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Abstract We consider an optimal control problem for a linear stochastic integro-
differential equation with conic constraints on the phase variable and with the control
of singular–regular type. Our setting includes consumption-investment problems for
models of financial markets in the presence of proportional transaction costs, where
the prices of the assets are given by a geometric Lévy process, and the investor is
allowed to take short positions. We prove that the Bellman function of the problem is
a viscosity solution of an HJB equation. A uniqueness theorem for the solution of the
latter is established. Special attention is paid to the dynamic programming principle.
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1 Introduction

In this paper, we study the classical consumption-investment model with infinite hori-
zon in the presence of transaction costs in the case where the price evolution is given
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by a geometric Lévy process. There is a growing literature on investments into assets
with such price dynamics; see e.g. [1, 2, 11, 14, 16], etc.; there are also a few papers
combining a jump-diffusion setting with transaction costs; see [17, 10, 12].

Our aim is to extend the results of [22]. Namely, we show that the Bellman func-
tion is a viscosity solution of the corresponding Hamilton–Jacobi–Bellman equation.
We also prove a uniqueness theorem for the latter.

Mathematically, the consumption-investment problem with transaction costs con-
sidered here is a regular–singular control problem for a linear stochastic equation in
a cone. Its specificity is that the Bellman function need not be smooth, and therefore
we cannot use a verification theorem (at least, in its traditional form) because the Itô
formula cannot be applied. Nevertheless, we can show that the Bellman function is
a solution of the HJB equation in the viscosity sense. Although the general line of ar-
guments is familiar, we need to reexamine each step of the proof. In particular, for the
considered jump-diffusion model, the HJB equation contains an integro-differential
operator, and so the test functions involved in the definition of a viscosity solution
must be “globally” defined. It seems that already in 1986, Soner [28, 29] noticed that
control problems with jump parts can be considered in the framework of the theory
of viscosity solutions.

There is a growing literature on extensions of the concept of viscosity solutions to
equations with integro-differential operators; see e.g. [26, 4, 25, 9, 8, 5, 6, 18]. There
are several variants of the definition of a viscosity solution. Our choice is intended
to serve the model with a positive utility function. The definition can be viewed as
a simplified version of that adopted in [19].

A rather detailed study of the HJB equation arising in consumption-investment
problems for multiasset models of stock market when the prices follow exponential
Lévy processes and the investor is constrained to keep long positions in all assets,
money included, was undertaken by Benth et al. in [11] (frictionless market) and [10]
(market with transaction costs). Of course, from the financial point of view, this is
a serious constraint, which means that either the regulation of the market is so strin-
gent that not only short selling of stocks, but also borrowing money is prohibited, or
the investor is extremely risk averse and wants to avoid any possibility of bankruptcy.
In the mentioned paper, the diffusion is assumed to be nondegenerate, i.e., the finan-
cially interesting models based on Lévy processes without Gaussian component are
excluded.

Our geometric approach is more general than that of the mentioned papers where
the authors considered a “parametric” version of the stock market, with transactions
always passing through money (i.e., either “buy stock” or “sell stock”). A more im-
portant difference is that in our setting, the investor may take short positions as was
always assumed in the classical papers [24, 15, 27]. If short positions are admitted,
ruin may happen due to a jump of the price process. That is why the natural, “clas-
sical” setting considered here leads to a different HJB equation of more complicated
structure. Following the ideas from the paper [22], we derive the dynamic program-
ming principle (DPP) split into two separate assertions. Although it is the principal
tool, which allows one to check that the Bellman function is a viscosity solution of
the HJB equation, it is rarely discussed in the literature (and even taken for granted;
see e.g. [3, 27, 10]).
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For the models with jumps, there are new aspects of DPP, related to fundamental
issues of financial modeling, needing special attention. The problem is that the Lévy
process starts afresh at any stopping time, but the control dynamics does not. The in-
stants of jumps of the Lévy process are totally inaccessible stopping times, whereas
the instances of jumps of the predictable càdlàg processes representing the accumu-
lated transfers are predictable stopping times and therefore cannot happen simulta-
neously; see Sect. 2. Thus, the jumps of the price process cannot be compensated by
immediate control actions. To some extent, this feature, interpreted as a kind of iner-
tia, agrees with financial intuition. On the other hand, this leads to the absence of an
optimal control. In the present note, we investigate the traditional dynamics, leaving
the version with làdlàg trajectories and the search of an optimal control (which is the
most interesting part of the theory) for further studies.

As in [22], we work with a positive multivariate utility function for current con-
sumption; see [12] and references therein for a detailed discussion of this object. But
even in the case of a univariate utility function, e.g. u(c) = cγ /γ , where γ ∈ (0,1),
our paper presents some novelties with respect to the existing literature. In particular,
we provide some sufficient conditions on the existence of Lyapunov functions and
classical solutions of the HJB equation, ensuring in particular the finiteness of the
Bellman function. It is worth noting that this utility function, considered just as an
example, has the constant relative risk aversion coefficient 1 − γ ∈ (0,1), whereas
empirical studies show that in the real world, this coefficient is much greater; see
e.g. [21]. On the other hand, the negative CRRA utility function with γ < 0 cannot
be used to measure the current consumption rate because the immediate consump-
tion of the whole wealth is optimal (this feature is often overlooked in the literature).
The utility functions u(c) = (c + a)γ /γ − aγ , where γ < 0 and a > 0, with almost
constant RRA fall in the scope of our model.

The main results of the paper are Theorem 10.1, claiming that if the Bellman
function is continuous up to the boundary, then it is a viscosity solution of the HJB
equation, and the uniqueness theorem for the Dirichlet problem arising in the model,
Theorem 11.3. We formulate the latter in terms of a Lyapunov function, an object
that is defined in terms of the truncated operator, in which the utility function is not
involved. Its introduction allows us to disconnect the problems of the uniqueness of
a solution and the existence of a classical supersolution.

Probably, the most important result of the paper is the uniqueness theorem for the
HJB equation with a nonlocal operator. In contrast to the methods developed in [8]
and [9], which are based on rather technical extensions of the Ishii lemma, we use the
latter in its original and (very transparent) formulation.

Note that our choice of the definition of viscosity solution, namely, with the re-
quirement of continuity up to the boundary, is adapted to the situation where the
utility function is positive. However, it does not suit to treat the problem with log-
arithmic utility. In that case, it is not clear what kind of boundary condition should
replace the Dirichlet one. This remains an interesting open problem.

The structure of the paper is the following. In Sects. 2 and 3, we introduce the
model dynamics and describe the goal functional, providing comments on the con-
cavity of the Bellman function W . In Sect. 4, we show that the Bellman function, if
finite, is continuous in the interior of the solvency cone. In Sect. 5, we give a for-
mal description of the HJB equation. Sections 6 and 7 contain a short account of
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basic facts on viscosity solutions for integro-differential equations. In Sect. 8, we ex-
plain the role of classical supersolutions to HJB equations. Section 9 is devoted to
the dynamic programming principle. In Sect. 10, we use it to show that the Bellman
function is the solution of our HJB equation. Section 11 contains a uniqueness the-
orem formulated in terms of a Lyapunov function. In Sect. 12, we provide examples
of Lyapunov functions and classical supersolutions.

2 The model

Our setting is more general than that of the standard model of a financial market under
constant proportional transaction costs. In particular, the cone K is not supposed to
be polyhedral. We assume that the asset prices are geometric Lévy processes. Our
framework appeals to a theory of viscosity solutions for nonlocal integro-differential
equations.

Let Y = (Yt ) be an Rd -valued semimartingale on a filtered probability space
(Ω,F ,F,P ) with the trivial initial σ -algebra. Let K and C be proper closed cones
in Rd such that C ⊆ intK �= ∅. Define the set A of controls π = (B,C) as the set
of predictable Rd -valued càdlàg processes of bounded variation such that, up to an
evanescent set,

Ḃ ∈ −K, Ċ ∈ C.

Here Ḃ denotes (a measurable version of) the Radon–Nikodým derivative of B with
respect to the total-variation process |B|. The notation Ċ has a similar meaning.
Though models with arbitrary C are of interest, we restrict ourselves in the present
paper by considering consumption processes admitting an intensity. To this end, we
define Aa as the set of controls π with absolutely continuous components C such
that C0 = 0. For the elements of Aa , we have c := dC/dt ∈ C.

The controlled process V = V x,π is the solution of the linear system

dV i
t = V i

t−dY i
t + dBi

t − dCi
t , V i

0− = xi, i = 1, . . . , d. (2.1)

In general, �V0 = �B0 is not equal to zero: the investor may revise the portfolio
when entering the market at time zero.

The solution of (2.1) can be expressed explicitly using the Doléans-Dade expo-
nentials

Et (Y
i) = eY i

t −(1/2)〈Y ic〉t ∏

s≤t

(1 + �Y i
s )e

−�Y i
s .

Namely,

V i
t = Et (Y

i)xi + Et (Y
i)

∫

[0,t]
E−1

s− (Y i)(dBi
s − dCi

s), i = 1, . . . , d. (2.2)

The controls from A and Aa defines the dynamics of the process V for all t ≥ 0. In
the traditional setting of consumption-investment problems, everything stops when
the process V leaves the interior of the solvency region. That is why it is sufficient
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to consider the subsets of controls stopped at the date of bankruptcy depending on
the initial capital x. It is also natural to assume that the process V does not leave the
interior of K due to a jump of B: the investor is reasonable enough not to ruin himself
by making a too expensive portfolio revision. The formal description can be done as
follows.

We introduce the stopping time

θ = θx,π := inf{t : V x,π
t /∈ intK}. (2.3)

For x ∈ intK , we consider the subsets Ax ⊂ A and Ax
a ⊂ Aa of “admissible” controls

for which π = I[[0,θx,π ]]π and {V− + �B ∈ intK} = {V− ∈ intK}. In financial terms,
θ is the time of ruin. When V x,π leaves the interior of the solvency cone, the control
of the portfolio and the consumption stop. The process V given by (2.1) continues to
evolve after the time θ , but for us, only the stopped process V x,π,θ has relevance.

The important hypothesis that the cone K is proper, i.e., K ∩ (−K) = {0} or,
equivalently, intK∗ �= ∅, corresponds to a model of a financial market with efficient
friction. In a financial context, K (usually containing Rd+) is interpreted as the sol-
vency region, and C = (Ct ) as the consumption process; the process B = (Bt ) de-
scribes accumulated fund transfers. In the “standard” model with proportional trans-
action costs (sometimes referred to as the model of a currency market),

K = cone {(1 + λij )ei − ej , ei, 1 ≤ i, j ≤ d},
where λij ≥ 0 are transaction cost coefficients. Note that our setting covers the model
of a stock market and the model of an exchange where transactions charge only the
bank account; see Sect. 3.1 in the book [23] for details.

