
Finance Stoch (2016) 20:635–668
DOI 10.1007/s00780-016-0299-x

An explicit martingale version of the one-dimensional
Brenier theorem

Pierre Henry-Labordère1 · Nizar Touzi2

Received: 26 December 2013 / Accepted: 17 August 2015 / Published online: 18 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract By investigating model-independent bounds for exotic options in finan-
cial mathematics, a martingale version of the Monge–Kantorovich mass transport
problem was introduced in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013;
Galichon et al. in Ann. Appl. Probab. 24:312–336, 2014). Further, by suitable adap-
tation of the notion of cyclical monotonicity, Beiglböck and Juillet (Ann. Probab.
44:42–106, 2016) obtained an extension of the one-dimensional Brenier theorem to
the present martingale version. In this paper, we complement the previous work by
extending the so-called Spence–Mirrlees condition to the case of martingale optimal
transport. Under some technical conditions on the starting and the target measures, we
provide an explicit characterization of the corresponding optimal martingale transfer-
ence plans both for the lower and upper bounds. These explicit extremal probability
measures coincide with the unique left- and right-monotone martingale transference
plans introduced in (Beiglböck and Juillet in Ann. Probab. 44:42–106, 2016). Our ap-
proach relies on the (weak) duality result stated in (Beiglböck et al. in Finance Stoch.
17:477–501, 2013), and provides as a by-product an explicit expression for the cor-
responding optimal semi-static hedging strategies. We finally provide an extension to
the multiple marginals case.

The authors are grateful to Mathias Beiglböck and Xiaolu Tan for fruitful comments, and for pointing
out subtle gaps in a previous version. This work benefits from the financial support of the ERC
Advanced Grant 321111, and the Chairs Financial Risk and Finance and Sustainable Development.

B P. Henry-Labordère
pierre.henry-labordere@sgcib.com

N. Touzi
nizar.touzi@polytechnique.edu

1 Global Markets Quantitative Research, Société Générale, 17 cours Valmy, La Défense, Paris,
France

2 Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, Paris, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00780-016-0299-x&domain=pdf
mailto:pierre.henry-labordere@sgcib.com
mailto:nizar.touzi@polytechnique.edu


636 P. Henry-Labordère, N. Touzi

Keywords Model-independent pricing · Martingale optimal transport problem ·
Robust superreplication theorem

Mathematics Subject Classification (2000) 91G20 · 91G80

JEL Classification G12 · G13

1 Introduction

Since the seminal paper of Hobson [24], an important literature has developed on
the topic of robust or model-free superhedging of some path-dependent derivative
security with payoff ξ , given the observation of the stochastic process of some un-
derlying financial asset, together with a class of derivatives; see [7, 9, 10, 11, 12,
13, 14, 16, 17, 26, 28, 33] and the survey papers of Obłój [34] and Hobson [25]. In
continuous-time models, these papers mainly focus on derivatives whose payoff ξ is
stable under time change. Then, the key observation was that in the idealized context
where all T -maturity European calls and puts, with all possible strikes, are available
for trading, the model-free superhedging cost of ξ is closely related to the Skorokhod
embedding problem. Indeed, the market prices of all T -maturity European calls and
puts with all possible strikes allow recovering the marginal distribution of the under-
lying asset price at time T .

Recently, this problem has been addressed via a new connection to the theory of
optimal transportation; see [3, 21, 23, 1, 2, 18, 19]. Our interest in this paper is on the
formulation of a Brenier theorem in the present martingale context. We recall that the
Brenier theorem in the standard optimal transportation theory states that the optimal
coupling measure is the gradient of some convex function which is identified in the
one-dimensional case with the so-called Fréchet–Hoeffding coupling [6]. A remark-
able feature is that this coupling is optimal for the class of coupling cost functions
satisfying the so-called Spence–Mirrlees condition.

We first consider the one-period model. In the rest of the paper, we assume that
one can borrow or lend at a zero rate of interest. Denote by X, Y the prices of
some underlying asset at the future maturities 0 and 1, respectively. Then the pos-
sibility of dynamic trading implies that the no-arbitrage condition is equivalent to
the non-emptyness of the set M2 of all joint measures P on R+ × R+ satisfying
the martingale condition E

P[Y |X] = X. The model-free subhedging and superhedg-
ing costs of some derivative security with payoff c(X,Y ), given the marginal dis-
tributions X ∼ μ and Y ∼ ν, is essentially reduced to the martingale transportation
problems

inf
P∈M2(μ,ν)

E
P[c(X,Y )] and sup

P∈M2(μ,ν)

E
P[c(X,Y )],

where M2(μ, ν) is the collection of all probability measures P ∈ M2 such that
X ∼P μ, Y ∼P ν. Our main objective is to characterize the optimal coupling mea-
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sures which solve the above problems. This provides some remarkable extremal
points of the convex (and weakly compact) set M2(μ, ν). In the absence of marginal
restrictions, Jacod and Yor [30] (see also Jacod and Shiryaev [29], Dubins and
Schwarz [20] for the discrete-time setting) proved that a martingale measure P ∈M2

is extremal if and only if all P-local martingales admit a predictable representa-
tion. In the present one-period model, such extremal points of M2 consist of bi-
nomial models. For a specific class of coupling functions c, the extremal points of
the corresponding martingale transportation problem turn out to be of the same na-
ture, and our main contribution in this paper is to provide an explicit characteriza-
tion.

Our starting point is a paper by Hobson and Neuberger [27] who considered the
specific case of the coupling function c(x, y) := |x − y|, and provided a completely
explicit solution of the optimal coupling measure and the corresponding optimal
semi-static strategy. In a recent paper, Beiglböck and Juillet [4] address the problem
from the viewpoint of optimal transportation. By a convenient extension of the no-
tion of cyclic monotonicity, the authors of [4] introduce the notion of a left-monotone
transference plan. They also introduce the notion of left curtain as a left-monotone
transference plan concentrated on the graph of a binomial map. The remarkable result
of [4] is the existence and uniqueness of the left-monotone transference plan which
is indeed a left curtain, together with the optimality of this joint probability mea-
sure for some specific class CBJ of coupling payoffs c(x, y). Notice that the coupling
measure of [27] is not a left curtain, and CBJ does not contain the coupling payoff
|x − y|.

As the first main contribution, we provide an explicit description of the left curtain
P∗ of [4]. Then, by using the weak duality inequality,

– we provide a larger class C ⊃ CBJ of payoff functions for which P∗ is optimal;
– we identify explicitly the solution of the dual problem which consists of the optimal

semi-static superhedging strategy;
– as a by-product, the strong duality holds true.

Our class C is the collection of all smooth functions c : R × R → R, with linear
growth, such that cxyy > 0. We argue that this is essentially the natural class for our
martingale version of the Brenier theorem.

We next explore the multiple marginals extension of our result. In the context of
a model in finite discrete time, we provide a direct extension of our result which
applies to the context of the discretely monitored variance swap. This answers the
open question of optimal model-free upper and lower bounds for this derivative se-
curity.

The paper is organized as follows. Section 2 provides a quick review of the Bre-
nier theorem in the standard one-dimensional optimal transportation problem. The
martingale version of the Brenier theorem is reported in Sect. 3. The explicit con-
struction of the left-monotone martingale transport plan is described in Sect. 4, and
the characterization of the optimal dual superhedging is given in Sect. 5. We report
our extensions to the multiple marginals case in Sect. 6. Finally, Sect. 7 contains the
proofs of our main results.
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2 The Brenier theorem in one-dimensional optimal transportation

2.1 The two-marginals optimal transportation problem

Let X, Y be two scalar random variables denoting the prices of two financial assets
at some future maturity T . The pair (X,Y ) takes values in R

2, and its distribution is
defined by some P ∈PR2 , the set of all probability measures on R

2.
We assume that T -maturity European call options, on each asset and with all pos-

sible strikes, are available for trading at exogenously given market prices. Then it
follows from Breeden and Litzenberger [5] that the marginal distributions of X and
Y are completely determined by the second derivative of the corresponding (convex)
call price functions with respect to the strike. We denote by μ and ν the implied
marginal distributions of X and Y , respectively, by �μ, rμ, �ν , rν the left and right
endpoints of their supports, and by Fμ, Fν the corresponding cumulative distribution
functions.

By definition of the problem, the probability measures μ and ν have finite first
moments, i.e.,

∫
|x|μ(dx) +

∫
|y|ν(dy) < ∞, (2.1)

and although the supports of μ and ν could be restricted to the nonnegative real line
for the financial application, we consider the more general case where μ and ν lie in
PR, the collection of all probability measures on R.

We consider a derivative security defined by the payoff c(X,Y ) at maturity T , for
some upper semicontinuous function c : R2 →R satisfying the growth condition

c(x, y) ≤ ϕ(x) + ψ(y) for some ϕ,ψ :R →R, ϕ+ ∈ L
1(μ),ψ+ ∈ L

1(ν). (2.2)

The model-independent upper bound for this payoff consistent with vanilla option
prices of maturity T can then be framed as a Monge–Kantorovich (in short MK)
optimal transport problem, namely

P 0
2 (μ, ν) := sup

P∈P2(μ,ν)

E
P[c(X,Y )],

where

P2(μ, ν) := {P ∈PR2 : X ∼P μ and Y ∼P ν}.
Here, for the sake of simplicity, we have assumed a zero interest rate. This can easily
be relaxed by considering the forwards of X and Y . Notice that c(X,Y ) is measurable
by the upper semicontinuity condition on c, and E

P[c(X,Y )] is a well-defined scalar
in R∪ {−∞} by conditions (2.1) and (2.2).

In the original optimal transportation problem as formulated by Monge, the above
maximization problem was restricted to the following subclass of measures.

Definition 2.1 A probability measure P ∈ P2(μ, ν) is called a transference map if
P(dx, dy) = μ(dx)δ{T (x)}(dy) for some measurable map T : R → R. We say that T
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pushes forward μ to ν, T#μ = ν, if μ(T −1(A)) = ν(A) for all measurable sets A. In
other words, ν is the image measure of μ by T .

The dual problem associated to the MK optimal transportation problem is defined
by

D0
2(μ, ν) := inf

(ϕ,ψ)∈D0
2

(
μ(ϕ) + ν(ψ)

)
,

where μ(ϕ) := ∫
ϕdμ, ν(ψ) := ∫

ψdν and, denoting ϕ ⊕ ψ(x, y) := ϕ(x) + ψ(y),

D0
2 := {(ϕ,ψ) : ϕ+ ∈ L

1(μ),ψ+ ∈ L
1(ν) and ϕ ⊕ ψ ≥ c}.

