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Abstract We investigate models with negative risk sums when the company invests
its reserve into a risky asset whose price follows a geometric Brownian motion. Our
main result is an exact asymptotic of the ruin probabilities for the case of expo-
nentially distributed benefits. As in the case of non-life insurance with exponential
claims, the ruin probabilities are either decreasing with a rate given by a power func-
tion (the case of small volatility) or equal to one identically (the case of large volatil-
ity). The result allows us to quantify the share of reserve to invest into such a risky
asset to avoid a catastrophic outcome, namely the ruin with probability one. We ad-
dress also the question of smoothness of the ruin probabilities as a function of the
initial reserve for generally distributed jumps.
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1 Introduction

In the modern world, insurance companies operate in a financial environment. In
particular, they invest their reserves into various assets and this may add more risk to
the business. To our knowledge, the first model of an insurance company investing its
capital into a risky asset has appeared in the short note [12] where the author provided
arguments showing that the asymptotic behavior of the ruin probability is radically
different from that in the classical Lundberg–Cramér model. A rigorous analysis in
[13] confirmed the conjecture. Using Kalashnikov’s [20] estimates for linear finite
difference equations with random coefficients, it was shown that independently of
the safety loading, ruin is imminent with probability one when the volatility σ of
the stock price is large with respect to the instantaneous rate of return a (namely,
when 2a/σ 2 < 1), and the ruin probability is decreasing as a power function when
the volatility is small (namely, when 2a/σ 2 > 1). For the model with exponentially
distributed claims, the exact asymptotics was found. The threshold case 2a/σ 2 = 1
was studied in [28, 29] where it was shown, using techniques based on an ergodic
theorem, that the ruin is imminent with probability one. The setting of [13] and [28]
is of the so-called non-life insurance: the company receives a flow of contributions
and pays claims. It is also referred to as a model with positive risk sums. Ruin occurs
when a new claim arrives and its value is too large to be covered by the reserve: the
risk process exits from the positive half-axis by a jump. The model can be studied
in the discrete-time framework, but the method of differential equations happens to
be more efficient in the case of exponential claims where it allows getting the exact
asymptotics.

In the present note, we consider the model of a company with an outgoing constant
flow of payments and received random benefits; such models are called models with
negative risk sums. The classical literature relates this setting to life annuity, or pen-
sion, insurance, when the company pays to the policyholder a pension (or annuity)
and earns a premium when the insured person dies; see e.g. [16, Example 8, Chap. 1]
or [31]. The modern literature refers to the balance sheet of a venture company fund-
ing R&D and selling innovations [4].

For the classical model, where the reserve process has upward jumps and may
leave the positive half-axis only in a continuous way, the ruin problem can be eas-
ily reduced to the ruin problem for non-life insurance using the so-called duality
method [2]. Its idea is to define the “dual” process by replacing the line segments
between consecutive jumps of the original process by downward jumps of the same
depth and the upward jumps by the line segments of the same height with positive
fixed slope. Note that in the literature, models with upward jumps are often referred
to as dual models [1, 3].

The duality method does not work in our setting where the capital of the company
or a fraction of it is invested into a risky asset. The change of two signs to the op-
posite ones in the equation defining the dynamics of the reserve leads to technical
complications. In particular, ruin may happen before the instant of the first jump and
the latter is no more the instant of a regeneration, after which the process starts afresh
provided it is strictly positive.
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Nevertheless, a suitable modification of the arguments of [13] and [28] combined
with some ideas allows us to obtain the asymptotic of the ruin probability as the
initial reserve tends to infinity. Expectedly, it is the same as in the non-life insurance
case. In many countries, there are rules allowing insurance companies to invest only
a small share of their reserves into risky assets. Our simple model confirms that this
is reasonable and even provides a quantitative answer. To avoid a situation when ruin
happens with probability one, the proportion of investment into the risky asset should
be strictly less than 2a/σ 2.

It should be emphasized that the case of the model with negative risk sums is
rather different and its study is not a straightforward exercise. The main difficulty
in deriving the integro-differential equation is to prove the smoothness of the ruin
probability and the integrability of derivatives. This issue is already delicate in the
non-life insurance case. Unfortunately, it was not discussed in [13] where the reader
was directed for this towards the literature. Now we are not sure that we had at hand
at that time a reliable reference. The smoothness of the exit probability is discussed in
many papers; see e.g. the interesting article [32] where the explicit formula for an ex-
ponential functional of Brownian motion due to Marc Yor [33] is used, but the needed
smoothness property was established only under constraints on the coefficients. The
first author of the present note had a fruitful discussion with Marc on the possibility
to deduce smoothness of the ruin probability and the integrability of its derivatives
without using complicated explicit formulae. Marc’s suggestions are realized here for
a model with negative risk sums. Note that in the literature on non-life insurance, one
can find other methods to establish smoothness. For example, an approach similar to
verification theorems in stochastic control theory was developed in [5].

The structure of the paper is as follows. Section 2 contains the formulation of
the main results. In Sect. 3, we establish an upper asymptotic bound for the exit
probability (from (0,∞)) for the solution of a non-homogeneous linear stochastic
equation, and a lower asymptotic bound for the small volatility case. As a tool, we
use the Dufresne theorem rather than Goldie’s renewal theorem from [15], which was
the key ingredient of the arguments in [28]. The proof of Theorem 2.2 asserting that
in the case of large volatility ruin is imminent is given in Sect. 4. The regularity of
the non-ruin probability Φ is studied in Sect. 5 using a method based on integral
representations. At the end of this section, we derive the integro-differential equation
for Φ . Section 6 contains the proof of the main theorem. Finally, in the Appendix
we provide a formulation of an ergodic theorem for an autoregression with random
coefficients proved in [28].

Kalashnikov’s approach (developed further in his joint work with Ragnar Nor-
berg [21]) plays an important role in our study. Our technique is elementary. More
profound and general results can be found in [19, 23–27], among others.

2 The model

We are given a stochastic basis (Ω,F ,F = (Ft )t≥0,P) with a Wiener process W

independent of the integer-valued random measure p(dt, dx) with the compensator
p̃(dt, dx).
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Let us consider a process X = Xu of the form

Xt = u + a

∫ t

0
Xs ds + σ

∫ t

0
Xs dWs − ct +

∫ t

0

∫
xp(ds, dx), (2.1)

where a and σ are arbitrary constants and c < 0.
We shall assume that p̃(dt, dx) = α dtF (dx), where F(dx) is a probability distri-

bution on (0,∞). In this case, the integral with respect to the jump measure is simply
a compound Poisson process. It can be written as

∑Nt

i=1 ξi , where N is a Poisson
process with intensity α and ξi are random variables with common distribution F ;
the random variables W , N , ξi , i ∈ N, are independent. We denote by Tn the succes-
sive jumps of N ; the interarrival times Ti − Ti−1 are independent and exponentially
distributed with parameter α.

