary. We do not consider this generalization
here.
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Condition (G1) implies that M is an algebraic submanifold in R
d of dimension

d − |Q|. The least obvious condition is arguably (G2). The crucial implication of
(G2) is that any polynomial f that vanishes on M ∩ {p = 0} has a representation
f = hp on M for some polynomial h. In conjunction with (A1), this implies that
a(x)∇p(x) decays like p(x) as x ∈ E approaches the boundary set E ∩ {p = 0}, for
p ∈ P . This allows one to prove that the local time of p(X) at level zero vanishes,
which makes Lemma A.1 applicable; see Appendix E for the details.

Condition (G2) is also the least straightforward to verify. We therefore present two
sufficient conditions that are easier to check in concrete examples. The first condition
is useful when M = R

d , in which case each ideal appearing on the left-hand side in
(G2) is generated by a single polynomial. This covers many interesting examples, yet
yields conditions that are easy to verify in practice. A proof of the following result
can be found in Bochnak et al. [6, Theorem 4.5.1].

Lemma 5.4 Let p ∈ Pol(Rd) be an irreducible polynomial and V (p) its zero set.
Then (p) = I (V (p)) if and only if p changes sign on R

d , that is, p(x)p(y) < 0 for
some x, y ∈R

d .

The second condition applies when the ideals generated by the families Q ∪ {p}
with p ∈ P are prime and of full dimension.

Lemma 5.5 For p ∈ P , assume that the ideal (Q ∪ {p}) is prime with dimension
d − 1 −|Q|, and that there exists some x ∈ M ∩ {p = 0} such that the vectors ∇r(x),
r ∈ Q ∪ {p}, are linearly independent. Then (Q ∪ {p}) = I (M ∩ {p = 0}).

Proof This follows directly from Bochnak et al. [6, Proposition 3.3.16]. �

Remark 5.6 Stochastic invariance problems have been studied by a number of au-
thors; see Da Prato and Frankowska [12], Filipović et al. [22], among many others.
The approach in these papers is to impose an “inward-pointing Stratonovich drift”
condition. This breaks down for polynomial diffusions. Indeed, consider the squared
Bessel process

dXt = α dt + 2
√

Xt dWt,

which is an R+-valued affine process for α ≥ 0. The stochastic integral cannot al-
ways be written in Stratonovich form, since

√
X fails to be a semimartingale for

0 < α < 1. If nonetheless one formally computes the Stratonovich drift, one obtains
α − 1, suggesting that α ≥ 1 is needed for stochastic invariance of R+. However, it is
well known that α ≥ 0 is the correct condition. Our approach is rather in the spirit of
Da Prato and Frankowska [13] who however focus on stochastic invariance of closed
convex sets.

Apart from existence, Theorem 5.3 asserts that X spends zero time in the sets
{p = 0}, p ∈ P , which roughly speaking correspond to boundary segments of the
state space. It does not, however, tell us whether these sets are actually hit. The pur-
pose of the following theorem is to give necessary and sufficient conditions for this
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to occur. The proof is given in Appendix F. The vector h of polynomials appearing
in the theorem exists if (G2) and (A1) are satisfied.

Theorem 5.7 Let X be an E-valued solution to (2.2) satisfying (5.2). Consider
p ∈ P and let h be a vector of polynomials such that a∇p = hp on M .

(i) Assume there exists a neighborhood U of E ∩ {p = 0} such that

2G p − h�∇p ≥ 0 on E ∩ U.

Then p(Xt) > 0 for all t > 0.
(ii) Assume (G2) holds and

2G p − h�∇p = 0 on M ∩ {p = 0}.
Then p(Xt) > 0 for all t > 0.

(iii) Let x ∈ E ∩ {p = 0} and assume

G p(x) ≥ 0 and 2G p(x) − h(x)�∇p(x) < 0.

Then for any T > 0, there exists ε > 0 such that if ‖X0 − x‖ < ε almost surely,
then p(Xt) = 0 for some t ≤ T with positive probability.

As a simple example, we may apply Theorem 5.7 to the scalar square-root dif-
fusion dXt = (b + βXt)dt + σ

√
XtdBt with parameters b,σ > 0 and β < 0, and

where B is a one-dimensional Brownian motion. In this case E = R+, and P con-
sists of the single polynomial p(x) = x. We have a(x)p′(x) = σ 2x = σ 2p(x), so that
h(x) ≡ σ 2, and thus

2G p(x) − h(x)p′(x) = 2(b + βx) − σ 2.

It is well known that Xt > 0 for all t > 0 if and only if the Feller condition 2b ≥ σ 2

holds. Theorem 5.7(iii) gives the necessity of the Feller condition. Theorem 5.7(i)
and (ii) together give the sufficiency of the Feller condition. Indeed, if 2b > σ 2, then
Theorem 5.7(i) applies, while the condition in Theorem 5.7(ii) is not satisfied. Theo-
rem 5.7(ii) in turn applies when 2b = σ 2, while Theorem 5.7(i) does not.

6 Examples of semialgebraic state spaces

We now discuss examples of semialgebraic state spaces of interest, where our results
are applicable.

6.1 Some quadric sets

Let Q ∈ S
d be nonsingular, and consider the state space E = {x ∈ R

d : x�Qx ≤ 1}.
Here P consists of the single polynomial p(x) = 1 − x�Qx, and M = R

d . After a
linear change of coordinates, we may assume Q is diagonal with Qii ∈ {+1,−1}. We
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also suppose Qii = 1 for at least some i, since otherwise E = R
d . State spaces of this

type include the closed unit ball, but also non-convex sets like {x ∈R
2 : x2

1 −x2
2 ≤ 1},

whose boundary is a hyperbola. One can also consider complements of such sets; see
Remark 6.3 below. One interesting aspect of the state spaces investigated here is
that they do not admit non-deterministic affine diffusions; this follows directly from
Proposition 6.1 below, which shows that a is either quadratic or identically zero. This
is in contrast to the parabolic state spaces considered by Spreij and Veerman [44].

The following convex cone of polynomial maps plays a key role. Recall that a
polynomial r ∈ Pol(Rd) is called homogeneous of degree k if r(sx) = skr(x) for all
x ∈ R

d and s > 0. We define

C Q
+ =

{

c : Rd → S
d+ : cij ∈ Pol2(Rd) is homogeneous of degree 2 for all i, j

and c(x)Qx = 0 for all x ∈ R
d

}

.

Note that the condition c(x)Qx = 0 is equivalent to c(x)∇p(x) = 0, meaning that all
eigenvectors of c(x) with nonzero eigenvalues are orthogonal to ∇p(x). The proof
of the following proposition is given in Appendix G.

Proposition 6.1 Conditions (G1) and (G2) hold for the above state space E. More-
over, the operator G satisfies (A0)–(A2) if and only if

a(x) = (1 − x�Qx)α + c(x), (6.1)

b(x) = β + Bx

for some α ∈ S
d+, β ∈R

d , B ∈R
d×d and c ∈ C Q

+ such that

β�Qx + x�B�Qx + 1

2
Tr
(
c(x)Q

)
< 0 for all x ∈ {p = 0}. (6.2)

Remark 6.2 If c(x) satisfies the linear growth condition ‖c(x)‖ ≤ C(1 + ‖x‖) for all
x ∈ E, then a(x) satisfies (3.4) and uniqueness in law for E-valued solutions to (2.2)
holds by Theorem 4.2. In particular, this holds if Q is positive definite, i.e., Q = Id,
so that E is the unit ball and hence compact.

Remark 6.3 The conditions of Proposition 6.1 can easily be modified to cover state
spaces of the form E = {x ∈ R

d : x�Qx ≥ 1}. This amounts to replacing p by −p

above, and includes for example the complement of the open unit ball. With this
modification, Proposition 6.1 is still true as stated, except that −α should lie in S

d+,
and the inequality in (6.2) should be reversed.

A question that is not addressed by Proposition 6.1 is how to describe the set C Q
+

in more explicit terms. We now provide a class of maps c ∈ C Q
+ , which yields a large

family of polynomial diffusions on E that we expect to be useful in applications.
Let Sk , k = 1, . . . , d(d − 1)/2, be a basis for the linear space of skew-symmetric

d × d matrices. Using the skew-symmetry of the Sk together with the fact that
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Q2 = Id, it is easy to check that any map c of the form

c(x) =
d(d−1)/2∑

k,�=1

γk�QSkxx�S�
� Q, (6.3)

where Γ = (γk�) ∈ S
d(d−1)/2
+ , lies in C Q

+ . For any c(x) of the form (6.3), condi-
tion (6.2) then becomes

β�Qx + x�
(

B�Q +
∑

k,�

γk�S
�
k QS�

)
x < 0 for all x ∈ {p = 0}.

6.2 The product space [0,1]m ×R
n+

Consider the state space E = [0,1]m × R
n+. Here d = m + n, and the generating

family of polynomials can be taken to be

P = {xi : i = 1, . . . ,m + n;1 − xi : i = 1, . . . ,m}.
To simplify notation, introduce index sets I = {1, . . . ,m} and J ={m+1, . . . ,m+n},
and write xI (resp. xJ ) for the subvector of x ∈R

d consisting of the components with
indices in I (resp. J ). Similarly, for a matrix A ∈ R

d×d , we write AII , AIJ , etc. for
the submatrices with indicated row and column indices. The proof of the following
proposition is given in Appendix H.