The dual problem D0
2(μ, ν) is to find the cheapest superhedging strategy of the

derivative security c(X,Y ) using the market instruments consisting of T -maturity
European calls and puts with all possible strikes. The weak duality inequality

P 0
2 (μ, ν) ≤ D0

2(μ, ν)

is immediate. For an upper semicontinuous payoff function c, equality holds and an
optimal probability measure P

∗ for the MK problem P 0
2 exists; see e.g. Villani [38,

Theorem 1.3].
In this paper, our main interest is on the following results of Rachev and Rüschen-

dorf [36]; see for instance [38, Theorem 2.18]. These results correspond to the one-
dimensional version of the Brenier theorem [6], which provides an interesting char-
acterization of P∗ in terms of the so-called Fréchet–Hoeffding push-forward of μ to
ν, defined by the map

T∗ := F−1
ν ◦ Fμ, (2.3)

where F−1
ν is the right-continuous inverse of Fν , i.e.,

F−1
ν (x) := inf{y : Fν(y) > x}.

In particular, the following result relates the MK optimal transportation problem P 0
2

to the original Monge mass transportation problem for a remarkable class of coupling
functions c. We observe that the following result holds in wider generality; in partic-
ular, the set of measures PT induced by a map T pushing forward μ to ν is dense in
PR2 whenever μ is atomless and the supports of μ and ν are contained in compact
subsets. For the purpose of our financial interpretation, this result characterizes the
structure of the worst case financial market that the derivative security hedger may
face, and characterizes the optimal hedging strategies by the functions ϕ∗ and ψ∗
defined up to an irrelevant constant by

ϕ∗(x) := c
(
x,T∗(x)

)−ψ∗ ◦T∗(x), ψ ′∗(y) := cy

(
T −1∗ (y), y

)
, x, y ∈ R. (2.4)

Theorem 2.2 (See e.g. [38, Theorem 2.44]) Let c be upper semicontinuous with lin-
ear growth. Assume that the partial derivative cxy exists and satisfies the Spence–
Mirrlees condition cxy > 0. Define T∗ by (2.3) and ϕ∗, ψ∗ by (2.4). Assume further
that μ has no atoms, ϕ+∗ ∈ L

1(μ) and ψ+∗ ∈ L
1(ν). Then:
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(i) P 0
2 (μ, ν) = D0

2(μ, ν) = ∫
c(x,T∗(x))μ(dx).

(ii) (ϕ∗,ψ∗) is in D0
2, and is a solution of the dual problem D0

2 .
(iii) P∗(dx, dy) := μ(dx)δT∗(x)(dy) is a solution of the MK optimal transportation

problem P 0
2 , and is the unique optimal transference map.

Proof We provide the proof for completeness, as our main result in this paper will be
an adaptation of the subsequent argument. First, it is clear that P∗ ∈ P(μ, ν). Then
E
P∗ [c(X,Y )] ≤ P 0

2 (μ, ν). We now prove that

(ϕ∗,ψ∗) ∈ D0
2 and μ(ϕ∗) + ν(ψ∗) = E

P∗ [c(X,Y )]. (2.5)

In view of the weak duality P 0
2 (μ, ν) ≤ D0

2(μ, ν), this gives P 0
2 (μ, ν) = D0

2(μ, ν)

and that P∗ and (ϕ∗,ψ∗) are solutions of P 0
2 (μ, ν) and D0

2(μ, ν), respectively.
Under our assumption that ϕ+∗ ∈ L

1(μ), ψ+∗ ∈ L
1(ν), notice that (2.5) is equiva-

lent to

0 = H 0(x,T∗(x)
)
, where H 0 := ϕ∗ ⊕ ψ∗ − c.

By using the expression of ψ ′∗ in (2.4) and the expression of ϕ∗, we obtain that

H 0
y (x, y) = cy

(
T −1∗ (y), y

) − cy(x, y) =
∫ T −1∗ (y)

x

cxy(ξ, y) dξ.

It follows from the Spence–Mirrlees condition that T∗(x) is the unique solution of
the first order condition H 0

y (x, y) = 0. Finally, we compute that

H 0
yy

(
x,T∗(x)

)
T ′∗(x) = cxy

(
x,T∗(x)

)
> 0

by the Spence–Mirrlees condition, where the derivatives are in the sense of
distributions. Hence T∗(x) is the unique global minimizer of H 0(x, ·) and
miny H 0(x, y) = 0. �

We observe that we may also formulate sufficient conditions on the coupling func-
tion c so as to guarantee that the integrability conditions ϕ+∗ ∈ L

1(μ), ψ+∗ ∈ L
1(ν)

hold true; see [38, Theorem 2.44].

Remark 2.3 (Symmetry: anti-monotone rearrangement map)
(i) Suppose that the coupling function c satisfies cxy < 0. Then the upper bound

P 0
2 (μ, ν) is attained by the anti-monotone rearrangement map

P∗(dx, dy) := μ(dx)δ{T ∗(x)}(dy), where T ∗(x) := F−1
ν ◦ (

1 − Fμ(−x)
)
.

To see this, it suffices to rewrite the optimal transportation problem equivalently with
modified inputs

c(x, y) := c(−x, y), μ(x) := μ
(
(−x,∞)

)
, ν := ν,

so that c satisfies the Spence–Mirrlees condition cxy > 0.
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(ii) Under the Spence–Mirrlees condition cxy > 0, the lower bound problem is
explicitly solved by the anti-monotone rearrangement. Indeed, it follows from the
first part (i) of the present remark that

inf
P∈P2(μ,ν)

E
P[c(X,Y )] = − sup

P∈P2(μ,ν)

E
P[−c(X,Y )]

= −E
P∗ [−c(X,Y )] =

∫
c
(
x,T ∗(x)

)
μ(dx).

Remark 2.4 The Spence–Mirrlees condition is a natural requirement in the optimal
transportation setting in the following sense. The optimization problem is not affected
by a modification of the coupling function from c to c̄ := c+a ⊕b for any a ∈ L

1(μ)

and b ∈ L
1(ν). Since cxy = c̄xy , it follows that the Spence–Mirrlees condition is sta-

ble for the above transformation of the coupling function.

Example 2.5 (Basket option) Let c(x, y) = (x +y −k)+ for some k ∈R (see [15, 32]
for multi-asset basket options). The result of Theorem 2.2 applies to this example as
well, as it is shown in [38, Chap. 2] that the regularity condition c ∈ C1,1 is not
needed. The upper bound is attained by the Fréchet–Hoeffding transference map
T∗ := F−1

ν ◦ Fμ, and the optimal hedging strategy is

ψ∗(y) = (y − ȳ)+, ϕ∗(x) = (
T∗(x) + x − k

)+ − (
T∗(x) − ȳ

)+
,

where ȳ is defined by T∗(k − ȳ) = ȳ.

2.2 The multi-marginals optimal transportation problem

The previous results have been extended to the n-marginals optimal trans-
portation problem by Gangbo and Świȩch [22], Carlier [8] and Pass [35]. Let
X = (X1, . . . ,Xn) be a random variable with values in R

n, representing the prices
at some fixed time horizon of n financial assets, and consider some upper semicon-
tinuous payoff function c : Rn → R with linear growth. Let μ1, . . . ,μn ∈ PR be the
corresponding marginal distributions, and μ := (μ1, . . . ,μn). The upper bound for
the market price of a derivative security with payoff function c is defined by the
optimal transportation problem

P 0
n (μ) := sup

P∈Pn(μ)

E
P[c(X)], (2.6)

where

Pn(μ) := {P ∈ PRn : Xi ∼P μi,1 ≤ i ≤ n}.
Then, under convenient conditions on the coupling function c (see Pass [35] for the
most general ones), there exists a solution P∗ to the MK optimal transportation prob-
lem P 0

n (μ) which is the unique optimal transference map defined by T i∗ , i = 2, . . . , n,
namely

P
∗(dx1, . . . , dxn) = μ1(dx1)

n∏
i=2

δT i∗ (x1)
(dxi),



642 P. Henry-Labordère, N. Touzi

where T i∗ = F−1
μi

◦ Fμ1 , i = 2, . . . , n. The optimal upper bound is then given by

P 0
n (μ) =

∫
c
(
ξ, T 2∗ (ξ), . . . , T n∗ (ξ)

)
μ1(dξ).

3 Martingale transport problem: formulation and first intuitions

The main objective of this paper is to obtain a version of the Brenier theorem for the
martingale transportation problem introduced by Beiglböck et al. [3] and Galichon
et al. [21]. A first result in this direction was obtained by Hobson and Neuberger
[27] in the context of the coupling function c(x, y) = |x − y|. The general case was
considered by Beiglböck and Juillet [4] who introduced the martingale version of the
cyclic monotonicity condition in standard optimal transport, namely the martingale
monotonicity condition, and showed existence and uniqueness of such a monotone
martingale measure, and its optimality for a class of coupling functions. Our result
complements the last reference by an explicit extension of the Fréchet–Hoeffding op-
timal coupling. We outline in Remarks 5.4 and 5.6 the main differences with [4, 27].

3.1 Probability measures in convex order

In the context of the financial motivation of Sect. 2.1, we interpret the pair of random
variables X, Y as the prices of the same financial asset at dates t1 and t2, respec-
tively, with t1 < t2. Then the no-arbitrage condition states that the price process of
the tradable asset is a martingale under the pricing and hedging probability measure.
We therefore restrict the set of probability measures to

M2(μ, ν) := {P ∈P2(μ, ν) : EP[Y |X] = X},
where μ, ν have finite first moment as in (2.1). This set of probability measures
is clearly convex, and the martingale condition implies that �ν ≤ �μ ≤ rμ ≤ rν .
Throughout this paper, we denote

δF := Fν − Fμ.

By a classical result of Strassen [37], M2(μ, ν) is non-empty if and only if μ � ν in
the sense of convex ordering, i.e.,

(i) μ, ν have the same mean,
∫

ξ dδF (ξ) = 0, and
(ii) δc(k) := ∫

(ξ − k)+(ν − μ)(dξ) ≥ 0 for all k ∈R.

By direct integration by parts, we see that

δc(k) = −
∫

[k,∞)

δF (ξ) dξ for all k ∈R.

Consequently, we may express the last condition (ii) as
∫

[k,∞)

δF (ξ) dξ ≤ 0 or, equivalently,

∫
[−∞,k)

δF (ξ) dξ ≥ 0, for all k ∈ R,

(3.1)
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where the last equivalence follows from the first property (i). A crucial ingredient for
the present paper is the decomposition of the pair (μ, ν) into irreducible components,
as introduced by Beiglböck and Juillet [4].

Definition 3.1 Let μ � ν. We call the pair (μ, ν) irreducible if the set I := {δc > 0}
is connected and μ(I) = μ(R). We denote by J the union of I and any endpoints of
I that are atoms of ν, and we refer to the pair (I, J ) as the domain of (μ, ν).

The following decomposition result is restated from Beiglböck and Juillet [4, The-
orem 8.4].