In our main result (Theorem 2.1), we assume that F is the exponential distribution
with parameter μ.

Let τu := inf{t : Xu
t ≤ 0} (the instant of ruin), Ψ (u) := P[τu < ∞] (the ruin prob-

ability), and Φ(u) := 1 − Ψ (u) (the survival probability).
The parameter values a = 0, σ = 0 correspond to the negative risk sum version of

the Lundberg–Cramér model for which the risk process is usually written as

rt := u − ct +
Nt∑
i=1

ξi .

This means that the capital evolves due to continuously outgoing cash flow with rate c

and incoming random payoffs ξi at times forming an independent Poisson process N

with intensity α. For the classical model with positive safety loading and F having
a “non-heavy” tail, the Lundberg inequality provides an encouraging information:
the ruin probability decreases exponentially as the initial capital u tends to infinity.
Moreover, for exponentially distributed claims, the ruin probability admits an explicit
expression; see [2, Ch. IV.3b] or [16, Sect. 1.1].

The more realistic case a > 0, σ = 0, corresponding to non-risky investments,
does not pose any problem (see e.g. [18] for estimates of the exit probabilities cover-
ing this case).

We study here the case σ > 0. Now (2.1) describes the evolution of the reserve of
an insurance company which pays an annuity and continuously reinvests its capital
into an asset with the price following a geometric Brownian motion.

Notations. Throughout the paper, we use the following abbreviations:

κ := a − 1

2
σ 2, β := 2κ

σ 2
= 2a

σ 2
− 1, ηt := κt + σWt .

The solution of the linear stochastic equation (2.1) can be written, using the
Cauchy formula, as

Xt = eηt

(
u +

∫
[0,t]

e−ηs drs

)
.
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Theorem 2.1 Let F(x) = 1 − e−x/μ, x > 0. Assume that σ, c > 0.
(i) If β > 0, then for some K > 0,

Ψ (u) = Ku−β
(
1 + o(1)

)
, u → ∞.

(ii) If β ≤ 0, then Ψ (u) = 1 for all u > 0.

The formulation of this theorem is exactly the same as in [13] for the non-life
insurance model (the case β = 0 was analyzed in [28, 29]).

One must admit that in annuity insurance models, especially in the case of a com-
pany keeping a portfolio of viager contracts (lifetime annuity in exchange for a real
estate), the hypothesis that the benefits (i.e., prices of houses) follow an exponential
distribution is highly unrealistic. Nevertheless, we can claim, without any assumption
on the distribution, that the ruin probabilities lie between two power functions; see
Propositions 3.1 and 3.2.

The next result (implying the statement (ii) above) says that for δ > 0, ruin is
imminent. It requires only that the distribution F has some moments of positive order.

Theorem 2.2 Assume that there is δ > 0 such that Eξδ
1 < ∞. If β ≤ 0, then Ψ (u) = 1

for any u > 0.

The same basic model serves well in the situation where only a fixed part
γ ∈ (0,1) of the capital is invested in the risky asset: one should only replace the
parameters a and σ in (2.1) by aγ and σγ . Theorem 2.1 implies that the ruin with
probability one will be avoided only if 2aγ /(σγ )2 > 1, i.e., when the share γ of
investment into the risky asset is strictly less than 2a/σ 2.

It is worth mentioning that our conclusions are robust and hold for more general
models. The reader may criticize the hypothesis that the intensity c of outgoing pay-
ments is constant. Indeed, after the death of the person receiving the annuity, the
payments stop and the intensity must decrease, while it increases with a new cus-
tomer. Easy comparison arguments show that the above statements hold in the more
realistic situation where c = (ct ) is a random process such that 0 < C1 ≤ c ≤ C2,
where C1 and C2 are constants.

The crucial part of the asymptotic analysis in Theorem 2.1 is based on the fact that
for the Markov process given by (2.1), the non-exit probability Φ(u) is smooth and
satisfies the equation

1

2
σ 2u2Φ ′′(u) + (au − c)Φ ′(u) − αΦ(u) + α

∫ ∞

0
Φ(u + y)dF (y) = 0. (2.2)

With σ > 0, this equation is of the second order and hence requires two boundary
conditions—in contrast to the classical case (a = 0, σ = 0) where it degenerates to
an equation of the first order requiring a single boundary condition; see [16]. The
estimate given in Proposition 3.1 shows that Φ(∞) = 1.

There is an extensive literature concerning the regularity of the survival probability
for processes with jumps in the context of non-life insurance models and models
based on Lévy processes; see e.g. [6, 7, 14, 17, 32]. Our Theorem 5.1 requiring only
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the smoothness of F and the integrability of F ′′ seems to be the first result on the
regularity of the survival probability in the considered setting.

3 Asymptotic bounds for the small volatility case

3.1 Upper asymptotic bound

Let us consider the exit probability problem for a more general process X = Xu of
the form

Xt = u + a

∫ t

0
Xs ds + σ

∫ t

0
Xs dWs − ct + Zt ,

where a,σ, c are strictly positive constants and Z = (Zt )t≥0 is an increasing adapted
càdlàg process starting from zero.

Proposition 3.1 Assume that β > 0 in the general model (2.1). Then

lim sup
u→∞

uβ Ψ (u) ≤ 2β cβ

σ 2ββΓ (β)
.

Proof Let Y be the solution of the linear stochastic equation

Yt = u + a

∫ t

0
Ys ds + σ

∫ t

0
Ys dWs − ct.

Introducing the notation

Rt := c

∫ t

0
e−ηs ds, (3.1)

we express the solution as

Yt := eηt
(
u − Rt).

The difference X − Y satisfies the same linear equation as X, but with zero initial
condition and c = 0. Since Z is increasing, we have the inequality X ≥ Y , showing
that the exit of X from (0,∞) implies the exit of Y . Thus,

Ψ (u) ≤ P[R∞ > u], (3.2)

and the asymptotic behavior of the ruin probability for this general model can be
estimated by the tail behavior of the distribution function of R∞. Using the change of
variable s = (4/σ 2)t and observing that Bt := −(1/2)σW(4/σ 2)t is a Wiener process,
we obtain the representation

R∞ = c

∫ ∞

0
e−(a−σ 2/2)s−σWs ds = 4c

σ 2

∫ ∞

0
e−2βt+2Bt dt =: 4c

σ 2
A

(−β)∞ .
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The Dufresne theorem (see [9] or [22, Theorem 6.2]) claims that A
(−β)∞ is distributed

as the random variable 1/(2γ ), where γ has the gamma distribution with parame-
ter β . Thus,

P[R∞ > u] = P[2c/(σ 2γ ) > u]

= P[γ < 2c/(σ 2u)] = 1

Γ (β)

∫ 2c/(σ 2u)

0
xβ−1e−x dx

∼ 2β cβ

σ 2ββΓ (β)
u−β,

and the result follows from (3.2). �

3.2 Lower asymptotic bound

The next result shows that the ruin probability decreases, as the initial capital tends
to infinity, not faster than a certain power function.