Proposition 6.4 Conditions (G1) and (G2) hold for the above state space E. More-
over, the operator G satisfies (A0)–(A2) if and only if

(i) the matrix a is given by

aii(x) = γixi(1 − xi) (i ∈ I ),

aij (x) = 0 (i ∈ I, j ∈ I ∪ J, i �= j),

ajj (x) = αjj x
2
j + xj

(
φj + ψ�

(j)xI + π�
(j)xJ

)
(j ∈ J ),

aij (x) = αij xixj (i, j ∈ J, i �= j)

for some γ ∈ R
m+, some ψ(j) ∈ R

m, some π(j) ∈ R
n+ with π(j),j = 0, some

φ ∈ R
n with φj ≥ (ψ−

(j))
�1, and some α = (αij )i,j∈J ∈ S

n such that we have

α + Diag(Π�xJ )Diag(xJ )−1 ∈ S
n+ for all xJ ∈ R

n++, where Π ∈ R
n×n is the

matrix with columns π(j);
(ii) the vector b is given by

b(x) =
(

βI + BII xI

βJ + BJI xI + BJJ xJ

)
(6.4)

for some β ∈ R
d and B ∈ R

d×d such that (B−
i,I\{i})1 < βi < −Bii − (B+

i,I\{i})1
for all i ∈ I , βj > (B−

jI )1 for all j ∈ J , and BJJ ∈ R
m×m has positive off-

diagonal entries.
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Remark 6.5 In the following two cases, we get uniqueness in law of E-valued solu-
tions to (2.2); cf. Theorem 4.2. First, if α = 0 and π(j) = 0 for all j , then the linear
growth condition (3.4) is satisfied and uniqueness follows by Theorem 4.2. Second, if
ψ(j) = 0 and π(j) = 0 for all j and φ = 0, then the submatrix aJJ (x) only depends on
xJ and can be written aJJ = σJJ σJJ , where σJJ (xJ ) = Diag(xJ )α1/2 is Lipschitz-
continuous. Since also XI is an autonomous m-dimensional diffusion on [0,1]m,
uniqueness follows from Theorem 4.4 in conjunction with Theorem 4.2. Note that
XI and XJ are coupled only through the drift in this case.

A natural next step is to consider the state space [0,1]m ×R
n+ ×R

�, d = m+n+�.
In this case, one readily continues the above argument to deduce that the diffusion
matrix is of the form

a(x) =
⎛

⎝
aII (xI ) 0 aIK(xI )

0 aJJ (xI , xJ ) aJK(xI , xJ )

aIK(xI )
� aJK(xI , xJ )� aKK(xI , xJ , xK)

⎞

⎠ ,

where K = {m + n + 1, . . . , d}, the matrices aII and aJJ are given by Proposi-
tion 6.4(i), we have aIK(xI ) = Diag(xI )(Id − Diag(xI ))P for some P ∈R

m×l and
aJK(xI , xJ ) = Diag(xJ )H(xI , xJ ) for some matrix H of polynomials in Pol1(E), and
aKK has component functions in Pol2(E). Regarding the drift vector b= (bI , bJ , bK),
the last part bK is unrestricted within the class of affine functions of x, whereas
(bI , bJ ) must satisfy Proposition 6.4(ii). With this structure, we have (A0)–(A2) if
and only if a ∈ S

d+ on E. This of course imposes additional restrictions on P, H
and aKK . Stating these restrictions explicitly is cumbersome, and we refrain from
doing so here.

6.3 The unit simplex

Let d ≥ 2 and consider the unit simplex E = {x ∈ R
d+ : x1 + · · · + xd = 1}. Here

P = {xi : i = 1, . . . , d} consists of the coordinate functions and Q consists of the
single polynomial 1 − 1�x. The proof of the following proposition is given in Ap-
pendix I.

Proposition 6.6 Conditions (G1) and (G2) hold for the above state space E. More-
over, the operator G satisfies (A0)–(A2) if and only if

(i) the matrix a is given by

aii(x) =
∑

j �=i

αij xixj ,

aij (x) = −αij xixj (i �= j)

on E for some αij ∈ R+ such that αij = αji for all i, j ;
(ii) the vector b is given by

b(x) = β + Bx,
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where β ∈R
d and B ∈R

d×d satisfy B�1 + (β�1)1 = 0 and βi +Bji > 0 for all
i and all j �= i.

Remark 6.7 Since E is compact, Theorem 4.2 yields uniqueness in law for E-valued
solutions to (2.2).

Remark 6.8 In the special case where αij = σ 2 for some σ > 0 and all i, j , the
diffusion matrix takes the form

aii(x) = σ 2xi(1 − xi),

aij (x) = −σ 2xixj (i �= j).

The resulting process is sometimes called a multivariate Jacobi process; see for in-
stance Gouriéroux and Jasiak [27].

Remark 6.9 Alternatively, one can establish Proposition 6.6 by considering polyno-
mial diffusions Y on the “solid” simplex {y ∈ R

d−1+ : y1 + · · · + yd−1 ≤ 1}, and then
set X = (X1, . . . ,Xd) = (Y,1 − Y1 − · · · − Yd−1). In this case Q = ∅, and it would
be enough to invoke Lemma 5.4 rather than Lemma 5.5.

7 Polynomial diffusion models in finance

We now elaborate on various polynomial diffusion models in finance, following up
on the introduction about (1.1). Let the state price density ζ be a positive semi-
martingale on a filtered probability space (Ω,F ,Ft ,P). This induces an arbitrage-
free financial market model on any finite time horizon T ∗. Indeed, let S1, . . . , Sm

denote the price processes of m fundamental assets. According to (1.1), we have
ζtS

i
t = E[ζT ∗Si

T ∗ |Ft ]. Assuming that S1 is positive, we choose it as numeraire. This
implies an equivalent measure Q

1 ∼ P on FT ∗ by

dQ1

dP
= ζT ∗S1

T ∗

ζ0S
1
0

.

Discounted price processes Si

S1 are Q
1-martingales, because

Si
t

S1
t

dQ1

dP

∣∣
∣∣
Ft

= Si
t

S1
t

ζtS
1
t

ζ0S
1
0

= ζtS
i
t

ζ0S
1
0

.

This implies that the market {S1, . . . , Sm} is arbitrage-free in the sense of no free
lunch with vanishing risk; see Delbaen and Schachermayer [14].

Now let X be a polynomial diffusion on a state space E ⊆ R
d . Fix n ∈N, and let

p ∈ Poln(E) be a positive polynomial on E with coordinate representation �p with
respect to some basis H(x) = (h1(x), . . . , hN(x))� for Poln(E). The state price den-
sity is specified by ζt = e−αtp(Xt ), where α is a real parameter. This setup yields an
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arbitrage-free model for the term structure of interest rates. The time t price P(t, T )

of a zero coupon bond maturing at T , corresponding to CT = 1 in (1.1), can now be
computed explicitly, using Theorem 3.1, as

P(t, T ) = e−α(T −t)E[p(XT ) |Ft ]
p(Xt)

= e−α(T −t) H(Xt )
�e(T −t)G �p

H(Xt)� �p ,

where G ∈ R
N×N is the matrix representation of G on Poln(E). The short rate is

obtained via the relation rt = −∂T logP(t, T ) | T =t , and is given by

rt = α − H(Xt)
�G �p

H(Xt)� �p .

This expression clarifies the role of the parameter α adjusting the level of inter-
est rates. Such models show great potential. The linear case with p of the form
p(x) = φ + ψ�x has been studied in Filipović et al. [21], including an extensive em-
pirical assessment. The parameter ψ is chosen such that E lies in the positive cone
{x ∈ R

d : ψ�x ≥ 0}. A specific example is E = R
d+, as discussed in Sect. 6.2.

One attractive feature of the polynomial framework is that it yields efficient pricing
formulae for options on coupon bearing bonds. This includes swaptions, which are
among the most important interest rate options. The generic payoff of such an option
at expiry date T is of the form

CT = (c0 + c1P(T ,T1) + · · · + cmP (T ,Tm)
)+

for maturity dates T < T1 < · · · < Tm and deterministic coefficients c0, . . . , cm. For-
mula (1.1) for the time t price of this option boils down to computing the Ft -con-
ditional expectation of

ζT CT =
(

H(XT )�
m∑

i=0

cie
−αTi e(Ti−T )G �p

)+
,

which is the positive part of a polynomial in XT . Efficient methods involving the
closed form Ft -conditional moments of XT are available; see Filipović et al. [20].

Polynomial diffusions can be employed in a similar way to build stochastic volatil-
ity models. We now interpret P as risk-neutral measure, and specify the spot variance
(squared volatility) of an underlying stock index by vt = p(Xt ). The variance swap
rate for period [t, T ] is then given in closed form by

VS(t, T ) = 1

T − t
E

[∫ T

t

vs ds

∣∣∣∣Ft

]
= 1

T − t
H(Xt )

�
(∫ T

t

e(s−t)G ds

)
�p.

Such models have been successfully employed in Filipović et al. [23] and Ack-
erer et al. [2]. Both papers consider the quadratic case, which falls into the setup
of Sect. 6.1, with a quadric state space E = {x ∈ R

d : x�Qx ≤ 1} and spot vari-
ance vt = p(Xt) for a polynomial p of the form p(x) = φ + 1 − x�Qx, where
φ ≥ 0 denotes the minimal spot variance. While Filipović et al. [23] study un-
bounded state spaces, Ackerer et al. [2] focus on the compact case, where Q is
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positive definite. They derive analytic option pricing formulae in terms of Hermite
polynomials for European call and put options on an asset with diffusive price pro-
cess dSt = St r dt + St

√
vt dW ∗

t , where r denotes the constant short rate and W ∗ is a
Brownian motion, which is possibly correlated with W in (2.2).

An application of the unit simplex in Sect. 6.3 is obtained as follows. Consider
a stock index, such as the S&P 500, whose price process is given by a semimartin-
gale Z. As above, we interpret P as risk-neutral measure and assume a constant short
rate r such that (e−rtZt ) is a martingale. Let d be the number of constituent stocks,
and let X be a polynomial diffusion on E = {x ∈ R

d+ : x1 +· · ·+ xd = 1} which is in-
dependent of Z. We fix a finite time horizon T ∗ and define the E-valued martingale,
for t ≤ T ∗,

Yt = E[XT ∗ |Ft ].
Since X is polynomial, Yt is a first degree polynomial in Xt whose coefficients can
be determined by an application of Theorem 3.1. Specifically, with β and B being
the drift parameters of X as given in Proposition 6.6, one finds

Yt = Φ(T ∗ − t) + Ψ (T ∗ − t)Xt with Φ(τ) =
∫ τ

0
esBβ ds and Ψ (τ) = eτB .