The process Y represents the relative price movements. If Si is the price process
of the ith asset, then dSi

t = Si
t−dY i

t and Si
t = Si

0Et (Y
i). Without loss of generality,

we assume that Si
0 = 1 for all i. In this case, Y i is the so-called stochastic logarithm

of Si . Formula (2.2) can be rewritten as

V i
t = Si

t x
i + Si

t

∫

[0,t]
1

Si
s−

(dBi
s − dCi

s), i = 1, . . . , d. (2.4)

We work assuming that

Yt = μt + Ξwt +
∫ t

0

∫
z
(
p(dz, dt) − q(dz, dt)

)
, (2.5)

where μ ∈ Rd , w is an m-dimensional standard Wiener process, and p(dz, dt) is
a Poisson random measure with the compensator q(dz, dt) = Π(dz)dt such that
Π(dz) is a measure concentrated on (−1,∞)d . Note that the latter property of the
Lévy measure corresponds to the financially meaningful case where Si > 0. For the
m × d-dimensional matrix Ξ , we put A = ΞΞ∗. We assume that

∫
(|z|2 ∧ |z|)Π(dz) < ∞,
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and this assumption validates formula (2.5): by definition,

∫ t

0

∫
z
(
p(dz, dt) − q(dz, dt)

) :=
∫ t

0

∫

{|z|≤1}
z
(
p(dz, dt) − q(dz, dt)

)

+
∫ t

0

∫

{|z|>1}
zp(dz, dt)

−
∫ t

0

∫

{|z|>1}
zq(dz, dt),

where the first integral is defined as a stochastic one, whereas the second and third
are the usual Lebesgue integrals, both finite (a.s.).

Notation. For typographical reasons, we use the notation Dx instead of the common
diagx for the diagonal operator (or matrix) generated by the vector x = (x1, . . . , xd),
i.e.,

Dxz = (x1zd, . . . , xdzd).

System (2.1) can be written in integral vector form as

Vt = x +
∫ t

0
DVs−(μds + ΞdWs) +

∫ t

0

∫
DVs−z

(
p(dz, ds) − q(dz, ds)

)

+ Bt − Ct . (2.6)

It is important to note that the jumps of Y and B cannot occur simultaneously.
More precisely, the process |�B||�Y | is indistinguishable from zero. Indeed, for
any ε > 0, we have, using the predictability of the process �B = B − B−, that

E
∑

s≥0

|�Bs ||�Ys |I{|�Ys |>ε} = E

∫ ∞

0

∫
|�Bs |I{|z|>ε}|z|p(dz, ds)

= E

∫ ∞

0

∫
|�Bs ||z|I{|z|>ε}Π(dz)ds = 0

because for each ω, the set {s : �Bs(ω) �= 0} is at most countable and its Lebesgue
measure is equal to zero. Thus, the process |�B||�Y |I{|�Y |>ε} is indistinguishable
from zero, and so is the process |�B||�Y |.

It follows that �Bθ = 0. Since the predictable process I{V−∈∂K}I[[0,θ]] has at most
a countable number of jumps, the same reasoning as before leads to the conclusion
that I{V−∈∂K}|�Y |I[[0,θ]] is indistinguishable from zero. This means that θ is the first
moment when either V or V− leaves intK . This property will be used in the proof
that W is lower semicontinuous on intK .

In our proof of the dynamic programming principle (needed to derive the HJB
equation), we shall assume that the stochastic basis is the canonical one, that is, it con-
sists of the space of càdlàg functions and a measure P under which the coordinate
mapping is a Lévy process as before.
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3 Goal functionals and concavity of the Bellman function

Let U : C → R+ be a concave function such that U(0) = 0 and U(x)/|x| → 0 as
|x| → ∞. With every π = (B,C) ∈ Ax

a , we associate the “utility process”

Jπ
t :=

∫ t∧θ

0
e−βsU(cs) ds, t ≥ 0,

where β > 0, and θ = θx,π is the exit time defined in (2.3). We consider the infinite
horizon maximization problem with the goal functional EJπ∞ and define its Bellman
function W by

W(x) := sup
π∈Ax

a

EJπ∞, x ∈ intK.

Since Ax1
a ⊆ Ax2

a when x2 − x1 ∈ K , the function W is increasing with respect to
the partial ordering ≥K generated by the cone K .

If πi , i = 1,2, are admissible strategies for the initial points xi , then their con-
vex combination λπ1 + (1 − λ)π2 is an admissible strategy for the initial point
λx1 + (1 − λ)x2, λ ∈ [0,1], lying in the interval connecting x1 and x2. In the case
where the relative price process Y is continuous, the corresponding ruin time for the
process

V λx1+(1−λ)x2,λπ1+(1−λ)π2 = λV x1,π1 + (1 − λ)V x2,π2 (3.1)

dominates the maximum of the ruin times for the processes V xi,πi . The concavity
of U then implies that

J
λπ1+(1−λ)π2
t ≥ λJ

π1
t + (1 − λ)J

π2
t , (3.2)

and hence the function W is concave on intK .
Unfortunately, in our main case of interest where Y has jumps, the ruin times are

not related in such a simple way since short positions are allowed. It is easy to give
examples of trajectories such that

θx1,π1 = θλx1+(1−λ)x2,λπ1+(1−λ)π2 < ∞,

whereas θx2,π2 = ∞ and relations (3.1) and (3.2) do not hold. Therefore, we can-
not guarantee by the previous argument that the Bellman function is concave. Of
course, these considerations show only that the concavity of W cannot be obtained
in a straightforward way as for a model based on a continuous price process; but it is
not excluded.

The concavity of the Bellman function W is not a property just interesting per se.
The classical definition of a viscosity solution, as it was given by the famous “User’s
guide” [13], requires the continuity of W . On the other hand, a concave function
is continuous in the interior of its domain (and even locally Lipschitz); see e.g. [7,
Corollary 2.2]. Of course, the model must contain a provision that ensures that W is
finite. But the latter property in the case of continuous price processes implies that W

is continuous on intK . In the case of processes with jumps, we need to analyze the
continuity of W using other arguments.
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In the next section, we show that the finiteness of W still guarantees its continuity
on the interior of K . We do this using the following assertion.

Lemma 3.1 Suppose that W is a finite function. Let x ∈ intK . Then the function
λ �→ W(λx) is right-continuous on R+.

Proof Let λ > 0. Then λπ ∈ Aλx
a if and only if π ∈ Ax

a . For a concave function U

with U(0) = 0, we have for any ε > 0 the inequality

U(c) ≥ (1 + ε)−1U
(
(1 + ε)c

)
.

Hence, for an arbitrary strategy π ∈Ax
a , we have for θ = θx,π = θ(1+ε)x,(1+ε)π that

J (1+ε)π∞ − Jπ∞ = E

∫ θ

0
e−βt

(
U

(
(1 + ε)ct

) − U(ct )
)

dt

≤ εE

∫ θ

0
e−βtU(ct ) dt ≤ εW(x).

It follows that W((1 + ε)x) ≤ (1 + ε)W(x). Since W(x) ≤ W((1 + ε)x), we infer
from here that λ �→ W(λx) is right-continuous at the point λ = 1. Replacing x by λx,
we obtain the claim. �

If U is a homogeneous function of order γ ∈ (0,1), i.e., U(λx) = λγ U(x) for
all λ > 0, x ∈ K , then W(λx) = λγ W(x). Thus, the function λ �→ W(λx) is then
concave and therefore continuous if finite.

Remark 3.2 In financial models, usually C = R+e1, i.e., only the first asset is con-
sumed. Correspondingly, we then have U(c) = u(e1c) = u(c1), where u is a util-
ity function of a scalar argument. Our presentation is oriented to the power utility
function uγ (x) = xγ /γ with γ ∈ (0,1). The case of γ ≤ 0 where by convention
u0(x) = lnx is of interest but is not covered by the present study.

Remark 3.3 We consider here a model with mixed “regular–singular” controls. In
fact, the assumption that the consumption process has an intensity c = (ct ) and
agent’s utility depends only on this intensity is not very satisfactory from the eco-
nomic point of view. We can consider models with intertemporal substitution and
consumption by “gulps,” i.e., dealing with “singular” controls of the class Ax and the
goal functionals like

Jπ
t :=

∫ t

0
e−βsU(C̄s) ds,

where

C̄s =
∫ s

0
K(s, r) dCr

with a suitable kernel K(s, r) (the exponential kernel e−γ (s−r) is the common
choice); see [10].



Consumption-investment problem with transaction costs 713

4 Continuity of the Bellman function

Proposition 4.1 Suppose that W(x) < ∞ for all x ∈ intK . Then W is continuous on
intK .

Proof First, we show that the function W is upper semicontinuous on intK . Suppose
that this is not the case and there is a sequence (xn) converging to some x0 ∈ intK
such that lim supn W(xn) > W(x0). Without loss of generality, we may assume that
the sequence (W(xn)) converges. The points x̃k = (1 + 1/k)x0, k ≥ 1, belong to the
ray R+x0 and converge to x0. We find a subsequence (xnk

) such that x̃k ≥K xnk
for

all k ≥ 1. Indeed, since

x̃k = (1 + 1/k)x0 ∈ x0 + intK,

there exists εk > 0 such that

x̃k +Oεk
(0) ⊆ x0 + intK.

It follows that

x̃k + (xn − x0) +Oεk
(0) ⊆ xn + intK,

and therefore x̃k ∈ xn + intK for all n such that |xn −x0| < εk . Any strictly increasing
sequence of indices nk with |xnk

− x0| < εk gives us a subsequence of points xnk

having the needed property. The function W is increasing with respect to the partial
ordering ≥K . Thus,

lim
k

W(x̃k) ≥ lim
k

W(xnk
) > W(x0).

On the other hand, the function λ �→ W(λx0) is right-continuous at λ = 1, and hence
limk W(x̃k) = W(x0). This contradiction shows that W is upper semicontinuous on
intK .

Let us show now that lim infn W(xn) ≥ W(x0) as xn → x0, i.e., W is lower semi-
continuous on intK . Fix ε > 0. Due to the finiteness of the Bellman function, there
are a strategy π and T ∈ R+ such that for θ = θx0,π , we have the bound

E

∫ T ∧θ

0
e−βsU(cs) ds ≥ W(x0) − ε.

It remains to show that

lim inf
n

(θn ∧ T ) ≥ θ ∧ T a.s., (4.1)

where we use the abbreviation θn := θxn,π . Indeed, with this bound, we get, using the
Fatou lemma, that
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lim inf
n

W(xn) ≥ lim inf
n

E

∫ θn∧T

0
e−βsU(cs) ds ≥ E lim inf

n

∫ θn∧T

0
e−βsU(cs) ds

≥ E

∫ θ∧T

0
e−βsU(cs) ds ≥ W(x0) − ε,

and the claim follows since ε is arbitrarily small.
To prove (4.1), we observe that by (2.4), on the interval [[0, θn ∧ θ ∧ T ]], we have

the representation

V
xn,π
t − V

x0,π
t = Dxn−x0St

implying that

sup
t≤θn∧θ∧T

|V xn,π
t − V

x0,π
t | ≤ S∗

T |xn − x0|,

where S∗
T := supt≤T |St |. Fix an arbitrary “small” δ > 0. For almost all ω, the

distance ρ(ω) of the trajectory V x0,π (ω) from the boundary ∂K on the interval
[0, θ(ω) ∧ T − δ] is strictly positive. The above bound shows that for sufficiently
large n, the trajectory V xn,π (ω) does not deviate from V x0,π (ω) more than on ρ(ω)/2
on the interval [0, θn(ω) ∧ θ(ω) ∧ T ]. It follows that θn(ω) ≥ θ(ω) ∧ T − δ. Thus,

lim inf
n

(θn ∧ T ) ≥ θ ∧ T − δ a.s.,

and (4.1) holds. �

5 The Hamilton–Jacobi–Bellman equation

Let G := (−K) ∩ ∂O1(0), where ∂Or (y) := {x ∈ Rd : |x − y| = r}. The set G is
compact, and −K = coneG. We denote by ΣG the support function of G, given by
the relation ΣG(p) = supx∈G px. The convex function U∗(·) is the Fenchel dual of
the convex function −U(−·) whose domain is −C, i.e.,

U∗(p) = sup
x∈C

(
U(x) − px

)
.

