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Abstract We study the joint law of Parisian time and hitting time of a drifted Brown-
ian motion by using a three-state semi-Markov model, obtained through perturbation.
We obtain a martingale to which we can apply the optional sampling theorem and de-
rive the double Laplace transform. This general result is applied to address problems
in option pricing. We introduce a new option related to Parisian options, being trig-
gered when the age of an excursion exceeds a certain time or/and a barrier is hit. We
obtain an explicit expression for the Laplace transform of its fair price.
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Laplace transform
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1 Introduction

Parisian options were introduced by Chesney, Jeanblanc-Picqué and Yor [8] in 1997.
They are similar to path-dependent barrier options where the contract is defined in
terms of staying above or below a certain level for a fixed period of time, instead
of just touching the barrier. The so-called excursion time denotes the time spent be-
tween two crossovers of the fixed barrier. On the other hand, one can also add up all
excursion times and consider the so-called occupation time, which leads to the exam-
ination of cumulative Parisian options. This has been studied by Chesney et al. [8],
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Dassios and Wu [13], Cai et al. [6] and Zhang [22]. One motivation of introducing
Parisian options lies in their insensitivity to influential agents; it is significantly more
expensive to manipulate these kind of options. Variations of the Parisian option can be
found in the double-sided Parisian option by Anderluh and Weide [2] or the double-
barrier Parisian option by Dassios and Wu [12]. American-style Parisian options have
been studied by Haber et al. [16] and Chesney and Gauthier [7]. Schröder [20, 21]
studies Parisian excursions and finds a convolution representation for the Brownian
minimum-length excursion law. Hedging strategies for Parisian options are developed
as consequences of these results.

Even though Parisian options are not exchange-traded, they are used as building
blocks in structured products, such as convertible bonds, which offer the holder the
right but not the obligation to convert the bond at any time to a pre-specified number
of shares. Most convertible bonds contain a call provision, allowing the issuer to buy
back the bond at the so-called call price, in order to manage the company’s debt-
equity ratio. Upon the issuer’s call, the holder either redeems at call price or converts.
Apart from the hard call constraint, which protects the conversion privilege to be
called away too early, the soft call constraint requires the stock price to be higher than
a certain price level. This is sensitive to market manipulation by the issuer, which can
be counteracted with the Parisian feature. The Parisian feature requires the stock price
to stay above a level for a certain time. These callable convertible bonds with Parisian
feature are commonly traded in the OTC market in Hong Kong; see [3, 18].

We introduce a new type of option, the so-called ParisianHit option, which in
contrast to the Parisian option takes both the excursion time and the hitting time of
a pre-specified barrier into account. One version of this modification, called Min-
ParisianHit option, is triggered if either the age of an excursion above a level reaches
a certain time or another barrier is hit before maturity. The MaxParisianHit on the
other hand gets activated when both the excursion age exceeds a certain time and
a barrier is hit. The key for pricing these kind of options lies in deriving the joint
law of excursion and hitting time. Here, we study excursion and hitting time using
a three-state semi-Markov model indicating whether the process is in a positive or
negative excursion and above or below a fixed barrier. This will allow us to compute
the double Laplace transform of these two stopping times, which can be inverted nu-
merically using techniques as in Labart and Lelong [17]. Gauthier [14, 15] studies
the first instant when a standard Brownian motion either spends consecutively more
than a certain time above a certain level or reaches another level, that is, the minimum
of Parisian and hitting time. Gauthier’s results are presented as Laplace transforms
and coincide with our Lemmas 4.2 and 4.4 by setting μ = 0 and h̃ ≡ 0. In this paper,
we generalise these results and the concept of the Parisian time by deriving the joint
probability of the Parisian and hitting time. This allows us to also find the distribution
of the maximum of Parisian and hitting time.

The paper is structured as follows. In Sect. 2, we motivate this paper with the fi-
nancial application of pricing ParisianHit options. The pricing problem reduces to
finding the joint distribution of Parisian and hitting time. We use the approach of
a three-state semi-Markov model on a perturbed Brownian motion with drift, which
has been introduced by Dassios and Wu [10], and present it in Sect. 3. This perturbed
Brownian motion has the same behaviour as a drifted Brownian motion, except that
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it moves towards the other side of the barrier by a jump of size ε each time it hits
zero, disposing of the difficulty of the origin being regular. The semi-Markov process
allows us to define an infinitesimal generator where the solution of the martingale
problem provides us with the single Laplace transform of excursion and hitting time
in Sect. 4. Dividing into the two possible cases in Sects. 4.1 and 4.2, we derive an
explicit form of the double Laplace transform of hitting and Parisian time for drifted
Brownian motion. Section 5 is devoted to the application to option pricing and ex-
plains the MinParisianHit and MaxParisianHit options in detail. Using results about
the double Laplace transform, we are now able to price ParisianHit options.

2 Motivation

Following the Black–Scholes framework, let (St )t≥0 be the stock price process fol-
lowing a geometric Brownian motion, that is, solving the stochastic differential equa-
tion

dSt = μSt dt + σSt dWt

and fix a level L. We define the times

gL,t (S) = sup{s ≤ t : Ss = L},
dL,t (S) = inf{s ≥ t : Ss = L}.

The trajectory of S between gL,t (S) and dL,t (S) is the excursion of S at level L which
straddles time t . The variables gL,t (S) and dL,t (S) are called the left and right ends of
the excursion. Assuming that the interest rate r is constant, the process representing
the risk-neutral asset price is given by

St = S0e
(r− σ2

2 )t+σWt ,

solving the stochastic differential equation dSt = rSt dt + σSt dWt . We denote the
equivalent martingale measure by Q̄.

We define τ+
L,d(S) as the first time the age of an excursion above L for the price

process is greater than or equal to d , and HB(S) as the first hitting time of a barrier
B > L, that is,

τ+
L,d(S) = inf

{
t ≥ 0 : 1{St>L}(t − gS

L,t ) ≥ d
}
,

HB(S) = inf{t ≥ 0 : St = B}.
We introduce the notation

m = 1

σ

(
r − σ 2

2

)
, � = 1

σ
ln

L

S0
, b = 1

σ
ln

B

S0

and define the process (Zt )t≥0 = (Wt + mt)t≥0. This process Z contains a drift mak-
ing it impossible for us to calculate the probabilities relating to the two stopping
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times exactly. Our strategy is now to tilt the sloped line back to a horizontal line.
We write St = S0e

σZt with Zt = Wt + mt . The condition St ≤ L becomes Zt ≤ �.
Using Girsanov’s theorem, we introduce a new probability measure Q that makes Z

a Q-Brownian motion. The Radon–Nikodým derivative is given by

dQ

dQ̄

∣
∣∣∣
FT

= emZT − m2
2 T . (2.1)

We define the first time at which the age of an excursion above the level � for the
process (Zt )t≥0 is greater than or equal to d , that is,

τ+
�,d(Z) = inf

{
t ≥ 0 : 1{Zt>�}(t − g�,t ) ≥ d

}
,

g�,t (Z) = sup{u ≤ t : Zu = �}.
In the case where � = 0, we use the shortcuts τ+

d (Z) and gt (Z).
Our so-called MinParisianHit option is triggered either when the age of an excur-

sion above L reaches time d or a barrier B > L is hit by the underlying price process
S. More precisely, a MinParisianHit Up-and-In is activated at the minimum of both
stopping times, that is, at min(τ+

L,d(S),HB(S)). So a MinParisianHit Up-and-In call
option has the payoff

(ST − K)+1{min(τ+
L,d (S),HB(S))≤T },

where K denotes the strike price.
Using risk-neutral valuation and Girsanov’s change of measure (2.1), the price of

this option can be written as

minPHCu
i (S0, T ,K,L,d, r)

= e−(r+ 1
2 m2)T

×
∫ ∞

1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,min

(
τ+
d (Z),Hb(Z)

) ≤ T
]
. (2.2)

Hence, finding the fair price for a MinParisianHit option reduces to finding the joint
distribution of the position at maturity and the minimum of Parisian and hitting times.

Our so-called MaxParisianHit option, on the other hand, is triggered when both
the barrier B is hit and the excursion age exceeds duration d above L. The payoff
becomes

(ST − K)+1{max{τ+
L,d (S),HB(S)}≤T },

and the option pricing problem can be reduced in a similar way, that is,

maxPHCu
i (S0, T ,K,L,d, r)

= e−(r+ 1
2 m2)T

×
∫ ∞

1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,max

(
τ+
d (Z),Hb(Z)

) ≤ T
]
.
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This will be discussed in further detail in Sect. 5.2.
We can see from (2.2) and in further detail in Sect. 5 that both pricing problems

can be solved by determining the joint distribution of hitting and Parisian time of
a drifted Brownian motion. This is our focus for the next Sects. 3 and 4, where our
main results are presented in Propositions 4.3 and 4.6.

Instead of finding a closed-form solution for the joint density of hitting and
Parisian time, we focus on deriving the double Laplace transform, which uniquely
determines the probability distribution.