Proposition 3.2 Assume that β > 0. Then there exists β∗ > 0 such that

lim inf
u→∞ uβ∗ Ψ (u) > 0.

Proof Let Y = (Yk)k≥1 be the embedded discrete-time process, i.e., the sequence of
random variables defined recursively by

Yk = MkYk−1 + Qk, Y0 = u, (3.3)

where

Mk = e
ηTk

−ηTk−1 and Qk = ξk − c

∫ Tk

Tk−1

eηTk
−ηs ds.

Let θu := inf{k : Yk ≤ 0}. It is clear that XTk
= Yk for any k ≥ 1. So, for any u > 0,

Ψ (u) = P[τu < ∞] ≥ P[θu < ∞]. (3.4)

Take � ∈ (0,1) and chose B sufficiently large to ensure that

B1 = B − 1

�2(1 − �)
> 0.

Define the sets

Γk = {Mk ≤ �} ∩ {Qk ≤ �−1}, Dk = {Mk ≤ �−1} ∩ {Qk ≤ −B}.
On the set

⋂n
k=1 Γk , we have

Yn = u

n∏
j=1

Mj +
n∑

k=1

Qk

n∏
j=k+1

Mj ≤ u�n + 1

�(1 − �)
.
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Therefore, on the set
⋂n

k=1 Γk ∩ Dn+1,

Yn+1 = Mn+1Yn + Qn+1 ≤ u�n−1 + 1

�2(1 − �)
− B = u�n−1 − B1.

It is easy to check that u�n−1 ≤ B1, when u > B1 and

n = 3 +
[

ln(u/B1)

| ln�|
]

,

where [ · ] means the integer part. Therefore,

P[θu < ∞] ≥ P

[
n⋂

k=1

Γk ∩ Dn+1

]
= (P[Γ1])nP[D1].

Taking into account that P[Γ1] > 0 and P[D1] > 0, we obtain that

lim
u→∞ uβ∗P[θu < ∞] = ∞

for any

β∗ >
ln P[Γ1]

ln�
.

This implies the claim. �

4 Large volatility: proof of Theorem 2.2

We consider separately the two cases β < 0 and β = 0 and show that in both cases,
the ruin probability is equal to one.

Proposition 4.1 Assume that β < 0 and Eξδ
1 < ∞ for some δ > 0. Then Ψ (u) = 1

for all u > 0.

Proof As in the proof of Proposition 3.2, we consider the embedded discrete-time
process Y = (Yk)k≥1 defined by (3.3). By virtue of (3.4), it is sufficient to show that
P[θu < ∞] = 1. Note that for δ ∈ (0,−β),

Eeδηt = Eeδ(κt+σWt ) = eδt (β+δ)σ 2/2 < 1,

and therefore

EMδ
1 =

∫ ∞

0
Eeδηt αe−αt dt < 1.

According to [8, Ch. 2, Sect. 1, Eq. (1.1.1)], if a random variable ν is independent of
W and has the exponential distribution with parameter α, then

Eeq maxs≤ν (μs+Ws) =
√

2α + μ2 − μ√
2α + μ2 − μ − q

, (4.1)
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provided that √
2α + μ2 − μ − q > 0.

Changing variables and estimating the integrand by its maximal value, we get

E
(∫ T1

0
eηT1−ηs ds

)δ

= E
(∫ T1

0
eκs+σWs ds

)δ

≤ ET δ
1 eδ maxs≤T1 (κs+σWs)

=
∫ ∞

0
tδEeδ maxs≤t (κs+σWs)αe−αt dt

≤ 2 sup
t≥0

(
tδ e−αt/2)Eeδ maxs≤ν′ (κs+σWs)

= 2eδ(ln(2δ/α)−1)Eeδ maxs≤ν′ (κs+σWs),

where ν′ is an exponential random variable with parameter α/2. In view of the equal-
ity (4.1),

Eeδ maxs≤ν′ (κs+σWs) =
√

σ 2α + κ2 − κ√
σ 2α + κ2 − κ − δσ 2

,

provided that

δ <

√
σ 2α + κ2 − κ

σ 2
,

i.e., for such δ > 0 we have the bound

E
(∫ T1

0
eηT1−ηs ds

)δ

≤ 2 eδ(ln(2δ/α)−1)

√
σ 2α + κ2 − κ√

σ 2α + κ2 − κ − δσ 2
. (4.2)

Using these estimates and the assumption of the proposition, we conclude that we
have E|Q1|δ < ∞ for sufficiently small δ > 0. Thus, the hypothesis of the ergodic
theorem for autoregression with random coefficients is fulfilled (see Proposition A.1).
The latter claims that for any bounded uniformly continuous function f ,

P- lim
N

1

N

N∑
k=1

f (Yk) = Ef (ζ ), (4.3)

where

ζ = Q1 +
∞∑

k=2

Qk

k−1∏
j=1

Mj.

Let us represent ζ in the form

ζ = ξ1 −
∫ T1

0
eηT1−ηs ds + eηT1 ζ1, ζ1 :=

∞∑
k=2

Qk

k−1∏
j=2

Mj .
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Clearly, the random variables ξ , ζ1 and (ηT1 ,
∫ T1

0 eηT1 −ηs ds) are independent. More-
over, Lemma 4.2 below implies that the support of the conditional distribution of the
integral

∫ t

0 eηt−ηs ds given ηt = x is unbounded from above. From this we easily infer
that the support of the distribution of ζ is unbounded from below. Thus, for

f (x) = 1{x≤−1} + |x|1{−1<x<0},

the right-hand side of (4.3) is strictly positive, and therefore P[infk≥1 Yk < 0] = 1. �

Lemma 4.2 Let σ > 0. Then the support of the conditional distribution of the random
variable

I =
∫ 1

0
eσWs ds

given W1 = y is unbounded from above.

Proof It is well known (see e.g. [30, Ch. 1, Eq. (3.16)]) that the conditional distribu-
tion of the Wiener process (Ws)s≤1 given W1 = y coincides with the distribution of
the Brownian bridge By with B

y
t = Wt + t (y − W1). Thus, the conditional distribu-

tion of I is the same as the unconditional distribution of

Ĩ :=
∫ 1

0
eσ(Ws+s(y−W1)) ds.

Since Wiener measure has full support in the space C0[0,1] of continuous functions
on [0,1] with zero initial value, the support of the distribution of Ĩ is unbounded from
above. �

Proposition 4.3 Assume that β = 0 and Eξδ
1 < ∞ for some δ > 0. Then Ψ (u) = 1

for all u > 0.