We denote by C1(K) the subspace of the space of continuous functions f on K

such that supx∈K |f (x)|/(1 + |x|) < ∞. In other words, C1(K) is the space of con-
tinuous functions on K of sublinear growth. The notation f ∈ C2(x) means that f is
smooth (i.e. of the class C2) in some neighborhood of x.

Let f ∈ C1(K) ∩ C2(intK). Using the abbreviation

I (z, x) := I{z : x+Dxz∈intK} = IintK(x + Dxz),

we introduce the function

I(f, x) :=
∫ ((

f (x + Dxz)I (z, x) − f (x)
) − Dxzf

′(x)
)
Π(dz), x ∈ intK.
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It is well defined and continuous in x. Indeed, fix x0 ∈ intK . Let ε ∈ (0,1] be
such that O4ε(x0) ⊂ K . With this choice, x + Dxz ∈ O2ε(x0) when x ∈ Oε(x0) and
|z| ≤ δ := ε/(1 + |x0|). Using the Taylor formula for such a value of z and the sub-
linear growth of f for z with |z| > δ, we obtain for x ∈ Oε(x0) the uniform bound

|f (x + Dxz)I (z, x) − f (x) − Dxzf
′(x)| ≤ κ1|z|2IOδ(x0)(z) + κ2|z|IOc

δ (0)(z).

This implies the needed integrability and the continuity of the integral in x.
We introduce the function of five variables

F
(
X,p,I(f, x),W,x

) := max
{
F0

(
X,p,I(f, x),W,x

) + U∗(p),ΣG(p)
}
,

where X belongs to Sd , the set of d × d symmetric matrices, p,x ∈ Rd , W ∈ R,
f ∈ C1(K) ∩ C2(x), and the function F0 is given by

F0
(
X,p,I(f, x),W,x

) := 1

2
trA(x)X + μ(x)p + I(f, x) − βW,

where A(x) is the matrix with Aij (x) := aij xixj , and μ(x) is the vector with com-
ponents μi(x) := μixi , 1 ≤ i, j ≤ d . In a more detailed form, we have that

F0
(
X,p,I(f, x),W,x

) = 1

2

d∑

i,j=1

aij xixjXij +
d∑

i=1

μixipi + I(f, x) − βW.

Note that F0 is increasing in the argument f in the same sense as I . If φ is a smooth
function, then we put

Lφ(x) := F
(
φ′′(x),φ′(x),I(φ, x),φ(x), x

)
.

In a similar way, L0 corresponds to the function F0.
In Sects. 6–10, we show under mild hypotheses that W is a viscosity solution of

the Dirichlet problem for the HJB equation

F
(
W ′′(x),W ′(x),I(W,x),W(x), x

) = 0, x ∈ intK, (5.1)

W(x) = 0, x ∈ ∂K, (5.2)

with the boundary condition understood in the usual classical sense, and we establish
a uniqueness result for this problem.

6 Viscosity solutions for integro-differential equations

Since in general, W may have no derivatives at some points x ∈ intK (and this is
indeed the case for the model considered here), the notation (5.1) needs to be in-
terpreted. The idea of viscosity solutions is to substitute W in F by suitable test
functions. Formal definitions (adapted to the case we are interested in) are as follows.

A function v ∈ C(K) is called viscosity supersolution of (5.1) if for every
x ∈ intK and every f ∈ C1(K) ∩ C2(x) such that v(x) = f (x) and v ≥ f , the in-
equality Lf (x) ≤ 0 holds.
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A function v ∈ C(K) is called a viscosity subsolution of (5.1) if for every x ∈ intK
and every f ∈ C1(K) ∩ C2(x) such that v(x) = f (x) and v ≤ f , the inequality
Lf (x) ≥ 0 holds.

A function v ∈ C(K) is a viscosity solution of (5.1) if v is simultaneously a vis-
cosity super- and subsolution.

Finally, a function v ∈ C1(K) ∩ C2(intK) is called a classical supersolution of
(5.1) if Lv ≤ 0 on intK . We add the adjective strict when Lv < 0 on the set intK .

For simplicity and having in mind the specific case we shall work on, we have
incorporated in the definitions the requirement that the viscosity super- and subsolu-
tions are continuous on K including the boundary. For other cases, this might be too
restrictive, and more general and flexible formulations can be used.

Lemma 6.1 Suppose that the function v is a viscosity solution of (5.1). If v is twice
differentiable at x0 ∈ intK , then it satisfies (5.1) at this point in the classical sense.

Proof We need to be more precise with definitions since it is not assumed that v′ is
defined at every point of a neighborhood of x0. “Twice differentiable” means here
that the Taylor formula at x0 holds, i.e.,

v(x) = P2(x − x0) + (x − x0)
2h(|x − x0|),

where

P2(x − x0) := v(x0) + 〈v′(x0), x − x0〉 + 1

2
〈v′′(x0)(x − x0), x − x0〉

and h(r) → 0 as r ↓ 0. We introduce the notation

Γr := {z ∈ Rd : |Dx0z| ≤ r}, r > 0.

Note that Or/|x0| ⊂ Γr . Hence, Π(Γ c
r ) < ∞.

Let ε ∈ (0,1]. We choose a number δ0 ∈ (0,1) such that x0 +Oδ0(0) ⊂ intK and
|h(s)| ≤ ε for s ≤ δ0. Put δ := δ0/(1 + |x0|). Take � ∈ (δ, δ0) sufficiently close to δ

to ensure that x0 +O�(0) ⊂ intK and Π(Γ� \ Γδ) ≤ ε.
We define the function fε ∈ C1(K) ∩ C2(x0) by the formula

fε(x) =
⎧
⎨

⎩

P2(x − x0) + ε(x − x0)
2, x ∈ x0 +Oδ(0),

g(x) ∨ v(x), x ∈ x0 +O�(0) \Oδ(0),

v(x), x ∈ x0 +Oc
�(0),

where

g(x) := P2

(
δ

x − x0

|x − x0|
)

+ εδ2 + δ − |x − x0|
� − |x − x0| .

Clearly, fε(x0) = v(x0) and fε ≥ v. Since v is a viscosity subsolution, we have the
inequality Lfε(x0) ≥ 0. Note that

|Lfε(x0) −Lv(x0)| ≤ ε

n∑

i=1

aii(xi
0)

2 + I(fε − v, x0)
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with

I(fε − v, x0) =
∫

(fε − v)(x0 + Dx0z)I{x0+Dx0z∈intK}Π(dz).

Let us check that I(fε − v, x0) ≤ κε. Indeed,

(fε − v)(x0 + Dx0z) ≤ ε(Dx0z)
2IΓδ + MIΓ�\Γδ

≤ ε min{|x0|2|z|2, δ2}IΓδ + MIΓ�\Γδ ,

where M = 1 + supy∈O1(0) |P2(y)|. It follows that

I
(
(fε − v), x0

) = I
(
(fε − v)Ix0+Oc

�(0), x0
)

≤ ε(1 + |x0|)2
∫

(|z|2 ∧ |z|)Π(dz) + Mε.

Letting ε tend to zero, we obtain that Lv(x0) ≥ 0. Arguing similarly with ε < 0, we
get the opposite inequality. �

7 Jets

Let f and g be functions defined in a neighborhood of zero. We shall write
f (·) � g(·) if f (h) ≤ g(h) + o(|h|2) as |h| → 0. The notations f (·) � g(·) and
f (·) ≈ g(·) have the obvious meaning.

For p ∈ Rd and X ∈ Sd , we consider the quadratic function

Qp,X(z) := pz + (1/2)〈Xz, z〉, z ∈ Rd,

and define the super- and subjets of a function v at the point x as

J+v(x) := {(p,X) : v(x + ·) � v(x) + Qp,X(·)},
J−v(x) := {(p,X) : v(x + ·) � v(x) + Qp,X(·)}.

In other words, J+v(x) (resp. J−v(x)) is the family of coefficients of quadratic func-
tions v(x)+Qp,X(y −·) dominating the function v(·) (resp., dominated by this func-
tion) in a neighborhood of the point x with precision up to the second order included,
and coinciding with v(·) at this point.

In the classical theory developed for differential equations, the notion of a viscos-
ity solution admits an equivalent formulation in terms of super- and subjets. Since
the latter are “local” concepts, such a characterization is not possible for integro-
differential equations. Nevertheless, we can construct from jets test functions with
useful properties.

The following lemma claims for v ∈ C1(K) that with any element (p,X) from
J+v(x), x ∈ intK , we can relate a test function dominating v, arbitrarily close to v

in the uniform metric, touching v at the point x, smooth in a neighborhood of x, and
having at this point the first and second derivatives coinciding with p and X.
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Lemma 7.1 Let v ∈ C1(K) and α > 0. Let x ∈ intK and (p,X) ∈ J+v(x). Then
there exist a number a0 ∈ (0,1) and a C2-function r : Rd → R with compact support
such that

lim|h|→0
|h|−2r(h) = 0,

and the function f0 : K → R given by the formula

f0(x +h) :=
((

v(x)+Qp,X(h)+ r(h)
)∨v(x +h)

)
∧ (

v(x +h)+α
)
, x +h ∈ K,

has the following properties:

f0(x + h) = v(x) + Qp,X(h) + r(h), h ∈ Oa0(0),

v ≤ f0 ≤ v + α on K , f0(x) = v(x), f ′
0(x) = p, f ′′

0 (x) = X.
In particular, if v is a subsolution of the HJB equation, then Lf ≤ 0 on intK .

Proof Take a0 ∈ (0,1) such that the ball O2a0(x) = {y ∈ Rd : |y − x| ≤ 2a0} lies in
the interior of K . By definition,

v(x + h) − v(x) − Qp,X(h) ≤ |h|2ϕ(|h|),
where ϕ(u) → 0 as u ↓ 0. We consider on (0, a0) the function

δ(u) := sup
{h : |h|≤u}

1

|h|2
(
v(x + h) − v(x) − Qp,X(h)

)+ ≤ sup
{y : 0≤y≤u}

ϕ+(y).