Proposition 3.2 Let μ � ν and let (Ik)1≤k≤N be the (open) components of {δc > 0},
where N ∈ {0,1, . . . ,∞}. Set I0 := R \ ⋃

k≥1 Ik and μk = μ|Ik
for k ≥ 0, so that

μ = ∑
k≥0 μk . Then there exists a unique decomposition ν = ∑

k≥0 νk such that
• μ0 = ν0 and μk � νk for all k ≥ 1, and
• Ik = {δck > 0} for all k ≥ 1, where δck(x) := ∫

(ξ − x)+(νk − μk)(dξ).
Moreover, any P ∈ M(μ, ν) admits a unique decomposition P = ∑

k≥0 Pk such
that Pk ∈ M(μk, νk) for all k ≥ 0.

Observe that the measure P0 in the last statement is the trivial constant martin-
gale transport from μ0 to itself. In particular, P0 does not depend on the choice of
P ∈ M(μ, ν).

3.2 Problem formulation

Let c : R2 → R be an upper semicontinuous function satisfying the growth condi-
tion (2.2), representing the payoff of a derivative security. In the present context, the
model-independent upper bound for the price of the claim can be formulated by the
martingale optimal transportation problem

P2(μ, ν) := sup
P∈M2(μ,ν)

E
P[c(X,Y )].

Remark 3.3 When μ and ν have finite second moments, notice that

E
P[(X − Y)2] = −E

P[X2] +E
P[Y 2] =

∫
ξ2 dδF (ξ) for all P ∈ M2(μ, ν).

Thus the quadratic case, which is the typical example of coupling in the optimal
transportation theory, is irrelevant in the present martingale version.

The Kantorovich dual in the present martingale transport problem is formulated as
follows. Because of the possibility of dynamically trading the financial asset between
times t1 and t2, the set of dual variables is defined by

D2 := {(ϕ,ψ,h) : ϕ+ ∈ L
1(μ),ψ+ ∈ L

1(ν), h ∈ L
0, and ϕ ⊕ ψ + h⊗ ≥ c}, (3.2)
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where ϕ ⊕ ψ(x, y) := ϕ(x) + ψ(y) and h⊗(x, y) := h(x)(y − x). The dual problem
is

D2(μ, ν) := inf
(ϕ,ψ,h)∈D2

(
μ(ϕ) + ν(ψ)

)
,

and can be interpreted as finding the cheapest superhedging strategy of the derivative
c(X,Y ) by dynamic trading in the underlying asset and static trading in the European
options with maturities t1 and t2. Since μ, ν have finite first moments and c satisfies
the growth condition (2.2), the weak duality inequality

P2(μ, ν) ≤ D2(μ, ν) (3.3)

follows immediately from the definition of both problems. The strong duality result
(i.e., equality holds), together with the existence of a maximizer P∗ ∈ M2(μ, ν) for
the martingale transportation problem P2(μ, ν), is proved in [3]. However, existence
does not hold in general for the dual problem D2(μ, ν). An example of non-existence
is provided in [3]. In the present paper, we obtain existence under a martingale version
of the Spence–Mirrlees condition.

3.3 Monotone martingale transport plans

Our objective in this paper is to provide explicitly the left-monotone martingale trans-
port plan introduced by Beiglböck and Juillet [4].

Definition 3.4 We say that P ∈ M2(μ, ν) is left-monotone (resp. right-monotone)
if there exists a Borel set Γ ⊂ R × R such that P[(X,Y ) ∈ Γ ] = 1 and for all
(x, y1), (x, y2), (x

′, y′) ∈ Γ with x < x′ (resp. x > x′), it must hold that y′ /∈ (y1, y2).

Similarly to [4], we consider probability measures μ, ν satisfying the following
restriction.

Assumption 3.5 The probability measures μ and ν have finite first moments, μ � ν

in convex order, and μ has no atoms.

Under Assumption 3.5, Theorem 1.5 and Corollary 1.6 of [4] state that there exists
a unique left-monotone martingale transport plan P∗ ∈ M2(μ, ν), and that the graph
of P∗ is concentrated on two maps Td,Tu :R → R, Td(x) ≤ x ≤ Tu(x) for all x ∈R,
i.e.,

P∗(dx, dy) = μ(dx)
(
q(x)δTu(x) + (

1 − q(x)
)
δTd(x)

)
(dy), (3.4)

with q(x) = x − Td(x)

(Tu − Td)(x)
1{(Tu−Td)(x)>0}.

Remark 3.6 By the convex ordering condition (3.1), it follows that δF increases from
and to zero at the left and right boundaries of its support, respectively. Moreover, δF

is upper semicontinuous by the continuity of Fμ in Assumption 3.5. Then the local
suprema of δF are attained by local maximizers in (�μ, rμ).
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Let M(δF ) be the collection of all local maximizers of the function δF . Moreover,
for each local maximizer m ∈ M(δF ), we define

m− := sup{x < m : δF (x) < δF(m)},
m+ := inf{x > m : δF (x) < δF(m)}. (3.5)

The set

M0(δF ) := {m ∈ M(δF ) : m = m+ and δF = δF (m) on [m−,m]}

will play a crucial role in our characterization. Our construction will be performed
under the following additional assumption on the pair of measures (μ, ν).

Assumption 3.7 ν has no atoms, and M0(δF ) is a finite set of points.

Under this assumption, the unique decomposition P = ∑
k≥0 Pk with mea-

sures Pk ∈M(μk, νk) from Proposition 3.2 corresponds to the irreducible domains
(Ik, Ik), i.e., Jk = Ik .

Finally, we observe that the construction of the left-monotone martingale transport
plan will be elaborated separately on each irreducible component; see Theorem 4.5(ii)
below. Therefore, without loss of generality, it suffices to provide the construction for
an irreducible pair (μ, ν), i.e.,

δc(x) := −
∫ ∞

x

δF (ξ) dξ > 0 for all x ∈ I. (3.6)

3.4 First intuitions

In this subsection, we provide a construction of the left-monotone transport plan,
for an irreducible pair (μ, ν) of measures in convex order, under the simplifying
condition

M(δF ) = M0(δF ) = {m1} for some �μ < m1 < rμ, (3.7)

so that δF is strictly increasing on (−∞,m1].
The definition of the left-monotone transport map suggests that Tu is nondecreas-

ing and Td nonincreasing. This is a first guess which will be verified under our sim-
plifying condition (3.7). However, we emphasize that it will turn out to be wrong in
the more general case studied in Sect. 4, but will serve to guide our intuition.

As a first consequence of the non-increase of Td and the non-decrease of Tu, we
see that they have at most a countable number of discontinuities. Therefore, since μ

has no atoms, we may choose the maps Td and Tu to be right-continuous. In order to
allow a decreasing map Td , we guess that there exists some bifurcation point m such
that
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Td(x) = Tu(x) for x ≤ m, and

Td : (m,∞) → (−∞,m) nonincreasing,

Tu : (m,∞) → (m,∞) nondecreasing.

We denote by T −1
d , T −1

u the right-continuous generalized inverses of Td and Tu,
respectively. Since ν has no atoms, we observe that for μ-a.e. x ≥ m,

{x′ ≥ m : Tu(x
′) = Tu(x)} = {x′ ≥ m : Td(x′) = Td(x)} = {x}. (3.8)

By the representation (3.4) of the left-monotone transport map, we have X ∼P μ and
the martingale condition E

P[Y |X] = X holds true. It remains to impose the mass
conservation condition Y ∼P ν, i.e., P[Y ∈ dy] = ν(dy).

(i) Mass conservation condition. We consider separately the domains on both sides
of the bifurcation point m.

• Upper support. Let y > m be a point of the support of ν. Then y := Tu(x) for some
x ≥ m, and

P[Y ∈ dy] = E
[
q(X)1{Tu(X)∈dy}

] = q(x) dFμ(x)

by (3.8). Then the mass conservation condition in this case is

dFν(Tu) = q dFμ. (3.9)

• Lower support. Let y < m be a point of the support of ν. Then y = Td(x) for some
x > m, and

P[Y ∈ dy] = dFμ(y) +E
[(

1 − q(X)
)
1{Td(X)∈dy}

] = dFμ(y) − (
1 − q(x)

)
dFμ(x)

by (3.8), where the last minus sign is due to the decrease of Td on (m,∞). The mass
conservation condition is then

dδF (Td) = −(1 − q)dFμ. (3.10)

We are then reduced to the system of ODEs (3.9), (3.10) on [m,∞), with the bound-
ary condition Tu(m) = Td(m) = m. Recall that we have to solve for the unknowns
Tu, Td , and also for the bifurcation level m.

(ii) Determining the bifurcation point. Subtracting (3.9) and (3.10), we obtain
dFν(Tu) = dFμ + dδF (Td). Integrating between m and x and using the boundary
condition Tu(m) = Td(m) = m, we see that

Fν(Tu) = Fμ + δF (Td) on [m,∞). (3.11)

We expect that Tu and Td are in a one-to-one relation. Since Fν is nondecreasing, the
last equation allows indeed expressing Tu in terms of Td by using the right-continuous
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inverse F−1
ν . However, expressing Td in terms of Tu requires that m ≤ m1 so that Td

takes values in the domain where δF is strictly increasing and thus has a continuous
inverse δF−1. Then, using again (3.11), it follows from the non-decrease of Fν and
the fact that x ≤ Tu(x) that

δF (x) ≤ Fν

(
Tu(x)

) − Fμ(x) = δF
(
Td(x)

) ≤ δF (m) for all x ≥ m.

Consequently, the only possible choice for m ≤ m1 is

m = m1.

(iii) Solving for Td and Tu. We continue our derivation under the simplifying condi-
tion (3.7). First, by (3.11), we express Tu in terms of Td as

Tu(x) = g
(
x,Td(x)

)
, x ≥ m, with g(x, y) := F−1

ν

(
Fμ(x) + δF (y)

)
, (3.12)

where we extend the definition of F−1
ν by setting F−1

ν = ∞ on (1,∞) and
F−1

ν = −∞ on (−∞,0). Next, by the definition of q together with (3.9), (3.10) and
(3.12), we have

x dFμ = (
qTu + (1 − q)Td

)
dFμ = Tu dFν(Tu) − Td dδF (Td)

= g(x,Td)
(
dFμ + dδF (Td)

) − Td dδF (Td).