3 Perturbed Brownian motion and the martingale problem

This section is the most technical one, and we give a brief outline of the steps that we
follow. The property of the sample paths of Brownian motion of being regular around
the origin zero results in the occurrence of infinitely many small excursions. In order
to counteract this problem, we perturb the Brownian motion by a small jump at the
origin. The construction can be found in (3.5), (3.6) below and follows Dassios and
Wu [10]. Next, we construct a continuous-time finite-state Markov process in (3.7),
which tracks whether the process is below 0, above a positive barrier b, or between
0 and b. This Markov process has an associated infinitesimal generator, and we for-
mulate the corresponding martingale problem in (3.13). We construct a martingale of
the form f (Ut (X), t) = e−βth(Ut (X)). This function f looks arbitrary at first sight;
however, it is chosen in such a way that after applying Doob’s optional sampling
theorem in (3.15), it yields the Laplace transform of the desired stopping times.

It is important to note that this outlined procedure is not limited to ParisianHit
option pricing within the Black–Scholes framework, but can be used to solve similar
problems where the stochastic process does not follow a Brownian motion.

3.1 Definitions

For any stochastic process Y , we define for fixed t > 0 the times

gt (Y ) = sup{s ≤ t : sgn(Ys) �= sgn(Yt )}, (3.1)

dt (Y ) = inf{s ≥ t : sgn(Ys) �= sgn(Yt )}, (3.2)

τ+
d (Y ) = inf

{
t > 0 : (t − gt (Y )

)
1{Yt>0} ≥ d

}
, (3.3)

Hb(Y ) = inf{t ≥ 0 : Yt = b}. (3.4)

The time interval (dt (Y ), gt (Y )) is the excursion interval straddling time t , the time
gt (Y ) − dt (Y ) is called the excursion time, and τ+

d (Y ) denotes the first time the
process Y spends time d above zero, the so-called Parisian time above zero.

Let Wμ, with W
μ
t = Wt +μt , be a Brownian motion with drift μ ≥ 0 and W

μ
0 = 0,

where W is a standard Brownian motion under the probability measure Q. We notice
that the origin zero is a regular point of the process, resulting in the occurrence of
infinitely many small excursions. In order to counteract this problem, the perturbed
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Fig. 1 Sample paths of Wμ and Wε,μ; see Dassios and Wu [10]

Brownian motion Wε,μ has been introduced by Dassios and Wu [10] as follows.
Define the sequence of stopping times for ε > 0 and n ∈ N0 by

δ0 = 0, (3.5)

σn = inf{t > δn : Wμ
t = −ε},

δn+1 = inf{t > σn : Wμ
t = 0}.

Define the perturbed drifted Brownian motion

W
ε,μ
t =

{
W

μ
t + ε if δn ≤ t < σn,

W
μ
t if σn ≤ t < δn+1.

(3.6)

By introducing the jumps of size ε towards the other side of zero whenever
zero is hit by Wμ we get a process Wε,μ with a very clear structure of excur-
sions above and below zero, making zero an irregular point. This construction
has been introduced by Dassios and Wu [10]. See Fig. 1 for illustration. With
the superscript ε we denote quantities based on the perturbed process Wε,μ, for
example, Hb(W

ε,μ) = inf{t ≥ 0 : Wε,μ
t = b}. By construction, we have P -a.s. that

W
ε,μ
t → W

μ
t for all t ≥ 0 as ε approaches zero. The quantities defined based on Wε,μ

also converge to those of the drifted Brownian motion Wμ. This has been proved in
Dassios and Wu [10, 11] and Lim [19].

3.2 Markov process construction

It is clear from the definition above that we are actually considering two states,
namely the state when the stochastic process Wε,μ is below zero and the state when
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it is above zero. Our final goal is to find the joint density of the Parisian time above
or below zero and the hitting time Hb(W

μ) of a specified barrier b. Hence, we con-
struct an artificial absorbing state for the time the process Wε,μ spends above the
barrier b > 0. For each state above and below zero, we are now interested in the time
it spends in it. We introduce a new process based on Wε,μ by

Xt =

⎧
⎪⎨

⎪⎩

2 if W
ε,μ
t ≥ b,

1 if 0 < W
ε,μ
t < b,

−1 if W
ε,μ
t ≤ 0.

(3.7)

Clearly, definitions (3.1)–(3.4) hold similarly for the process X. We define state 2 to
be an absorbing state, that is, once b is hit, the process does not return to state 1 any
more.

Define Ut(X) := t − gt (X) to be the time elapsed in the current state, for either
state −1 or state 1 and 2 combined. Note that Ut(X) only distinguishes between
above or below zero and converges to Ut(W

μ) = t −gt (W
μ), the time elapsed above

or below zero in the current excursion of the drifted Brownian motion Wμ. If the
notation is unambiguous, then we abbreviate the definition of the time elapsed for the
Brownian motion; so Ut = Ut(W

μ). (Xt ,Ut (X)) becomes a Markov process. Hence,
X is a three-state semi-Markov process with state space {2,1,−1}. The transition
intensities λi,j (u) for X satisfy

Q[Xt+	t = j, i �= j |Xt = i,Ut (X) = u] = λi,j (u)	t + o(	t), (3.8)

Q[Xt+	t = i|Xt = i,Ut (X) = u] = 1 −
∑

j �=i

λi,j (u)	t + o(	t),

for i, j = 2,1,−1. Define the survival probability and transition density by

Q̄i(t) = e
− ∫ t

0
∑

j �=i

λi,j (v) dv

, (3.9)

qi,j (t) = λi,j (t)Q̄i(t). (3.10)

In order to simplify notations, we define Q̂i,j (β) and Q̃i,j (β) to be

Q̂i,j (β) =
∫ d

0
e−βsqi,j (s) ds, (3.11)

Q̃i,j (β) =
∫ ∞

0
e−βsqi,j (s) ds. (3.12)

3.3 Martingale problem

Having constructed the process X and its time elapsed in the current state, we now
consider a bounded function f : {2,1,−1} ×R2 → R. The infinitesimal generator A
is an operator making

f
(
Xt,Ut (X), t

) −
∫ t

0
Af

(
Xs,Us(X), s

)
ds (3.13)
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a martingale. We use in the sequel the shortcuts AfXt (Ut (X), t) = Af (Xt ,Ut (X), t)

and fi(z, u) = f (i, z, u). Hence, solving Af = 0 subject to certain conditions will
provide us with martingales of the form fXt (Ut (X), t), to which we can apply the
optional sampling theorem to obtain the Laplace transforms of interest. We have for
the generator

Af1(u, t) = ∂f1

∂t
(u, t) + ∂f1

∂u
(u, t) + λ1,1(u)

(
f−1(0, t) − f1(u, t)

)

+ λ1,2(u)
(
f2(u, t) − f1(u, t)

)
,

Af−1(u, t) = ∂f−1

∂t
(u, t) + ∂f−1

∂u
(u, t) + λ−1,1(u)

(
f1(0, t) − f−1(u, t)

)
.

Since we are not interested in what happens after the absorbing state 2 has been
reached, we do not define Af2, the generator starting from state 2.

We assume the function f to have the form fi(u, t) = e−βthi(u), where β ∈ R+
is a positive constant, and solve Af ≡ 0 with the constraints h1(d) = B and
h−1(∞) = 0 with constant B . Since state 2 is an absorbing state, we may assign any
bounded function to it. We choose h2(u) = Ah̃(u), where A is an arbitrary constant.
The function h̃ will be motivated and defined in the proof of Proposition 4.3. The in-
tuition behind choosing the constraint h−1(∞) = 0 is that since we are not concerned
with the time elapsed below zero, we let the excursion window below zero approach
infinity. A and B on the other hand are constants, indicating different scenarios and
clarified in Lemma 3.3.

The reason for choosing the above form for the function f is our objective to
derive the Laplace transform of stopping times.

Lemma 3.1 Using the conditions above, the initial value f1(0,0) = h1(0) is given by

h1(0) = Be−βdQ̄1(d) + A
∫ d

0 e−βwh̃(w)q1,2(w)dw

1 − Q̃−1,1(β)Q̂1,−1(β)
.

Proof Af ≡ 0 transforms into

dh1(u)

du
− (

β + λ1,−1(u) + λ1,2(u)
)
h1(u) + λ1,−1(u)h−1(0) + Aλ1,2(u)h̃(u) = 0,

dh−1(u)

du
− (

β + λ−1,1(u)
)
h−1(u) + λ−1,1(u)h1(0) = 0.