Obviously, δ is continuous, increasing and δ(u) → 0 as u ↓ 0. We extend δ to a con-
tinuous function on R+ with δ(u) = 0 for u ≥ 1.

The function

�(u) := 2

3

∫ 2u

u

∫ 2η

η

δ(ξ) dξdη

vanishes at zero with its two right derivatives, and u2δ(u) ≤ �(u) ≤ u2δ(4u). It fol-
lows that the function r : h �→ �(|h|) has compact support, belongs to C2(Oa0(0)),
its Hessian vanishes at zero, and

v(x + h) − v(x) − Qp,X(h) ≤ |h|2δ(|h|) ≤ �(|h|) = r(h), h ∈Oa0(0).

Thus, the function y �→ v(x) + Qp,X(y − x) + r(y − x) dominates v on the ball
Oa0(x). Without loss of generality, diminishing a0 if necessary, we may assume that
it is dominated by v + α on this ball. Now the assertion of the lemma is obvious. �

The corresponding assertion for J−v(x) also holds, with obvious changes in the
formulation.

For the proof of the uniqueness theorem, we need specific families of test functions
coinciding with sub- and supersolutions outside a neighborhood of x. To this end, we
introduce the following definitions.
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Let 0 < a < a′. We say that a continuous mapping ξa,a′ : Rd → [0,1] is an
(a, a′)-cutoff function if ξa,a′ = 1 on Oa(0) and ξa,a′ = 0 outside Oa′(0). If L is
a linear subspace of Rd , then we define the cylindrical (a, a′)-cutoff function ξL

a,a′ by

putting ξL
a,a′(x) = ξa,a′(PLx), where PL is the projection of x onto L.

It is clear that in the notation of the above lemma, for any a′ ∈ (0, a0), the functions
f : K → R given by the formulae

f (x + h) := (
v(x) + Qp,X(h) + r(h)

)
ξa,a′(h) + v(x + h)

(
1 − ξa,a′(h)

)
,

f (x + h) := f0(x + h)ξL
a,a′(h) + v(x + h)

(
1 − ξK

a,a′(h)
)
, x + h ∈ K, (7.1)

satisfy all the properties claimed for f0.
The following lemma will be used in the specific case where

D = Dx = diagx, D̃ = Dy = diagy,

and x, y have no zero components.

Lemma 7.2 Let D, D̃ be two invertible linear operators on Rd , and let ξa,a′ be an
(a, a′)-cutoff function. Then there is an (ã, ã′)-cutoff function ξ̃ã,ã′ with arbitrarily
small ã ≤ a‖DD̃−1‖−1 and arbitrary ã′ ≥ a′‖D̃D−1‖ such that

ξ̃ã,ã′(D̃z) = ξa,a′(Dz), ∀ z ∈ Rd .

Proof Put

ξ̃ã,ã′(u) := ξa,a′(DD̃−1u), u ∈ Rd .

Then ξã,ã′(u) = 1 if |u| ≤ a‖D̃D−1‖−1 and ξ̃ã,ã′(u) = 0 if |DD̃−1u| ≥ a′. The last
inequality holds when |u| ≥ a′‖(DD̃−1)−1‖ = a′‖D̃D−1‖. �

Remark 7.3 The assertion of the lemma is not completely satisfactory, but it remains
true for cylindrical cutoff functions in the situation where D and D̃ are two sym-
metric operators with the common image space L = ImD = Im D̃. The norm in the
formulation is then the norm in L of their restrictions.

8 Supersolutions and properties of the Bellman function

8.1 When is the Bellman function W finite on K?

First, we present sufficient conditions ensuring that the Bellman function W of the
considered maximization problem is finite.

The functions we are interested in are defined on the solvency cone K , whereas
the process V may jump out of the latter. In order to be able to apply later the Itô
formula, we stop V = V x,π at the moment immediately preceding the ruin and define
the process
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Ṽ = V θ− = V I[[0,θ[[ + Vθ−I[[θ,∞[[,

where θ is the exit time of V from the interior of the solvency cone K . This process
coincides with V on [[0, θ [[, but in contrast to the latter either always remains in K

(due to the stopping at θ if Vθ− ∈ intK) or exits to the boundary in a continuous way
and stays on it at the exit point.

Since Ṽt = Vt∧θ − �VθI[[θ,∞[[(t), we obtain from (2.6) the representation

Ṽt = x +
∫ t∧θ

0
D

Ṽs−(μds + Ξ dws) +
∫ t∧θ

0

∫
D

Ṽs−z
(
p(dz, ds) − q(dz, ds)

)

− �VθI[[θ,∞[[(t) + Bt − Ct .

Let Φ be the set of continuous functions f : K → R+ increasing with respect to the
partial ordering ≥K and such that for all x ∈ intK and π ∈ Ax

a , the positive process
Xf = Xf,x,π given by the formula

X
f
t := e−βtf (Ṽt )I[[0,θ[[(t) + Jπ

t

is a supermartingale. The set Φ of f with this property is convex and stable under
the operation ∧ (recall that the minimum of two supermartingales is a supermartin-
gale). Any continuous function that is a monotone limit (increasing or decreasing) of
functions from Φ also belongs to Φ .

The interest in the processes Xf with f ∈ Φ is explained by the following result.

Lemma 8.1 (a) If f ∈ Φ , then W ≤ f .
(b) Let y ∈ ∂K . Suppose that for every ε > 0, there exists fε ∈ Φ such that

fε(y) ≤ ε. Then W is continuous at y, and W(y) = 0.

Proof (a) On the boundary ∂K , the inequality is trivial. Using the positivity of f ,
the supermartingale property of Xf , and finally the monotonicity of f , we get for
x ∈ intK the following chain of inequalities leading to the required property:

EJπ
t ≤ EX

f
t ≤ f (Ṽ0) = f (V0) ≤ f (V0−) = f (x).

(b) The continuity of the function W at the point y ∈ ∂K follows from the inequal-
ities 0 ≤ W ≤ fε . �

Remark 8.2 Recall that Proposition 4.1 asserts that the function W , if finite, is con-
tinuous on the interior of K . Thus, Lemma 8.1 implies that W is continuous on intK
if Φ is not empty. If Φ is rich enough to apply (b) at every point of the boundary,
then W is continuous on K and vanishes on the boundary.

Lemma 8.3 Let f : K → R+ be a function in C1(K) ∩ C2(intK). If f is a classical
supersolution of (5.1), then f ∈ Φ , i.e., f is increasing with respect to the partial
ordering ≥K , and Xf is a supermartingale.
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Proof First, notice that a classical supersolution is increasing with respect to the
partial ordering ≥K . Indeed, by the finite increments formula, we have, for any
x,h ∈ intK ,

f (x + h) − f (x) = f ′(x + ϑh)h

for some ϑ ∈ [0,1]. The right-hand side is greater than or equal to zero because for
the supersolution f , we have the inequality ΣG(f ′(y)) ≤ 0 whatever is y ∈ intK ,
or equivalently f ′(y)h ≥ 0 for every h ∈ K , just by the definition of the support
function ΣG and the choice of G as a generator of the cone −K . By continuity,
f (x + h) − f (x) ≥ 0 for all x,h ∈ K .

Let θn := inf {t : dist(Ṽt , ∂K) ≤ 1/n}. The stopped processes Ṽ θn evolve in intK .
Thus, we can apply the “standard” Itô formula to e−βtf (Ṽt ) and obtain for t ≤ θ that

e−βtf (Ṽt ) = f (x) +
∫ t

0
e−βsf ′(Ṽs−) dṼs − β

∫ t

0
e−βsf (Ṽs−) ds

+ 1

2

∫ t

0
e−βs trA(Ṽs−)f ′′(Ṽs−) ds

+
∑

s≤t

e−βs
(
f (Ṽs− + �Ṽs) − f (Ṽs−) − f ′(Ṽs−)�Ṽs

)
.

Taking into account that the processes Y and B do not jump simultaneously and that
ruin cannot happen due to a jump of B , we get that

∑

s≤t

e−βs
(
f (Ṽs− + �Ṽs) − f (Ṽs−) − f ′(Ṽs−)�Ṽs

)

− e−βθf ′(Vθ−)�VθI{θ}(t) − e−βθf (Vθ−)I{θ}(t)

=
∑

s≤t

e−βs
(
f (Vs− + �Vs)IintK(Vs− + �Vs) − f (Vs−) − f ′(Vs−)�Vs

)

=
∫ t

0

∫
e−βs

(
f (Vs− + DVs−z)I (Vs−, z) − f (Vs−) − f ′(Vs−)DVs−z)

)

× I{�Bs=0}p(ds, dz)

+
∑

s≤t

e−βs
(
f (Vs− + �Bs) − f (Vs−) − f ′(Vs−)�Bs

)

=
∫ t

0

∫
e−βs(. . . )I{�Bs=0}

(
p(ds, dz) − Π(dz)ds

) +
∫ t

0

∫
e−βs(. . . )Π(dz) ds

+
∑

s≤t

e−βs
(
f (Vs− + �Bs) − f (Vs−) − f ′(Vs−)�Bs

)
,

where we replace in the integrals by dots . . . the lengthy expression

f (Ṽs− + D
Ṽs−z)I (Vs−, z) − f (Ṽs−) − f ′(Ṽs−)D

Ṽs−z.
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Noting that

X
f
t = e−βtf (Ṽt ) − e−βθf (Vθ−)I{θ}(t) + Jπ

t

and using (2.6) and the above formulae, we obtain after regrouping terms the repre-
sentation

X
f
t = f (x) +

∫ t∧θ

0
e−βs

(
L0f (Ṽs) − csf

′(Ṽs) + U(cs)
)
ds + Rt + mt, (8.1)

where

Rt :=
∫ t∧θ

0
e−βsf ′(Vs−) dBc

s +
∑

s≤t

e−βs
(
f (Ṽs− + �Bs) − f (Ṽs−)

)
, (8.2)

and m is the local martingale

mt =
∫ t∧θ

0
e−βsf ′(Ṽs−)D

Ṽs−Ξ dws

+
∫ t∧θ

0

∫
e−βs

(
f (Ṽs− + D

Ṽs−z)I (Ṽs−, z) − f (Ṽs−)
)

(
p(dz, ds) − Π(dz)ds

)
. (8.3)

By the definition of a supersolution, for any x ∈ intK ,

L0f (x) ≤ −U∗(f ′(x)
) ≤ cf ′(x) − U(c), ∀ c ∈ C.

Thus, the integral in (8.1) is a decreasing process. The process R is also decreasing.
Indeed, the terms of the sum in (8.2) are less than or equal to zero by the monotonicity
of f and

f ′(Vs−) dBc
s = I{�Bs=0}f ′(Vs−)Ḃsd|B|s ,

where f ′(Vs−)Ḃs ≤ 0 since Ḃ takes values in −K . Let (σn) be a localizing sequence
for m. Taking into account that Xf ≥ 0, we obtain from (8.1) that, for each n, the
negative decreasing process (Rt∧σn) dominates an integrable process, and so it is
integrable. The same conclusion holds for the stopped integral. Being a sum of an
integrable decreasing process and a martingale, the process (X

f
t∧σn

) is a positive su-
permartingale, and hence, by the Fatou lemma, Xf is a supermartingale as well. �

Lemma 8.3 implies that the existence of a smooth positive supersolution f of (5.1)
ensures the finiteness of W on K . We discuss a method how to construct supersolu-
tions in Sect. 12.