Proof In the considered case, the embedded discrete-time process is defined by (3.3)
with

Mk = eσ�Vk and Qk = ξk − c

∫ Tk

Tk−1

eσ(WTk
−Ws) ds,

where Vk = WTk
and �Vk := Vk − Vk−1. To study the asymptotic properties of

Eq. (3.3), we use the approach proposed in [28] for non-life insurance models. To
this end, define recursively a sequence of random variables by θ0 := 0 and

θn := inf{k > θn−1 : Vk − Vθn−1 < 0}, n ≥ 1.

Note that θn = ∑n
j=1 �θj , where (�θj )j≥1 is a sequence of i.i.d. random variables

distributed as θ1. It is known (see e.g. [11, Theorem XII.7.1a]) that

C := sup
n≥1

n1/2P[θ1 > n] < ∞.
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Putting yk = Yθk
, we obtain from (3.3) that

yk = ak yk−1 + bk, y0 = u,

where

ak =
�θk∏
j=1

Mθk−1+j = e
σ(Vθk

−Vθk−1 )

and

bk =
�θk∑
�=1

(
�θk∏

j=�+1

Mθk−1+j

)
Qθk−1+�.

It is clear that ak < 1 a.s. Moreover, the first condition in Theorem 2.2 and the in-
equality (4.2) with κ = 0 imply that E|Q1|δ < ∞ for any sufficiently small δ. Now,
taking into account that

|b1| ≤
�θ1∑
�=1

(
�θ1∏

j=�+1

Mj

)
|Q�| =

�θ1∑
�=1

a1∏�
j=1 Mj

|Q�| ≤
�θ1∑
�=1

|Q�|,

we can get for r ∈ (0,1) and an increasing sequence of integers �n that

E|b1|r ≤ 1 + r
∑
n≥1

1

n1−r
P[|b1| > n]

≤ 1 + r
∑
n≥1

1

n1−r
P

[
�n∑

j=1

|Qj | > n

]
+ r

∑
n≥1

1

n1−r
P[|θ1| > �n]

≤ 1 + rE|Q1|δ
∑
n≥1

�n

n1−r+δ
+ r C

∑
n≥1

1

n1−r�
1/2
n

.

Putting here �n = [n4r ], we obtain that E|b1|r < ∞ for any r ∈ (0, δ/5). Therefore,
due to Proposition A.1, we obtain that for any bounded uniformly continuous func-
tion f ,

P- lim
N

1

N

N∑
k=1

f (yk) = Ef (ζ ),

where

ζ = b1 +
∞∑

k=2

bk

k−1∏
j=1

aj . (4.4)

Now we show that

P[ζ < −x] > 0 for any x > 0.
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Indeed, the random variable (4.4) can be represented as

ζ = b1 + a1 ζ1, ζ1 =
∞∑

k=2

bk

k−1∏
j=2

aj .

It is clear that ζ1 is independent of b1 and a1. Note that on the set {�θ1 = 1}, we have
a1 = M1 and b1 = Q1. Therefore, for any x > 0,

P[ζ < −x] ≥ P[b1 + a1 ζ1 < −x, �θ1 = 1] = P[Q1 + M1 ζ < −x,WT1 < 0],
and we conclude as in the previous proposition. �

5 Regularity of the ruin probability

5.1 Integral representations

The proof of smoothness of a function H admitting an integral representation is based
on a simple idea which merits to be explained.

First, let us recall the following classical result on the differentiability of the inte-
gral H(u) = ∫

f (u, z) dz, where f (u, ·) ∈ L1 for each u from an open subset U ⊆ R.
If f (·, z) is differentiable on an open interval (u0 − ε,u0 + ε) for almost all z and on
this interval, |∂f (·, z)/∂u| ≤ g(z) (a.e.) where g ∈ L1, then H is differentiable at u0
and H ′(u0) = ∫

∂f (u0, z)/∂udz.
Suppose that we are given a bounded measurable function h(z) and a Gaussian

random variable ζ ∼ N(0,1). Let H(u) = Eh(u + ζ ) = ∫
h(u + x)ϕ0,1(x) dx. Then

H is differentiable and even of class C∞. Of course, the above result cannot be ap-
plied directly. But using a change of variables, we get the representation

H(u) =
∫

h(u + x)ϕ0,1(x) dx =
∫

h(z)ϕ0,1(z − u)dz.

Now the parameter u appears only in the function ϕ0,1, the integrand is differentiable
in u, and we can apply the classical sufficient condition.

The issues here are: an integral representation, the smoothness of the density, and
the integrability of its derivatives. In the case of the survival probability Φ , the inte-
gral representation is obtained from the strong Markov property. Unfortunately, the
structure of the representation is rather complicated, the random variable standing for
ζ is not Gaussian, and its density is not given by a simple formula. Nevertheless, the
idea of using a change of variables to move the parameter from the unknown function
on which we have only limited information (essentially, boundedness and measura-
bility) to the density still does work. The main difficulty is checking the smoothness
of the density and finding appropriate bounds for its derivatives.

Theorem 5.1 Assume that the distribution of ξ1 has a density f differentiable on R+
and such that f ′ ∈ L1(R+). Then Φ(u) is two times continuously differentiable on
(0,∞).
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Proof We again consider the process

Yu
t = eηt (u − Rt) , (5.1)

where Rt is defined in (3.1). Put

θu := inf{t ≥ 0 : Yu
t ≤ 0}.

By virtue of the strong Markov property of Xu,

Φ(u) = EΦ(Xu
θu∧T1

). (5.2)

Note that the process Yu is strictly positive before the time θu, zero at θu, and strictly
negative afterwards. Due to the independence of the Wiener process and the instants
of jumps, θu �= T1 a.s. Thus, {Yu

T1
> 0} = {θu > T1} a.s. Taking into account that

Φ(0) = 0, we get that

Φ(u) = E 1{Yu
T1

>0}Φ(Xu
T1

) = E 1{Yu
T1

>0}Φ(Yu
T1

+ ξ1) = Φ1(u) + Φ2(u),

where

Φ1(u) := α

∫ 2

0
EG(Yu

t )e−αt dt, Φ2(u) := α

∫ ∞

2
EG(Yu

t )e−αt dt

with

G(y) := 1{y>0}EΦ(y + ξ1) = 1{y>0}
∫ ∞

0
Φ(y + x)dF (x).

We analyze separately the smoothness of Φ1 and Φ2 by using for these functions
appropriate integral representations.

5.2 Smoothness of Φ2

We start with the simpler case of Φ2 and show that this function is infinitely often
differentiable without any assumptions on the distribution of ξ1.