Using the integrating factor method for ordinary differential equations and the con-
straints, we find

h1(u) = Be− ∫ d
u βλ1,−1(v)+λ1,2(v)dv +

∫ d

u

(
λ1,−1(w)h−1(0) + Aλ1,2(w)h̃(w)

)

× e− ∫ w
u βλ1,−1(v)+λ1,2(v) dv dw, 0 ≤ u ≤ d

h−1(u) = h1(0)

∫ ∞

u

λ−1,1(w)e− ∫ w
u β+λ−1,1(v) dv dw, u ≥ 0.
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Setting u = 0 and solving the system of equations give us

h1(0)

= Be− ∫ d
0 β+λ1,−1(v)+λ1,2(v) dv + A

∫ d

0 λ1,2(w)h̃(w)e− ∫ w
0 β+λ1,−1(v)+λ1,2(v) dv dw

1 − ∫ ∞
0 λ−1,1(w)e− ∫ w

0 β+λ−1,1(v) dv dw
∫ d

0 λ1,−1(w)e− ∫ w
0 β+λ1,−1(v)+λ1,2(v) dv dw

= Be−βdQ̄1(d) + A
∫ d

0 e−βwh̃(w)q1,2(w)dw

1 − Q̃−1,1(β)Q̂1,−1(β)
,

where Q̄i(t), q1,2(t), λi,j (u), Q̂i,j (β) and Q̃i,j (β) have been defined in (3.9), (3.10),
(3.8), (3.11) and (3.12). �

For the transition densities, we use results from Borodin and Salminen [5, formu-
lae (2.0.2), (3.0.2) and (3.0.6)]. Without loss of generality, we assume that b > ε > 0.
Therefore, it is not possible to go straight from state −1 to state 2 and vice versa,
that is, q−1,2(t) = q2,−1(t) = 0. With Ha,b(Y ) = inf{t ≥ 0 : Yt = a or Yt = b} being
the first exit time of the interval (a, b) with a, b ∈ R and a < b by a general stochas-
tic process Y , and the function

ßt (x, y) =
∞∑

k=−∞

(2k + 1)y − x√
2πt3

e− ((2k+1)y−x)2

2t

(see e.g. Borodin and Salminen [5, Appendix 2, Theta functions of an imaginary
argument and related functions]), the quantities qi,j (t), Q̂i,j (β), Q̃i,j (β) and Q̄i(d)

can be calculated as

q1,−1(t) = 1

dt
Pε[H0,b(W

ε,μ) ∈ dt,W
ε,μ
H0,b

= 0]

= e−με− μ2 t
2 sst (b − ε, b)

= e−με− μ2 t
2

∞∑

k=−∞

ε + 2kb√
2πt3

e− (ε+2kb)2
2t

= e−με− μ2 t
2

∞∑

k=0

(
2kb + ε√

2πt3
e− (2kb+ε)2

2t − 2kb − ε√
2πt3

e− (2kb−ε)2
2t

)

− ε√
2πt3

e− (ε+μt)2

2t ,
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q−1,1(t) = ε√
2πt3

e− (ε−μt)2

2t ,

q1,2(t) = 1

dt
Pε[H0,b(W

ε,μ) ∈ dt,W
ε,μ
H0,b

= b]

= eμ(b−ε)− μ2 t
2 sst (ε, b)

= eμ(b−ε)− μ2 t
2

∞∑

k=−∞

b − ε + 2kb√
2πt3

e− (b−ε+2kb)2
2t

= eμ(b−ε)− μ2 t
2

×
∞∑

k=0

(
(2k + 1)b − ε√

2πt3
e− ((2k+1)b−ε)2

2t − (2k + 1)b + ε√
2πt3

e− ((2k+1)b+ε)2
2t

)
,

Q̂1,2(β) =
∞∑

k=0

(

e(μ−(2k+1)
√

2β+μ2)b

×
(

eε(
√

2β+μ2−μ)N
(
− (2k + 1)b − ε√

d
+

√
(2β + μ2)d

)

− e−ε(
√

2β+μ2+μ)N
(
− (2k + 1)b + ε√

d
+

√
(2β + μ2)d

))

+ e(μ+(2k+1)
√

2β+μ2)b

×
(

e−ε(
√

2β+μ2+μ)N
(
− (2k + 1)b − ε√

d
−

√
(2β + μ2)d

)

− eε(
√

2β+μ2−μ)N
(
− (2k + 1)b + ε√

d
−

√
(2β + μ2)d

)))

,

Q̃−1,1(β) = e(μ−
√

2β+μ2)ε,
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Q̂1,−1(β) =
∫ d

s=0

(

e−βse−με− μ2s
2

∞∑

k=0

(
2kb + ε√

2πs3
e− (2kb+ε)2

2s − 2kb − ε√
2πs3

e− (2kb−ε)2
2s

)

− e−βs ε√
2πs3

e− (ε+μt)2

2s ds

)

= e−με

( ∞∑

k=0

(
e−

√
2β+μ2(2kb+ε)N

(
−2kb + ε√

d
+

√
(2β + μ2)d

)

+ e

√
2β+μ2(2kb+ε)N

(
−2kb + ε√

d
−

√
(2β + μ2)d

)

− e−
√

2β+μ2(2kb−ε)N
(
−2kb − ε√

d
+

√
(2β + μ2)d

)

− e

√
2β+μ2(2kb−ε)N

(
−2kb − ε√

d
−

√
(2β + μ2)d

))

− e−
√

2β+μ2εN
(
− ε√

d
+

√
(2β + μ2)d

)

− e

√
2β+μ2εN

(
− ε√

d
−

√
(2β + μ2)d

))

,

Q̄1(d) = Pε[H0(W
ε,μ) > d,Hb(W

ε,μ) > d]
=

∫ ∞

d

e− μ2 t
2

(
e−μεsst (b − ε, b) + eμ(b−ε)sst (ε, b)

)
dt

=
∞∑

k=0

(

e−μ(2kb+2ε)N
(2kb + ε√

d
− μ

√
d
)

− e2kbμN
(
−2kb + ε√

d
− μ

√
d
)

− e−2kbμN
(2kb − ε√

d
− μ

√
d
)

+ eμ(2kb−2ε)N
(
−2kb − ε√

d
− μ

√
d
)

+ e−2kbμN
( (2k + 1)b − ε√

d
− μ

√
d
)

− e2kbμ+2μ(b−ε)N
(
− (2k + 1)b − ε√

d
− μ

√
d
)

− e−2kbμ−2μεN
( (2k + 1)b + ε√

d
− μ

√
d
)

+ e2kbμ+2μbN
(
− (2k + 1)b + ε√

d
− μ

√
d
))

− e−2μεN
( ε√

d
− μ

√
d
)

+N
(
− ε√

d
− μ

√
d
)
.
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Remark 3.2 With the subscript behind the expected value, we denote the starting
position of any stochastic process Y , that is, for any function f ,

Ex[f (Y )] = E[f (Y );Y0 = x].

In the case of no subscript, we assume the process to start at zero. The superscript
announces under which probability measure we take the expectation, that is,

EP[f (Y )] =
∫ ∞

−∞
f (x)P[Y ∈ dx].

If not specified, the notation should be clear.

3.4 An important lemma

In the following, we present an important lemma, which is the main building block
in pricing ParisianHit options.

Lemma 3.3 For the perturbed Brownian motion with drift, we find the Laplace trans-
form to be

AEQ

ε

[
e−βHb(W

ε,μ)h̃
(
UHb

(Wε,μ)
)
1{Hb(W

ε,μ)<τ+
d (Wε,μ)}

]

+ BEQ

ε

[
e−βτ+

d (Wε,μ)1{τ+
d (Wε,μ)<Hb(W

ε,μ)}
]

= Be−βdQ̄1(d) + A
∫ d

0 e−βwh̃(w)q1,2(w)dw

1 − Q̃−1,1(β)Q̂1,−1(β)
, (3.14)

where A and B are arbitrary constants.

Proof Solving Af ≡ 0 with the constraints h1(d) = B and h−1(∞) = 0 provides us
with a martingale of the form M̂t := fXt (Ut (X), t) = e−βthXt (Ut (X)). Recall that
state 2, indicating the perturbed Brownian motion to be above the barrier b, is an
absorbing state. Hence, we may choose h2 to be any arbitrary bounded function. We
assign h2 to be h2(u) = Ah̃(u), where A is a constant, and h̃ is a bounded function,
which will be specified in the proof of Proposition 4.3.

Let τ(Wε,μ) = min(Hb(W
ε,μ), τ+

d (Wε,μ)). Then the optional sampling theorem
on the martingale M̂ with the stopping time τ(Wε,μ) ∧ t yields

EQ

ε [M̂τ(Wε,μ)∧t ] = EQ

ε [M̂0]. (3.15)

The function h1 is continuous and therefore bounded on the compact interval [0, d].
Hence, there exists a constant K such that |h1(Ut (X))| ≤ K for all Ut(X) ∈ [0, d].
Furthermore, we have assumed that h2 is bounded. Therefore, Lebesgue’s dominated
convergence theorem applies, yielding for the left-hand side of (3.15) that
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lim
t→∞EQ

ε [M̂τ(Wε,μ)∧t ]

= EQ

ε [M̂τ(Wε,μ)]
= EQ

ε

[
e−βHb(W

ε,μ)h2
(
UHb(W

ε,μ)(W
ε,μ)

)
1{Hb(W

ε,μ)<τ+
d (Wε,μ)}

]

+EQ

ε

[
e−βτ+

d (Wε,μ)h1
(
Uτ+

d (Wε,μ)(W
ε,μ)

)
1{τ+

d (Wε,μ)<Hb(W
ε,μ)}

]

= AEQ

ε

[
e−βHb(W

ε,μ)h̃
(
UHb(W

ε,μ)(W
ε,μ)

)
1{Hb(W

ε,μ)<τ+
d (Wε,μ)}

]

+ BEQ

ε

[
e−βτ+

d (Wε,μ)1{τ+
d (Wε,μ)<Hb(W

ε,μ)}
]
.