Remark 8.4 Let Ō be the closure of an open subset O of K , and f : Ō → R+ a classi-
cal supersolution in Ō increasing with respect to the partial ordering ≥K . Let x ∈ O,
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and let τ be the exit time of the process V x,π from Ō. The above arguments imply
that the process (X

f
t∧τ ) is a supermartingale, and therefore

E
(
e−β(t∧τ)f (Ṽt∧τ )I[[0,θ[[(t ∧ τ) + Jπ

t∧τ

) ≤ f (x).

8.2 Strict local supersolutions

For a strict supersolution, we can get a more precise result, which will play a crucial
role in deducing from the dynamic programming principle the property of W to be
a subsolution of the HJB equation.

Fix x ∈ intK and a ball Ōr (x) ⊆ intK such that Ō2r (x) ⊆ intK . We define
τπ = τπ

r as the exit time of V π,x from Or (x), i.e.,

τπ := inf{t ≥ 0 : |V π,x
t − x| ≥ r}.

Lemma 8.5 Let f ∈ C1(K) ∩ C2(O2r (x)) be such that Lf ≤ −ε < 0 on Ōr (x).
Then there exist a constant η = ηε > 0 and an interval (0, t0] such that

sup
π∈Ax

a

EX
f,x,π
t∧τπ ≤ f (x) − ηt, ∀ t ∈ (0, t0].

Proof We fix a strategy π and omit its symbol in the notations below. In what follows,
only the behavior of the processes on [[0, τ ]] does matter. Note that |Vτ − x| ≥ r on
the set {τ < ∞} and τ ≤ θ . As in the proof of Lemma 8.3, we apply the Itô formula
and obtain, with the same notations (8.2) and (8.3), the representation

X
f
t∧τ := e−β(t∧τ)f (Ṽt∧τ )I[[0,θ[[(t ∧ τ) + Jπ

t∧τ

= f (x) +
∫ t∧τ

0
e−βs(L0f + U∗)(Ṽs) ds

−
∫ t∧τ

0
e−βs

(
U∗(Ṽs) + csf

′(Ṽs) − U(cs)
)
ds + Rt∧τ + mt∧τ .

Due to the monotonicity of f , we may assume without loss of generality that on
the interval [0, τ (ω)], the increment �Bt does not exceed the distance of Vs− to the
boundary of Or (x). In other words, if the exit from the ball is due to an action (and
not because of a jump of the price process), then we can replace this action by a less
expensive one, with the jump of the process Ṽ in the same direction but smaller,
ending on the boundary of the ball. So, |�Bt | ≤ 2r for t ≤ τ .

By assumption, for y ∈ Ōr (x), we have the bounds (L0f + U∗)(y) ≤ −ε (imply-
ing that the first integral on the right-hand side above is dominated by −ε (t ∧ τ)) and
ΣG(f ′(y)) ≤ −ε. The latter inequality means that the scalar product kf ′(y) ≤ −ε|k|
for every k ∈ −K (therefore, we have the inclusion f ′(Ōr (x)) ⊂ intK∗). In particu-
lar, for s ∈ [0, τ (ω)],

f ′(Vs−)Ḃs ≤ −ε|Ḃs |,
(
f (Ṽs− + �Bs) − f (Ṽs−)

) ≤ −ε|�Bs |.
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Since |Ṽs− − x| ≤ r for s ∈ [0, τ (ω)], we obtain, using the finite increment formula
and the linear growth of f , the bounds

(
f (Ṽs− + D

Ṽs−z) − f (Ṽs−)
)2

I (Ṽs−, z)I{|z|≤1/2} ≤ κ|z|2I{|z|≤1/2},
(
f (Ṽs− + D

Ṽs−z) − f (Ṽs−)
)
I (Ṽs−, z)I{|z|>1/2} ≤ κ(1 + |z|)I{|z|>1/2},

and since I (Ṽs−, z) = 1 when |z| < r/(|x| + r),

f (Ṽs−)
(
1 − I (Ṽs−, z)

) ≤ κI{|z|≥r/(|x|+r)}

for some constant κ independent of the strategy. Thus, the integrand in the stochastic
integral with respect to the centered Poisson measure in (8.3) for t ≤ τ is bounded by
the function |z|2 ∧ |z| multiplied by a constant, whereas the integrand in the integral
with respect to the Wiener process is bounded. It follows that the local martingale
(mt∧τ )t≥0 is a martingale and Emt∧τ = 0.

The above observations imply the inequality

EX
f,x
t∧τ ≤ f (x) − e−βtENt ,

where

Nt := ε (t ∧ τ) +
∫ t∧τ

0
H

(
cs, f

′(Vs)
)
ds + ε

∫ t∧τ

0
|Ḃs |d|B|s

with H(c,p) := U∗(p) + pc − U(c) ≥ 0. It remains to verify that ENt dominates,
on a certain interval (0, t0], a strictly increasing linear function, which is independent
of π .

The process N looks a bit complicated, but we can replace it by another one of
a simpler structure. To this end, note that there is a constant κ (“large”; for conve-
nience, κ ≥ 1) such that

inf
p∈f ′(Ōr (x))

H(c,p) ≥ ε

2
|c|, ∀ c ∈ C, |c| ≥ κ.

Indeed, being the image of a closed ball under a continuous mapping, the set
f ′(Ōr (x)) is compact in intK∗. The lower bound of the continuous function U∗
on f ′(Ōr (x)) is finite. For any p from f ′(Ōr (x)) and c ∈ C ⊆ K , we have the in-
equality pc/|c| ≥ ε. Finally, U(c)/|c| → 0 as c → ∞. Combining these facts, we
infer the claimed inequality. Thus, for the first integral in the definition of Nt , we
have the bound

∫ t∧τ

0
H

(
cs, f

′(Vs)
)
ds ≥ ε

2

∫ t∧τ

0
I{|cs |≥κ}|cs |ds.

The second integral in the definition dominates κ1|B|t∧τ for some κ1 > 0. To see
this, let us consider the absolute norm | · |1 in Rd . In contrast with the total variation
|B| calculated with respect to the Euclidean norm | · |, the total variation of B with
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respect to the absolute norm admits the simpler expression
∑

i VarBi , where VarBi

is the total variation of the scalar process Bi . Obviously,

|Ḃ|1 =
∑

i

|Ḃi | =
∑

i

∣∣∣∣
dBi

d|B|
∣∣∣∣ =

∑

i

∣∣∣∣
dBi

dVarBi

∣∣∣∣
dVarBi

d|B| = d
∑

i VarBi

d|B| .

But all norms in Rd are equivalent, i.e., κ̃−1| · | ≤ | · |1 ≤ κ̃| · | for some strictly positive
constant κ̃ . The same inequalities relate the corresponding total-variation processes.
The claimed property follows from here with the constant κ1 = κ̃−2.

Summarizing, we conclude that it is sufficient to check the domination property
for EÑt with

Ñt := t ∧ τ +
∫ t∧τ

0
I{|cs |≥κ}|cs |ds + |B|t∧τ .

These processes Ñ = Ñπ have a transparent dependence on the control. The idea of
the concluding reasoning is very simple: on a certain set of strictly positive proba-
bility, where we may neglect the random fluctuations, either τ is “large”, or the total
variation of the control is “large”: we can accelerate exit only by an intensive trading
or consumption.

The formal arguments are as follows. Using the stochastic Cauchy formula (2.2)
and the fact that E0+(Y i) = E0(Y

i) = 1, we get immediately that there exist a number
t0 > 0 and a measurable set Γ with P [Γ ] > 0 on which

|V x,π − x| ≤ r/2 + 2(|B| + |C|) on [0, t0]
whatever is the control π = (B,C). Of course, diminishing t0, we may assume with-
out loss of generality that κt0 ≤ r/8. For any t ≤ t0, we have on the set Γ ∩ {τ ≤ t}
the inequality |B|τ + |C|τ ≥ r/4, and hence

Ñt ≥ |B|τ + |C|τ −
∫ τ

0
I{|cs |<κ}|cs |ds ≥ r

4
− κt0 ≥ κt0 ≥ t0 ≥ t.

On the set Γ ∩ {τ > t}, the inequality Ñt ≥ t is obvious. Thus, EÑt ≥ tP [Γ ] on
[0, t0], and the result is proved. �

9 Dynamic programming principle

The aim of this section is to establish the following two assertions, which will serve
to derive the HJB equation for the Bellman function. For the considered model, they
constitute an analogue of the classical dynamic programming principle. The latter
is usually written in the form of a single identity (see the remark at the end of the
section), but for our purposes, we need a more precise form.

Lemma 9.1 Let Tf be the set of finite stopping times. Then

W(x) ≤ sup
π∈Ax

a

inf
τ∈Tf

E
(
Jπ

τ + e−βτW(V x,π
τ )I{τ<θ}

)
. (9.1)



726 D. De Vallière et al.

Lemma 9.2 Suppose that W is continuous on intK . Then, for any τ ∈ Tf ,

W(x) ≥ sup
π∈Ax

a

E
(
Jπ

τ + e−βτW(V x,π
τ )I{τ<θ}

)
. (9.2)

We work on the canonical filtered space of càdlàg functions equipped with the
measure P that is the distribution of the driving Lévy process. The generic point
ω = ω. of this space is a d-dimensional càdlàg function on R+, zero at the origin.
Let F◦

t := σ(ωs, s ≤ t) and Ft := ⋂
ε>0 F◦

t+ε . We add the superscript P to denote

σ -algebras augmented by all P -null sets from Ω . Recall that F◦,P
t coincides with FP

t

(this assertion follows easily from the predictable representation theorem). The Sko-
rokhod metric makes Ω a Polish space, and its Borel σ -algebra coincides with F∞;
see [20, Chapter VI] for this and other relevant information.

Since elements of Ω are paths, we can define operators such as the stopping
ω. �→ ωs· , s ≥ 0, where ωs· = ωs∧·, and the translation ω. �→ ωs+· −ωs . Taking Doob’s
theorem into account, we can describe F◦

s -measurable random variables as those of
the form h(ω.) = h(ωs· ), where h is a measurable function on Ω .

We define also the “concatenation” operator as the measurable function

g : R+ × Ω × Ω → Ω

for which the image of (s,ω., ω̃.) is the trajectory (gt )t≥0 with

gt (s,ω., ω̃.) = ωtI[0,s](t) + (ω̃t−s + ωs)I(s,∞)(t).

Notice that

gt (s,ω
s· ,ω·+s − ωs) = ωt .

Thus, π(ω) = π(g(s,ωs· ,ω·+s − ωs)).
Let π be a fixed strategy from Ax

a , and let θ = θx,π be the exit time from intK for
the process V x,π .