We now define the constituent stocks’ price processes Si = Y iZ, i = 1, . . . , d , such
that S1 +· · ·+Sd = Z. Assume that the price of the European call option on the index
with maturity T and strike K is given in closed form, C(T ,K), for some analytic
function C. The price of the call option on stock i with maturity T and strike K is
then given by

Ci(T ,K) = E[Y i
T C(T ,K/Y i

T )].
This price can be efficiently computed in three steps. First, compute ξC(T ,K/ξ) for
a finite set of grid points ξ ∈ [0,1]. Second, apply some polynomial interpolation
scheme, for example using Chebyshev polynomials, to obtain a polynomial approxi-
mation of degree n, say q(T ,K, ξ), of ξC(T ,K/ξ) in ξ ∈ [0,1]. Third, approximate
the option price Ci(T ,K) by H(X0)

�eT G �pi(T ,K), where �pi(T ,K) is the coordi-
nate representation of the polynomial p(x)=q (T ,K,Φi(T

∗ −T )+ (Ψ (T ∗ −T )x)i)

in x with respect to some appropriately chosen basis of polynomials for Poln(E). Ex-
tensions to basket and spread options on the stocks S1, . . . , Sd are straightforward.
This is work in progress.

An application of polynomial diffusions on a compact state space to credit risk is
given in Ackerer and Filipović [1].
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Appendix A: Nonnegative Itô processes

The following auxiliary result forms the basis of the proof of Theorem 5.3. It gives
necessary and sufficient conditions for nonnegativity of certain Itô processes.
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Lemma A.1 Let Z be a continuous semimartingale of the form

Zt = Z0 +
∫ t

0
μs ds +

∫ t

0
νs dBs,

where Z0 ≥ 0, μ and ν are continuous processes, and B is a Brownian motion. Let
L0 be the local time of Z at level zero.

(i) If μ > 0 on {Z = 0} and L0 = 0, then Z ≥ 0 and
∫ t

0 1{Zs=0} ds = 0.
(ii) If Z ≥ 0, then on {Z = 0}, we have μ ≥ 0 and ν = 0.

Proof After stopping we may assume that Zt ,
∫ t

0 μs ds and
∫ t

0 νs dBs are uniformly
bounded. This is done throughout the proof.

We first prove (i). By [41, Theorem VI.1.7] and using that μ > 0 on {Z = 0}
and L0 = 0, we obtain 0 = L0

t = L0−
t + 2

∫ t

0 1{Zs=0}μs ds ≥ 0. In particular,∫ t

0 1{Zs=0} ds = 0, as claimed. Furthermore, Tanaka’s formula [41, Theorem VI.1.2]
yields

Z−
t = −

∫ t

0
1{Zs≤0} dZs − 1

2
L0

t = −
∫ t

0
1{Zs≤0}μs ds −

∫ t

0
1{Zs≤0}νs dBs. (A.1)

Define ρ = inf {t ≥ 0 : Zt < 0} and τ = inf {t ≥ ρ : μt = 0} ∧ (ρ + 1). Using that
Z− = 0 on {ρ = ∞} as well as dominated convergence, we obtain

E[Z−
τ∧n] = E

[
Z−

τ∧n1{ρ<∞}
]−→ E

[
Z−

τ 1{ρ<∞}
]

(n → ∞).

Here Zτ is well defined on {ρ < ∞} since τ < ∞ on this set. On the other hand,
by (A.1), the fact that

∫ t

0 1{Zs≤0}μs ds = ∫ t

0 1{Zs=0}μs ds = 0 on {ρ = ∞} and mono-
tone convergence, we get

E[Z−
τ∧n] = E

[
−
∫ τ∧n

0
1{Zs≤0}μs ds

]
= E

[
−
∫ τ∧n

0
1{Zs≤0}μs ds1{ρ<∞}

]

−→ E

[
−
∫ τ

0
1{Zs≤0}μs ds1{ρ<∞}

]
as n → ∞.

Consequently,

E
[
Z−

τ 1{ρ<∞}
]= E

[
−
∫ τ

0
1{Zs≤0}μs ds1{ρ<∞}

]
. (A.2)

The following hold on {ρ < ∞}: τ > ρ; Zt ≥ 0 on [0, ρ]; μt > 0 on [ρ, τ); and
Zt < 0 on some nonempty open subset of (ρ, τ ). Therefore, the random variable
inside the expectation on the right-hand side of (A.2) is strictly negative on {ρ < ∞}.
The left-hand side, however, is nonnegative; so we deduce P[ρ < ∞] = 0. Part (i) is
proved.

The proof of Part (ii) involves the same ideas as used for instance in Spreij and
Veerman [44, Proposition 3.1]. We first assume Z0 = 0 and prove μ0 ≥ 0 and ν0 = 0.
Assume for contradiction that P[μ0 < 0] > 0, and define τ = inf{t ≥ 0 : μt ≥ 0} ∧ 1.
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Then 0 ≤ E[Zτ ] = E[∫ τ

0 μs ds] < 0, a contradiction, whence μ0 ≥ 0 as desired.
Next, pick any φ ∈ R and consider an equivalent measure dQ = E (−φB)1 dP. Then
B
Q
t = Bt + φt is a Q-Brownian motion on [0,1], and we have

Zt =
∫ t

0
(μs − φνs)ds +

∫ t

0
νs dBQ

s .

Pick any ε > 0 and define σ = inf{t ≥ 0 : |νt | ≤ ε} ∧ 1. The first part of the proof
applied to the stopped process Zσ under Q yields (μ0 −φν0)1{σ>0} ≥ 0 for all φ ∈R.
But this forces σ = 0 and hence |ν0| ≤ ε. Since ε > 0 was arbitrary, we get ν0 = 0 as
desired.

Now consider any stopping time ρ such that Zρ = 0 on {ρ < ∞}. Applying
the result we have already proved to the process (Zρ+t1{ρ<∞})t≥0 with filtration
(Fρ+t ∩ {ρ < ∞})t≥0 then yields μρ ≥ 0 and νρ = 0 on {ρ < ∞}. Finally, let
{ρn : n ∈ N} be a countable collection of such stopping times that are dense in
{t : Zt = 0}. Applying the above result to each ρn and using the continuity of μ

and ν, we obtain (ii). �

The following two examples show that the assumptions of Lemma A.1 are tight in
the sense that the gap between (i) and (ii) cannot be closed.

Example A.2 The strict inequality appearing in Lemma A.1(i) cannot be relaxed to a
weak inequality: just consider the deterministic process Zt = (1 − t)3.

Example A.3 The assumption of vanishing local time at zero in Lemma A.1(i) cannot
be replaced by the zero volatility condition ν = 0 on {Z = 0}, even if the strictly pos-
itive drift condition is retained. This is demonstrated by a construction that is closely
related to the so-called Girsanov SDE; see Rogers and Williams [42, Sect. V.26]. Let
Y be a one-dimensional Brownian motion, and define ρ(y) = |y|−2α ∨ 1 for some
0 < α < 1/4. The occupation density formula implies that

∫ t

0
ρ(Ys)

2 ds =
∫ ∞

−∞
(|y|−4α ∨ 1)L

y
t (Y )dy < ∞

for all t ≥ 0; so we may define a positive local martingale by

Rt = exp

(∫ t

0
ρ(Ys)dYs − 1

2

∫ t

0
ρ(Ys)

2 ds

)
.

Let τ be a strictly positive stopping time such that the stopped process Rτ is a
uniformly integrable martingale. Then define the equivalent probability measure
dQ = Rτ dP, under which the process Bt = Yt − ∫ t∧τ

0 ρ(Ys)ds is a Brownian mo-
tion. We now change time via

ϕt =
∫ t

0
ρ(Ys)ds, Au = inf{t ≥ 0 : ϕt > u},
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and define Zu = YAu . This process satisfies Zu = BAu + u ∧ σ , where σ = ϕτ . De-
fine then βu = ∫ u

0 ρ(Zv)
1/2 dBAv , which is a Brownian motion because we have

〈β,β〉u = ∫ u

0 ρ(Zv)dAv = u. This finally gives

Zu =
∫ u

0
(|Zv|α ∧ 1)dβv + u ∧ σ.

This process starts at zero, has zero volatility whenever Zt = 0, and strictly positive
drift prior to the stopping time σ , which is strictly positive. Nonetheless, its sign
changes infinitely often on any time interval [0, t) since it is a time-changed Brownian
motion viewed under an equivalent measure.

Appendix B: Proof of Theorem 3.1

We first establish a lemma.

Lemma B.1 For any k ∈ N such that E[‖X0‖2k] < ∞, there is a constant C such
that

E
[
1 + ‖Xt‖2k

∣∣F0
]≤ (1 + ‖X0‖2k

)
eCt , t ≥ 0.

Proof This is done as in the proof of Theorem 2.10 in Cuchiero et al. [10] via
Gronwall’s inequality. Specifically, let f ∈ Pol2k(E) be given by f (x) = 1 + ‖x‖2k ,
and note that the polynomial property implies that there exists a constant C such
that |G f (x)| ≤ Cf (x) for all x ∈ E. For each m, let τm be the first exit time of
X from the ball {x ∈ E : ‖x‖ < m}. We can always choose a continuous version of
t �→ E[f (Xt∧τm) |F0], so let us fix such a version. Then by Itô’s formula and the
martingale property of

∫ t∧τm

0 ∇f (Xs)
�σ(Xs)dWs ,

E[f (Xt∧τm) |F0] = f (X0) +E

[∫ t∧τm

0
G f (Xs)ds

∣∣∣∣F0

]

≤ f (X0) + CE

[∫ t∧τm

0
f (Xs)ds

∣∣∣∣F0

]

≤ f (X0) + C

∫ t

0
E[f (Xs∧τm) |F0]ds.

Gronwall’s inequality now yields E[f (Xt∧τm) |F0] ≤ f (X0)eCt . Sending m to in-
finity and applying Fatou’s lemma gives the result. �

We can now prove Theorem 3.1. For any p ∈ Poln(E), Itô’s formula yields

p(Xu) = p(Xt) +
∫ u

t

G p(Xs)ds +
∫ u

t

∇p(Xs)
�σ(Xs)dWs.
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The quadratic variation of the right-hand side satisfies

∫ T

0
∇p�a∇p(Xs)ds ≤ C

∫ T

0
(1 + ‖Xs‖2n)ds

for some constant C. This right-hand side has finite expectation by Lemma B.1, so the
stochastic integral above is a martingale. Let �p ∈ R

N be the coordinate representation
of p. Then (3.1) and (3.2) in conjunction with the linearity of the expectation and
integration operators yield

�p�
E[H(Xu) |Ft ] = E[p(Xu) |Ft ] = p(Xt) +E

[∫ u

t

G p(Xs)ds

∣∣∣∣Ft

]

= �p�H(Xt) + (G �p)�E
[∫ u

t

H(Xs)ds

∣∣∣∣Ft

]
.