For the right-hand side of (3.15), we have E
Q
ε [M̂0] = h1(0), and the claim follows

from Lemma 3.1. �

4 Double Laplace transform of Parisian and hitting times

This section is the main part of the paper and devoted to finding the double Laplace
transform of Parisian and hitting times. We first derive the limiting Laplace transform
through results on the perturbed process and distinguish between the two possible
scenarios Hb(W

μ) < τ+
d (Wμ) and τ+

d (Wμ) < Hb(W
μ).

Proposition 4.1 The Laplace transform of the hitting and Parisian times for a drifted
Brownian motion Wμ is given by

AE
Q

0

[
e−βHb(W

μ)h̃(UHb
)1{Hb(W

μ)<τ+
d (Wμ)}

]
+ BE

Q

0

[
e−βτ+

d (Wμ)1{τ+
d (Wμ)<Hb(W

μ)}
]

=
(

Be−βd

( ∞∑

k=0

2
(
z(k,0,μ) − eμbz(k + 1

2
,0,μ)

)
− z(0,0,μ)

)

+ A

∫ d

0
e−βwh̃(w)

√
2

πw3
eμb− μ2w

2

∞∑

k=0

(
(2k + 1)2b2

w
− 1

)
e− (2k+1)2b2

2w dw

)

×
( ∞∑

k=0

2
(
z(k,β,μ) +

√
2β + μ2e−

√
2β+μ22kb

)
− z(0, β,μ) − 2

√
2β + μ2

)−1

,

where the function z is defined as
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z(k,β,μ) =
√

2

πd
e− (2β+μ2)d

2 − 2(kb)2
d

−
√

2β + μ2

(

e

√
2β+μ22kbN

(
−2kb√

d
−

√
(2β + μ2)d

)

+ e−
√

2β+μ22kbN
(2kb√

d
−

√
(2β + μ2)d

)
)

. (4.1)

Proof In order to find the Laplace transform for the drifted Brownian motion, we take

the limit from the results about Wε,μ and therefore let ε approach zero in (3.14). In

particular, notice that by construction we have P -a.s. that W
ε,μ
t → W

μ
t for all t ≥ 0

as ε approaches zero. The quantities defined based on Wε,μ also converge to those
of the drifted Brownian motion Wμ. Furthermore, e−βHb(W

μ)h̃(UHb
) and e−βτ+

d (Wμ)

are both bounded functions. Recall that UHb
is the abbreviation for UHb(W

μ)(W
μ).

Thus, dominated convergence applies to get the result for Wμ, that is,

AE
Q

0

[
e−βHb(W

μ)h̃(UHb
)1{Hb(W

μ)<τ+
d (Wμ)}

]
+ BE

Q

0

[
e−βτ+

d (Wμ)1{τ+
d (Wμ)<Hb(W

μ)}
]

= lim
ε→0

(
AEQ

ε

[
e−βHb(W

ε,μ)h̃
(
UHb(W

ε,μ)(W
ε,μ)

)
1{Hb(W

ε,μ)<τ+
d (Wε,μ)}

]

+ BEQ

ε

[
e−βτ+

d (Wε,μ)1{τ+
d (Wε,μ)<Hb(W

ε,μ)}
])

= lim
ε→0

Be−βdQ̄1(d) + A
∫ d

0 e−βwh̃(w)q1,2(w)dw

1 − Q̃−1,1(β)Q̂1,−1(β)
. (4.2)

We refer to Dassios and Wu [10, 11] and Lim [19] for further details. Therefore,

letting ε go to zero in (3.14) will provide us with the Laplace transform for the drifted

Brownian motion. In order to apply L’Hôpital’s rule, we take the derivative with

respect to ε and find for the denominator of (3.14) that
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∂

∂ε

(
1 − Q̃−1,1(β)Q̂1,−1(β)

)

−→
ε→0

∞∑

k=0

(

2
√

2β + μ2

(
e−

√
2β+μ22kbN

(
−2kb√

d
+

√
(2β + μ2)d

)

− e

√
2β+μ22kbN

(
−2kb√

d
−

√
(2β + μ2)d

))

+ 2

√
2

πd
e− (2β+μ2)d

2 − 2(kb)2
d

)

− 2
√

2β + μ2N
(√

(2β + μ2)d
)

−
√

2

πd
e− (2β+μ2)d

2

=
∞∑

k=0

(

2
√

2β + μ2

(
e−

√
2β+μ22kb − e−

√
2β+μ22kbN

(2kb√
d

−
√

(2β + μ2)d
)

− e

√
2β+μ22kbN

(
−2kb√

d
−

√
(2β + μ2)d

))

+ 2

√
2

πd
e− (2β+μ2)d

2 − 2(kb)2
d

)

− 2
√

2β + μ2N
(√

(2β + μ2)d
)

−
√

2

πd
e− (2β+μ2)d

2 . (4.3)

For the numerator, we find

∂

∂ε
Q̄1(d)

−→
ε→0

∞∑

k=0

(

2

√
2

πd
e− (2kb)2

2d
− μ2d

2 − 2

√
2

πd
e− (2k+1)2b2

2d
− μ2d

2 +μb

+ 2μ

(
e(2k+1)μb+μbN

(
− (2k + 1)b√

d
− μ

√
d
)

+ e−(2k+1)μb+μbN
( (2k + 1)b√

d
− μ

√
d
)

− e2kμbN
(
−2kb√

d
− μ

√
d
)

− e−2kμbN
(2kb√

d
− μ

√
d
)))

−
√

2

πd
e− μ2d

d + 2μN
(−μ

√
d
)

(4.4)
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and

∂

∂ε
q1,2(t) −→

ε→0

√
2

πt3
eμb− μ2 t

2

∞∑

k=0

(
(2k + 1)2b2

t
− 1

)
e− (2k+1)2b2

2t . (4.5)

Inserting (4.3)–(4.5) into (4.2) yields the proposition. �

4.1 Case Hb(W
μ) < τ+

d (Wμ)

In the case where the barrier b is hit before the excursion above zero of length d

is completed, we have found the single Laplace transform of the hitting time of the
drifted Brownian motion in Proposition 4.1.

Lemma 4.2

E
Q

0

[
e−βHb(W

μ)h̃(UHb
)1{Hb(W

μ)<τ+
d (Wμ)}

]

=
∫ d

0 e−βwh̃(w)

√
2

πw3 eμb− μ2w
2

∑∞
k=0(

(2k+1)2b2

w
− 1)e− (2k+1)2b2

2w dw

∑∞
k=0 2(z(k,β,μ) + √

2β + μ2e−
√

2β+μ22kb) − z(0, β,μ) − 2
√

2β + μ2
,

where z is defined as in (4.1).

We are now interested in finding the double Laplace transform of hitting and
Parisian times in the case that b is hit before the excursion exceeds d . We make
an appropriate choice of the bounded function h̃, where the intuition will become
clear in the proof of the following proposition.

Proposition 4.3 The double Laplace transform of the hitting and Parisian times of
a drifted Brownian motion Wμ, where Hb(W

μ) < τ+
d (Wμ), is

E
Q

0

[
e−βHb(W

μ)−γ τ+
d (Wμ)1{Hb(W

μ)<τ+
d (Wμ)}

]

=
∫ d

0
e−βw

(

e−γ d

(
1 − e−2μbN

(μ(d − w) − b√
d − w

)
−N

(−μ(d − w) − b√
d − w

))

+E
Q

0

[
e−γ τ̂+

d
](

e−(
√

2γ+μ2+μ)bN
(√

(2γ + μ2)(d − w) − b√
d − w

)

+ e(
√

2γ+μ2−μ)bN
(
−

√
(2γ + μ2)(d − w) − b√

d − w

)))

×
√

2

πw3
eμb− μ2w

2

∞∑

k=0

(
(2k + 1)2b2

w
− 1

)
e− (2k+1)2b2

2w dw

×
( ∞∑

k=0

2
(
z(k,β,μ) +

√
2β+ μ2e−

√
2β+μ22kb

)
− z(0, β,μ) − 2

√
2β + μ2

)−1

,
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where

E
Q

0

[
e−γ τ̂+

d (Wμ)
] =

2μe−γ dN (μ
√

d) +
√

2
πd

e−γ d− μ2d
2

2
√

2γ + μ2N (
√

(2γ + μ2)d) +
√

2
πd

e− (2γ+μ2)d
2

= e−γ d(z(0,0,μ) + 2μ)

z(0, γ,μ) + 2
√

2γ + μ2
,

and the function z is defined in (4.1).