Recall the following general fact on regular conditional distributions. Let ξ and η

be two random variables taking values in Polish spaces X and Y equipped with their
Borel σ -algebras X and Y . Then ξ admits a regular conditional distribution given
η = y, which we denote by pξ |η(Γ, y). This means that pξ |η(·, y) is a probability
measure on X , pξ |η(Γ, ·) is a Y-measurable function, and

E[f (ξ, η)|η] =
∫

f (x, y)pξ |η(dx, y)

∣∣∣∣
y=η

(a.s.)

for any X ×Y-measurable function f (x, y) ≥ 0.
We apply the above relation to the random variables ξ = (ω·+τ − ωτ ) and

η = (τ,ωτ ). It is well known that a Lévy process starts afresh at stopping times, i.e.,
the measure P [·] itself (not depending on y) is the regular conditional distribution
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pξ |η(·, y) of ξ given η = y. For fixed s and w, we define the shifted control as the
mapping

(ω̃, t) �→ π̂t (ω̃) := πt+s

(
g(s,ωs· , ω̃.)

) − πs

(
g(s,ωs· , ω̃.)

)

defined on Ω × R+, where ω̃. is a generic point of the canonical space.
For a finite stopping time τ , we put Ỹt = Yt+τ − Yτ , t ≥ 0. Then

V
i,x
t+τ = Et (Ỹ

i )V i,x
τ + Et (Ỹ

i )

∫

(0,t]
Es−(Ỹ i ) d(Bi

τ+s − Ci
τ+s).

This equation (sometimes referred to as the flow property) has an obvious mean-
ing: after the stopping time τ , the solution of the equation starting from zero coin-
cides with the solution starting at the time τ from the value attained at τ . On the
other hand, this shows that the conditional distribution of the process (V

x,π
t+τ (ω))t≥0

given (τ,ωτ ) coincides with the distribution of the process (V
v,π̂
t (ω̃))t≥0 with

v = V x,π
τ (ω).

Proof of Lemma 9.1 For arbitrary π ∈Ax
a and τ ∈ Tf , we have that

EJπ∞ = EJπ
τ + Ee−βτ I{τ<θ}

∫ ∞

0
e−βrU(cr+τ ) dr

= EJπ
τ + Ee−βτ I{τ<θ}E

[∫ ∞

0
e−βrU(cr+τ ) dr

∣∣∣∣(τ,ω
τ )

]
.

According to the above discussion, we can rewrite the second term of the right-hand
side as

Ee−βτ I{τ<θ}
∫ (∫ ∞

0
e−βrU

(
cr+τ

(
g(τ,ωτ , ω̃)

))
dr

)
P(dω̃)

and dominate it by Ee−βτ I{τ<θ}W(V x,π
τ ). Thus,

EJπ∞ ≤ EJπ
τ + Ee−βτ I{τ<θ}W(V x,π

τ ).

This bound leads directly to the announced inequality. �

Proof of Lemma 9.2 Fix ε > 0. By hypothesis the function W is continuous on intK .
For each x ∈ intK , we can find an open ball Or (x) = x +Or (0) with r = r(ε, x) < ε

contained in the open set {y ∈ intK : |W(y) − W(x)| < ε}. Moreover, we can find
a smaller ball Or̃ (x) contained in the set y(x) + K with some y(x) ∈ Or (x). In-
deed, take an arbitrary x0 ∈ intK . Then, for some δ > 0, we have x0 + Oδ(0) ⊂ K .
Since K is a cone, λx0 + Oλδ(0) ⊂ K for every λ > 0, and this inclusion implies
that

x +Oλδ(0) ⊂ x − λx0 + K.

Clearly, the requirement is met for y(x) = x − λx0 and r̃ = λδ when λ|x0| < r

and λδ < r . The family of sets Or̃(x)/2(x), x ∈ intK , is an open covering of intK .
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But any open covering of a separable metric space contains a countable subcover-
ing (this is the Lindelöf property; in our case, where intK is a countable union
of compacts, it is obvious). Take a countable subcovering indexed by points xn.
For notational simplicity, we denote the open balls Or̃(xn)/2(xn) by On and y(xn)

by yn.
Let πn = (Bn,Cn) ∈ Ayn

a be an ε-optimal strategy for the initial point yn, i.e.,
such that

EJπn∞ ≥ W(yn) − ε.

Let π ∈Ax
a be an arbitrary strategy. Put

ρ := inf{j ≥ 1 : V x,π
τ ∈Oj }.

Let us introduce the strategy

π ′ := πI[[0,τ ]] + (0,0)I]]τ,∞[[

and the predictable stopping times τk := τ + 1/k. Finally, put

π̃ := πI[[0,τ ]] +
∞∑

n=1

(
(yn − V x,π ′

τk
,0) + π̄n,k

)
I[[τk,∞[[I{ρ=n}I{V x,π ′

τk
−yn∈K}I{τk<θ},

where π̄n,k is the translation of the strategy πn: namely, for a point ω. on which
τ(ω.) = s < ∞, we have

π̄
n,k
t (ω.) := πn

t−s−1/k(ω·+s+1/k − ωs+1/k), t ≥ s + 1/k.

In other words, the strategy π̃ coincides with π on [[0, τ [[, is zero on the interval
[[τ, τk[[, and coincides with the shift of πn on [[τk,∞[[ when V x,π

τ is in On and
V x,π

τk
− yn ∈ K ; the correction term guarantees that in the latter case, the trajectory

of the control system corresponding to the control π̃ passes at time τk through the
point yn. We can check that π̃I[[0,θx,π̃ ]] ∈ Ax

a .
Now, using the same considerations as in the previous lemma, we have

W(x) ≥ EJ π̃∞ = EJπ
τ +

∞∑

n=1

EI{ρ=n}I{τ<θ}I{V x,π ′
τk

−yn∈K}

∫ ∞

τk

e−βsU(c̄n
s ) ds

= EJπ
τ +

∞∑

n=1

EI{ρ=n}I{τ<θ}I{V x,π ′
τk

−yn∈K}e
−βτk

∫ ∞

0
e−βsU(cn

s ) ds.

Note that I{V x,π ′
τk

−yn∈K} → 1 as k → ∞, and by the Fatou lemma, we obtain that
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W(x) ≥ EJ π̃∞ = EJπ
τ +

∞∑

n=1

EI{ρ=n}I{τ<θ}e−βτ

∫ ∞

0
e−βsU(cn

s ) ds

≥ EJπ
τ +

∞∑

n=1

EI{ρ=n}I{τ<θ}e−βτ
(
W(yn) − ε

)

≥ EJπ
τ + Ee−βτW(V x,π

τ )I{τ<θ} − 2ε.

Since π and ε are arbitrary, the result follows. �

Remark 9.3 The previous lemmas imply that for any τ ∈ Tf , we have the identity

W(x) = sup
π∈Ax

a

E
(
Jπ

τ + e−βτW(V x,π
τ )I{τ<θ}

)
.

This can be considered as a form of the dynamic programming principle, but seem-
ingly, it is not sufficient for our derivation of the HJB equation.

10 The Bellman function and the HJB equation

Theorem 10.1 Assume that the Bellman function W is in C(K). Then W is a viscos-
ity solution of (5.1).

Proof The claim follows from the following two lemmas. �

Lemma 10.2 If W is in C(intK), then W ≥ 0 is a viscosity supersolution of (5.1).

Proof Let x ∈ intK , and let φ ∈ C1(K)∩C2(x) be a function such that φ(x) = W(x)

and W ≥ φ on K .
Fix an arbitrary point m ∈ K . Let ε > 0 be sufficiently small to guarantee that

x − εm ∈ Or (x). The function W is increasing with respect to the partial ordering
generated by K . Thus,

φ(x) = W(x) ≥ W(x − εm) ≥ φ(x − εm).

Taking the limit as ε → 0 in the inequality ε−1(φ(x − εm) − φ(x)) ≤ 0, we obtain
that −mφ′(x) ≤ 0, and hence ΣG(φ′(x)) ≤ 0.

Take now π with Bt = 0 and ct = c ∈ C for all t . Let τr = τπ
r ≤ θ be the exit time

of the process V = V x,π from the ball Or (x); obviously, τr ≤ θ . The properties of
the test function and inequality (9.2) imply that

φ(x) = W(x) ≥ E
(
Jπ

t∧τr
+ e−β(t∧τr )W(Vt∧τr )I{t∧τr<θ}

)

≥ E
(
Jπ

t∧τr
+ e−β(t∧τr )φ(Vt∧τr )I{t∧τr<θ}

)
.

We get from here, using the Itô formula (8.1), that
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0 ≥ E

(∫ t∧τr

0
e−βsU(cs) ds + e−β(t∧τr )φ(Vt∧τr )I{t∧τr<θ}

)
− φ(x)

≥ EI{t∧τr<θ}
∫ t∧τr

0
e−βs

(
L0φ(Vs) − cφ′(Vs) + U(c)

)
ds

≥ min
y∈Ōr (x)

(
L0φ(y) − cφ′(y) + U(c)

)
EI{t∧τr<θ}

(
1

β

(
1 − e−β(t∧τr )

))
.

Dividing the resulting inequality by t and taking successively the limits as t and r

converge to zero, we infer that L0φ(x) − cφ′(x) + U(c) ≤ 0. Maximizing over c ∈ C
yields the bound L0φ(x) + U∗(φ′(x)) ≤ 0, and therefore W is a supersolution of the
HJB equation. �

Lemma 10.3 If (9.1) holds, then W ≥ 0 is a viscosity subsolution of (5.1).

Proof Let x ∈ intK , and let φ ∈ C1(K)∩C2(x) be a function such that φ(x) = W(x)

and W ≤ φ on K . Suppose that the subsolution inequality for φ fails at x. Thus, there
exists ε > 0 such that Lφ ≤ −ε on some ball Ōr (x) ⊂ intK . By Lemma 8.5 (applied
to the function φ) there are t0 > 0 and η > 0 such that on the interval (0, t0], for any
strategy π ∈Ax

a ,

E
(
Jπ

t∧τπ + e−βτπ

φ(V
x,π
t∧τπ )I{t∧τπ<θ}

) ≤ φ(x) − ηt,

where τπ is the exit time of the process V x,π from the ball Or (x). Fix an arbitrary
t ∈ (0, t0]. By the second claim of Lemma 9.1 there exists π ∈Ax

a such that

W(x) ≤ E
(
Jπ

t∧τ + e−βτW(V
x,π
t∧τ )I{t∧τ<θ}

) + 1

2
ηt

for every stopping time τ and, in particular, for τπ .
Using the inequality W ≤ φ and applying Lemma 8.5, we obtain from the above

relations that W(x) ≤ φ(x) − (1/2)ηt . This is a contradiction because at the point x,
the values of W and φ are the same. �

11 Uniqueness theorem

Before formulating the uniqueness theorem, we recall the Ishii lemma.