From the representation

Yu
t = eηt−η1Yu

1 − c

∫ t

1
eηt−ηs ds, t ≥ 1,

we obtain, using the independence of Yu
1 and the process (ηs − η1)s≥1, that

E[G(Yu
t )|Yu

1 ] = G(t,Y u
1 ),

where

G(t, y) := EG

(
eηt−η1y − c

∫ t

1
eηt−ηs ds

)
.
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Substituting the expression for Yu
1 given by (5.2), we have

Φ2(u) = E
∫ ∞

2
E[G(Yu

t )|Yu
1 ]αe−αt dt = EH

(
eκ+σW1(u − R1)

)
,

where H is a function taking values in [0,1] and given by the formula

H(y) := α

∫ ∞

2
G(t, y)e−αt dt.

Taking into account that the conditional distribution of the process (Ws)s≤1 given
W1 = x is the same as the distribution of the Brownian bridge Bx = (Bx

s )s≤1 with
Bx

s = Ws + s(x − W1), we obtain the representation

Φ2(u) =
∫

EH
(
eκ+σx(u − ζ x)

)
ϕ0,1(x) dx, (5.3)

where

ζ x := c

∫ 1

0
e−(κs+sx+σ(Ws−sW1)) ds. (5.4)

Lemma 5.2 below asserts that for every x, the random variable ζ x has a density
ρ(x, ·) on (0,∞), and we easily obtain from (5.3) by changing variables that

Φ2(u) =
∫ u

0

∫
H(eκ+σxz)ρ(x,u − z)ϕ0,1(x) dx dz. (5.5)

Lemma 5.2 The random variable ζ x has a density ρ(x, ·) ∈ C∞ such that for any
n ≥ 0,

sup
y≥0

∣∣∣∣ ∂n

∂yn
ρ(x, y)

∣∣∣∣ ≤ Cne
Cn|x| (5.6)

with some constant Cn, and (∂n/∂yn)ρ(x,0) = 0.

Proof We obtain the result using again the integral representation. Let us introduce
the random process

Ds := (
(Ws − 2sW1/2) + s(W1/2 − W1)

)
1{s≤1/2}

+ (
(1 − s)(Ws − W1/2) − s(W1 − Ws)

)
1{s>1/2}

and the piecewise linear function

γs := s1{s≤1/2} + (1 − s)1{s>1/2}, s ∈ [0,1].
The following identity is obvious:

Ws − sW1 = Ds + γsW1/2.
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Since Ds and W1/2 are independent random variables, we have for any bounded Borel
function g that

Eg(ζ x) = E
∫

g

(
c

∫ 1

0
e−(κs+sx+σDs+σγsv) ds

)
ϕ0,1/2(v) dv.

Let v(x, ·) be the inverse of the continuous strictly decreasing function

y �→ c

∫ 1

0
e−(κs+sx+σDs+σγsy) ds,

depending on the parameter x (and also on ω which is omitted as usual). Note that
v(x,0+) = ∞ and v(x,∞) = 0. After a change of variables, we obtain, using the
notation

K(x, z) := cσ

∫ 1

0
γse

−(κs+sx+σDs+σγsz) ds,

that

Eg(ζ x) =
∫ ∞

0
g(y)ρ(x, y) dy,

where

ρ(x, ·) := E
ϕ0,1/2(v(x, ·))
K(x, v(x, ·)) .

Thus, ρ(x, ·) is the density of the distribution of the random variable ζ x . It remains
to check that it is infinitely often differentiable and to find appropriate bounds for its
derivatives.

Put

Q(0)(x, z) := ϕ0,1/2(z)

K(x, z)
, Q(n)(x, z) := −Q

(n−1)
z (x, z)

K(x, z)
, n ≥ 1.

Then

∂

∂y
Q(0)

(
x, v(x, y)

) = Q(0)
z

(
x, v(x, y)

)
vy(x, y)

= −Q
(0)
z (x, v(x, y))

K(x, v(x, y))
= Q(1)

(
x, v(x, y)

)
,

and similarly,

∂n

∂yn
Q(0)

(
x, v(x, y)

) = −Q
(n−1)
z (x, v(x, y))

K(x, v(x, y))
= Q(n)

(
x, v(x, y)

)
.

It is easily seen that

Q(n)(x, z) = ϕ0,1/2(z)

Kn+1(x, z)

n∑
k=0

Pk(z)Rn−k(x, z), (5.7)
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where Pk(z) is a polynomial of order k and Rn−k(x, z) is a linear combination of
products of derivatives of K(x, z) in the variable z. Note that for any x, y ∈ [0,1], we
have the bounds

−|x| − σ |z| − 3σW ∗
1 ≤ κs + sx + σDs + σγsz ≤ κ + |x| + σ |z| + 3σW ∗

1 ,

where W ∗
1 = sups≤1 |Ws |. It follows that there exists a constant Cn > 0 such that

|Q(n)(x, z)| ≤ Cne
Cn|x|(1 + zn)e−z2

eCn W ∗
1 . (5.8)

Since EeCn W ∗
1 < ∞, the derivative (∂n/∂yn)Q(0)(x, v(x, y)) admits for each x, y

and n a P-integrable bound. Thus, we can differentiate under the expectation sign
and obtain that

∂n

∂yn
ρ(x, y) = E

∂n

∂yn

ϕ0,1/2(v(x, y))

K(x, v(x, y))

= E
∂n

∂yn
Q(0)

(
x, v(x, y)

)

= EQ(n)
(
x, v(x, y)

)
.

Moreover, the bound (5.8) ensures that for some constant C̃n,

sup
y≥0

E

∣∣∣∣ ∂n

∂yn
Q(0)

(
x, v(x, y)

)∣∣∣∣ ≤ E sup
z∈R

|Q(n)(x, z)| ≤ C̃ne
Cn|x|

and the bound (5.6) holds. Finally, since v(x,0+) = ∞, the bound (5.8) implies that
(∂n/∂yn)ρ(x,0) = 0. �

Remark 5.3 It is of interest to trace in these arguments the dependence of the con-
stant C̃n on the parameters c and σ when they are approaching zero. From the for-
mula (5.7), it is clear that C̃n should be proportional to (cσ )−n.

Proposition 5.4 The function Φ2(u) belongs to C∞((0,∞)).

Proof Putting

H̃ (u, z) :=
∫

H(eκ+σxz)ρ(x,u − z)ϕ0,1(x) dx,

we rewrite the formula (5.5) as

Φ2(u) =
∫ u

0
H̃ (u, z) dz.

Clearly, the function H̃ is continuous on (0,∞) × (0,∞). Using Lemma 5.2, we
obtain

∂

∂u
H̃ (u, z) =

∫
H(eκ+σxz)

∂

∂u
ρ(x,u − z)ϕ0,1(x) dx
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and

sup
u,z

∣∣∣∣ ∂

∂u
H̃ (u, z)

∣∣∣∣ < ∞.