Proof In order to find the double Laplace transform

E
Q

0

[
e−βHb(W

μ)e−γ τ+
d (Wμ)1{Hb(W

μ)<τ+
d (Wμ)}

]

in the case where Hb(W
μ) < τ+

d (Wμ), we define our previously generic function h̃

to be

h̃(UHb
) = E

Q

0

[
e−γ τ+

d (Wμ)
∣∣FHb(W

μ)

]
,

where (Ft )t≥0 denotes the standard filtration associated with the Brownian motion.
Hence, the left-hand side of Lemma 4.2 becomes

E
Q

0

[
e−βHb(W

μ)h̃(UHb
)1{Hb(W

μ)<τ+
d (Wμ)}

]

= E
Q

0

[
e−βHb(W

μ)E
Q

0

[
e−γ τ+

d (Wμ)|FHb(W
μ)

]
1{Hb(W

μ)<τ+
d (Wμ)}

]

= E
Q

0

[
e−βHb(W

μ)e−γ τ+
d (Wμ)1{Hb(W

μ)<τ+
d (Wμ)}

]

with our choice of h̃. On the other hand, we have

h̃(UHb
) = E

Q

0

[
e−γ (Hb(W

μ)+d−UHb
)1{H̃0(W

μ)>d−UHb
}
∣∣∣FHb(W

μ)

]

+E
Q

0

[
e−γ (Hb(W

μ)+H̃0(W
μ)+τ̂+

d (Wμ))1{H̃0<d−UHb
}
∣∣∣FHb(W

μ)

]

= e−γHb(W
μ)

(
e−γ (d−UHb

)Pb[H̃0(W
μ) > d − UHb

]

+E
Q

b

[
e−γ H̃0(W

μ)1{H̃0(W
μ)<d−UHb

}
]
E
Q

0

[
e−γ τ̂+

d (Wμ)
])

,

where H̃0(W
μ) is the first hitting time of zero of Brownian motion restarted at time

Hb(W
μ) and hence independent of Hb(W

μ), and τ̂+
d (Wμ) is the first time the ex-

cursion lasts time d above zero with Brownian motion restarted at time H̃0(W
μ) and

therefore also independent of Hb(W
μ). For the derivation of the Laplace transform of

τ̂+
d (Wμ), we set A = 0, B = 1 and let b approach ∞ in Proposition 4.1. Notice that

τ̂+
d (Wμ) and τ+

d (Wμ) are identically distributed due to the strong Markov property
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of Brownian motion. Therefore,

E
Q

0

[
e−γ τ+

d (Wμ)
] = e−γ d(z(0,0,μ) + 2μ)

z(0, γ,μ) + 2
√

2γ + μ2
,

where the 2μ in the numerator comes in from the odd case in (4.4).
For the other quantities, straightforward calculations yield

Pb[H̃0(W
μ) > d − UHb

] =
∫ ∞

d−UHb

b√
2πt3

e− (b+μt)2

2t dt

= 1 − e−2μbN
(

μ(d − UHb
) − b

√
d − UHb

)

−N
(−μ(d − UHb

) − b
√

d − UHb

)

and

E
Q

b

[
e−γ H̃0(W

μ)1{H̃0<d−UHb
}
]

= e−(
√

2γ+μ2+μ)bN
(√

(2γ + μ2)(d − UHb
) − b

√
d − UHb

)

+ e

√
2γ+μ2−μ)bN

(
−

√
(2γ + μ2)(d − UHb

) − b
√

d − UHb

)
.

Inserting these calculations into Lemma 4.2 yields the proposition. �

4.2 Case τ+
d (Wμ) < Hb(W

μ)

In the case where the excursion has exceeded length d before hitting the barrier b > 0,
we obtain from Proposition 4.1 the following result.

Lemma 4.4

E
Q

0

[
e−βτ+

d (Wμ)1{τ+
d (Wμ)<Hb(W

μ)}
]

= e−βd(
∑∞

k=0 2(z(k,0,μ) − eμbz(k + 1
2 ,0,μ)) − z(0,0,μ))

∑∞
k=0 2(z(k,β,μ) + √

2β + μ2e−
√

2β+μ22kb) − z(0, β,μ) − 2
√

2β + μ2
,

where the function z is defined in (4.1).

This lemma allows us to compute the probability that the Parisian time happens
before the hitting time of b by setting β = μ = 0, as outlined in the following corol-
lary.
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Corollary 4.5 For the standard Brownian motion W , the probability that the excur-
sion exceeds time d before hitting the barrier b is given by

Q[τ+
d (W) < Hb(W)] = 1 − 2

∑∞
k=0 e− (2k+1)2b2

2d − 1

2
∑∞

k=0 e− (2kb)2
2d − 1

.

Now, the double Laplace transform of the hitting and Parisian times in the case
where the excursion has exceeded length d before hitting b can be derived.

Proposition 4.6 The double Laplace transform of the hitting and Parisian times for
a drifted Brownian motion Wμ in the case where τ+

d (Wμ) < Hb(W
μ) is given by

E
Q

0

[
e−βτ+

d (Wμ)−γHb(W
μ)1{τ+

d (Wμ)<Hb(W
μ)}

]

=
(

e−βd

(
e−b(

√
2γ+μ2−μ)N

( b√
d

−
√

(2γ + μ2)d
)

− eb(
√

2γ+μ2−μ)N
(
− b√

d
−

√
(2γ + μ2)d

))

×
∞∑

k=0

2
(
z(k,0,μ) − eμbz(k + 1

2
,0,μ)

)
− z(0,0,μ)

)

×
(( ∞∑

k=0

2
(
z(k,β + γ,μ) +

√
2(β + γ ) + μ2e−

√
2(β+γ )+μ22kb

)

− z(0, β + γ,μ) − 2
√

2(β + γ ) + μ2

)

×
(

1 −N
(μd − b√

d

)
− e2μbN

(−μd − b√
d

)))−1

,

where the function z is defined by (4.1).

Proof In order to find the double Laplace transform in this case, we define a new
infinitesimal generator for the perturbed Brownian motion Wε,μ starting at the stop-
ping time τ+

d (Wε,μ). We can do this due to the strong Markov property of Brownian
motion. State 2, which stands for Wε,μ being above the barrier b, is an absorbing
state, hence nothing comes back from there. Also, we are not concerned with state
−1, meaning that Wε,μ is below zero, because our excursion has already exceeded
time d and we are now only interested in hitting b. With this motivation, the generator
becomes

Af1(u, t) = ∂f1

∂t
(u, t) + ∂f1

∂u
(u, t) + λ1,2(u)

(
f2(u, t) − f1(u, t)

)
,
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where we choose f2 to be f2(u, t) = e−γ t . Since state 2 is absorbing, the function f2
can be assigned arbitrarily. Note that our choice of f2 is a bounded function.

Furthermore, at time τ+
d (Wε,μ), we are in state 1. Similarly to the proof of

Lemma 3.3, we solve Af ≡ 0 in order to derive a martingale of the form

M̂t := fXt

(
Ut(X), t

) = e−βthXt

(
Ut(X)

)
.

However, notice that we have f1(d,0) = h1(d) because by definition our time elapsed
at starting time τ+

d (Wε,μ) is d . This is a stopping time that denotes the first time the
excursion reaches a length d , so the time since the last 0 is exactly d . Since we have
already achieved an excursion above zero of length d , we are not concerned about any
excursions any longer; hence, we choose the constraint h1(∞) = 0. Solving Af ≡ 0
yields

h1(u) =
∫ ∞

u

λ1,2(w)e− ∫ w
u γ+λ1,2(v) dv dw, 0 ≤ u ≤ ∞,

where

λ1,2(t)e
− ∫ t

0 λ1,2(v) dv = p12(t) = Pε[Hb(W
μ) ∈ dt] = b − ε√

2πt3
e− (b−ε−μt)2

2t .

Hence,

h1(d) = eγ d
∫ ∞
d

e−γwp12(w)dw

1 − ∫ d

0 p12(s) ds

=
(

eγ d

(
e−(b−ε)(

√
2γ+μ2−μ)N

(b − ε√
d

−
√

(2γ + μ2)d
)

− e(b−ε)(
√

2γ+μ2−μ)N
(
−b − ε√

d
−

√
(2γ + μ2)d

)))

×
(

1 −N
(μd − (b − ε)√

d

)
− e2μ(b−ε)N

(−μd − (b − ε)√
d

))−1

ε→0−→
(

eγ d

(
e−b(

√
2γ+μ2−μ)N

( b√
d

−
√

(2γ + μ2)d
)

− eb(
√

2γ+μ2−μ)N
(
− b√

d
−

√
(2γ + μ2)d

)))

×
(

1 −N
(μd − b√

d

)
− e2μbN

(−μd − b√
d

))−1

.

As a result, we have found a martingale M̂t := fXt (Ut (X), t) that satisfies

M̂0 = f1(d,0) = h1(d).
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Also, with ˆ̂
Hb(W

ε,μ) being the first hitting time of b of our process restarted at

τ+
d (Wε,μ), we have Hb(W

ε,μ) = τ+
d (Wε,μ) + ˆ̂

Hb(W
ε,μ). Furthermore, note that

M̂ ˆ̂
Hb(W

ε,μ)
= f2

(
U ˆ̂

Hb(W
ε,μ)

(X),
ˆ̂

Hb(W
ε,μ)

)
= e−γ

ˆ̂
Hb(W

ε,μ).