Lemma 11.1 Let v and ṽ be two continuous functions on an open subset O ⊆ Rd .
Consider the function �(x,y) := v(x)− ṽ(y)− 1

2n|x − y|2 with n > 0. Suppose that
� attains a local maximum at (̂x, ŷ). Then there are symmetric matrices X and Y

such that
(
n(̂x − ŷ),X

) ∈ J̄+v(̂x),
(
n(̂x − ŷ), Y

) ∈ J̄−ṽ(ŷ),

and
(

X 0
0 −Y

)
≤ 3n

(
I −I

−I I

)
. (11.1)
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In this statement, I is the identity matrix, and J̄+v and J̄−ṽ are the values of the
set-valued mappings whose graphs are the closures of the graphs of the set-valued
mappings J+v and J−ṽ, respectively. Inequality (11.1) means that for any vectors x

and y from Rd ,

(Xx,x) − (Yy, y) ≤ 3n|x − y|2.
Of course, if v and ṽ are smooth, then the claim follows directly from the necessary
conditions of a local maximum (with X = v′′(̂x), Y = ṽ′′(ŷ), and the constant 1
instead of 3 in (11.1)).

Inequality (11.1) implies the bound

tr
(
A(x)X − A(y)Y

) ≤ 3n|A1/2|2|x − y|2, (11.2)

which will be used in the sequel (for the proof, see e.g. Sect. 4.2 in [23]).
The following concept plays a crucial role in the proof of the purely analytic re-

sult on the uniqueness of the viscosity solution, which we establish by the classical
method of doubling variables using the Ishii lemma.

Definition 11.2 We say that a positive function � ∈ C1(K)∩C2(intK) is a Lyapunov
function if the following properties are satisfied:

1) �′(x) ∈ intK∗ and L0�(x) ≤ 0 for all x ∈ intK .
2) �(x) → ∞ as |x| → ∞.

In other words, � is a classical strict supersolution of the truncated equation (without
the term U∗), continuous up to the boundary, and increasing to infinity at infinity.

Theorem 11.3 Suppose that there exists a Lyapunov function � and the Lévy measure
Π is such that

Π({z : x̂ + Dx̂z ∈ ∂K}) = 0, ∀x̂ ∈ intK.

Then the Dirichlet problem (5.1), (5.2) has at most one viscosity solution in the class
of continuous functions satisfying the growth condition

W(x)/�(x) → 0, |x| → ∞.

Proof Let W and W̃ be two viscosity solutions of (5.1) coinciding on the bound-
ary ∂K . Suppose that W(z) > W̃(z) for some z ∈ K . Take ε > 0 such that

W(z) − W̃ (z) − 2ε�(z) > 0.

We introduce a family of continuous functions �n : K × K → R by putting

�n(x, y) := W(x) − W̃ (y) − 1

2
n|x − y|2 − ε

(
�(x) + �(y)

)
, n ≥ 0.
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Note that �n(x, x) = �0(x, x) for all x ∈ K and �0(x, x) ≤ 0 when x ∈ ∂K . From
the assumption that the function � has a higher growth rate than W , we deduce that
�n(x, y) → −∞ as |x| + |y| → ∞. It follows that the level sets {�n ≥ a} are com-
pact and the function �n attains its maximum on a compact subset of K × K that
does not depend on n. That is, there exists (xn, yn) ∈ K × K such that

�n(xn, yn) = �̄n := sup
(x,y)∈K×K

�n(x, y) ≥ �̄ := sup
x∈K

�0(x, x) > 0.

All (xn, yn) belong to the compact set {(x, y) : �0(x, y) ≥ 0}. It follows that the
sequence n|xn − yn|2 is bounded. We continue to argue (without introducing new
notations) with a subsequence along which (xn, yn) converges to some limit (̂x, x̂).
Necessarily, n|xn − yn|2 → 0 (otherwise, we should have �0(̂x, x̂) > �̄). It is easily
seen that �̄n → �0(̂x, x̂) = �̄. Thus, x̂ is an interior point of K , and so are xn and yn

for sufficiently large n.
By the Ishii lemma applied to the functions v := W − ε� and ṽ := W̃ + ε� at the

point (xn, yn), there exist matrices Xn and Yn satisfying (11.1) such that

(
n(xn − yn),X

n
) ∈ J̄+v(xn),

(
n(xn − yn),Y

n
) ∈ J̄−ṽ(yn). (11.3)

To make ideas clearer, we suppose first that

(
n(xn − yn),X

n
) ∈ J+v(xn),

(
n(xn − yn),Y

n
) ∈ J−ṽ(yn). (11.4)

Using the notations pn := n(xn − yn) + ε�′(xn), qn := n(xn − yn) − ε�′(yn) and
putting Xn := Xn + ε�′′(xn), Yn := Yn − ε�′′(yn), we may rewrite the last relations
in the equivalent form

(pn,Xn) ∈ J+W(xn), (qn,Yn) ∈ J−W̃ (yn).

Now because W is a viscosity subsolution, by Lemma 7.1 there exists a func-
tion fn ∈ C1(K) ∩ C2(xn) with f ′

n(xn) = pn, f ′′
n (xn) = Xn, fn(xn) = W(xn), and

W ≤ fn ≤ W + 1/n on K . Since W̃ is a viscosity supersolution, we conclude in the
same way that there exists a function f̃n ∈ C1(K) ∩ C2(yn) such that f̃ ′

n(yn) = qn,
f̃ ′′

n (yn) = Yn, f̃n(yn) = W̃ (yn), and W̃ − 1/n ≤ f̃n ≤ W̃ on K . To deal with the non-
local integral operator, we take fn and f̃n having the structure given in (7.1) with
an appropriate choice of the cylindrical cutoff functions. We discuss details of this
choice later.

By the definitions of sub- and supersolutions we have that

F
(
Xn,pn,I(fn, xn),W(xn), xn

) ≥ 0 ≥ F
(
Yn, qn,I(f̃n, yn), W̃ (yn), yn

)
.

The second inequality implies that mqn ≤ 0 for each m ∈ G = (−K) ∩ ∂O1(0). But
for the Lyapunov function, �′(x) ∈ intK∗ when x ∈ intK , and therefore
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mpn = mqn + εm
(
�′(xn) + �′(yn)

)
< 0.

Since G is compact, ΣG(pn) < 0. It follows that

F0
(
Xn,pn,I(fn, xn),W(xn), xn

) + U∗(pn) ≥ 0,

F0
(
Yn, qn,I(f̃n, yn), W̃ (yn), yn

) + U∗(qn) ≤ 0.

Recall that U∗ is decreasing with respect to the partial ordering generated by C∗ and
hence also by K∗. Thus, U∗(pn) ≤ U∗(qn), and we obtain the inequality

bn := F0
(
Xn,pn,I(fn, xn),W(xn), xn

) − F0
(
Yn, qn,I(f̃n, yn), W̃ (yn), yn

) ≥ 0.

Clearly,

bn = 1

2

d∑

i,j=1

(aij xi
nx

j
nXn

ij − aij yi
ny

j
nY n

ij ) + n

d∑

i=1

μi(xi
n − yi

n)
2

− 1

2
βn|xn − yn|2 − β�n(xn, yn) + I(fn − ε�, xn) − I(f̃n + ε�, yn)

+ ε
(
L0�(xn) +L0�(yn)

)
.

By (11.2) the first term on the right-hand side is dominated by a constant multiplied
by n|xn − yn|2; a similar bound for the second sum is obvious; the last term is neg-
ative according to the definition of a Lyapunov function. To complete the proof, it is
sufficient to show that

lim sup
n

(
I(fn − ε�, xn) − I(f̃n + ε�, yn)

) ≤ 0. (11.5)

Indeed, with this, we have that lim supbn ≤ −β�̄ < 0, i.e., a contradiction arising
from the assumption W(z) > W̃(z).

In general, we cannot guarantee that (11.5) holds for arbitrary test functions fn

and f̃n. That is why we choose them in accordance with the expressions given by
Lemma 7.1 with α = 1/n, i.e.,

fn(xn + h) := f 0
n (xn + h)ξL

an,a′
n
(h) + W(xn + h)

(
1 − ξL

an,a′
n
(h)

)
, xn + h ∈ K,

f̃n(yn + h) := f̃ 0
n (yn + h)ξ̃L

ãn,ã′
n
(h) + W̃ (yn + h)

(
1 − ξ̃L

ãn,ã′
n
(h)

)
, yn + h ∈ K,

where L is the linear space L := ImDx̂ = (KerDx̂)
⊥, and

f 0
n (xn + h) :=

((
W(xn) + Qpn,Xn(h) + rn(h)

) ∨ Wn(xn + h)
)

∧ (
W(xn + h) + 1/n

)
,

f̃ 0
n (yn + h) :=

((
W̃ (yn) + Qqn,Yn(h) − r̃n(h)

) ∧ W̃n(yn + h)
)

∨ (
W̃ (yn + h) − 1/n

)
.
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Let δ := (1/2)R/(|̂x| + R), where R = d(̂x, ∂K) is the distance of the point x̂

from the boundary ∂K . Then I (z, xn) = 1 and I (z, yn) = 1 for z ∈ Oδ(0) when n is
sufficiently large. Indeed, when |xn − x̂| ≤ R/2 and |yn − x̂| ≤ R/2, we have that

|xn + Dxnz − x̂| ≤ R/2 + |xn||z| ≤ R/2 + (|̂x| + R/2)|z| < R

when |z| ≤ δ, and a similar estimate holds for yn.
We have

I(fn − ε�, xn) − I(f̃n + ε�, yn) =
∫

{|z|≤δ}
Hn(z)Π(dz) +

∫

{|z|>δ}
Hn(z)Π(dz),

where Hn(z) := Fn(z) − F̃n(z) with

Fn(z) := (fn − ε�)(xn + Dxnz)I (z, xn) − (W − ε�)(xn) − (f ′
n − ε�′)(xn)Dxnz

= (fn − ε�)(xn + Dxnz)I (z, xn) − (W − ε�)(xn) − n(xn − yn)Dxnz,

F̃n(z) := (f̃n + ε�)(yn + Dynz)I (z, yn) − (W̃ + ε�)(yn) − (f̃ ′
n + ε�′)(yn)Dynz

= (f̃n + ε�)(yn + Dynz)I (z, yn) − (W̃ + ε�)(yn) − n(xn − yn)Dynz.

Define also the functions

Gn(z) := (W − ε�)(xn + Dxnz)I (z, xn) − (W − ε�)(xn) − n(xn − yn)Dxnz,

G̃n(z) := (W̃ + ε�)(yn + Dynz)I (z, yn) − (W̃ + ε�)(yn) − n(xn − yn)Dynz.

Put x′
n := PLxn, y′

n := PLyn. The restrictions to L of Dxn and Dx′
n

and of Dyn

and Dy′
n
, coincide. Considering only sufficiently large n, we may assume without

loss of generality that (1/2)̂xi ≤ xi
n, yi

n ≤ x̂i + 1 for the nonzero coordinates of x̂,
and therefore the norms of the restrictions of the diagonal operators Dx′

n
, Dy′

n
to

L and their inverses are bounded (even uniformly in n). Therefore, we may apply
Lemma 7.2 if x̂ has no zero components or its extension given by the accompanying
remark and argue further supposing that

ξL
an,a′

n
(Dxnz) = ξL

an,a′
n
(Dx′

n
z) = ξL

ãn,ã′
n
(Dy′

n
z) = ξL

ãn,ã′
n
(Dynz), ∀ z ∈ Rd .