By induction, for every n ≥ 1,

∂n

∂un
H̃ (u, z) =

∫
H(eκ+σxz)

∂n

∂un
ρ(x,u − z)ϕ0,1(x) dx

and

sup
u,z

∣∣∣∣ ∂n

∂un
H̃ (u, z)

∣∣∣∣ < ∞.

By virtue of Lemma 5.2, ρ(x,0) = 0, i.e., H̃ (u,u) = 0. So,

d

du
Φ2(u) = H̃ (u,u) +

∫ u

0

∂

∂u
H̃ (u, z) dz =

∫ u

0

∂

∂u
H̃ (u, z) dz.

In the same way, we check that

dn

dun
Φ2(u) =

∫ u

0

∂n

∂un
H̃ (u, z) dz

for any n ≥ 1. �

5.3 Smoothness of Φ1

Arguing in the same spirit as in the previous subsection, but taking this time the
conditional expectation with respect to Wt , we obtain that

E 1{Rt<u} h
(
eκt+σWt (u − Rt)

) = 1√
t
E

∫
1{ζ t,x<u}h(u, t, x)ϕ0,1

(
x√
t

)
dx,

where we use the abbreviations

h(u, t, x) := h
(
eκt+σx(u − ζ t,x)

)
, h(y) = EΦ(y + ξ1)

and

ζ t,x := c

∫ t

0
e−(sx/t+κs+σ(Ws−(s/t)Wt )) ds.

It is easily seen that the random variable ζ t,x has an infinitely often differentiable
density (the same as ζ x defined in (5.4), but with the parameters ct , κt , and σ t1/2).
Unfortunately, the derivatives of this density have non-integrable singularities as t

tends to zero (see Remark 5.3). For this reason, we cannot use the strategy of proof
used for Φ2. Nevertheless, the hypothesis on the distribution of ξ1 allows us to estab-
lish the claimed result.
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Note that the function x → ζ t,x is strictly decreasing and maps R onto R+. Let
z(t, ·) denote its inverse. The derivative of the latter is given by the formula

zx(t, x) = − t

L(t, z(t, x))
,

where

L(t, z) = c

∫ t

0
se−(sz/t+κs+σ(Ws−(s/t)Wt )) ds. (5.9)

Changing variables, we obtain that

∫
1{ζ t,z<u}h(u, t, z)ϕ0,1

(
z√
t

)
dz = t

∫ u

0
h
(
u, t, z(t, x)

)
D

(
t, z(t, x)

)
dx,

where

D(t, z) = ϕ0,1(z/
√

t)

L(t, z)
.

Summarizing, we get that

Φ1(u) = αE
∫ 2

0

√
tH(t, u) e−αt dt,

where

H(t,u) :=
∫ u

0
h
(
u, t, z(t, x)

)
D

(
t, z(t, x)

)
dx. (5.10)

Proposition 5.5 Under the conditions of Theorem 5.1, the function H(t,u) defined
in (5.10) satisfies for any fixed u0 > 0 the inequality

sup
t∈(0,2]

E sup
u≥u0

(|Hu(t, u)| + |Huu(t, u)|) < ∞.

Proof In virtue of the hypothesis, the function h(y) = EΦ(y + ξ1) is differentiable.
Differentiating (5.10), we get

Hu(t, u) = h(0)D
(
t, z(t, u)

) +
∫ u

0
hu

(
u, z(t, x)

)
D

(
t, z(t, x)

)
dx,

where h(0) = EΦ(ξ1) and

hu

(
u, t, z(t, x)

) = h′(eκt+σz(t,x)(u − x)
)
eκt+σz(t,x).

Note that

∂

∂x
h
(
u, t, z(t, x)

) = hu

(
u, t, z(t, x)

)(
σzx(t, x)(u − x) − 1

)
.
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Therefore,
∫ u

0
hu

(
u, z(t, x)

)
D

(
t, z(t, x)

)
dx

= −
∫ u

0

ϕ0,1(z(t, x)/
√

t)

σ t (u − x) + L(t, z(t, x))
dx h

(
u, t, z(t, x)

)
.

Integrating by parts and taking into account that z(t,0+) = ∞, we get that

Hu(t, u) =
∫ u

0
h
(
u, t, z(t, x)

)
Θ

(
u, t, z(t, x)

)
ϕ0,1

(
z(t, x)/

√
t
)
dx, (5.11)

where

Θ(u, t, z) = z

L(t, z)(σ t (u − ζ t,z)) + L(t, z))
− tσL(t, z) + tLz(t, z)

L(t, z) (σ t (u − ζ t,z) + L(t, z))2
.

Inspecting the formula (5.9) defining L(t, z), we conclude that there exist positive
constants C0 (“small”) and C1 (“large”) such that

max
t∈(0,2]

(
L(t, z) + t |Lz(t, z)|

) ≤ C1e
C1(|z|+W ∗

t )

and for any t ∈ (0,2],
|L(t, z)| ≥ C0 t2 e−C1(|z|+W ∗

t ),

where W ∗
t := maxs≤t |Ws |. Taking this into account, we obtain that for some C > 0,

|Θ(u, t, z)| ≤ C t−6 eC(|z|+W ∗
t ). (5.12)

Using the generic notation C for a constant (which may vary even within a single
formula), we obtain for any t ∈ (0,2] that

|Hu(t, u)| ≤ Ct−7eCW ∗
t

∫ ∞

z(t,u)

eC|z|− z2
2t L(t, z) dz

≤ Ct−7eC W ∗
2 e− z2(t,u)

4t

∫ ∞

0
eC|z|− z2

4 dz.

So we have the bound

|Hu(t, u)| ≤ Ct−7eCW ∗
2 e− z2(t,u)

4t .

For any u ≥ u0 > 0 and t ∈ (0,2],
u0 ≤ u = ζ t,z(t,u) ≤ ct e2|κ|+σ |z(t,u)|+σW ∗

t ,

i.e.,

|z(t, u)| ≥ 1

σ
ln

e−2|κ|u0

tc
− W ∗

t .
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Put

t0 := min

(
e−2|κ|−3σ u0

c
, 2

)
, Γ := {W ∗

t ≤ t1/4}.

Thus, for t ∈ (0, t0], we have on the set Γ the inequality

|z(t, u)| ≥ 1.

Taking into account that EeaW ∗
t < ∞ for any a and t > 0, we obtain that

E max
t∈[t0,2]

sup
u≥0

|Hu(t, u)| ≤ Ct−7
0 EeCW ∗

2 < ∞.

For t ∈ (0, t0], we have

E max
u≥u0

|Hu(t, u)| ≤ Ct−7(e− 1
4t + EeCW ∗

t 1Γ c

)

≤ Ct−7
(
e− 1

4t +
√

EeCW ∗
2

√
P[W ∗

t ≥ t1/4]
)
.