Notice that at the hitting time of b, the process Wε,μ is in state 2. Hence, using the

optional sampling theorem on the martingale M̂ with the stopping time ˆ̂
Hb(W

ε,μ)∧ t

yields

EQ

ε

[
M̂ ˆ̂

Hb(W
ε,μ)∧t

]
= EQ

ε [M̂0].
Notice that, by construction,

EQ

ε [M̂0] = h1(d).

Furthermore, h1 is continuous and decreasing. Hence, there exists a constant K such
that |h1(Ut (X))| ≤ K for all Ut(X). We then apply Lebesgue’s dominated conver-
gence theorem and derive

lim
t→∞EQ

ε

[
M̂ ˆ̂

Hb(W
ε,μ)∧t

]
= EQ

ε

[
M̂ ˆ̂

Hb(W
ε,μ)

]
= EQ

ε

[
e−γ

ˆ̂
Hb(W

ε,μ)
]
.

Hence, h1(d) = E
Q
ε [e−γ

ˆ̂
Hb(W

ε,μ)], and the double Laplace transform becomes

EQ

ε

[
e−βτ+

d (Wε,μ)e−γHb(W
ε,μ)1{τ+

d (Wε,μ)<Hb(W
ε,μ)}

]

= EQ

ε

[
e−βτ+

d (Wε,μ)1{τ+
d (Wε,μ)<Hb(W

ε,μ)}E
Q

ε

[
e−γHb(W

ε,μ)
∣∣τ+

d (Wε,μ)
]]

= EQ

ε

[
e−βτ+

d (Wε,μ)1{τ+
d (Wε,μ)<Hb(W

ε,μ)}E
Q

ε

[
e−γ (τ+

d (Wε,μ)+ ˆ̂
Hb(W

ε,μ))
∣∣τ+

d (Wε,μ)
]]

= h1(d)EQ

ε

[
e−(β+γ )τ+

d (Wε,μ)1{τ+
d (Wε,μ)<Hb(W

ε,μ)}
]
.

Together with Lemma 4.4, we conclude the proposition. �

5 Pricing Parisian hit options

Let (St )t≥0 be the stock price process following a geometric Brownian motion and
recall all definitions from Sect. 2.

5.1 Option triggered at minimum of Parisian and hitting times

Our so-called MinParisianHit option is triggered either when the age of an excursion
above L reaches time d or a barrier B > L is hit by the underlying price process S.
More precisely, a MinParisianHit Up-and-In is activated at the minimum of both stop-
ping times, that is, min(τ+

L,d(S),HB(S)). This time is illustrated by the blue line in
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Fig. 2 Minimum of Parisian
and hitting times (Color figure
online)

Fig. 2. To simplify calculations, we assume from now on that the underlying pro-
cess starts at the barrier, that is, S0 = L or equivalently � = 0; hence, we can use
the results from our three-state semi-Markov model. The more general case, where
S0 �= L and the strong Markov property of Brownian motion applies, is discussed in
the Appendix.

The MinParisianHit Up-and-In call option has the payoff

(ST − K)+1{min(τ+
L,d (S),HB(S))≤T },

where K denotes the strike price. Using risk-neutral valuation and Girsanov’s change
of measure (2.1), the price of this option can be written as

minPHCu
i (S0, T ,K,L,d, r)

= e−rT E
Q̄

S0

[
(ST − K)+1{min(τ+

L,d (S),HB(S))≤T }
]

= e−(r+ 1
2 m2)T E

Q

0

[
(S0e

σZT − K)+emZT 1min{τ+
d (Z),Hb(Z)}≤T

]

= e−(r+ 1
2 m2)T

∫ ∞
1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,min

(
τ+
d (Z),Hb(Z)

) ≤ T
]
.

(5.1)

Hence, finding the fair price for a MinParisianHit option reduces to finding the joint
distribution of the position at maturity and the minimum of Parisian and hitting times.

Remark 5.1 We fix the notation for inverse Laplace transforms. Given a function
F(β), the inverse Laplace transform of F , denoted by L−1{F(β)}, is the function f

whose Laplace transform is F , that is,

f (t) = L−1
β {F(β)}(t) ⇐⇒ Lt {f (t)}(β) :=

∫ ∞

0
e−βtf (t) dt = F(β).

Note that we consider the inverse Laplace transform with respect to the transforma-
tion variable β at the evaluation point t . If not otherwise stated, we take from now on
L−1

β {F(β)}(t) as a function of the time variable t .

Proposition 5.2 The joint density of the position at maturity and the minimum of
hitting and Parisian times for standard Brownian motion is
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Q0
[
ZT ∈ dz,min

(
τ+
d (Z),Hb(Z)

) ≤ T
]

=
∫ T

t=0

∫ b

w=−∞
1√

2π(T − t)
e
− (z−w)2

2(T −t)

×
( ∑∞

k=−∞ w+2kb
d

e− (w+2kb)2
2d

2
∑∞

k=0(e
− (2kb)2

2d − e− (2k+1)2b2
2d )

L−1
β {H1(β)}(t)

+ δ(w−b)L−1
β {H2(β)}(t)

)

dw dt

with

H1(β) = e−βd(2
∑∞

k=0(z(k,0,0) − z(k + 1
2 ,0,0)) − z(0,0,0))

2
∑∞

k=0(z(k,β,0) + √
2βe−√

2β2kb) − z(0, β,0) − 2
√

2β
,

H2(β) = 2
∑∞

k=0 z(k + 1
2 , β,0) + √

2βe−(2k+1)
√

2βb

2
∑∞

k=0(z(k,β,0) + √
2βe−√

2β2kb) − z(0, β,0) − 2
√

2β
,

with z defined by (4.1) and δx being the Dirac delta function.

Proof Let Z denote a standard Brownian motion, and τ(Z) := min(τ+
d (Z),Hb(Z)).

The joint distribution of the position at maturity and the minimum of Parisian and
hitting times can be decomposed as

Q0
[
ZT ∈ dz,min

(
τ+
d (Z),Hb(Z)

) ≤ T
]

=
∫ T

t=0

∫ b

w=−∞
Q0[ZT ∈ dz, τ (Z) ∈ dt,Zτ ∈ dw]

=
∫ T

t=0

∫ b

w=−∞
Q0[ZT ∈ dz|τ(Z) = t,Zτ ∈ dw]Q0[τ(Z) ∈ dt,Zτ ∈ dw]

=
∫ T

t=0

∫ b

w=−∞
1√

2π(T − t)
e
− (z−w)2

2(T −t) dzQ0[τ(Z) ∈ dt,Zτ ∈ dw]

=
∫ T

t=0

∫ b

w=−∞
1√

2π(T − t)
e
− (z−w)2

2(T −t) dz

× (
Q0[τ(Z) ∈ dt,Zτ ∈ dw|Hb(Z) < τ+

d (Z)]Q0[Hb(Z) < τ+
d (Z)]

+Q0[τ(Z) ∈ dt,Zτ ∈ dw|τ+
d (Z) < Hb(Z)]Q0[τ+

d (Z) < Hb(Z)]).

We find
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Q0[τ(Z) ∈ dt,Zτ ∈ dw|τ+
d (Z) < Hb(Z)]Q0[τ+

d (Z) < Hb(Z)]
= Q0

[
Zτ+

d
∈ dw|τ(Z) = t, τ+

d (Z) < Hb(Z)
]
Q0[τ(Z) ∈ dt |τ+

d (Z) < Hb(Z)]
×Q0[τ+

d (Z) < Hb(Z)]
= Q0

[
Zτ+

d
∈ dw|τ(Z) = t, τ+

d (Z) < Hb(Z)
]
Q0[τ(Z) ∈ dt, τ+

d (Z) < Hb(Z)].
(5.2)

For the first term on the right-hand side, we notice that

Q0
[
Zτ+

d
∈ dw

∣∣τ(Z) = t, τ+
d (Z) < Hb(Z)

]

= lim
ε→0

Qε

[
Zd ∈ dw

∣∣∣ inf
0<s<d

Zs > 0, sup
0<s<d

Zs < b
]

= lim
ε→0

Qε[Zd ∈ dw, inf0<s<d Zs > 0, sup0<s<d Zs < b]
Qε[inf0<s<d Zs > 0, sup0<s<d Zs < b]

= lim
ε→0

∑∞
k=−∞(e− (w−ε+2kb)2

2d − e− (w+ε+2kb)2
2d )

∑∞
k=−∞

∫ b

0 (e− (z−ε+2kb)2
2d − e− (z+ε+2kb)2

2d ) dz

dw

=
∑∞

k=−∞ w+2kb
d

e− (w+2kb)2
2d

2
∑∞

k=0(e
− (2kb)2

2d − e− (2k+1)2b2
2d )

dw. (5.3)