We are then reduced to the ordinary differential equation

(
g(x,Td) − Td

)
dδF (Td) + (

g(x,Td) − x
)
dFμ = 0 on [m,∞). (3.13)

Observe that

dyg(x, y) dδF (y) = (dF−1
ν )

(
Fμ(x) + δF (y)

)
dFμ(x)dδF (y)

= dxg(x, y) dFμ(x). (3.14)

Then, using

dx

∫ Td

m

(
g(x, ξ) − ξ

)
dδF (ξ) = (

g(x,Td) − Td

)
dδF (Td)

+
(∫ Td

m

dyg(x, y)

)
dFμ(x)

= (
g(x,Td) − Td

)
dδF (Td)

+ (
g(x,Td) − g(x,m)

)
dFμ(x),

we rewrite (3.13) as

dx

∫ Td

m

(
g(x, ζ ) − ζ

)
dδF (ζ ) + (

g(x,m) − x
)
dFμ(x) = 0,
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which provides by direct integration, and using the boundary condition Td(m) = m,
that

Gm(Td, x) = 0 for x ≥ m, (3.15)

where

Gm(t, x) := −
∫ m

t

(
g(x, ζ ) − ζ

)
dδF (ζ )

+
∫ x

m

(
g(ξ,m) − ξ

)
dFμ(ξ), t ≤ m ≤ x. (3.16)

We finally verify that (3.15) uniquely defines Td(x) ∈ (−∞,m].
– First, note that the function t �→ Gm(t, x) is continuous and strictly increas-

ing for x ≥ m ≥ t . Indeed, the continuity is inherited from the continuity of δF .
Next, for ζ ≤ m < x, it follows that we have Fμ(x) > Fμ(ζ ) or, equivalently,
Fμ(x) + δF (ζ ) > Fν(ζ ). Then g(x, ζ ) = F−1

ν (Fμ(x)+ δF (ζ )) > ζ , and the strict
increase of Gm in t is inherited from the strict increase of δF on (−∞,m1).

– At t = m, we compute that Gm(m,x) = ∫ x

m
(g(ξ,m) − ξ) dFμ(ξ) > 0 for x > m.

The last strict inequality follows from the fact that g(x,m) > x for all x > m, under
our simplifying condition (3.7), and the strict increase of Fμ in a right neighbor-
hood of m.

– Finally, as t ↘ −∞, we now show that Gm(−∞, x) < 0 for all x > m. By (3.14),
we observe that

dxG
m(−∞, x) = −

(∫ m

−∞
dζ g(x, ζ )

)
dFμ + (

g(x,m) − x
)
dFμ

= (
g(x,−∞) − x

)
dFμ = (

F−1
ν ◦ Fμ(x) − x

)
dFμ.

By direct integration, this provides

Gm(−∞, x) = Gm(−∞,m) +
∫ x

m

(
F−1

ν ◦ Fμ(ξ) − ξ
)
dFμ(ξ) = γ (x),

where

γ (x) :=
∫ F−1

ν ◦Fμ(x)

−∞
ξ dFν(ξ) −

∫ x

−∞
ξ dFμ(ξ) for x ∈R. (3.17)

Notice that γ (−∞) = 0, and since μ and ν have the same mean, γ (∞) = 0. We
next analyze the maximum of γ . Since dγ (x) = (F−1

ν ◦ Fμ(x) − x)dFμ(x), we
may restrict to a point x∗ ∈ supp(μ) of local maximum of γ , so that we obtain
F−1

ν (Fμ(x∗)−) ≤ x∗ ≤ F−1
ν (Fμ(x∗)), and therefore

γ (x∗) =
∫ x∗

−∞
ξ dδF (ξ) = −

∫
(x∗ − ξ)+ dδF (ξ) < 0

by the irreducibility condition (3.6) of the pair (μ, ν).
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4 Explicit construction of the left-monotone martingale transport plan

4.1 Preliminaries

We recall that our construction will be accomplished separately on each irreducible
component, and consequently we may assume without loss of generality that the pair
(μ, ν) is irreducible so that (3.6) holds true.

Recall also the function g introduced in (3.12). In order to relax the simplifying
condition (3.7), we need to introduce, for a measurable subset A ∈ BR with δF in-
creasing on A, the analogue of (3.16), namely

Gm
A(t, x) := −

∫ m

t

(
g(x, ζ ) − ζ

)
1A(ζ ) dδF (ζ ) +

∫ x

m

(
g(ξ,m) − ξ

)
dFμ(ξ) (4.1)

for t ≤ m ≤ x. Notice that Gm
A is continuous in t by the continuity of δF . Recall from

Assumption 3.7 that M0(δF ) is a finite set, so that

M0(δF ) = {m0
1, . . . ,m

0
n} for some − ∞ < m0

1 < · · · < m0
n < ∞.

We also need to introduce the set

B0 := {x ∈R : δF increasing in a right neighborhood of x}, x0 := infB0.

Here, x ∈ B0 means that for all ε > 0, we may find xε ∈ (x, x + ε) such that
δF (xε) > δF(x). Observe that

x0 < m0
1 and δF = 0 on (−∞, x0],

where the first inequality is a direct consequence of the definition of x0 and m0
1, and

the second property follows from the characterization (3.1) of the dominance μ � ν

in the convex order.
Recall the function γ of (3.17). Our construction uses recursively the following

ingredients:

(I1) m0 ∈ {−∞}∪M0(δF ) and A0 ⊂ B0 ∩ (−∞,m0) with δF > 0 on A0, satisfying
G

m0
A0

(−∞, ·) = γ and
∫ m0
−∞ 1A0 dφ(δF ) = ∫ m0

−∞ dφ(δF ) for all nondecreasing
maps φ;

(I2) x̄0 ∈ B0 ∩ [m0,m
0
n) and t0 ∈ A0 ∪ {−∞} satisfying δF (t0) = δF (x̄0) ≥ 0 and

G
m0
A0

(t0, x̄0) = 0.

Lemma 4.1 Let m1 := min(M0(δF ) ∩ (x̄0,∞)), A1 := (A0 \ [t0,m0]) ∪ (x̄0,m1).
Then:

(i) δF > 0 on A1, G
m1
A1

(−∞, ·) = γ , and
∫ m1
−∞ 1A1dφ(δF ) = ∫ m1

−∞ dφ(δF ) for all
nondecreasing maps φ.

(ii) For all x ≥ m1 with δF (x) ≤ δF (m1), there exists a unique scalar t
m1
A1

(x) ∈ A1

such that G
m1
A1

(t
m1
A1

(x), x) = 0.
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(iii) The function x �→ t
m1
A1

(x) is decreasing μ-a.e. on [m1, x1], where we define

x1 := inf{x > m1 : g(x, t
m1
A1

(x)) ≤ x}.
(iv) If x1 < ∞, then x1 ∈ B0 ∩ [m1,m

0
n) \ M0(δF ), and δF (t

m1
A1

(x1)) = δF (x1) ≥ 0.

The proof of this lemma is reported in Sect. 7.1.

4.2 Explicit construction

We start by defining

Td(x) = Tu(x) = x for x ≤ x0,

and we continue the construction of the maps Td , Tu along the following steps.

Step 1. Set m0 := −∞, A0 := ∅, x̄0 := x0, t0 = −∞, and notice that (I1), (I2) are
obviously satisfied by these ingredients. We may then apply Lemma 4.1 and obtain
m1 := m0

1, the smallest point in M0(δF ), and A1, x1, t1 := t
m1
A1

(x1). Define the maps
Td , Tu on (x0, x1) by

Td(x) = Tu(x) = x for x0 < x ≤ m1,

Td(x) := t
m1
A1

(x) and Tu(x) := g
(
x,Td(x)

)
for m1 ≤ x < x1.

If x1 = ∞, this completes the construction, and we set mj = xj = ∞ for all j > 1.
See Fig. 1 below for such an example. Otherwise, Lemma 4.1 guarantees that the new
ingredients (m1,A1, x1, t1) satisfy Conditions (I1), (I2), and we may continue with
the next step.

Step i. Suppose that the pair of maps (Td, Tu) is defined on (−∞, xi−1) for some
quadruple (mi−1,Ai−1, xi−1, ti−1) satisfying Conditions (I1), (I2). We may then ap-
ply Lemma 4.1 and obtain mi := min(M0(δF )∩ (xi−1,∞)) and Ai, xi, ti := t

mi

Ai
(xi).

Define the maps Td , Tu on (xi−1, xi) by

Td(x) = Tu(x) = x for xi−1 < x ≤ mi,

Td(x) := t
mi

Ai
(x) and Tu(x) := g

(
x,Td(x)

)
for mi ≤ x < xi.

If xi = ∞, this completes the construction, and we set mj = xj = ∞ for all j > i.
Otherwise, Lemma 4.1 guarantees that the new ingredients (mi,Ai, xi, ti ) satisfy
Conditions (I1), (I2), and we may continue with the next step.

Since M0(δF ) is assumed to be finite, the last iteration can only have a finite num-
ber of steps. We observe that we may extend to the case where M0(δF ) is countable;
the delicate case of an accumulation point of M0(δF ) could be addressed by means
of transfinite induction. We deliberately choose to avoid such technicalities in order
to focus on the main properties of the above construction.

Remark 4.2 (Some properties of Td ) From the above construction of Td , we see that
(i) Td is right-continuous and decreasing on each interval (mi, xi) μ-a.e.;
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(ii) In general, the restriction of Td to
⋃

i≥0(mi, xi) fails to be nondecreasing.
However, for i �= j , we have Td((mi, xi)) ∩ Td((mj , xj )) = ∅. Consequently, the
right-continuous inverse T −1

d of Td is well defined.

Remark 4.3 (Some properties of Tu) From the above construction of Tu, we see that
(i) Tu is right-continuous, Tu([mi, xi]) ⊂ [mi, xi], and Tu(x) > x for x ∈ (mi, xi)

for all i;
(ii) Tu is nondecreasing, and strictly increasing μ-a.e. The last property will be

clear from Theorem 4.5(ii) below, and implies that the right-continuous inverse T −1
u

of Tu is well defined.

Remark 4.4 One could extend the above construction to the case where M0(δF )

is countable with no point of right accumulation, thus weakening the conditions
of Assumption 3.7. However, the condition in this assumption that Fν has no
atoms is more difficult to bypass because then the ODEs in Theorem 4.5(ii) fail to
hold, in general, due to the fact that T −1

d ◦ Td(x) and T −1
u ◦ Tu(x) may be larger

than {x}.

4.3 The left-monotone martingale transport plan

The last construction provides, under Assumptions 3.5 and 3.7, our martingale ver-
sion of the Fréchet–Hoeffding coupling for an irreducible pair (μ, ν) with domain
(I, I ), namely

T∗(x, dy) := 1D(x)δ{x}(dy)

+ 1I\D(x)
(
q(x)δ{Tu(x)}(dy) + (1 − q)(x)δ{Td(x)}(dy)

)
(4.2)

with

D :=
⋃
i≥0

(xi−1,mi] and q(x) := x − Td(x)

Tu(x) − Td(x)
. (4.3)

We recall that our construction has a finite number of steps, N ≤ n say, due to our
condition that M0(δF ) is finite, and that the union in the definition of the set D is
finite by our convention that mj+1 = xj = ∞ for all j ≥ N . Observe also from our
previous construction that Td(x) < x < Tu(x) on each (xi,mi). Therefore, q takes
values in [0,1].