Fubini’s theorem, justified by Lemma B.1, yields

�p�F(u) = �p�H(Xt) + �p�G�
∫ u

t

F (s)ds, t ≤ u ≤ T ,

where we define F(u) = E[H(Xu) |Ft ]. By choosing unit vectors for �p, this gives
a system of linear integral equations for F(u), whose unique solution is given by
F(u) = e(u−t)G�

H(Xt). Hence

E[p(XT ) |Ft ] = F(T )� �p = H(Xt)
�e(T −t)G �p,

as claimed. This completes the proof of the theorem. �

Appendix C: Proof of Theorem 3.3

Theorem 3.3 is an immediate corollary of the following result.

Lemma C.1 Consider the d-dimensional Itô process X with representation

dXt = (b + βXt)dt + σ(Xt )dWt ,

where σ satisfies a square-root growth condition

‖σ(Xt )‖2 ≤ C(1 + ‖Xt‖) for all t ≥ 0 (C.1)

for some constant C. If

E
[
eδ‖X0‖]< ∞ for some δ > 0, (C.2)

then for each T ≥ 0, there exists ε > 0 with

E
[
eε‖XT ‖]< ∞. (C.3)



954 D. Filipović, M. Larsson

Proof Fix T ≥ 0. Variation of constants lets us rewrite Xt = At + e−β(T −t)Yt with

At = eβtX0 +
∫ t

0
eβ(t−s)bds

and

Yt =
∫ t

0
eβ(T −s)σ (Xs)dWs =

∫ t

0
σY

s dWs,

where we write σY
t = eβ(T −t)σ (At + e−β(T −t)Yt ). By (C.1), the dispersion process

σY satisfies

‖σY
t ‖2 ≤ CY (1 + ‖Yt‖) (C.4)

for some constant CY .
Now let f (y) be a real-valued and positive smooth function on R

d satisfying
f (y) = √

1 + ‖y‖ for ‖y‖ > 1. Some differential calculus gives, for y �= 0,

∇‖y‖ = y

‖y‖ and
∂2‖y‖
∂yi∂yj

=
⎧
⎨

⎩

1
‖y‖ − 1

2
y2
i

‖y‖3 , i = j,

− 1
2

yiyj

‖y‖3 , i �= j.

Hence

∇f (y) = 1

2
√

1 + ‖y‖
y

‖y‖
and

∂2f (y)

∂yi∂yj

= − 1

4
√

1 + ‖y‖3

yi

‖y‖
y

‖y‖ + 1

2
√

1 + ‖y‖ ×
⎧
⎨

⎩

1
‖y‖ − 1

2
y2
i

‖y‖3 , i = j

− 1
2

yiyj

‖y‖3 , i �= j

for ‖y‖ > 1, while the first and second order derivatives of f (y) are uniformly
bounded for ‖y‖ ≤ 1. Itô’s formula for Zt = f (Yt ) gives

dZt = μZ
t dt + σZ

t dWt

with drift and dispersion processes

μZ
t = 1

2

d∑

i,j=1

∂2f (Yt )

∂yi∂yj

(σY
t σ Y

t

�
)ij , σZ

t = ∇f (Yt )
�σY

t .

In view of (C.4) and the above expressions for ∇f (y) and ∂2f (y)
∂yi∂yj

, these are bounded,

μZ
t ≤ m and ‖σZ

t ‖ ≤ ρ,

for some constants m and ρ. Hajek [28, Theorem 1.3] now implies that

E [Φ(ZT )] ≤ E [Φ(V )]
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for any nondecreasing convex function Φ on R, where V is a Gaussian random vari-
able with mean f (0) + mT and variance ρ2T . Hence, for any 0 < ε′ < 1/(2ρ2T ),
we have E[eε′V 2] < ∞. We now let Φ be a nondecreasing convex function on R

with Φ(z) = eε′z2
for z ≥ 0. Noting that ZT is positive, we obtain E[eε′Z2

T ] < ∞. As
f 2(y) = 1 + ‖y‖ for ‖y‖ > 1, this implies E[eε′‖YT ‖] < ∞. Combining this with the
fact that ‖XT ‖ ≤ ‖AT ‖ + ‖YT ‖ and (C.2), we obtain using Hölder’s inequality the
existence of some ε > 0 with (C.3). �

Appendix D: Proof of Theorem 4.4

We first provide a lemma.

Lemma D.1 Assume uniqueness in law holds for EY -valued solutions to (4.1). Let
Y 1, Y 2 be two EY -valued solutions to (4.1) with driving Brownian motions W 1, W 2

and with Y 1
0 = Y 2

0 = y for some y ∈ EY . Then (Y 1,W 1) and (Y 2,W 2) have the same
law.

Proof Consider the equation

dYt = b̂Y (Yt )dt + σ̂Y (Yt )dWt,

where b̂Y (y) = bY (y)1EY
(y) and σ̂Y (y) = σY (y)1EY

(y). Since EY is closed, any
solution Y to this equation with Y0 ∈ EY must remain inside EY . To see this, let
τ = inf{t : Yt /∈ EY }. Then there exists ε > 0, depending on ω, such that Yt /∈ EY for
all τ < t < τ + ε. However, since b̂Y and σ̂Y vanish outside EY , Yt is constant on
(τ, τ + ε). Since EY is closed this is only possible if τ = ∞.

The hypothesis of the lemma now implies that uniqueness in law for Rd -valued
solutions holds for dYt = b̂Y (Yt )dt + σ̂Y (Yt )dWt . Since (Y i,W i), i = 1,2, are two
solutions with Y 1

0 = Y 2
0 = y, Cherny [8, Theorem 3.1] shows that (W 1, Y 1) and

(W 2, Y 2) have the same law. �

The proof of Theorem 4.4 follows along the lines of the proof of the Yamada–
Watanabe theorem that pathwise uniqueness implies uniqueness in law; see Rogers
and Williams [42, Theorem V.17.1]. Let (Wi,Y i,Zi), i = 1,2, be E-valued weak
solutions to (4.1), (4.2) starting from (y0, z0) ∈ E ⊆ R

m × R
n. We need to show

that (Y 1,Z1) and (Y 2,Z2) have the same law. Since uniqueness in law holds for
EY -valued solutions to (4.1), Lemma D.1 implies that (W 1, Y 1) and (W 2, Y 2) have
the same law, which we denote by π(dw, dy). Let Qi(dz;w,y), i = 1,2, denote
a regular conditional distribution of Zi given (Wi,Y i). We equip the path space
C(R+,Rd ×R

m ×R
n ×R

n) with the probability measure

P(dw, dy, dz, dz′) = π(dw, dy)Q1(dz;w,y)Q2(dz′;w,y).

Let (W,Y,Z,Z′) denote the coordinate process on C(R+,Rd × R
m × R

n × R
n).

Then the law under P of (W,Y,Z) equals the law of (W 1, Y 1,Z1), and the law under
P of (W,Y,Z′) equals the law of (W 2, Y 2,Z2). By well-known arguments, see for
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instance Rogers and Williams [42, Lemma V.10.1 and Theorems V.10.4 and V.17.1],
it follows that

Yt = y0 +
∫ t

0
bY (Ys)ds +

∫ t

0
σY (Ys)dWs,

Zt = z0 +
∫ t

0
bZ(Ys,Zs)ds +

∫ t

0
σZ(Ys,Zs)dWs,

Z′
t = z0 +

∫ t

0
bZ(Ys,Z

′
s)ds +

∫ t

0
σZ(Ys,Z

′
s)dWs.

By localization, we may assume that bZ and σZ are Lipschitz in z, uniformly in y.
A standard argument based on the BDG inequalities and Jensen’s inequality (see
Rogers and Williams [42, Corollary V.11.7]) together with Gronwall’s inequality
yields P[Z′ = Z] = 1. Hence

Law(Y 1,Z1) = Law(Y,Z) = Law(Y,Z′) = Law(Y 2,Z2),

as was to be shown. �

Remark D.2 Theorem 4.4 carries over, and its proof literally goes through, to the
case where (Y,Z) is an arbitrary E-valued diffusion that solves (4.1), (4.2) and where
uniqueness in law for EY -valued solutions to (4.1) holds, provided (4.3) is replaced
by the assumption that both bZ and σZ are locally Lipschitz in z, locally in y, on E.
That is, for each compact subset K ⊆ E, there exists a constant κ such that for all
(y, z, y′, z′) ∈ K × K ,

‖bZ(y, z) − bZ(y′, z′)‖ + ‖σZ(y, z) − σZ(y′, z′)‖ ≤ κ‖z − z′‖.

Appendix E: Proof of Theorem 5.3

The proof of Theorem 5.3 consists of two main parts. First, we construct coefficients
â = σ̂ σ̂� and b̂ that coincide with a and b on E, such that a local solution to (2.2),
with b and σ replaced by b̂ and σ̂ , can be obtained with values in a neighborhood of
E in M . This relies on (G1) and (A2), and occupies this section up to and including
Lemma E.4. Second, we complete the proof by showing that this solution in fact
stays inside E and spends zero time in the sets {p = 0}, p ∈ P . This relies on (G2)
and (A1).