Notice that the first equality results from the position Zτ+
d

at the Parisian time being

independent of the time τ+
d (Z) = t ; see Chesney et al. [8, Sect. 8.3.1] for further

details. The formulae for the third line can be found in Borodin and Salminen [5,
Chapter 1, formulae (1.15.4) and (1.15.8)]. The second term on the right-hand side
of (5.2) can be calculated via inverting the Laplace transform of the minimum of the
hitting and Parisian times. The Laplace transform has been found in Lemma 4.4. With
μ = 0, we derive

Q0
[
τ(Z) ∈ dt, τ+

d (Z) < Hb(Z)
] = L−1

β

{
E
Q

0

[
e−βτ+

d (Z)1{τ+
d (Z)<Hb(Z)}

]}
(t) dt

= L−1
β

{
e−βd(

∑∞
k=0 2(z(k,0,0) − z(k + 1

2 ,0,0)) − z(0,0,0))
∑∞

k=0 2(z(k,β,0) + √
2βe−√

2β2kb) − z(0, β,0) − 2
√

2β

}

(t) dt,

where z(k,β,μ) is defined in (4.1). We also have in the case Hb(Z) < τ+
d (Z) that

Q0[τ(Z) ∈ dt,Zτ ∈ dw|Hb(Z) < τ+
d (Z)]Q0[Hb(Z) < τ+

d (Z)]
= Q0[ZHb

∈ dw|τ(Z) = t,Hb(Z) < τ+
d (Z)]Q0[τ(Z) ∈ dt,Hb(Z) < τ+

d (Z)].
Since ZHb

conditionally on Hb(Z) is deterministic, the conditional probability on the
right-hand side above becomes the Dirac delta function at the point b; hence,

Q0[ZHb
∈ dw|τ(Z) = t,Hb(Z) < τ+

d (Z)] = δw−b dw,



Joint distribution of Parisian and hitting time of Brownian motion 797

where the Dirac delta function is defined for all x ∈R as

δx =
{

0 if x �= 0,

∞ if x = 0,

and also satisfying the identity

∫ ∞

−∞
δx dx = 1.

By inversion of the Laplace transform in Lemma 4.2 with h ≡ 1, we firstly derive for
the numerator

∂

∂ε
Q̂1,2(β) −→

∞∑

k=0

(

2

√
2

πd
eμb− (2k+1)2b2

2d
− (2β+μ2)d

2 + 2
√

2β + μ2eμb

×
(

e−(2k+1)
√

2β+μ2bN
(
− (2k + 1)b√

d
+

√
(2β + μ2)d

)

− e(2k+1)
√

2β+μ2bN
(
− (2k + 1)b√

d
−

√
(2β + μ2)d

)))

= 2eμb

∞∑

k=0

(
z(k + 1

2
, β,μ) +

√
2β + μ2e−(2k+1)

√
2β+μ2b

)
.

Setting μ = 0, we obtain

Q0[τ(Z) ∈ dt,Hb(Z) < τ+
d (Z)] = L−1

β

{
E
Q

0

[
e−βHb(Z)1{Hb(Z)<τ+

d (Z)}
]}

(t) dt

= L−1
β

{
2
∑∞

k=0(z(k + 1
2 , β,0) + √

2βe−(2k+1)
√

2βb)

2
∑∞

k=0(z(k,β,0) + √
2βe−√

2β2kb) − z(0, β,0) − 2
√

2β

}
(t) dt.

Putting things together, the proposition follows. �

We are now able to price a MinParisianHit option by combining Proposition 5.2
and (5.1). In particular, the fair price of a MinParisianHit Up-and-In call option can
be calculated via evaluating the integral

minPHCu
i (S0, T ,K,L,d, r)

= e−(r+ 1
2 m2)T

∫ ∞
1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,min

{
τ+
d (Z),Hb(Z)

} ≤ T
]
,

(5.4)

where the joint probability has been derived in Proposition 5.2.
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5.2 Option triggered at the maximum of Parisian and hitting times

Our so-called MaxParisianHit option is triggered when both the barrier B is hit and
the excursion age exceeds the duration d above L. Hence, the payoff of a call option
with strike K becomes

(ST − K)+1{τ+
L,d (S)≤T ,HB(S)≤T } = (ST − K)+1{max(τ+

L,d (S),HB(S))≤T }.

The maximum of Parisian and hitting times is illustrated by the blue line in Fig. 3.
As in the previous case, the problem reduces to finding the joint density of the hit-

ting and Parisian times and the position for a drifted Brownian motion, which then can
be related to the joint density of the hitting and Parisian time for a standard Brownian
motion due to Girsanov. We also assume that S0 = L, thus τ+

�,d(Z) = τ+
d (Z), and

discuss the more general case S0 �= L in the Appendix. The fair price becomes

maxPHCu
i (S0, T ,K,L,d, r)

= e−rT E
Q̄

S0

[
(ST − K)+1{τ+

L,d (S)≤T ,HB(S)≤T }
]

= e−(r+ 1
2 m2)T E

Q

0

[
(S0e

σZT − K)+emZT 1{τ+
d (Z)≤T ,Hb(Z)≤T }

]

= e−(r+ 1
2 m2)T

∫ ∞
1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,max

(
τ+
d (Z),Hb(Z)

) ≤ T
]
.

(5.5)

Hence, finding the fair price of a MaxParisianHit option reduces to finding the joint
distribution of the position at maturity and the maximum of Parisian and hitting times.

Proposition 5.3 The joint distribution of the position at maturity and the maximum
of hitting and Parisian times of standard Brownian motion is

Fig. 3 Maximum of Parisian
and hitting times (Color figure
online)
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Q0
[
ZT ∈ dz,max

(
τ+
d (Z),Hb(Z)

) ≤ T
]

=
∫ T

t=0

∫ ∞

w=−∞
1√

2π(T − t)
e
− (z−w)2

2(T −t)

×
(

|w|
π

√
(t − d)d3

e− w2
2d −

∑∞
k=−∞ w+2kb

d
e− (w+2kb)2

2d

∑∞
k=−∞(e− (2kb)2

2d − e− (2k+1)2b2
2d )

L−1
β {H1(β)}(t) dt

+ δ(w−b)L−1
γ {H3(γ )}(t)

)

dw dt dz,

where

H1(β) = e−βd(2
∑∞

k=0(z(k,0,0) − z(k + 1
2 ,0,0)) − z(0,0,0))

2
∑∞

k=0(z(k,β,0) + √
2βe−√

2β2kb) − z(0, β,0) − 2
√

2β
,

H3(γ ) =
((

e−√
2γ bN

( b√
d

− √
2γ d

)
− e

√
2γ bN

(
− b√

d
− √

2γ d
))

×
∞∑

k=0

2
(
z(k,0,0) − z(k + 1

2
,0,0)

)
− z(0,0,0)

)

×
(( ∞∑

k=0

2
(
z(k, γ,0) + √

2γ e−√
2γ 2kb

)
− z(0, γ,0) − 2

√
2γ

)

×
(

1 − 2N
(

− b√
d

)))−1

,

with z defined by (4.1) and δx denoting the Dirac delta function.

Proof Let τ̄ (Z) = max(τ+
d (Z),Hb(Z)). We again have the decomposition

Q0
[
ZT ∈ dz,max

(
τ+
d (Z),Hb(Z)

) ≤ T
]

=
∫ T

t=0

∫ ∞

w=−∞
Q0[ZT ∈ dz, τ̄ (Z) ∈ dt,Zτ̄ ∈ dw]

=
∫ T

t=0

∫ ∞

w=−∞
Q0[ZT ∈ dz|τ̄ (Z) = t,Zτ̄ ∈ dw]Q0[τ̄ (Z) ∈ dt,Zτ̄ ∈ dw]

=
∫ T

t=0

∫ ∞

w=−∞
1√

2π(T − t)
e
− (z−w)2

2(T −t) Q0[τ̄ (Z) ∈ dt,Zτ̄ ∈ dw]dz

=
∫ T

t=0

∫ ∞

w=−∞
1√

2π(T − t)
e
− (z−w)2

2(T −t)
(
Q0[τ̄ (Z) ∈ dt,Zτ̄ ∈ dw,Hb(Z) < τ+

d (Z)]

+Q0[τ̄ (Z) ∈ dt,Zτ̄ ∈ dw, τ+
d (Z) < Hb(Z)])dz. (5.6)
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For the second part of the right-hand side of (5.6), we have

Q0[τ̄ (Z) ∈ dt,Zτ̄ ∈ dw, τ+
d (Z) < Hb(Z)]

= Q0[ZHb
∈ dw|Hb(Z) = t, τ+

d (Z) < Hb(Z)]
×Q0[Hb(Z) ∈ dt, τ+

d (Z) < Hb(Z)]
= δw−b L−1

γ {H3(γ )}(t) dw,

where we know from Proposition 4.6 with μ = 0 and β = 0 that

H3(γ ) = E

[
e−γHb(Z)1{τ+

d (Z)<Hb(Z)}
]

=
((

e−√
2γ bN

( b√
d

− √
2γ d

)
− e

√
2γ bN

(
− b√

d
− √

2γ d
))

×
∞∑

k=0

2
(
z(k,0,0) − z(k + 1

2
,0,0)

)
− z(0,0,0)

)

×
(( ∞∑

k=0

2
(
z(k, γ,0) + √

2γ e−√
2γ 2kb

)
− z(0, γ,0) − 2

√
2γ

)

×
(

1 − 2N
(

− b√
d

)))−1

.