Theorem 4.5 Let μ � ν be two probability measures on R.

(i) Assume that (μ, ν) is irreducible, with domain (I, I ), and satisfies Assump-
tions 3.5 and 3.7. Then the probability measure P∗(dx, dy) := μ(dx)T∗(x, dy)

on I × I is the unique left-monotone transport plan in M2(μ, ν). Moreover, Tu

and Td solve the ODEs
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d(δF ◦ Td) = −(1 − q)dFμ,

d(Fν ◦ Tu) = q dFμ

whenever x ∈ [mi, xi) and Td(x) ∈ int(Ai).
(ii) Let (μk, νk)k≥0 be the decomposition of (μ, ν) into irreducible components with

corresponding domains (Ik, Jk)k≥0, as introduced in Proposition 3.2. Consider
also the decomposition P = ∑

k≥0 Pk ∈ M(μ, ν) with Pk ∈ M(μk, νk), k ≥ 0.
Then P is left-monotone if and only if Pk is left-monotone for all k ≥ 1.

The proof of part (i) is reported in Sect. 7.1. Part (ii) is obvious given the decom-
position of Proposition 3.2.

We conclude this subsection by the following remarkable property of Td which
uses the notation (3.5).

Proposition 4.6 Let (μ, ν) be an irreducible component satisfying Assumptions 3.5
and 3.7. Let i ≥ 1 be such that mi− = mi . Then Td(mi) = mi . If in addition Fμ, Fν

are twice differentiable near mi , then Td is also differentiable on [mi,mi + h) for
some h > 0, with right derivatives at mi given by

T ′
d(mi+) = −1/2 and T ′′

d (mi+) = +∞.

Proof We denote fμ := F ′
μ, fν := F ′

ν , δf := fν − fμ.
By construction, we have Td(mi) = mi and the differentiation of the identity

G
mi

Ai
(Td(x), x) = 0 reproduces the mass conservation condition (3.13). This ordi-

nary differential equation shows that Td inherits the differentiability of Fν and Fμ

on (mi,mi + h) for some h > 0, with

T ′
d(x) = − g(x,Td(x)) − x

g(x,Td(x)) − Td(x)

fμ(x)

δf (Td(x))
, x ∈ (mi,mi + h).

Let ε := x −Td(x) and recall that g(x, x) = x. Then it follows from direct calculation
that

g(x,Td) − x = −ε
δf

fν

(x) + ε2

2

(
δf ′

fν

−
(δf

fν

)2 f ′
ν

fν

)
(x) + o(ε2),

δf
(
Td(x)

) = δf (x) − εδf ′(x) + o(ε),

where o is a continuous function with o(0) = 0. Then, for x ∈ (mi,mi + h),

T ′
d(x) = − δf

fν
+ 1

2ε(
δf ′
fν

− (
δf
fν

)2 f ′
ν

fν
) + o(ε)

1 − δf
fν

+ 1
2ε(

δf ′
fν

− (
δf
fν

)2 f ′
ν

fν
) + o(ε)

fμ

δf − εδf ′ + o(ε)
(x).

Notice that 0 ≤ x − mi ≤ ε. Then, since we have fμ(mi) = fν(mi), we obtain that
δf (x) = (x − mi)δf

′(x) + ◦(ε) and therefore
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T ′
d(x) = −δf (x) + 1

2εδf ′(x) + o(ε)

δf (x) − εδf (x) + o(ε)

= −(x − mi) + 1
2ε + o(ε)

(x − mi) − ε + o(ε)

= − 1
2 + x−mi

ε
+ o(1)

1 − x−mi

ε
+ o(1)

, x ∈ (mi,mi + h), (4.4)

where we recall that ε = x − Td(x). Since Td is nonincreasing, this implies fur-
ther that 0 ≤ x − mi ≤ 1

2ε. Moreover, by the convergence Td → m, we see that

m = Td(x) + (m − x)T ′
d(x) + o(x − m) and thus x−Td(x)

x−m
= 1 − T ′

d(x) + o(1). Sub-
stituting this in (4.4), we get

T ′
d(x) =

1
2 (1 + T ′

d(x)) + o(1)

−T ′
d(x) + o(1)

, x ∈ (mi,mi + h),

from which we conclude that T ′
d(x) → −1/2 as x ↘ mi .

Finally, we compute T ′′
d (mi). By the ODE satisfied by Td and the smoothness of

g, it follows that T ′
d is differentiable at any x > mi . We then differentiate the ODE

satisfied by Td and use Taylor expansions as above. The result follows from direct
calculation by sending x ↘ mi . �

5 Martingale one-dimensional Brenier theorem

5.1 Derivation of the optimal semi-static hedging strategy

Similarly to our construction, the optimal semi-static hedging strategy will be ob-
tained separately on each irreducible component. Consequently, we may assume
without loss of generality that the pair (μ, ν) is irreducible.

We start by following the same line of argument as in the proof of Theorem 2.2.
Our objective is to construct a triple

(ϕ∗,ψ∗, h∗) ∈D2 such that μ(ϕ∗) + ν(ψ∗) = E
P∗ [c(X,Y )]. (5.1)

This will provide equality in (3.3) with the optimality of P∗ for the optimal trans-
portation problem P2 and the optimality of (ϕ∗,ψ∗, h∗) for the dual problem D2.

By the definition of the dual set D2, we observe that the requirement (5.1) is equiv-
alent to

ϕ∗(X)+ψ∗(Y )+h∗(X)(Y −X)−c(X,Y ) = 0 P∗-a.s. for some function h∗ (5.2)

and that the function ϕ∗ is determined from (ψ∗, h∗) by

ϕ∗(x) = max
y∈R

H(x,y),

where H(x,y) := c(x, y) − ψ∗(y) − h∗(x)(y − x), x, y ∈R. (5.3)
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Recall the set D defined in (4.3) on which we have Td(x) = Tu(x) = x, x ∈ D,
and the right-continuous inverse functions T −1

d , T −1
u defined in Remark 4.2(ii) and

Remark 4.3(iii). From the perfect replication property (5.2), it follows that h∗ is de-
termined on Dc in terms of ψ∗ by

h∗(x) = (c(x, ·) − ψ∗) ◦ Tu(x) − (c(x, ·) − ψ∗) ◦ Td(x)

(Tu − Td)(x)
for x ∈ Dc. (5.4)

Since Tu and Td are maximizers in (5.3), it follows from the first order condition that

ψ ′∗ ◦ Tu(x) = cy

(
x,Tu(x)

) − h∗(x), x ∈ Dc, (5.5)

ψ ′∗ ◦ Td(x) = cy

(
x,Td(x)

) − h∗(x), x ∈ Dc, (5.6)

ψ ′∗(x) = cy(x, x) − h∗(x) for x ∈ D. (5.7)

Differentiating (5.4) and using (5.5) and (5.6), we see that for x ∈ Dc,

h′∗ = d

dx

(
c(·, Tu) − c(·, Td)

Tu − Td

)

+ T ′
u − T ′

d

Tu − Td

ψ∗(Tu) − ψ∗(Td)

Tu − Td

+ T ′
d(cy(·, Td) − h∗) − T ′

u(cy(·, Tu) − h∗)
Tu − Td

,

which leads by direct calculation to

h′∗ = cx(·, Tu) − cx(·, Td)

Tu − Td

on Dc. (5.8)

This determines h∗ on D up to irrelevant constants. By evaluating (5.6) at a point
T −1

d (x) ∈ D, it follows from (5.7) that

cy(x, x) − h∗(x) = cy

(
T −1

d (x), x
) − h∗ ◦ T −1

d (x), x ∈ D. (5.9)

Since Td and Tu take values in D and Dc, respectively, and h∗ is determined by
(5.9) on D, we see that h∗|Dc is determined by (5.8), and (5.5), (5.6) determine ψ∗
on R.

5.2 Main result

The previous formal derivations suggest the following candidate functions for the
semi-static hedging strategy. Up to a constant, the dynamic hedging component h∗ is
defined in each continuity point by

h′∗ = cx(·, Tu) − cx(·, Td)

Tu − Td

on Dc, (5.10)

h∗ = h∗ ◦ T −1
d + cy(·, ·) − cy(T

−1
d , ·) on D. (5.11)

The payoff function ψ∗ is defined up to a constant on each continuity interval by
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ψ ′∗ = cy(T
−1
u , ·) − h∗ ◦ T −1

u on Dc, (5.12)

ψ ′∗ = cy(T
−1
d , ·) − h∗ ◦ T −1

d on D. (5.13)

The corresponding function ϕ∗ is given by

ϕ∗(x) = E
P∗ [c(X,Y ) − ψ∗(Y )|X = x] (5.14)

= q(x)
(
c(x, ·) − ψ∗

) ◦ Tu(x) + (
1 − q(x)

)(
c(x, ·) − ψ∗

) ◦ Td(x), x ∈R.

Finally, we define h∗ and ψ∗ from (5.10)–(5.13) by imposing that

c(·, Tu) − ψ∗(Tu) − (
c(·, Td) − ψ∗(Td)

) − (Tu − Td)h is continuous. (5.15)

The last requirement is obviously possible as the number of jumps of Td and Tu is
finite, due to our assumption that M0(δF ) is finite. Indeed, (5.15) determines ψ∗(Tu)

from ψ∗(Td) at discontinuity points, from left to right.

Theorem 5.1 Let (μ, ν) be an irreducible pair (without loss of generality) satisfying
Assumptions 3.5 and 3.7. Assume further that ϕ+∗ ∈ L

1(μ), ψ+∗ ∈ L
1(ν), and that the

partial derivative of the coupling function cxyy exists and cxyy > 0 on R×R. Then:

(i) (ϕ∗,ψ∗, h∗) ∈D2.
(ii) The strong duality holds for the martingale transportation problem, P∗ is a solu-

tion of P2(μ, ν), and (ϕ∗,ψ∗, h∗) is a solution of D2(μ, ν), i.e.,
∫

c
(
x,T∗(x, dy)

)
μ(dx) = E

P∗ [c(X,Y )] = P2(μ, ν) = D2(μ, ν)

= μ(ϕ∗) + ν(ψ∗).

Remark 5.2 (Symmetry: the right-monotone martingale transport plan)
(i) Suppose that cxyy < 0. Then the upper bound P2(μ, ν) is attained by the right-

monotone martingale transport map

P̄∗(dx, dy) := μ̄(dx)T̄∗(x, dy),

where T̄∗ is defined as in (4.2) with the pair of probability measures (μ̄, ν̄) by

Fμ̄(x) := 1 − Fμ(−x), Fν̄(y) := 1 − Fν(−y).