By the Chebyshev inequality, we have

P[W ∗
t ≥ t1/4] ≤ e−t−1/4

Ee
W∗

t√
t = e−t−1/4

EeW ∗
1 ,

so that

sup
t≥0

et−1/4
P[W ∗

t ≥ t1/4] < ∞.

This implies that

max
t∈(0,t0]

E max
u≥u0

|Hu(t, u)| < ∞.

Therefore,

max
t∈(0,2]

E max
u≥u0

|Hu(t, u)| < ∞.

Differentiating (5.11), we find that

Huu(t, u) = h(0)Θ
(
u, t, z(t, u)

)
ϕ

(
z(t, u)√

t

)

+
∫ u

0
Υ

(
u, t, z(t, x)

)
ϕ

(
z(t, x)√

t

)
dx,

where

Υ (u, t, z) = hu(u, t, z)Θ(u, t, z) + h(u, t, z)Θu(u, t, z).

By assumption, the distribution function F has the density f whose derivative f ′ is
a continuous function on R+ which is integrable with respect to Lebesgue measure.
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Changing variables, we get that

h′(y) = d

dy

∫ ∞

0
Φ(y + x)f (x) dx = d

dy

∫ ∞

y

Φ(x)f (x − y)dx

= −Φ(y)f (0) −
∫ ∞

y

Φ(z)f ′(z − y)dz,

i.e.,

sup
x≥0

|h′(x)| < ∞.

Similarly to (5.12), we obtain that

|Υt(u, z)| ≤ C t−8 eC(|z|+W ∗
t ).

Therefore,

|Huu(t, u)| ≤ Ct−9 eC W ∗
t e− z2(t,u)

4t ,

implying that

max
t∈(0,2]

E max
u≥u0

|Huu(t, u)| < ∞.

Proposition 5.5 is proved. �

5.4 Integro-differential equation for the survival probability

Proposition 5.6 Suppose that Φ ∈ C2. Then Φ satisfies Eq. (2.2).

Proof For h > 0 and ε > 0 small enough to ensure that u ∈ (ε, ε−1), we put

τ ε
h := inf

{
t ≥ 0 : Yu

t /∈ [ε, ε−1]} ∧ h.

Using the Itô formula and taking into account that on the interval [0, T1), the process
Xu coincides with Yu, we obtain the representation

Φ(Xu
τε
h∧T1

) = Φ(u) + σ

∫ τ ε
h∧T1

0
Φ ′(Y u

s ) dWs

+
∫ τ ε

h∧T1

0

(
1

2
σ 2(Y u

s )2Φ ′′(Y u
s ) + (aY u

s − c)Φ ′(Y u
s )

)
ds

+ (
Φ(Yu

T1
+ ξ1) − Φ(Yu

T1
)
)
1{T1≤τ ε

h }.

Due to the strong Markov property, Φ(u) = EΦ(Xu
τε
h∧T1

). For every ε > 0, the inte-

grands above are bounded by constants, and hence the expectation of the stochastic
integral is zero. Moreover, τ ε

h ∧ T1 = h when h is sufficiently small (the threshold
below which we have this equality of course depends on ω). It follows that, indepen-
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dently of ε,

1

h
E

∫ τ ε
h∧T1

0

(
1

2
σ 2(Y u

s )2Φ ′′(Y u
s ) + aYu

s Φ ′(Y u
s ) − c

)
ds

−→ 1

2
σ 2u2Φ ′′(u) + (au − c)Φ ′(u).

Finally,

1

h
E

(
Φ(Yu

T1
+ ξ1) − Φ(Yu

T1
)
)
1{T1≤τ ε

h } = αE
1

h

∫ τ ε
h

0

(
Φ(Yu

t + ξ1) − Φ(Yu
t )

)
e−αt dt.

The right-hand side converges to α(EΦ(u + ξ1) − Φ(u)) as h → 0 in virtue
of the Lebesgue theorem on dominated convergence. It follows that Φ satisfies
Eq. (2.2). �

6 Proof of Theorem 2.1

Assume that the claims are exponentially distributed, i.e., F(x) = 1 − e−x/μ. Simi-
larly to the classical case, this assumption allows us to obtain for the ruin probability
an ordinary differential equation (but of a higher order). Indeed, now the integro-
differential equation (2.2) has the form

1

2
σ 2u2Φ ′′(u) + (au − c)Φ ′(u) − αΦ(u) + α

μ

∫ ∞

0
Φ(u + y)e−y/μ dy = 0. (6.1)

Notice that

d

du

∫ ∞

0
Φ(u + y)e−y/μ dy = −Φ(u) + 1

μ

∫ ∞

0
Φ(u + y)e−y/μ dy.

Differentiating (6.1) and adding to it the obtained identity multiplied by μ, we elimi-
nate the integral term and arrive at a third order ordinary differential equation. It does
not contain the function itself and therefore is reduced to a second order differential
equation for the function G = Φ ′ which can be easily transformed to the form

G′′ − p(u)G′ + p0(u)G = 0, (6.2)

where

p(u) := 1

μ
− 2

(
1 + a

σ 2

)
1

u
+ 2c

σ 2

1

u2
,

p0(u) := − 2a

μσ 2

1

u
+ (a − α + c/μ)

2

σ 2

1

u2
.

The substitution G(u) = R(u)Z(u) with

R(u) := exp

(
1

2

∫ u

1
p(s) ds

)
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eliminates the first derivative and leads to the equation

Z′′ − q(u)Z = 0, (6.3)

where

q(u) := 1

4μ2
+

(
a

σ 2
− 1

)
1

u
+

4∑
i=2

Ai

1

ui

with certain constants Ai which are of no importance in our asymptotic analysis. It is
easy to check that

∫ ∞

x0

( |q ′′(x)|
q3/2(x)

+ |q ′(x)|2
q5/2(x)

)
dx < ∞,

where x0 = sup{x ≥ 1 : q(x) ≤ 0} + 1.
According to [10, Ch. 2.6], Eq. (6.3) has two fundamental solutions Z+ and Z−

given by

Z±(x) = √
2μ exp

(
±

∫ x

x0

√
q(z) dz

)(
1 + o(1)

)
, x → ∞,

i.e.,

Z± ∼ exp

(
±

( x

2μ
+ a − σ 2

σ 2
lnx

))
.

Since

R(x) ∼ exp

(
x

2μ
− a + σ 2

σ 2
lnx

)
,

we obtain that (6.2) admits as solutions functions with the asymptotics

G+(x) ∼ x−2e
1
μ

x
, G−(x) ∼ x−2a/σ 2

.

The differential equation of the third order for Φ has three solutions: Φ0(u) = 1,

Φ+(u) =
∫ u

x0

G+(x) dx, Φ−(u) = −
∫ +∞

u

G−(x) dx.