Let π : Sd → S
d+ be the Euclidean metric projection onto the positive semidefinite

cone. It has the following well-known property.

Lemma E.1 For any symmetric matrix A ∈ S
d with the spectral decomposition

A = SΛS�, we have π(A) = SΛ+S�, where Λ+ is the element-wise positive part
of Λ.
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Proof This result follows from the fact that the map λ : Sd →R
d taking a symmetric

matrix to its ordered eigenvalues is 1-Lipschitz; see Horn and Johnson [30, Theo-
rem 7.4.51]. Indeed, for any B ∈ S

d+, we have

‖A − SΛ+S�‖ = ‖λ(A) − λ(A)+‖ ≤ ‖λ(A) − λ(B)‖ ≤ ‖A − B‖.
Here the first inequality uses that the projection of an ordered vector x ∈R

d onto the
set of ordered vectors with nonnegative entries is simply x+. �

We use the projection π to modify the given coefficients a and b outside E in
order to obtain candidate coefficients for the stochastic differential equation (2.2).
The diffusion coefficients are defined by

â(x) = π ◦ a(x), σ̂ (x) = â(x)1/2.

In order to construct the drift coefficient b̂, we need the following lemma.

Lemma E.2 There exists a continuous map b̂ : Rd → R
d with b̂ = b on E and such

that the operator Ĝ given by

Ĝ f = 1

2
Tr(̂a∇2f ) + b̂�∇f

satisfies Ĝ f = G f on E and Ĝ q = 0 on M for all q ∈ Q.

Proof We first prove that there exists a continuous map c :Rd →R
d such that

c = 0 on E and ∇q�c = −1

2
Tr
(
(̂a − a)∇2q

)
on M , for all q ∈ Q. (E.1)

Indeed, let a = SΛS� be the spectral decomposition of a, so that the columns Si of
S constitute an orthonormal basis of eigenvectors of a and the diagonal elements λi

of Λ are the corresponding eigenvalues. These quantities depend on x in a possibly
discontinuous way. For each q ∈ Q,

Tr
(
(̂a − a)∇2q

)= Tr(SΛ−S�∇2q) =
d∑

i=1

λ−
i S�

i ∇2qSi. (E.2)

Consider now any fixed x ∈ M . For each i such that λi(x)− �= 0, Si(x) lies in the
tangent space of M at x. Thus we may find a smooth path γi : (−1,1) → M such
that γi(0) = x and γ ′

i (0) = Si(x). For any q ∈ Q, we have q = 0 on M by definition,
whence

0 = d2

ds2
(q ◦ γi)(0) = Tr

(∇2q(x)γ ′
i (0)γ ′

i (0)�
)+ ∇q(x)�γ ′′

i (0),

or equivalently, Si(x)�∇2q(x)Si(x) = −∇q(x)�γ ′
i (0). In view of (E.2), this yields

Tr
((

â(x) − a(x)
)∇2q(x)

)
= −∇q(x)�

d∑

i=1

λi(x)−γ ′
i (0) for all q ∈ Q.
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Let q1, . . . , qm be an enumeration of the elements of Q, and write the above equation
in vector form as

⎛

⎜
⎝

Tr((̂a(x) − a(x))∇2q1(x))
...

Tr((̂a(x) − a(x))∇2qm(x))

⎞

⎟
⎠= −

⎛

⎜
⎝

∇q1(x)�
...

∇qm(x)�

⎞

⎟
⎠

d∑

i=1

λi(x)−γ ′
i (0).

The left-hand side thus lies in the range of [∇q1(x) · · ·∇qm(x)]� for each x ∈ M .
Since linear independence is an open condition, (G1) implies that the latter matrix
has full rank for all x in a whole neighborhood U of M . It thus has a Moore–Penrose
inverse which is a continuous function of x; see Penrose [39, page 408]. The desired
map c is now obtained on U by

c(x) = −1

2

⎛

⎜
⎝

∇q1(x)�
...

∇qm(x)�

⎞

⎟
⎠

−1⎛

⎜
⎝

Tr((̂a(x) − a(x))∇2q1(x))
...

Tr((̂a(x) − a(x))∇2qm(x))

⎞

⎟
⎠ ,

where the Moore–Penrose inverse is understood. Finally, after shrinking U while
maintaining M ⊆ U , c is continuous on the closure U , and can then be extended to
a continuous map on R

d by the Tietze extension theorem; see Willard [47, Theo-
rem 15.8]. This proves (E.1).

The extended drift coefficient is now defined by b̂ = b + c, and the operator Ĝ by

Ĝ f = 1

2
Tr(̂a∇2f ) + b̂�∇f.

In view of (E.1), it satisfies Ĝ f = G f on E and

Ĝ q = G q + 1

2
Tr
(
(̂a − a)∇2q

)+ c�∇q = 0

on M for all q ∈ Q, as desired. �

We now define the set

E0 = M ∩ {‖b̂ − b‖ < 1}.
Note that E ⊆ E0 since b̂ = b on E. Furthermore, the linear growth condition

‖̂a(x)‖1/2 + ‖b̂(x)‖ ≤ ‖a(x)‖1/2 + ‖b(x)‖ + 1 ≤ C(1 + ‖x‖), x ∈ E0, (E.3)

is satisfied for some constant C. This uses that the component functions of a and b

lie in Pol2(Rd) and Pol1(Rd), respectively.
An E0-valued local solution to (2.2), with b and σ replaced by b̂ and σ̂ , can now be

constructed by solving the martingale problem for the operator Ĝ and state space E0.
We first prove an auxiliary lemma.

Lemma E.3 Let f ∈ C∞(Rd) and assume the support K of f satisfies K ∩ M ⊆ E0.
Let x0 be a maximizer of f over E0. Then Ĝ f (x0) ≤ 0.
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Proof Let γ : (−1,1) → M be any smooth curve in M with γ (0) = x0. Optimality
of x0 and the chain rule yield

0 = d

ds
(f ◦ γ )(0) = ∇f (x0)

�γ ′(0),

from which it follows that ∇f (x0) is orthogonal to the tangent space of M at x0.
Thus

∇f (x0) =
∑

q∈Q

cq∇q(x0) (E.4)

for some coefficients cq . Next, differentiating once more yields

0 ≥ d2

ds2
(f ◦ γ )(0) = Tr

(∇2f (x0)γ
′(0)γ ′(0)�

)+ ∇f (x0)
�γ ′′(0).

Similarly, for any q ∈ Q,

0 = d2

ds2
(q ◦ γ )(0) = Tr

(∇2q(x0)γ
′(0)γ ′(0)�

)+ ∇q(x0)
�γ ′′(0).

In view of (E.4), this implies

Tr

((
∇2f (x0) −

∑

q∈Q

cq∇2q(x0)
)
γ ′(0)γ ′(0)�

)
≤ 0. (E.5)

Observe that Lemma E.1 implies that kerA ⊆ kerπ(A) for any symmetric matrix A.
Thus â(x0)∇q(x0) = 0 for all q ∈ Q by (A2), which implies that â(x0) =∑i uiu

�
i

for some vectors ui in the tangent space of M at x0. Thus, choosing curves γ with
γ ′(0) = ui , (E.5) yields

Tr

((
∇2f (x0) −

∑

q∈Q

cq∇2q(x0)
)
â(x0)

)
≤ 0. (E.6)

Combining (E.4), (E.6) and Lemma E.2, we obtain

Ĝ f (x0) = 1

2
Tr
(
â(x0)∇2f (x0)

)+ b̂(x0)
�∇f (x0) ≤

∑

q∈Q

cq Ĝ q(x0) = 0,

as desired. �

Let C0(E0) denote the space of continuous functions on E0 vanishing at infinity.
Lemma E.3 implies that Ĝ is a well-defined linear operator on C0(E0) with domain
C∞

c (E0). It also implies that Ĝ satisfies the positive maximum principle as a linear
operator on C0(E0). Hence the following local existence result can be proved.
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Lemma E.4 Let μ be a probability measure on E. There exists an R
d -valued càdlàg

process X with initial distribution μ that satisfies

Xt = X0 +
∫ t

0
b̂(Xs)ds +

∫ t

0
σ̂ (Xs)dWs (E.7)

for all t < τ , where τ = inf{t ≥ 0 : Xt /∈ E0} > 0, and some d-dimensional Brownian
motion W .

Proof The conditions of Ethier and Kurtz [19, Theorem 4.5.4] are satisfied, so there
exists an E�

0 -valued càdlàg process X such that Nf
t =f (Xt )−f (X0)−

∫ t

0 Ĝ f (Xs)ds

is a martingale for any f ∈ C∞
c (E0). Here E�

0 denotes the one-point compactifica-
tion of E0 with some � /∈ E0, and we set f (�) = Ĝ f (�) = 0. Bakry and Émery
[4, Proposition 2] then yields that f (X) and Nf are continuous.3 In particular, X can-
not jump to � from any point in E0, whence τ is a strictly positive predictable time.

A localized version of the argument in Ethier and Kurtz [19, Theorem 5.3.3]
now shows that on an extended probability space, X satisfies (E.7) for all t < τ

and some Brownian motion W . It remains to show that X is non-explosive in the
sense that supt<τ ‖Xτ‖ < ∞ on {τ < ∞}. Indeed, non-explosion implies that either
τ = ∞, or Rd \ E0 �= ∅ in which case we can take � ∈ R

d \ E0. In either case, X is
R

d -valued. To prove that X is non-explosive, let Zt = 1 + ‖Xt‖2 for t < τ , and ob-
serve that the linear growth condition (E.3) in conjunction with Itô’s formula yields
Zt ≤ Z0 + C

∫ t

0 Zs ds + Nt for all t < τ , where C > 0 is a constant and N a local
martingale on [0, τ ). Let Yt denote the right-hand side. Then

e−tCZt ≤ e−tCYt = Z0 + C

∫ t

0
e−sC(Zs − Ys)ds +

∫ t

0
e−sC dNs

≤ Z0 +
∫ t

0
e−sC dNs

for all t < τ . The right-hand side is a nonnegative supermartingale on [0, τ ), and we
deduce supt<τ Zt < ∞ on {τ < ∞}, as required. �

Let X and τ be the process and stopping time provided by Lemma E.4. We now
show that τ = ∞ and that Xt remains in E for all t ≥ 0 and spends zero time in each
of the sets {p = 0}, p ∈ P . This will complete the proof of Theorem 5.3, since â and
b̂ coincide with a and b on E.