Notice the Dirac delta function, which is due to the deterministic behaviour of ZHb

conditioned on Hb(Z) = t . For the first part of the right-hand side of (5.6), we have

Q0[τ̄ (Z) ∈ dt,Zτ̄ ∈ dw,Hb(Z) < τ+
d (Z)]

= Q0
[
τ+
d (Z) ∈ dt,Zτ+

d
∈ dw,Hb(Z) < τ+

d (Z)
]

= Q0
[
Zτ+

d
∈ dw, τ+

d (Z) ∈ dt
] −Q0

[
Zτ+

d
∈ dw, τ+

d (Z) ∈ dt, τ+
d (Z) < Hb(Z)

]
.

We have found in Sect. 5.1 that with (5.2) and (5.3) combined, we derive

Q0
[
Zτ+

d
∈ dw, τ+

d (Z) ∈ dt, τ+
d (Z) < Hb(Z)

]

=
∑∞

k=−∞ w+2kb
d

e− (w+2kb)2
2d

2
∑∞

k=0(e
− (2kb)2

2d − e− (2k+1)2b2
2d )

L−1
β {H1(β)}(t) dw dt.

Also, [9, Theorem 1] provides us with

Q0
[
Zτ+

d
∈ dw, τ+

d (Z) ∈ dt
] = |w|

π
√

(t − d)d3
e− w2

2d dw dt.

Hence, putting terms together, we derive the proposition. �
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Proposition 5.3 allows us to derive the price of a MaxParisianHit option. In partic-
ular, with (5.5) we find the fair price of a MaxParisianHit Up-and-In call to be

maxPHCu
i (S0, T ,K,L,d, r)

= e−(r+ 1
2 m2)T

∫ ∞
1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,max

(
τ+
d (Z),Hb(Z)

) ≤ T
]
,

(5.7)

where the joint probability has been found in Proposition 5.3. In Propositions 4.3
and 4.6, we have derived the double Laplace transform of the hitting and Parisian
times for drifted Brownian motion. This main result leads to finding the joint dis-
tribution of the final position of Brownian motion and the minimum or maximum
of hitting and Parisian time. We have established pricing formulae for MinParisian-
Hit and MaxParisianHit options. These fair prices contain single Laplace transforms,
which need to be inverted numerically using techniques as in Labart and Lelong [17],
Abate and Whitt [1] and Bernard et al. [4].

Appendix A

In the case where the underlying asset does not start at the level L, that is, S0 �= L, we
want to make use of the strong Markov property of Brownian motion. We distinguish
between two possible scenarios, S0 < L and S0 > L. From a financial point of view,
we are only concerned with L < B , and therefore � < b.

The price (5.4) of the MinParisianHit Up-and-In call option can be rewritten in the
form

minPHCu
i (S0, T ,K,L,d, r)

= e−(r+ 1
2 m2)T

∫ ∞
1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,min

(
τ+
l,d (Z),Hb(Z)

) ≤ T
]
,

whereas the price (5.7) of the MaxParisianHit Up-and-In call option becomes

maxPHCu
i (S0, T ,K,L,d, r)

= e−(r+ 1
2 m2)T

∫ ∞
1
σ

ln K
S0

(S0e
σz − K)emzQ0

[
ZT ∈ dz,max

(
τ+
l,d (Z),Hb(Z)

) ≤ T
]
.

The proofs of Propositions 5.3 and 5.3 suggest that the pricing reduces to finding
the Laplace transforms of the hitting and Parisian times. This can be achieved by
decomposing the stopping times and using known results for S0 = L.

We look at the case S0 < L first. By definition it follows that � > 0. De-
fine the first hitting time of � for the Q-Brownian motion Z with Z0 = 0 to be
H�(Z) = inf{t ≥ 0 : Zt = �}. By definition we have

τ+
�,d (Z) = H�(Z) + τ+

�,d(Z̃),
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where Z̃ stands for Brownian motion restarted at time H�(Z), i.e., Z̃0 = �. Hence, we
have equality in distribution of τ+

�,d(Z̃) and τ+
d (Z). By the strong Markov property

of Brownian motion we therefore have

E
Q

0

[
e
−βτ+

�,d (Z)1{τ+
�,d (Z)<Hb(Z)}

]
= E

Q

0

[
e−βH�(Z)

]
E
Q

�

[
e
−βτ+

�,d (Z̃)1{τ+
�,d (Z̃)<Hb(Z̃)}

]
.

Clearly, Q0[H�(Z) < Hb(Z)] = 1 due to � < b. Notice that

Q0
[
τ+
�,d(Z) < Hb(Z)

] = Q�

[
τ+
�,d(Z̃) < Hb(Z̃)

]

since � < b and τ+
�,d is concerned with the Parisian time above �. It is not difficult to

see that

E
Q

�

[
e
−βτ+

�,d (Z̃)1{τ+
�,d (Z̃)<Hb(Z̃)}

]
= E

Q

0

[
e−βτ+

d (Z)1{τ+
d (Z)<Hb(Z)}

]
,

which has been calculated in Lemma 4.4 with μ = 0. Also, according to [5, Chap. 1,
formula (2.0.1)], we have

E
Q

0

[
e−βH�(Z)

] = e−�
√

2β,

yielding

E
Q

0

[
e
−βτ+

�,d (Z)1{τ+
�,d (Z)<Hb(Z)}

]

= e−�
√

2β−βd(
∑∞

k=0 2(z(k,0,0) − z(k + 1
2 ,0,0)) − z(0,0,0))

∑∞
k=0 2(z(k,β,0) + √

2βe−√
2β2kb) − z(0, β,0) − 2

√
2β

.

In the second case where S0 > L, we have by definition � < 0 < b. Then τ+
�,d (Z)

can be decomposed into

τ+
�,d(Z) =

{
d if H�(Z) ≥ d,

H�(Z) + τ+
�,d(Z̃) if H�(Z) < d,

where Z̃ is a Brownian motion restarted at �. Hence,

E
Q

0

[
e
−βτ+

�,d (Z)1{τ+
�,d (Z)<Hb(Z)}

]

= E
Q

0

[
e−βd1{τ+

�,d (Z)<Hb(Z)}1{H�(Z)>d}
]

+E
Q

0

[
e
−βH�(Z)−βτ+

�,d (Z̃)1{τ+
�,d (Z)<Hb(Z)}1{H�(Z)<d}

]

= e−βdQ0[Hb(Z) > d,H�(Z) > d]
+E

Q

0

[
e−βH�(Z)1{H�(Z)<d}

]
E
Q

�

[
e
−βτ+

�,d (Z̃)1{τ+
�,d (Z̃)<Hb(Z̃)}

]
.

According to [5, Chap. 1, formula (1.15.4)],
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Q0[Hb(Z) > d,H�(Z) > d]
= Q0

[
� < inf

0≤s≤d
Zs, sup

0≤s≤d

Zs < b
]

= 1√
2πd

∞∑

k=−∞

∫ b

a

(
e− (z+2k(b−�))2

2d − e− (z−2�+2k(b−�))2
2d

)
dz.

Also, we can calculate

E
Q

0

[
e−βH�(Z)1{H�(Z)<d}

]

=
∫ d

0
e−βt |�|√

2πt3
e− �2

2t dt

= e−√
2β|�|N

(√
2βd − |�|√

d

)
+ e

√
2β|�|N

(
−√

2βd − |�|√
d

)
.

Again, we have the equality in distribution

E
Q

�

[
e
−βτ+

�,d (Z̃)1{τ+
�,d (Z̃)<Hb(Z̃)}

]
= E

Q

0

[
e−βτ+

d (Z)1{τ+
d (Z)<Hb(Z)}

]
,

which has been calculated in Lemma 4.4 with μ = 0. Altogether, we get

E
Q

0

[
e
−βτ+

�,d (Z)1{τ+
�,d (Z)<Hb(Z)}

]

= e−βd

√
2πd

∞∑

k=−∞

∫ b

a

(
e− (z+2k(b−�))2

2d − e− (z−2�+2k(b−�))2
2d

)
dz

+
(

e−√
2β|�|N

(√
2βd − |�|√

d

)
+ e

√
2β|�|N

(
−√

2βd − |�|√
d

))

× e−βd(
∑∞

k=0 2(z(k,0,0) − z(k + 1
2 ,0,0)) − z(0,0,0))

∑∞
k=0 2(z(k,β,0) + √

2βe−√
2β2kb) − z(0, β,0) − 2

√
2β

.

Analogously, similar results when Hb(Z) < τ+
�,d(Z), � < b, can be achieved.
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