To see this, we rewrite the optimal transportation problem equivalently with modified
inputs

c̄(x, y) := c(−x,−y), μ̄
(
(−∞, x]) := μ

([−x,∞)
)
,

ν̄
(
(−∞, y]) := ν

([−y,∞)
)
,

so that c̄xyy > 0 as required in Theorem 5.1. Note that the martingale constraint is
preserved by the map (x, y) �→ (−x,−y).
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(ii) Suppose that cxyy > 0. Then the lower bound problem is explicitly solved by
the right-monotone martingale transport plan. Indeed, it follows from the first part (i)
of the present remark that

inf
P∈P2(μ,ν)

E
P[c(X,Y )] = − sup

P∈P2(μ,ν)

E
P[−c(X,Y )]

= E
P̄∗ [c(X,Y )] =

∫
c
(
x, T̄∗(x, dy)

)
μ(dx).

Remark 5.3 The martingale counterpart of the Spence–Mirrlees condition is cxyy > 0.
We now argue that this condition is the natural requirement in the present set-
ting. Indeed, the optimization problem is not affected by the modification of the
coupling function from c to c̄(x, y) := c(x, y) + a(x) + b(y) + h(x)(y − x) for
any a ∈ L

1(μ), b ∈ L
1(ν) and h ∈ L

0. Since cxyy = c̄xyy , it follows that the
condition cxyy > 0 is stable for the above transformation of the coupling func-
tion.

Remark 5.4 (Comparison with Beiglböck and Juillet [4]) The remarkable notion
of left-monotone martingale transport was introduced by Beiglböck and Juillet [4],
where existence and uniqueness is proved.

1. We first show that their conditions on the coupling function fall in the context
of our Theorem 5.1:

– The first class of coupling functions which is considered in [4] has the form
c(x, y) = h(y − x) for some differentiable function h whose derivative is strictly
concave. Notice that this form of coupling essentially falls under our condition
cxyy > 0.

– The second class of coupling functions which is considered in [4] has the form
c(x, y) = ψ(x)φ(y), where ψ is a nonnegative decreasing function and φ a non-
negative strictly concave function. This class also essentially falls under our con-
dition cxyy > 0.

2. The proof of [4] does not use the dual formulation of the martingale optimal
transport problem. They rather extend the concept of cyclical monotonicity to the
martingale context, and provide an existence result without explicit characterization
of the maps (Td, Tu). Also, our derivation of the optimal semi-static hedging strategy
(ϕ∗,ψ∗, h∗) is new. We recall, however, that the result of [4] does not require our
Assumption 3.7.

3. Our construction agrees with the example given by two log-normal distributions
μ = μ0 := eN (−σ 2

1 /2,σ 2
1 ) and ν = ν0 := eN (−σ 2

2 /2,σ 2
2 ), σ 2

1 < σ 2
2 , illustrated in Fig. 2

of [4]. By using our construction, we reproduce the left-monotone transference map
in Fig. 1. Indeed, in this case, x0 = −∞, δF has a unique local (and therefore global)
maximizer m1 of δF , and x1 = ∞. The left-monotone transport plan is explicitly
obtained from our construction after Step 1, i.e., no further steps are needed in this
case.
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Fig. 1 Maps Td and Tu built
from two log-normal densities
with variances 0.04 and 0.32.
m1 = 0.731

Example 5.5 We provide an example where δF has two local maxima and the con-
struction needs two steps. Let μ and ν be defined by

μ = μ1 := N (1,0.5), ν = ν1 := 1

3

(
N (1,2) +N (0.6,0.1) +N (1.4,0.3)

)
,

where the normal distributions in the definition of ν1 are independent. Clearly, μ and
ν have mean 1 and μ � ν. We also immediately check that δF has two local maxima,
m1 = −0.15 and m2 = 0.72. Figure 2 below reports the maps Tu and Td as obtained
from our construction.

Remark 5.6 (Comparison with Hobson and Neuberger [27]) Our Theorem 5.1 does
not apply to the coupling function c(x, y) = |x − y| considered by Hobson and Neu-
berger [27]. More importantly, the corresponding maps T HN

u and T HN
d introduced in

[27] are both nondecreasing with T HN
d (x) < x < T HN

u (x) for all x ∈ R. So our so-
lution (Td, Tu) is of a different nature, and in contrast with the above (T HN

d , T HN
u ),

our left-monotone martingale transport map T∗ does not depend on the nature of the
coupling function c as long as cxyy > 0.
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Fig. 2 δF has two local
maxima (top), and Td , Tu

corresponding to μ1, ν1
(bottom)

However, by following the line of argument of the proof of Theorem 5.1, we may
recover the solution of Hobson and Neuberger [27]. As a matter of fact, our method
of proof is similar to that of [27], as the dual problem D2 is exactly the Lagrangian
obtained by the penalization of the objective function by Lagrange multipliers.

5.3 Some examples

Example 5.7 (Variance swap) The coupling function here is c(x, y) = (ln(y/x))2,
where μ and ν have support in (0,∞). In particular, it satisfies the requirement of
Theorem 5.1 that cxyy > 0. Then the optimal upper bound is given by

P2(μ, ν) =
∫ ∞

0

(
q(x)

(
ln

Tu(x)

x

)2 + (1 − q)(x)
(

ln
Td(x)

x

)2
)

μ(dx),

where q is set to an arbitrary value on D. In Fig. 3, we have plotted ϕ∗, ψ∗ and
h∗ with marginal distributions μ = μ0 := eN (−σ 2

1 /2,σ 2
1 ) and ν = ν0 := eN (−σ 2

2 /2,σ 2
2 ),

σ 2
1 = 0.04 < σ 2

2 = 0.32. We recall that the corresponding maps Td , Tu are plotted in
Fig. 1. The expression for ψ∗ is
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Fig. 3 Superreplication strategy
for a 2-period variance swap
given two log-normal densities
with variances 0.04 and 0.32

ψ ′∗(x) = 2

x
ln

x

T −1
u (x)

+ 2
∫ T −1

u (x)

x0

ln Tu(ξ)
Td (ξ)

ξ(Tu(ξ) − Td(ξ))
dξ.

In particular, ψ ′′∗ (x) = 2
x2 for all x ≤ m1.

Example 5.8 Consider the coupling function c(x, y) = −(
y
x
)p , p > 1, and let the

measures μ, ν be supported in (0,∞). This payoff function also satisfies the condi-
tion of Theorem 5.1 that cxyy > 0. The best upper bound is then given by

P2(μ, ν) = −
∫ ∞

0

(
q(x)

(Tu(x)

x

)p + (1 − q)(x)
(Td(x)

x

)p
)

μ(dx).

6 The n-marginals martingale transport

In this section, we provide a direct extension of our results to the martingale trans-
portation problem under finitely many marginals constraints. Fix an integer n ≥ 2,
and let X = (X1, . . . ,Xn) be a vector of n random variables denoting the prices
of some financial asset at dates t1 < · · · < tn. Consider the probability measures
μ = (μ1, . . . ,μn) ∈ (PR)n with μ1 � · · · � μn in the convex order and

∫
|ξ |μi(dξ) < ∞ and

∫
ξμi(dξ) = X0 for all i = 1, . . . , n.

Similarly to the two-marginals case, we introduce the set

Mn(μ) := {P ∈ Pn(μ) : X is a P-martingale},
where Pn(μ) was defined in (2.6). In the present martingale version, we introduce the
one-step ahead martingale transport maps defined by means of the n pairs of maps
(T i

d , T i
u) by

T i∗ (xi, ·) := 1Di
δ{xi } + 1Dc

i

(
qi(xi)δT i

u(xi )
+ (1 − qi)(xi)δT i

d (xi )

)
,
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where qi(ξ) := (ξ − T i
d (ξ))/(T i

u − T i
d )(ξ) for ξ ∈ Dc

i and (Di, T
i
d , T i

u)i=1,...,n−1 are
defined as in Sect. 4.2 with the pair (μi,μi+1).

The n-marginals martingale transport problem is defined by

Pn(μ) = sup
P∈Mn(μ)

E
P[c(X)],

where the map c : Rn →R is of the form

c(x1, . . . , xn) =
n−1∑
i=1

ci(xi, xi+1)

for some upper semicontinuous functions ci : R × R → R with linear growth (or
Condition (2.2)), i = 1, . . . , n − 1.

The dual problem is defined by

Dn(μ) := inf
(u,h)∈Dn

n∑
i=1

μi(ui),

where u = (u1, . . . , un) with components ui : R → R and h = (h1, . . . , hn−1) with
components hi : Ri → R, taken from the set of dual variables

Dn :=
{
(u,h) : u+

i ∈ L
1(μi), hi ∈ L

0(Ri ), and
n⊕

i=1

ui +
n−1∑
i=1

h⊗i

i ≥ c

}
.

Here, ⊕n
i=1ui(x) = ∑

i≤n ui(xi) and h⊗i

i (x) = hi(x1, . . . , xi)(xi+1 − xi).
Similarly to the two-marginals problems studied before, the weak duality inequal-

ity Pn(μ) ≤ Dn(μ) is obvious, and we shall obtain equality in the following result
under convenient conditions.

To derive the structure of the optimal hedging strategy, we consider the two-
marginals problems for (μi,μi+1) with coupling functions ci . By Theorem 5.1, we
have for i = 1, . . . , n − 1 that

P i
2(μi,μi+1) := sup

P∈M(μi ,μi+1)

E
P[ci(X,Y )] = inf

(ϕ,ψ,h)∈Di
2

(
μi(ϕ) + μi+1(ψ)

)

= μi(ϕ
∗
i ) + μi+1(ψ

∗
i ),

where Di
2 is defined as in (3.2) with ci substituted for c, and (ϕ∗

i ,ψ∗
i , h∗

i ) ∈ Di
2

are defined as in (5.10)–(5.14) with ci substituted for c and (T i
u, T i

d ) substituted for
(Tu, Td). Finally, we define

u∗
i (xi) := 1{i<n}ϕ∗

i (xi) + 1{i>1}ψ∗
i−1(xi), i = 1, . . . , n,

and u∗ := (u∗
1, . . . , u

∗
n), h∗ := (h∗

1, . . . , h
∗
n−1).

Theorem 6.1 Let (μi)1≤i≤n be probability measures on R without atoms, and with
μ1 � · · · � μn in convex order, (μi−1,μi) irreducible, and M0(Fμi

− Fμi−1) finite
for all 1 < i ≤ n. Assume further that
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• ci have linear growth, the cross derivatives ci
xyy exist and satisfy ci

xyy > 0;

• ϕ∗
i , ψ∗

i satisfy the integrability conditions (ϕ∗
i )+ ∈ L

1(μi), (ψ∗
i )+ ∈ L

1(μi+1).