We need to prove that p(Xt) ≥ 0 for all 0 ≤ t < τ and all p ∈ P . Fix p ∈ P and
let Ly denote the local time of p(X) at level y, where we choose a modification that
is càdlàg in y; see Revuz and Yor [41, Theorem VI.1.7]. Itô’s formula yields

p(Xt) = p(x) +
∫ t

0
Ĝ p(Xs)ds +

∫ t

0
∇p(Xs)

�σ̂ (Xs)
1/2 dWs, t < τ.

3Note that unlike many other results in that paper, Proposition 2 in Bakry and Émery [4] does not require
Ĝ to leave C∞

c (E0) invariant, and is thus applicable in our setting.
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We first claim that L0
t = 0 for t < τ . The occupation density formula [41, Corol-

lary VI.1.6] yields

∫ ∞

−∞
1

y
1{y>0}Ly

t dy =
∫ t

0

∇p�â∇p(Xs)

p(Xs)
1{p(Xs)>0} ds.

By right-continuity of L
y
t in y, it suffices to show that the right-hand side is finite.

For this, in turn, it is enough to prove that (∇p�â∇p)/p is locally bounded on M .
To this end, let a = SΛS� be the spectral decomposition of a, so that the columns Si

of S constitute an orthonormal basis of eigenvectors of a and the diagonal elements
λi of Λ are the corresponding eigenvalues. Note that these quantities depend on x in
general. Since a∇p = 0 on M ∩ {p = 0} by (A1), condition (G2) implies that there
exists a vector h = (h1, . . . , hd)� of polynomials such that

a∇p = hp on M.

Thus λiS
�
i ∇p = S�

i a∇p = S�
i hp, and hence λi(S

�
i ∇p)2 = S�

i ∇pS�
i hp. In con-

junction with Lemma E.1, this yields

∇p�â∇p = ∇p�SΛ+S�∇p =
∑

i

λi1{λi>0}(S�
i ∇p)2 =

∑

i

1{λi>0}S�
i ∇pS�

i hp.

Consequently,

∇p�â∇p ≤ |p|
∑

i

‖Si‖2‖∇p‖‖h‖.

Since ‖Si‖ = 1 and ∇p and h are locally bounded, we deduce that (∇p�â∇p)/p is
locally bounded, as required. Thus L0 = 0 as claimed.

Next, since Ĝ p = G p on E, the hypothesis (A1) implies that Ĝ p > 0 on a
neighborhood Up of E ∩ {p = 0}. Shrinking E0 if necessary, we may assume that
E0 ⊆ E ∪⋃p∈P Up and thus

Ĝ p > 0 on E0 ∩ {p = 0}.
Since L0 = 0 before τ , Lemma A.1 implies

p(Xt) ≥ 0 for all t < τ.

Thus the stopping time τE = inf{t : Xt /∈ E} ≤ τ actually satisfies τE = τ . This im-
plies τ = ∞. Indeed, X has left limits on {τ < ∞} by Lemma E.4, and E0 is a
neighborhood in M of the closed set E. Thus τE < τ on {τ < ∞}, whence this set is
empty. Finally, Lemma A.1 also gives

∫ t

0 1{p(Xs)=0} ds = 0. The proof of Theorem 5.3
is complete. �

Appendix F: Proof of Theorem 5.7

The proof of Theorem 5.7 is divided into three parts.
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Proof of Theorem 5.7(i) The following argument is a version of what is sometimes
called “McKean’s argument”; see Mayerhofer et al. [37, Sect. 4.1] for an overview
and further references. Suppose first p(X0) > 0 almost surely. Itô’s formula and the
identity a∇h = hp on M yield

logp(Xt ) − logp(X0)

=
∫ t

0

(
G p(Xs)

p(Xs)
− 1

2

∇p�a∇p(Xs)

p(Xs)2

)
ds +

∫ t

0

∇p�σ(Xs)

p(Xs)
dWs

=
∫ t

0

2G p(Xs) − h�∇p(Xs)

2p(Xs)
ds +

∫ t

0

∇p�σ(Xs)

p(Xs)
dWs

(F.1)

for t < τ = inf{s ≥ 0 : p(Xs) = 0}. We now modify logp(X) to turn it into a local
submartingale. To this end, define

Vt =
∫ t

0
1{Xs /∈U}

1

p(Xs)
|2G p(Xs) − h�∇p(Xs)|ds.

We claim that Vt < ∞ for all t ≥ 0. To see this, note that the set E ∩Uc ∩{x : ‖x‖≤n}
is compact and disjoint from {p = 0} ∩ E for each n. Thus

εn = min{p(x) : x ∈ E ∩ Uc,‖x‖ ≤ n}
is strictly positive. Defining σn = inf{t : ‖Xt‖ ≥ n}, this yields

Vt∧σn ≤ t

2εn

max‖x‖≤n
|2G p(x) − h�∇p(x)| < ∞.

Since σn → ∞ due to the fact that X does not explode, we have Vt < ∞ for all t ≥ 0
as claimed. It follows that the process

At =
∫ t

0
1{Xs /∈U}

1

p(Xs)

(
2G p(Xs) − h�∇p(Xs)

)
ds

is well defined and finite for all t ≥ 0, with total variation process V .
Now define stopping times ρn = inf{t ≥ 0 : |At | + p(Xt) ≥ n} and note that

ρn → ∞ since neither A nor X explodes. Consider the process Z = logp(X) − A,
which satisfies

Zt = logp(X0) +
∫ t

0
1{Xs∈U}

1

2p(Xs)

(
2G p(Xs) − h�∇p(Xs)

)
ds

+
∫ t

0

∇p�σ(Xs)

p(Xs)
dWs.

Then −Zρn is a supermartingale on the stochastic interval [0, τ ), bounded from be-
low.4 Thus by the supermartingale convergence theorem, limt↑τ Zt∧ρn exists in R,
which implies τ ≥ ρn. Since ρn → ∞, we deduce τ = ∞, as desired.

4Details regarding stochastic calculus on stochastic intervals are available in Maisonneuve [36]; see also
Mayerhofer et al. [37], Carr et al. [7], Larsson and Ruf [34].
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Finally, suppose P[p(X0) = 0] > 0. The above proof shows that p(X) cannot
return to zero once it becomes positive. But due to (5.2), we have p(Xt) > 0 for
arbitrarily small t > 0, and this completes the proof. �

Proof of Theorem 5.7(ii) As in the proof of (i), it is enough to consider the case where
p(X0) > 0. By (G2), we deduce 2G p − h�∇p = αp on M for some α ∈ Pol(Rd).
However, we have degG p ≤ degp and dega∇p ≤ 1+degp, which yields degh ≤ 1.
Consequently degαp ≤ degp, implying that α is constant. Inserting this into (F.1)
yields

logp(Xt) = logp(X0) + α

2
t +
∫ t

0

∇p�σ(Xs)

p(Xs)
dWs

for t < τ = inf{t : p(Xt) = 0}. The process logp(Xt) − αt/2 is thus locally a mar-
tingale bounded from above, and hence nonexplosive by the same “McKean’s argu-
ment” as in the proof of part (i). This proves the result. �

Proof of Theorem 5.7(iii) The proof of relies on the following two lemmas.

Lemma F.1 Let b : Rd → R
d and σ : Rd → R

d×d be continuous functions with
‖b(x)‖2 + ‖σ(x)‖2 ≤ κ(1 + ‖x‖2) for some κ > 0, and fix ρ > 0. Let Y be a
d-dimensional Itô process satisfying Yt = Y0 + ∫ t

0 b(Ys)ds + ∫ t

0 σ(Ys)dWs . Then
there exist constants c1, c2 > 0 that only depend on κ and ρ, but not on Y0, such
that

P

[
sup
s≤t

‖Ys − Y0‖ < ρ

]
≥ 1 − tc1(1 +E[‖Y0‖2]), t ≤ c2.

Proof By Markov’s inequality,

P

[
sup
t≤ε

‖Yt − Y0‖ < ρ

]
≥ 1 − ρ−2

E

[
sup
t≤ε

‖Yt − Y0‖2
]
.

Let τn be the first time ‖Yt‖ reaches level n. A standard argument using the BDG
inequality and Jensen’s inequality yields

E

[
sup

s≤t∧τn

‖Ys − Y0‖2
]

≤ 2c2E

[∫ t∧τn

0

(‖σ(Ys)‖2 + ‖b(Ys)‖2)ds

]

for t ≤ c2, where c2 is the constant in the BDG inequality. The growth condition
yields

E

[
sup

s≤t∧τn

‖Ys − Y0‖2
]

≤ 2c2κE

[∫ t∧τn

0
(1 + ‖Ys‖2)ds

]

≤ 4c2κ(1 +E[‖Y0‖2])t + 4c2κ

∫ t

0
E

[
sup

u≤s∧τn

‖Yu − Y0‖2
]

ds,
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for t ≤ c2, and Gronwall’s lemma then gives E[sups≤t∧τn
‖Ys − Y0‖2] ≤ c3te4c2κt ,

where c3 = 4c2κ(1 + E[‖Y0‖2]). Sending n to infinity and applying Fatou’s lemma
concludes the proof, upon setting c1 = 4c2κe4c2

2κ ∧ c2. �

Lemma F.2 Let 0 < α < 2 and z ≥ 0, and let Z be a BESQ(α) process starting from
z ≥ 0. Let Pz denote its law. Let τ0 = inf{t ≥ 0 : Zt = 0} be the first time Z hits zero.
Then for any ε > 0,

lim
z→0

Pz[τ0 > ε] = 0.