The ruin probability Ψ := 1 − Φ is a linear combination of these functions, i.e.,

Ψ (u) = C0 + C1Φ+(u) + C2Φ−(u).

Since Φ+(u) → ∞ as u → ∞, we obtain immediately that C1 = 0. For the case
β > 0, we know from Proposition 3.1 that Ψ (∞) = 0. Thus, C0 = 0 and

Ψ (u) = C2

∫ ∞

u

x−2a/σ 2 (
1 + δ(x)

)
dx,

where δ(x) → 0 as x → ∞ and C2 > 0. The integral decreases at infinity as the
power function u−β/β , and we obtain Theorem 2.1. �
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Appendix: Ergodic theorem for an autoregression with random
coefficients

Let (an, bn)n≥1 be an i.i.d. sequence of random variables in R
2 and x0 an arbitrary

constant. Define the sequence (xn) recursively by the formula

xn = an xn−1 + bn, n ≥ 1.

Proposition A.1 Assume that there exists δ ∈ (0,1] such that

E|a1|δ < 1, E|b1|δ < ∞.

Then for any bounded uniformly continuous function f ,

P- lim
N

1

N

N∑
n=1

f (xn) = Ef (ζ ),

where

ζ =
∞∑

k=1

bk

k−1∏
j=1

aj with
0∏

j=1

aj = 1.

The proof is given in [28].

References

1. Albrecher, H., Badescu, A., Landriault, D.: On the dual risk model with taxation. Insur. Math. Econ.
42, 1086–1094 (2008)

2. Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Singapore (2010)
3. Avanzi, B., Gerber, H.U., Shiu, E.S.W.: Optimal dividends in the dual model. Insur. Math. Econ. 41,

111–123 (2007)
4. Bayraktar, E., Egami, M.: Optimizing venture capital investments in a jump diffusion model. Math.

Methods Oper. Res. 67, 21–42 (2008)
5. Belkina, T.: Risky investments for insurers and sufficiency theorems for the survival probability.

Markov Process. Relat. Fields 20, 505–525 (2014)
6. Belkina, T.A., Konyukhova, N.B., Kurochkin, S.V.: Singular boundary value problem for the integro-

differential equation in an insurance model with stochastic premiums: analysis and numerical solution.
Comput. Math. Math. Phys. 52, 1384–1416 (2012)

7. Belkina, T., Konyukhova, N., Kurochkin, S.: Singular problems for integro-differential equations in
dynamic insurance models. In: Pinelas, S., et al. (eds.) Proc. Intern. Conf. on Differential and Dif-
ference Equations and Applications (in Honour of Prof. Ravi P. Agarval). Springer Proceedings in
Mathematics & Statistics, vol. 47, pp. 27–44 (2013)

8. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae. Birkhäuser, Basel
(2002)



In the insurance business risky investments are dangerous 379

9. Dufresne, D.: The distribution of a perpetuity, with application to risk theory and pension funding.
Scand. Actuar. J., 39–79 (1990)

10. Fedoryuk, M.V.: Asymptotic Analysis: Linear Ordinary Differential Equations. Springer, Berlin
(1993)

11. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York
(1996)

12. Frolova, A.G.: Some mathematical models of risk theory. All-Russian school-colloquium on stochas-
tic methods in geometry and analysis. Abstracts, 117–118 (1994, unpublished)

13. Frolova, A., Kabanov, Yu., Pergamenshchikov, S.: In the insurance business risky investments are
dangerous. Finance Stoch. 6, 227–235 (2002)

14. Gaier, J., Grandits, P.: Ruin probabilities and investment under interest force in the presence of regu-
larly varying tails. Scand. Actuar. J., 256–278 (2004)

15. Goldie, C.M.: Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab.
1, 126–166 (1991)

16. Grandell, I.: Aspects of Risk Theory. Springer, Berlin (1990)
17. Grandits, P.: A Karamata-type theorem and ruin probabilities for an insurer investing proportionally

in the stock market. Insur. Math. Econ. 34, 297–305 (2004)
18. Harrison, M.: Ruin problems with compounding assets. Stoch. Process. Appl. 5, 67–79 (1977)
19. Hult, H., Lindskog, F.: Ruin probabilities under general investments and heavy-tailed claims. Finance

Stoch. 15, 243–265 (2011)
20. Kalashnikov, V., Norberg, R.: Ruin probability under random interest rate, 2. Preprint, Lab. of Actu-

arial Math., University of Copenhagen, Copenhagen (1999)
21. Kalashnikov, V., Norberg, R.: Power tailed ruin probabilities in the presence of risky investments.

Stoch. Process. Appl. 98, 211–228 (2002)
22. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion, I: probability laws at fixed

time. Probab. Surv. 2, 312–347 (2005)
23. Norberg, R.: Ruin problems with assets and liabilities of diffusion type. Stoch. Process. Appl. 81,

255–269 (1999)
24. Nyrhinen, H.: On the ruin probabilities in a general economic environment. Stoch. Process. Appl. 83,

319–330 (1999)
25. Nyrhinen, H.: Finite and infinite time ruin probabilities in a stochastic economic environment. Stoch.

Process. Appl. 92, 265–285 (2001)
26. Paulsen, J.: Sharp conditions for certain ruin in a risk process with stochastic return on investments.

Stoch. Process. Appl. 75, 135–148 (1998)
27. Paulsen, J., Gjessing, H.K.: Ruin theory with stochastic return on investments. Adv. Appl. Probab. 29,

965–985 (1997)
28. Pergamenshchikov, S., Zeitouni, O.: Ruin probability in the presence of risky investments. Stoch.

Process. Appl. 116, 267–278 (2006)
29. Pergamenshchikov, S.: Erratum to: “Ruin probability in the presence of risky investments” [Stoch.

Process. Appl. 116, 267–278 (2006)]. Stoch. Process. Appl. 119, 305–306 (2009)
30. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)
31. Saxén, T.: On the probability of ruin in the collective risk theory for insurance enterprises with only

negative risk sums. Scand. Actuar. J., 199–228 (1948)
32. Wang, G., Wu, R.: Distributions for the risk process with a stochastic return on investments. Stoch.

Process. Appl. 95, 329–341 (2001)
33. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24, 509–531

(1992)


	In the insurance business risky investments are dangerous: the case of negative risk sums
	Abstract
	Introduction
	The model
	Asymptotic bounds for the small volatility case
	Upper asymptotic bound
	Lower asymptotic bound

	Large volatility: proof of Theorem 2.2
	Regularity of the ruin probability
	Integral representations
	Smoothness of Phi2
	Smoothness of Phi1
	Integro-differential equation for the survival probability

	Proof of Theorem 2.1
	Acknowledgements
	Appendix: Ergodic theorem for an autoregression with random coefﬁcients
	References