According to our choice of δ, for z ∈ Oδ(0), we have I (z, xn) = I (z, yn) = 1 for
sufficiently large n, and as a consequence, the easily verified identity

Gn(z) − G̃n(z) = �n(xn + Dxnz, yn + Dynz) − �n(xn, yn) + 1

2
n|(Dxn − Dyn)z|2.

Recalling that the function �n(x, y) attains its maximum at (xn, yn), we get from
here the bound

Gn(z) − G̃n(z) ≤ 1

2
n|xn − yn|2|z|2.
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Thus, on the set {z : |Dx′
n
z| ≥ a′

n} ∩Oδ(0), we have that

Hn(z) = Gn(z) − G̃n(z) ≤ 1

2
n|xn − yn|2|z|2.

On the set {z : |Dx′
n
z| ≤ an} ∩Oδ(0),

Fn(z) = 1

2
(XnDxnz,Dxnz) + rn(Dxnz)

+ ε
(
�(xn) + �′(xn)Dxnz + 1

2

(
�′′(xn)Dxnz,Dxnz

) − �(xn + Dxnz)
)
,

F̃n(z) = 1

2
(Y nDynz,Dynz) + r̃n(Dynz)

+ ε
(
�(yn) + �′(yn)Dynz + 1

2

(
�′′(yn)Dynz,Dynz

) − �(yn + Dynz)
)
.

By the Ishii lemma,

(XnDxnz,Dxnz) − (Y nDynz,Dynz) ≤ 3n|Dxnz − Dynz|2 ≤ 3n|xn − yn|2|z|2.

We take an small enough to ensure that

∫

{|Dx′
n
z|≤an}

(
rn(Dxnz) + rn(Dynz)

)
Π(dz) ≤ 1/n.

On the set {z : |Dx′
n
z| ≥ an} ∩ Oδ(0), the sequence of functions |Hn| is bounded by

a constant. We choose a′
n sufficiently close to an to guarantee that

∫

{an≤|Dx′
n
z|≤a′

n}
|Hn(z)|Π(dz) ≤ 1

n
.

The expressions in parentheses in the above formulae for Fn(z) and F̃n(z) (residual
terms in the Taylor formula for the smooth function �) are bounded by a constant
times |z|2 and converge to the same limit as n → ∞.

Summarizing the above facts, we conclude that

lim sup
n

∫

{|z|≤δ}
Hn(z)Π(dz) = 0.

Since the continuous functions W and � are of sublinear growth and the sequences
(xn) and (n(xn − yn)) are converging (hence bounded), the absolute value of Fn is
dominated by a function c(1 + |z|). The arguments for −F̃n(z) are similar. So, the
function Hn is dominated by a function of sublinear growth.

Put Z := {z : x̂ +Dx̂z ∈ ∂K}. By assumption, Z is Π -null. If z /∈ Z and n is large
enough, then we have I (xn, z) = I (yn, z) = I (x̂, z). It follows that
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Hn(z) = (
Gn(z) − G̃n(z)

)
I (x̂, z) − n(xn − yn)(Dxn − Dyn)z

(
1 − I (x̂, z)

)

− (W − fn)(xn + Dxnz)I (x̂, z) + (W̃ − f̃n)(yn + Dynz)I (x̂, z)

+ (
(W̃ + ε�)(yn) − (W − ε�)(xn)

)(
1 − I (x̂, z)

)

≤ (
�n(xn + Dxnz, yn + Dynz) − �n(xn, yn)

)
I (x̂, z)

+
(

1

2
n|xn − yn + (Dxn − Dyn)z|2 − 1

2
n|xn − yn|2

)
I (x̂, z)

− n(xn − yn)(Dxn − Dyn)z + 2/n

+ (
(W̃ + ε�)(yn) − (W − ε�)(xn)

)(
1 − I (x̂, z)

)
.

The first term on the right-hand side of this inequality is negative since �n(x, y)

attains its maximum at (xn, yn). We only need to consider the second term when
I (x̂, z) �= 0. In this case, we may combine it with the third term and conclude that the
sum is less than (1/2)n|xn − yn|2 → 0. The last term converges to zero because of
continuity. Thus,

lim sup
n

∫

{|z|>δ}
Hn(z)Π(dz) = 0.

Our reasoning above is based on the assumption (11.4), whereas we know only
(11.3). Fortunately, using the definitions of J̄+v(xn) and J̄−ṽ(yn), we can replace
the objects xn, yn, Xn, Yn by their approximations x̂n, ŷn, X̂n, Ŷn approaching rapidly
the initial ones, and for those, (11.4) holds. Repeating the arguments and controlling
the approximation errors, we get the same contradiction. �

Remark 11.4 Note that the definition of a Lyapunov function does not depend on U ,
and hence the uniqueness holds for any utility function U for which U∗ is decreasing
with respect to the partial ordering induced by K∗. However, to apply the uniqueness
theorem, we need to determine the growth rate of W and provide a Lyapunov function
with a faster growth.

12 Existence of Lyapunov functions and classical supersolutions

In this section, we extend results of [22] on the existence of Lyapunov functions and
classical supersolutions to the considered case of nonlocal equations.

12.1 Construction of Lyapunov functions

Let u ∈ C(R+) ∩ C2(R+ \ {0}) be an increasing strictly concave function with
u(0) = 0 and u(∞) = ∞. Introduce the function R := −u′2/(u′′u). Assume that
R̄ := supz>0 R(z) < ∞.

For p ∈ K∗, we define on K the positive function f ∈ C1(K) ∩ C2(intK) by
putting f (x) = fp(x) := u(px). If y ∈ K , then yf ′(x) = (py)u′(px) ≥ 0.
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If p ∈ intK∗, then for any x, y ∈ K \ {0}, we have the strict inequality yf ′(x) > 0
implying that f ′(x) ∈ intK∗. Thus, for p ∈ intK∗, the function f is a Lyapunov
function, provided that the inequality L0f (x) ≤ 0 is satisfied for L0 defined in
Sect. 5. We show that under some mild conditions, this inequality holds for suffi-
ciently large β .

Put

κp := sup
x∈intK

u′(px)

u(px)
|p||x|, ηp := κp

∫

{|z|>κ−1
p }

|z|Π(dz).

Define also

η̃p := 1

2
sup

x∈intK

〈μ(x),p〉2

〈A(x)p,p〉I{〈A(x)p,p〉�=0}.

Recall that A(x) is the matrix with Aij (x) = aij xixj and the vector μ(x) has the
components μixi .

Note that if κp < ∞, then ηp < ∞ (we assume that
∫
(|z|2 ∧ |z|)Π(dz) < ∞).

Example 12.1 Let u(z) := zρ/ρ, where ρ ∈ (0,1). Then R̄ = R(z) = ρ/(1 − ρ), and
for p ∈ intK∗,

κp ≤ ρ sup
x∈K\{0}

|p||x|
px

< ∞

(the strictly positive function y �→ py on the compact K ∩ {y : |y| = 1} attains its
minimum).

Proposition 12.2 Let p ∈ intK . If κp < ∞ and β ≥ η̃pR̄ + ηp + maxi |μi |κp , then
fp is a Lyapunov function.

Proof Let x ∈ intK . Recall that

I(f, x) :=
∫ (

f (x + Dxz)IintK(x + Dxz) − f (x) − Dxzf
′(x)

)
Π(dz).

If x +Dxz ∈ intK , then the integrand defining I(f, x) has three nontrivial terms, and
we have by the Taylor formula (in which ϑ ∈ [0,1]) that

f (x + Dxz) − f (x) − Dxzf
′(x) = 1

2
u′′(px + ϑp Dxz)(p Dxz)

2 ≤ 0.

If x + Dxz /∈ intK , then the integrand is reduced to two terms. Moreover, for
|z| ≤ 1/κp , we have the bound

|Dxzpu′(px)| ≤ |z||p||x|u′(px) ≤ u(px),

implying that

−f (x) − Dxzf
′(x) = −u(px) − Dxzpu′(px) ≤ 0.
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We obtain from here, taking into account that u(px) ≥ 0, the bound

I(f, x) ≤ u′(px)|p||x|
∫

{|z|>1/κp}
|z|(1 − IintK(x + Dxz)

)
Π(dz) ≤ ηpu(px).

Suppose that 〈A(x)p,p〉 �= 0. Isolating the full square, we obtain that

L0f (x) = 1

2

(
〈A(x)p,p〉u′′(px) + 2〈μ(x),p〉u′(px) + 〈μ(x),p〉2

〈A(x)p,p〉
u′2(px)

u′′(px)

)

+ 1

2

〈μ(x),p〉2

〈A(x)p,p〉R(px)u(px) + I(f, x) − βu(px)

≤ 1

2

〈μ(x),p〉2

〈A(x)p,p〉R(px)u(px) + ηpu(px) − βu(px).

It follows that L0f (x) ≤ 0 if β ≥ η̃pR̄ + ηp .
Of course, if 〈A(x)p,p〉 = 0, then we cannot argue as before. In this case,

L0f (x) ≤ 〈μ(x),p〉u′(px) + ηpu(px) − βu(px).

Taking into account that

sup
x∈intK

〈μ(x),p〉u′(px)

u(px)
≤ max

i
|μi | sup

x∈intK

u′(px)

u(px)
|p||x| = max

i
|μi |κp,

we get that L0f (x) ≤ 0 if

β ≥ ηp + max
i

|μi |κp.

Combining these two cases, we get the result. �

Remark 12.3 An inspection of the above arguments shows that we can get that fp is
a Lyapunov function for

β ≥ sup
x∈intK

(
1

2

〈μ(x),p〉2

〈A(x)p,p〉R(px)I{〈A(x)p,p〉�=0} + 〈μ(x),p〉u′(px)

u(px)
I{〈A(x)p,p〉=0}

)

+ ηp.

Of course, such a bound is less tractable than that given before.

12.2 Construction of classical supersolutions

Similar arguments are useful in the search of classical supersolutions for the equa-
tion associated to the operator L. Since Lf = L0f + U∗(f ′), it is natural to choose
u related to U . For the particular case where C = Rd+ and U(c) = u(e1c), with u

satisfying the postulated properties (except, maybe, unboundedness), and assuming
moreover that the inequality



Consumption-investment problem with transaction costs 739

u∗(au′(z)
) ≤ g(a)u(z) (12.1)

holds, we get, using the homogeneity of L0, the following result.

Proposition 12.4 Let p ∈ intK . Suppose that (12.1) holds for all a, z > 0 with
g(a) = o(a) as a → ∞. If κp < ∞ and β > η̃pR̄ + ηp + maxi |μi |κp , then there
exists a0 such that for every a ∈ (0, a0], the function afp is a classical strict superso-
lution of (5.1).

For the power utility function u(z) = zγ /γ , γ ∈ (0,1), we have

u∗(au′(z)
) = (1 − γ )aγ/(γ−1)u(z).

Therefore, inequality (12.1) holds with g(a) = o(a), a → 0.
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