Then the strong duality holds, the probability measure

P
∗
n(dx) = μ1(dx1)

n−1∏
i=1

T i∗ (xi, dxi+1)

on R
n is optimal for the martingale transportation problem Pn(μ), and (u∗, h∗) is

optimal for the dual problem Dn(μ), i.e.,

P
∗
n ∈Mn(μ), (u∗, h∗) ∈Dn, and E

P
∗
n [c(X)] = Pn(μ) = Dn(μ) =

n∑
i=1

μi(u
∗
i ).

Proof Clearly, we have P∗
n ∈Mn(μ), which gives the inequality E

P
∗
n [c(X)] ≤ Pn(μ).

We next observe that (u∗, h∗) ∈ Dn from our construction. Then

Dn(μ) ≤
∑
i≤n

μi(u
∗
i ) = E

P
∗
n[c(X)].

The required result follows from the weak duality inequality Pn(μ) ≤ Dn(μ). �

Remark 6.2 The optimal lower bound for a coupling function as in Theorem 6.1 is
attained by the mirror solution introduced in Remark 5.2.

Example 6.3 (Discrete monitoring variance swaps) This is a continuation of our Ex-
ample 5.7. Suppose that (μi)1≤i≤n have support in (0,∞) with mean X0 and satisfy
the conditions of Theorem 6.1. Let c(x1, . . . , xn) := ∑n

i=1(ln
xi

xi−1
)2. Then

Pn(μ) =
∫ (

ln
ξ

X0

)2

μ1(dξ)

+
n−1∑
i=1

∫ ∞

0

(
qi(ξ)

(
ln

T i
u(ξ)

ξ

)2 + (1 − qi)(ξ)
(

ln
T i

d (ξ)

ξ

)2
)

μi(dξ).

This optimal bound depends on all the marginals. The optimal lower bound is attained
by our mirror solution; see Remark 6.2.

Remark 6.4 In a related robust hedging problem, Hobson and Klimmek [26] derived
an optimal upper bound for a derivative c(x1, . . . , xn) = ∑n−1

i=1 c0(xi, xi+1). They also
deal with the pricing of variance swaps in a continuous-time framework. The differ-
ence with our problem above is that they are only given the marginal distribution μn

for Xn. See also Kahalé [31]. We should like to emphasize that [26] assume the vari-
ance kernel c0 to satisfy the conditions c0(x, x) = c0

y(x, x) = 0, (x − y)c0
xy + c0

x > 0,

together with our Spence–Mirrlees condition c0
xyy > 0. These conditions on c0 seem

entirely appropriate in the continuous-time setting. In the context of our problem
with finitely many given marginals μ1, . . . ,μn, notice that apart from the Spence–
Mirrlees condition, none of these requirements are preserved by the transformation
of Remark 5.3.
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7 Proofs of the main results

7.1 Construction of the left-monotone map

This section is devoted to the proof of Theorem 4.5.

Proof of Lemma 4.1(i) That δF > 0 on A1 is obvious by construction. Also, for
a nondecreasing function φ, the equality

∫ m1
−∞ 1A1dφ(δF ) = ∫ m1

−∞ dφ(δF ) follows
immediately from the corresponding property verified by the pair (m0,A0), the defi-
nition of A1, and the fact that δF (t0) = δF (x̄0).

We next verify that G
m1
A1

(−∞, ·) = γ , where

G
m1
A1

(−∞, x) = −
∫ m1

−∞
(
g(x, ξ) − ξ

)
1A1(ξ) dδF +

∫ x

m1

(
g(ξ,m1) − ξ

)
dFμ(ξ).

By direct differentiation, we see that

dG
m1
A1

(−∞, x) =
(

−
∫ m1

−∞
1A1(ζ ) dζ g(x, ζ ) + g(x,m1) − x

)
dFμ(x)

= (
F−1

ν ◦ Fμ(x) − x
)
dFμ(x),

where the last equality follows from the first part of (i). We then rewrite

G
m1
A1

(−∞, x) = G
m1
A1

(−∞, x̄0) +
∫ x

x̄0

(
F−1

ν ◦ Fμ(ξ) − ξ
)
dFμ(ξ). (7.1)

Since A1 = (A0 \ (t0,m0]) ∪ [x̄0,m1] and G
m0
A0

(t0, x̄0) = 0, we compute that

G
m1
A1

(−∞, x̄0) = −
∫ t0

−∞
(
g(x̄0, ζ ) − ζ

)
1A0(ζ ) dδF (ζ ) + G

m0
A0

(t0, x̄0)

−
∫ m1

x̄0

(
g(x̄0, ζ ) − ζ

)
dδF (ζ ) +

∫ x̄0

m1

(
g(ξ,m1) − ξ

)
dFμ(ξ)

= G
m0
A0

(−∞, x̄0) −
∫ m1

x̄0

(
g(x̄0, ζ ) − ζ

)
dδF (ζ )

+
∫ x̄0

m1

(
g(ξ,m1) − ξ

)
dFμ(ξ)

= G
m0
A0

(−∞, x̄0) −
∫ m1

x̄0

g(x̄0, ζ ) dδF (ζ ) +
∫ x̄0

m1

g(ξ,m1) dFμ(ξ)

+
∫ m1

x̄0

ζ dFν(ζ )

= G
m0
A0

(−∞, x̄0),
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where the last equality follows from a direct change of variables in the second and
third terms. Plugging this into (7.1), it follows from a direct change of variables in
the integral that

G
m1
A1

(−∞, x) = G
m0
A0

(−∞, x) = γ (x).

(ii) As m1 ∈ M0(δF ), the definition of M0(δF ) implies that Fμ(x) > Fμ(ζ ) for all
x > m1 and ζ ∈ A1. Since ν has no atoms, its right-continuous inverse F−1

ν is strictly
increasing, implying that g(x, ζ ) − ζ > g(ζ, ζ ) − ζ = F−1

ν ◦ Fν(ζ ) − ζ . Moreover,
since δF is strictly increasing on A1, we see that Fν is strictly increasing on A1, and
therefore F−1

ν ◦ Fν(ζ ) = ζ . Hence, g(x, ζ ) − ζ > 0 on A1, and it follows that for
t < m1 ≤ x,

t �→ G
m1
A1

(t, x) is continuous, strictly increasing on A1, and flat on (−∞,m1] \ A1.

We next verify that G
m1
A1

(m1, x) := ∫ x

m1
(g(ξ,m1) − ξ) dFμ(ξ) > 0 as long as

δF (m1) > δF(x). Indeed, for ξ ∈ (m1, x), we have δF (m1) > δF(ξ), implying that
g(ξ,m1) > F−1

ν ◦ Fν(ξ) by the increase of F−1
ν . Notice that the right-continuous

inverse F−1
ν satisfies F−1

ν ◦ Fν(ξ) ≥ ξ . Then g(ξ,m1) > ξ , and we deduce that
G

m1
A1

(m1, x) > 0 from the fact that Fμ is strictly increasing in a right neighborhood
of m1, by the definition of M0(δF ).

Then, in order to establish the existence and uniqueness of t
m1
A1

(x), it remains to
verify that G

m1
A1

(−∞, x) = γ (x) < 0 for all x ≥ m1.
Since δF increases from zero at the left extreme of its support, and increases to

zero at the right extreme of its support, we see that γ (x) < 0 near both extremes of
its support. Next, let x∗ be any possible local maximizer of γ . Then it follows from
the first order condition in the expression (7.1) that γ is flat off supp(μ), and we may
assume that x∗ is either an interior point of supp(Fμ) or a left accumulation point of
supp(Fμ). In both cases, it follows from the first order condition that

F−1
ν

(
Fμ(x∗) − ) ≤ x∗ ≤ F−1

ν

(
Fμ(x∗)

)
.

If F−1
ν is continuous at the point Fμ(x∗), then δF (x∗) = 0 and it follows that

γ (x∗) =
∫

(−∞,x∗]
ξ dδF (ξ) = −

∫
(−∞,x∗]

(x∗ −ξ) dδF (ξ) = −
∫

(x∗ −ξ)+ dδF (ξ).

By the fact that the pair (μ, ν) is irreducible, it follows from (3.6) that γ (x∗) < 0.
In the alternative case that F−1

ν jumps at the point Fμ(x∗), notice that Fν is flat on
the right of F−1

ν ◦ Fμ(x∗), and therefore the conclusion γ (x∗) < 0 holds true in this
case as well.

(iii) Direct differentiation reveals that

dG
m1
A1

(
t
m1
A1

(x), x
) = −

(
g
(
t
m1
A1

(x), x
) − t

m1
A1

(x)
)

d
(
δF ◦ t

m1
A1

)
(x)

+ (
g(x,m1) − x

)
dFμ(x).
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The required result follows immediately from the restriction of t
m1
A1

(x) to take values
in a set of increase of δF .

(iv) Suppose x1 < ∞. Then since the possible jumps of F−1
ν are positive, it follows

from the definition of x1 that g(x1, t
m1
A1

(x1)) = x1, and Fμ(x1) + δF (t
m1
A1

(x1)) is a

continuity point of F−1
ν . Consequently, δF (t

m1
A1

(x1)) = δF (x1), and

x1 = inf
{
x > m1 : δF

(
t
m1
A1

(x)
) ≤ δF (x)

}
. (7.2)

Since t1 := t
m1
A1

(x1) ∈ A1, we see that x1 ∈ B0 is necessarily a point of (right) increase
of δF , and we have

– either t1 ∈ [x̄0,m1], implying that δF (x1) = δF (t1) ≥ δF (x̄0) ≥ 0;
– or t1 ∈ A0 \ (t0,m0], implying again that δF (x1) ≥ 0.
Finally, since δF increases to zero at the right extreme of its support, it follows

from the fact that x1 ∈ B0 and δF (x1) ≥ 0 that x1 ≤ mn, and by (7.2) together with
the non-increase of t

m1
A1

, we see that x1 /∈ M0(δF ). �

Proof of Theorem 4.5(i) By construction, the probability measure P∗ satisfies the
left-monotonicity property of Definition 3.4. In the rest of this proof, we verify that
P∗ ∈ M2(μ, ν). In particular, by the uniqueness result of Beiglböck and Juillet [4,
Theorem 1.5 and Corollary 1.6], this implies that P∗ is the unique left-monotone
transport plan.

First, by the definition of P∗ in (4.2), X ∼P∗ μ and E
P∗ [Y |X] = X. It remains to

verify that Y ∼P∗ ν. We argue as in the beginning of Sect. 7.1, considering separately
the following alternatives for any point y ∈R:
Case 1. y = yd ∈ D ∩ B0 corresponds to some point x such that yd = Td(x), and we
see from the definition of P∗ that

P∗[Y ∈ dy] = dFμ

(
Td(x)

) − (1 − q)dFμ(x) and dFν

(
Tu(x)

) = q dFμ.