Proof By Göing-Jaeschke and Yor [26, Eq. (15)], we have

Pz[τ0 > ε] =
∫ ∞

ε

1

tΓ (̂ν)

( z

2t

)ν̂

e−z/(2t) dt,

where Γ (·) is the Gamma function and ν̂ = 1 − α/2 ∈ (0,1). Changing variables to
s = z/(2t) yields Pz[τ0 > ε] = 1

Γ (̂ν)

∫ z/(2ε)

0 sν̂−1e−s ds, which converges to zero as
z → 0 by dominated convergence. �

We may now complete the proof of Theorem 5.7(iii). The hypotheses yield

0 ≤ 2G p(x) < h(x)�∇p(x).

Hence there exist some δ > 0 such that 2G p(x) < (1 − 2δ)h(x)�∇p(x) and an open
ball U in R

d of radius ρ > 0, centered at x, such that

2G p ≤ (1 − δ)h�∇p and h�∇p > 0 on E ∩ U.

Note that the radius ρ does not depend on the starting point X0.
For all t < τ(U) = inf{s ≥ 0 : Xs /∈ U} ∧ T , we have

p(Xt) − p(X0) −
∫ t

0
G p(Xs)ds =

∫ t

0
∇p�σ(Xs)dWs

=
∫ t

0

√
∇p�a∇p(Xs)dBs

= 2
∫ t

0

√
p(Xs)

1

2

√
h�∇p(Xs)dBs

for some one-dimensional Brownian motion, possibly defined on an enlargement of
the original probability space. Here the equality a∇p = hp on E was used in the last
step. Define an increasing process At = ∫ t

0
1
4h�∇p(Xs)ds. Since h�∇p(Xt) > 0 on

[0, τ (U)), the process A is strictly increasing there. It follows that the time-change
γu = inf{t ≥ 0 : At > u} is continuous and strictly increasing on [0,Aτ(U)). The time-
changed process Yu = p(Xγu) thus satisfies

Yu = p(X0) +
∫ u

0

4G p(Xγv )

h�∇p(Xγv )
dv + 2

∫ u

0

√
Yv dβv, u < Aτ(U).
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Consider now the BESQ(2 − 2δ) process Z defined as the unique strong solution to
the equation

Zu = p(X0) + (2 − 2δ)u + 2
∫ u

0

√
Zv dβv.

Since 4G p(Xt)/h�∇p(Xt) ≤ 2 − 2δ for t < τ(U), a standard comparison theo-
rem implies that Yu ≤ Zu for u < Aτ(U); see for instance Rogers and Williams
[42, Theorem V.43.1]. It is well known that a BESQ(α) process hits zero if and only
if α < 2; see Revuz and Yor [41, page 442]. It thus remains to exhibit ε > 0 such
that if ‖X0 − x‖ < ε almost surely, there is a positive probability that Zu hits zero
before Xγu leaves U , or equivalently, that Zu = 0 for some u < Aτ(U). To this end,
set C = supx∈U h(x)�∇p(x)/4, so that Aτ(U) ≥ Cτ(U), and let η > 0 be a number
to be determined later. We have

P

[
η < Aτ(U) and inf

u≤η
Zu = 0

]

≥ P
[
η < Aτ(U)

]− P

[
inf
u≤η

Zu > 0
]

≥ P
[
ηC−1 < τ(U)

]− P

[
inf
u≤η

Zu > 0
]

= P

[
sup

t≤ηC−1
‖Xt − x‖ < ρ

]
− P

[
inf
u≤η

Zu > 0
]

≥ P

[
sup

t≤ηC−1
‖Xt − X0‖ < ρ/2

]
− P

[
inf
u≤η

Zu > 0
]
,

(F.2)

where we recall that ρ is the radius of the open ball U , and where the last inequality
follows from the triangle inequality provided ‖X0 − x‖ ≤ ρ/2. By Lemma F.1, we
can choose η > 0 independently of X0 so that P[supt≤ηC−1 ‖Xt − X0‖ < ρ/2] > 1/2.
Then by Lemma F.2, we have P[infu≤η Zu > 0] < 1/3 whenever Z0 = p(X0) is suf-
ficiently close to zero. This happens if X0 is sufficiently close to x, say within a
distance ρ′ > 0. Thus, setting ε = ρ′ ∧ (ρ/2), the condition ‖X0 − x‖ < ρ′ ∧ (ρ/2)

implies that (F.2) is valid, with the right-hand side strictly positive. The theorem is
proved. �

Appendix G: Proof of Proposition 6.1

Condition (G1) is vacuously true, so we prove (G2). If d = 1, then {p = 0} = {−1,1},
and it is clear that any univariate polynomial vanishing on this set has p(x) = 1 − x2

as a factor. Thus (G2) holds. If d ≥ 2, then p(x) = 1 − x�Qx is irreducible and
changes sign, so (G2) follows from Lemma 5.4.

Next, it is straightforward to verify that (6.1), (6.2) imply (A0)–(A2), so we
focus on the converse direction and assume (A0)–(A2) hold. We first prove that
a(x) has the stated form. Write a(x) = α + L(x) + A(x), where α = a(0) ∈ S

d+,
L(x) ∈ S

d is linear in x, and A(x) ∈ S
d is homogeneous of degree two in x.
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Since a(x)Qx = a(x)∇p(x)/2 = 0 on {p = 0}, we have for any x ∈ {p = 0} and
ε ∈ {−1,1} that

0 = εa(εx)Qx = ε
(
αQx + A(x)Qx

)+ L(x)Qx.

This implies L(x)Qx = 0 for all x ∈ {p = 0}, and thus, by scaling, for all x ∈R
d . We

now argue that this implies L = 0. To this end, consider the linear map T : X → Y
where

X = {all linear maps Rd → S
d},

Y = {all second degree homogeneous maps Rd →R
d},

and T K ∈ Y is given by (T K)(x) = K(x)Qx. One readily checks that we have
dimX = dimY = d2(d + 1)/2. Thus if we can show that T is surjective, the rank-
nullity theorem dim(kerT )+dim(rangeT ) = dimX implies that kerT is trivial. But
the identity L(x)Qx ≡ 0 precisely states that L ∈ kerT , yielding L = 0 as desired.
To see that T is surjective, note that Y is spanned by elements of the form

(0, . . . ,0, xixj ,0, . . . ,0)�

with the kth component being nonzero. But all these elements can be realized as
(T K)(x) = K(x)Qx as follows: If i, j, k are all distinct, one may take

⎛

⎝
Kii Kij Kik

Kji Kjj Kjk

Kki Kkj Kkk

⎞

⎠(x) = 1

2

⎛

⎝
0 −xk xj

−xk 0 xi

xj xi 0

⎞

⎠

⎛

⎝
Qii 0 0
0 Qjj 0
0 0 Qkk

⎞

⎠ ,

and all remaining entries of K(x) equal to zero. If i = k, one takes Kii(x) = xj and
the remaining entries zero, and similarly if j = k. If i = j �= k, one sets

(
Kii Kik

Kki Kkk

)
(x) =

(−xk xi

xi 0

)(
Qii 0
0 Qkk

)
,

and the remaining entries zero. This covers all possible cases, and shows that T is
surjective. Thus L = 0 as claimed.

At this point, we have shown that a(x) = α+A(x) with A homogeneous of degree
two. Next, since a∇p = 0 on {p = 0}, there exists a vector h of polynomials such that
a∇p/2 = hp. By counting degrees, h is of the form h(x) = f +Fx for some f ∈ R

d ,
F ∈R

d×d . For any s > 0 and x ∈R
d such that sx ∈ E,

αQx + s2A(x)Qx = 1

2s
a(sx)∇p(sx) = (1 − s2x�Qx)(s−1f + Fx).

By sending s to zero, we deduce f = 0 and αx = Fx for all x in some open
set, hence F = α. Thus a(x)Qx = (1 − x�Qx)αQx for all x ∈ E. Defining
c(x) = a(x) − (1 − x�Qx)α, this shows that c(x)Qx = 0 for all x ∈ R

d , that
c(0) = 0, and that c(x) has no linear part. In particular, c is homogeneous of degree
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two. To prove that c ∈ C Q
+ , it only remains to show that c(x) is positive semidefinite

for all x. For this we observe that for any u ∈R
d and any x ∈ {p = 0},

u�c(x)u = u�a(x)u ≥ 0.

In view of the homogeneity property, positive semidefiniteness follows for any x.
Thus c ∈ C Q

+ and hence this a(x) has the stated form. Furthermore, the drift vector is
always of the form b(x) = β + Bx, and a brief calculation using the expressions for
a(x) and b(x) shows that the condition G p > 0 on {p = 0} is equivalent to (6.2). �

Appendix H: Proof of Proposition 6.4

Condition (G1) is vacuously true, and it is not hard to check that (G2) holds.
Next, it is straightforward to verify that (i) and (ii) imply (A0)–(A2), so we focus

on the converse direction and assume (A0)–(A2) hold.
We first deduce (i) from the condition a∇p = 0 on {p = 0} for all p ∈ P together

with the positive semidefinite requirement of a(x). Taking p(x) = xi , i = 1, . . . , d ,
we obtain a(x)∇p(x) = a(x)ei = 0 on {xi = 0}. Hence the ith column of a(x) is a
polynomial multiple of xi . Similarly, with p = 1 − xi , i ∈ I , it follows that a(x)ei is
a polynomial multiple of 1 − xi for i ∈ I . Hence, by symmetry of a, we get

γjixi(1 − xi) = aji(x) = aij (x) = hij (x)xj (i ∈ I, j ∈ I ∪ J )

for some constants γij and polynomials hij ∈ Pol1(E) (using also that degaij ≤ 2).
For i �= j , this is possible only if aij (x) = 0, and for i = j ∈ I it implies that
aii(x) = γixi(1 − xi) as desired. In order to maintain positive semidefiniteness, we
necessarily have γi ≥ 0.