Since dFν(Tu) = q dFμ and Tu(x) = g(x,Td(x)), this provides

P∗[Y ∈ dy] = d
(
Fμ(Td) − Fμ + Fν(Tu)

)
(x) = dFν(y).

Case 2. y = yu ∈ Dc corresponds to some x such that yu = Tu(x). By the definition
of P∗ and the fact that dFν(Tu) = q dFμ, we see that

P∗[Y ∈ dy] = q dFμ(x) = dFν(y).

Case 3. In the remaining alternative y ∈ D \ B0, we observe that the function δF is
flat near y, and there is no x �= y such that Td(x) = y or Tu(x) = y. Then it follows
from the definition of P∗ that

P∗[Y ∈ dy] = dFμ(y) = dFν(y).

It remains to justify the ODEs satisfied by Tu and Td as reported in part (i) of Theo-
rem 4.5. Recall from Step i of the construction in Sect. 4.2 that Td(x) is defined by the
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integral equation GAi
(Td(x), x) = 0 for mi ≤ x < xi , where GA is defined in (4.1).

Differentiating this integral equation at a continuity point of Td , we see that

0 = −(
F−1

ν ◦ Fμ(x) − x
)
dFμ(x) +

(
g
(
x,Td(x)

) − F−1
ν ◦ Fμ(x)

)
dFμ(x)

+
(
g
(
x,Td(x)

) − Td(x)
)

dδF
(
Td(x)

)

=
(
g
(
x,Td(x)

) − x
)

dFμ(x) +
(
g
(
x,Td(x)

) − Td(x)
)

dδF
(
Td(x)

)
.

Since Tu = g(·, Td) this is the required ODE. The ODE for Tu is obtained by using
the relation Tu = g(·, Td). �

7.2 Optimal semi-static strategy: proof of Theorem 5.1

Following the line of argument of the proof of Theorem 2.2, we see from the weak
duality (3.3) that

E
P∗ [c(X,Y )] ≤ P2(μ, ν) ≤ D2(μ, ν).

Then the proof of Theorem 5.1 is completed by the following result.

Lemma 7.1 Let μ, ν be as in Assumptions 3.5 and 3.7, and suppose that the payoff
function c satisfies cxyy > 0. Then ϕ∗ ⊕ ψ∗ + h⊗∗ ≥ c.

Proof (i) We first verify that the second order condition for a local maximum of
H(x, ·) is satisfied on Dc. Differentiating (5.5), (5.6) and using the expression of h′∗
in (5.10), we see that

Hyy(·, Tu) dTu = cyy(·, Tu) dTu − dψ ′∗(Tu)

= cx(·, Tu) − cx(·, Td)

Tu − Td

dx − cxy(·, Tu) dx

on Dc . Since cxyy > 0, this implies that

Hyy(·, Tu)T
′
u = cx(·, Tu) − cx(·, Td)

Tu − Td

− cxy(·, Tu) < 0,

and by the non-decrease of Tu, it follows that Hyy(·, Tu) < 0. Similarly,

Hyy(·, Td)T ′
d = (

cyy(·, Td) − ψ ′′∗ ◦ Td

)
T ′

d

= cx(·, Tu) − cx(·, Td)

Tu − Td

− cxy(·, Td) > 0

on Dc , and by the non-increase of Td , this implies that Hyy(·, Td) < 0.
(ii) We next show that y �→ H(·, y) is increasing before Td and decreasing after Tu.

In particular, this implies that

ϕ∗(x) = max
y∈[Td(x),Tu(x)]

H(x,y) for all x ∈R.
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Set y := Tu(x), let mi be the local maximum from which (Td, Tu)(x) is constructed,
and consider an arbitrary y′ = Tu(x

′) > y for some x′ > x. We only report the proof
for the case x′ ∈ (mj , xj ] for some j ≥ i; the remaining case x′ ∈ (xj ,mj+1] for
some j ≥ i is treated similarly. Recalling that Hy(x,Tu(x)) = 0, we decompose

Hy(x, y′) = Hy(x, y′) − Hy(x,mj ∨ y) +
j∑

k=i+1

(Ak + Bk),

where the last sum is set to zero whenever i = j , and

Ak := Hy(x,mk) − Hy(x, xk−1), Bk := Hy(x, xk−1) − Hy

(
x,mk−1 ∨ Tu(x)

)
.

We next compute from the expression of h∗ in (5.10), (5.11) that

Hy(x, y′) − Hy(x,mj ∨ y) =
∫ y′

mj ∨y

(
cyy(x, ξ ′) − ψ ′′∗ (ξ ′)

)
dξ ′

≤
∫ y′

mj ∨y

(
cyy(x, ξ ′) − cyy

(
T −1

u (ξ ′), ξ ′))dξ ′

= −
∫ y′

mj ∨y

∫ T −1
u (ξ ′)

x

cxyy(ξ, ξ ′) dξ dξ ′ < 0,

where the second inequality follows from the second order condition verified in (i).
Similarly, we compute that

Ak =
∫

(xk−1,mk]
(
cyy(x, ξ ′) − ψ ′′∗ (ξ ′)

)
dξ ′

≤
∫ mk

xk−1

(
cyy(x, ξ ′) − cyy

(
T −1

d (ξ ′), ξ ′))dξ ′

= −
∫ mk

xk−1

∫ T −1
d (ξ ′)

x

cxyy(ξ, ξ ′) dξ dξ ′ < 0,

where we used again the second order condition verified in (i). Finally,

Bk =
∫ y

mk−1∨Tu(x)

(
cyy(x, ξ ′) − ψ ′′∗ (ξ ′)

)
dξ ′

≤
∫ y

mk−1∨Tu(x)

(
cyy(x, ξ ′) − cyy

(
T −1

u (ξ ′), ξ ′))dξ ′

= −
∫ y

mk−1∨Tu(x)

∫ T −1
u (y′)

x

cxyy(ξ, ξ ′) dξ dξ ′ < 0.

A similar argument also shows that Hy(x, y′) < 0 for y′ < Td(x).
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(iii) We next show that H(·, Td) = H(·, Tu). Denote δH := H(·, Tu) − H(·, Td)

and compute

δH ′ = cx(·, Tu) − cx(·, Td) − (Tu − Td)h′∗
+ (

cy(·, Tu) − ψ ′∗(Tu) − h∗
)
T ′

u − (
cy(·, Td) − ψ ′∗(Td) − h∗

)
T ′

d

in the distributional sense. By the definition of ψ∗ and h∗, it follows that δH ′ = 0
at any continuity point. Since δH is continuous by our construction, see (5.15),
this shows that δH(x) = δH(mi) = 0, where mi is the local maximizer from which
(Td, Tu)(x) is defined.

(iv) We finally show that Tu and Td are global maximizers of y �→ H(·, y). Let
x ∈ Dc and denote by m the local maximizer from which Td(x) and Tu(x) are con-
structed. For fixed T = Tu(t) ∈ (m,Tu(x)), it follows from similar calculations as in
the previous step that

∂x

(
H(·, Tu) − H(·, T )

) = cx(·, Tu) − cx(·, T ) − (T − Td)h′∗

= (Tu − T )

(
cx(·, Tu) − cx(·, T )

Tu − T
− cx(·, Tu) − cx(·, Td)

Tu − Td

)

> 0

by the condition cxyy > 0. Then H(·, Tu)−H(·, T ) = ∫ ·
t
∂x{H(·, Tu)−H(·, T )} > 0.

By a similar calculation, we also show that H(x,Td(x)) − H(x,T ) ≥ 0 for all
T ∈ (Td(x),m). Since H(x,Tu(x)) = H(x,Td(x)) by the previous step, this com-
pletes the proof that Td and Tu are global maximizers of y �→ H(·, y). �

References

1. Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W., Temme, J.: A trajectorial interpretation
of Doob’s martingale inequalities. Ann. Appl. Probab. 23, 1494–1505 (2013)

2. Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental
theorem of asset pricing and the super-replication theorem. Math. Finance 26, 233–251 (2016)

3. Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices—
a mass transport approach. Finance Stoch. 17, 477–501 (2013)

4. Beiglböck, M., Juillet, N.: On a problem of optimal transport under marginal martingale constraints.
Ann. Probab. 44, 42–106 (2016)

5. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in options prices. J. Bus.
51, 621–651 (1978)

6. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad.
Sci. Paris Sci. Paris, Ser. I Math. 305(19), 805–808 (1987)

7. Brown, H., Hobson, D., Rogers, L.C.G.: Robust hedging of barrier options. Math. Finance 11, 285–
314 (2001)

8. Carlier, G.: On a class of multidimensional optimal transportation problems. J. Convex Anal. 10,
517–529 (2003)

9. Cousot, L.: Necessary and sufficient conditions for no static arbitrage among European calls. Courant
Institute, New York University (2004). Available online at: http://www.en.affi.asso.fr/uploads/
Externe/04/CTR_FICHIER_137_1226317002.pdf

10. Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance
31, 3377–3397 (2007)

11. Cox, A.M.G., Hobson, D., Obłój, J.: Pathwise inequalities for local time: Applications to Skorokhod
embeddings and optimal stopping. Ann. Appl. Probab. 18, 1870–1896 (2008)

http://www.en.affi.asso.fr/uploads/Externe/04/CTR_FICHIER_137_1226317002.pdf
http://www.en.affi.asso.fr/uploads/Externe/04/CTR_FICHIER_137_1226317002.pdf


668 P. Henry-Labordère, N. Touzi

12. Cox, A.M.G., Obłój, J.: Robust hedging of double touch barrier options. SIAM J. Financ. Math. 2,
141–182 (2011)

13. Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15,
573–605 (2011)

14. Cox, A.M.G., Wang, J.: Root’s barrier: construction, optimality and applications to variance options.
Ann. Appl. Probab. 23, 859–894 (2013)

15. d’Aspremont, A., El Ghaoui, L.: Static arbitrage bounds on basket option prices. Math. Program., Ser.
A 106, 467–489 (2006)

16. Davis, M.H.A., Hobson, D.: The range of traded option prices. Math. Finance 17, 1–14 (2007)
17. Davis, M.H.A., Obłój, J., Raval, V.: Arbitrage bounds for prices of options on realized variance. Math.

Finance 24, 821–854 (2014)
18. Dolinsky, Y., Soner, H.M.: Robust hedging and martingale optimal transport in continuous time.

Probab. Theory Relat. Fields 160, 391–427 (2014)
19. Dolinsky, Y., Soner, H.M.: Robust hedging under proportional transaction costs. Finance Stoch. 18,

327–347 (2014)
20. Dubins, L.E., Schwarz, G.: On extremal martingale distributions. In: Le Cam, L.M., Neyman, J. (eds.)

Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2: Contributions to
Probability Theory, Part 1, pp. 295–299. University of California Press, Berkeley (1967)

21. Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds
given marginals, with an application to lookback options. Ann. Appl. Probab. 24, 312–336 (2014)
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