Now consider i, j ∈ J . By the above, we have aij (x) = hij (x)xj for some
hij ∈ Pol1(E). Similarly as before, symmetry of a(x) yields

hij (x)xj = aij (x) = aji(x) = hji(x)xi,

so that for i �= j , hij has xi as a factor. It follows that aij (x) = αij xixj for some
αij ∈R. If i = j , we get ajj (x) = αjj x

2
j + xj (φj + ψ�

(j)xI + π�
(j)xJ ) for some

αjj ∈R, φj ∈ R, ψ(j) ∈ R
m, π(j) ∈ R

n with π(j),j = 0. Positive semidefiniteness
requires ajj (x) ≥ 0 for all x ∈ E. This directly yields π(j) ∈ R

n+. Further, by set-
ting xi = 0 for i ∈ J \ {j} and making xj > 0 sufficiently small, we see that
φj + ψ�

(j)xI ≥ 0 is required for all xI ∈ [0,1]m, which forces φj ≥ (ψ−
(j))

�1. Fi-

nally, let α ∈ S
n be the matrix with elements αij for i, j ∈ J , let Ψ ∈ R

m×n have
columns ψ(j), and Π ∈R

n×n columns π(j). We then have

s−2aJJ (xI , sxJ ) = Diag(xJ )α Diag(xJ )

+ Diag(xJ )Diag
(
s−1(φ + Ψ �xI ) + Π�xJ

)
,

so by sending s to infinity we see that α + Diag(Π�xJ )Diag(xJ )−1 must lie in S
n+

for all xJ ∈R
n++. This proves (i).
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For (ii), note that G p(x) = bi(x) for p(x) = xi , and G p(x) = −bi(x) for
p(x) = 1 − xi . In particular, if i ∈ I , then bi(x) cannot depend on xJ . This estab-
lishes (6.4). Next, for i ∈ I , we have βi + BiI xI > 0 for all xI ∈ [0,1]m with xi = 0,
and this yields βi − (B−

i,I\{i})1 > 0. Similarly, βi +BiI xI < 0 for all xI ∈ [0,1]m with

xi = 1, so that βi + (B+
i,I\{i})1 + Bii < 0. For j ∈ J , we may set xJ = 0 to see that

βJ + BJI xI ∈ R
n++ for all xI ∈ [0,1]m. Hence βj > (B−

jI )1 for all j ∈ J . Moreover,
fixing j ∈ J , setting xj = 0 and letting xi → ∞ for i �= j forces Bji > 0. The proof
of (ii) is complete. �

Appendix I: Proof of Proposition 6.6

Since Q consists of the single polynomial q(x) = 1−1�x, it is clear that (G1) holds.
To prove (G2), it suffices by Lemma 5.5 to prove for each i that the ideal (xi,1−1�x)

is prime and has dimension d −2. But an affine change of coordinates shows that this
is equivalent to the same statement for (x1, x2), which is well known to be true.

Next, the only nontrivial aspect of verifying that (i) and (ii) imply (A0)–(A2) is
to check that a(x) is positive semidefinite for each x ∈ E. To do this, fix any x ∈ E

and let Λ denote the diagonal matrix with aii(x), i = 1, . . . , d , on the diagonal. Then
for each s ∈ [0,1), the matrix A(s) = (1 − s)(Λ + Id) + sa(x) is strictly diagonally
dominant5 with positive diagonal elements. Hence by Horn and Johnson [30, Theo-
rem 6.1.10], it is positive definite. But since S

d+ is closed and lims→1 A(s) = a(x),
we get a(x) ∈ S

d+.
We now focus on the converse direction and assume (A0)–(A2) hold. We first

prove (i). As the ideal (xi,1−1�x) satisfies (G2) for each i, the condition a(x)ei = 0
on M ∩ {xi = 0} implies that

aji(x) = xihji(x) + (1 − 1�x)gji(x) (I.1)

for some polynomials hji and gji in Pol1(Rd). Suppose j �= i. By symmetry of a(x),
we get

xjhij (x) = xihji(x) + (1 − 1�x)
(
gji(x) − gij (x)

)
.

Thus hij = 0 on M ∩ {xi = 0} ∩ {xj �= 0}, and, by continuity, on M ∩ {xi = 0}. An-
other application of (G2) and counting degrees gives hij (x) = −αij xi + (1−1�x)γij

for some constants αij and γij . This proves aij (x) = −αij xixj on E for i �= j , as
claimed. For i = j , note that (I.1) can be written as

aii(x) = −αiix
2
i + xi(φi + ψ�

(i)x) + (1 − 1�x)gii(x)

for some constants αij , φi and vectors ψ(i) ∈ R
d with ψ(i),i = 0. We need to iden-

tify φi and ψ(i). To this end, note that the condition a(x)1 = 0 on {1 − 1�x = 0}
5A matrix A is called strictly diagonally dominant if |Aii | >

∑
j �=i |Aij | for all i; see Horn and Johnson

[30, Definition 6.1.9].
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yields a(x)1 = (1 − 1�x)f (x) for all x ∈ R
d , where f is some vector of polynomi-

als fi ∈ Pol1(Rd). Writing the ith component of a(x)1 in two ways then yields

xi

(
−

d∑

j=1

αij xj + φi + ψ�
(i)x

)
= (1 − 1�x)

(
fi(x) − gii(x)

)

= (1 − 1�x)
(
ηi + (Hx)i

)
(I.2)

for all x ∈ R
d and some η ∈ R

d , H ∈ R
d×d . Replacing x by sx, dividing by s and

sending s to zero gives xiφi = lims→0 s−1ηi + (Hx)i , which forces ηi = 0, Hij = 0
for j �= i and Hii = φi . Substituting into (I.2) and rearranging yields

xi

(
−

d∑

j=1

αij xj + ψ�
(i)x + φi1�x

)
= 0 (I.3)

for all x ∈ R
d . The coefficient in front of x2

i on the left-hand side is −αii + φi

(recall that ψ(i),i = 0), which therefore is zero. That is, φi = αii . With this in mind,
(I.3) becomes xi

∑
j �=i (−αij + ψ(i),j + αii)xj = 0 for all x ∈ R

d , which implies
ψ(i),j = αij − αii . At this point, we have proved

aii(x) = −αiix
2
i + xi

(
αii +

∑

j �=i

(αij − αii)xj

)
= αiixi(1 − 1�x) +

∑

j �=i

αij xixj

on E, which yields the stated form of aii(x). It remains to show that αij ≥ 0 for
all i �= j . To see this, suppose for contradiction that αik < 0 for some (i, k). Pick
s ∈ (0,1) and set xk = s, xj = (1 − s)/(d − 1) for j �= k. Then

aii(x) = xi

∑

j �=i

αij xj = xi

(
αiks + 1 − s

d − 1

∑

j �=i,k

αij

)
.

For s sufficiently close to 1, the right-hand side becomes negative, which contradicts
positive semidefiniteness of a on E. This proves (i).

For (ii), first note that we always have b(x) = β + Bx for some β ∈ R
d and

B ∈R
d×d . The condition G q = 0 on M for q(x) = 1−1�x yields β�1+x�B�1 = 0

on M . Hence by Lemma 5.4, β�1 + x�B�1 = κ(1 − 1�x) for all x ∈ R
d and some

constant κ . This yields β�1 = κ and then B�1 = −κ1 = −(β�1)1. Next, the condi-
tion G pi ≥ 0 on M ∩ {pi = 0} for pi(x) = xi can be written as

min

{

βi +
d∑

j=1

Bjixj : x ∈R
d+,1�x = 1, xi = 0

}

≥ 0,

which in turn is equivalent to

min

{

βi +
∑

j �=i

Bjixj : x ∈R
d+,
∑

j �=i

xj = 1

}

≥ 0.
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The feasible region of this optimization problem is the convex hull of {ej : j �= i},
and the linear objective function achieves its minimum at one of the extreme points.
Thus we obtain βi + Bji ≥ 0 for all j �= i and all i, as required. �

Appendix J: Some notions from algebraic geometry

In this appendix, we briefly review some well-known concepts and results from alge-
bra and algebraic geometry. The reader is referred to Dummit and Foote [16, Chaps. 7
and 15] and Bochnak et al. [6, Chap. 4] for more details.

An ideal I of Pol(Rd) is a subset of Pol(Rd) closed under addition and such that
f ∈ I and g ∈ Pol(Rd) implies fg ∈ I . Given a finite family R = {r1, . . . , rm} of
polynomials, the ideal generated by R, denoted by (R) or (r1, . . . , rm), is the ideal
consisting of all polynomials of the form f1r1 +· · ·+fmrm, with fi ∈ Pol(Rd). Given
any set of polynomials S, its zero set is the set

V (S) = {x ∈R
d : f (x) = 0 for all f ∈ S}.

The zero set of the family R coincides with the zero set of the ideal I = (R), that
is, V (R) = V (I ). For example, the set M in (5.1) is the zero set of the ideal (Q).
Given a set V ⊆ R

d , the ideal generated by V , denoted by I (V ), is the set of all
polynomials that vanish on V . It follows from the definition that S ⊆ I (V (S)) for
any set S of polynomials. A basic problem in algebraic geometry is to establish when
an ideal I is equal to the ideal generated by the zero set of I ,

I = I
(
V (I )

)
. (J.1)

If the ideal I = (R) satisfies (J.1), then that means that any polynomial f that van-
ishes on the zero set V (I ) has a representation f = f1r1 + · · · + fmrm for some
polynomials f1, . . . , fm.

An ideal I of Pol(Rd) is said to be prime if it is not all of Pol(Rd) and if the
conditions f,g ∈ Pol(Rd) and fg ∈ I imply f ∈ I or g ∈ I . The dimension of an
ideal I of Pol(Rd) is the dimension of the quotient ring Pol(Rd)/I ; for a definition
of the latter, see Dummit and Foote [16, Sect. 16.1].
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