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Abstract Research related to aggregation, robustness and model uncertainty of reg-
ulatory risk measures, for instance, value-at-risk (VaR) and expected shortfall (ES), is
of fundamental importance within quantitative risk management. In risk aggregation,
marginal risks and their dependence structure are often modelled separately, leading
to uncertainty arising at the level of a joint model. In this paper, we introduce a notion
of qualitative robustness for risk measures, concerning the sensitivity of a risk mea-
sure to the uncertainty of dependence in risk aggregation. It turns out that coherent
risk measures, such as ES, are more robust than VaR according to the new notion of
robustness. We also give approximations and inequalities for aggregation and diversi-
fication of VaR under dependence uncertainty, and derive an asymptotic equivalence
for worst-case VaR and ES under general conditions. We obtain that for a portfolio
of a large number of risks, VaR generally has a larger uncertainty spread compared
to ES. The results warn that unjustified diversification arguments for VaR used in risk
management need to be taken with much care, and they potentially support the use
of ES in risk aggregation. This in particular reflects on the discussions in the recent
consultative documents by the Basel Committee on Banking Supervision.
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1 Introduction

Risk measurement, with its crucial importance for financial institutions such as banks,
insurance companies and investment funds, has drawn a lot of attention in both
academia and industry over the past several decades. Although a financial risk, often
modelled by a probability distribution, cannot be characterized by a single number,
sometimes one needs to assign a number to a risk position. The determination of reg-
ulatory capital is one such example, the ranking of risks another. For such purposes,
quantitative tools that map risks to numbers were introduced, and they are called risk
measures.

Over the past three decades, value-at-risk (VaR) became the benchmark (Jo-
rion [22]). Expected shortfall (ES), an alternative to VaR which is coherent (Artzner
et al. [3]), is arguably the second most popular risk measure in use. In two recent
consultative documents BCBS [4, 5], the Basel Committee on Banking Supervision
proposed to take a move from VaR to ES for the measurement of market risk in
banking. Under Solvency 2 and the Swiss Solvency Test, the same discussion takes
place within insurance regulation; see, for instance, Sandström [34] and SCOR [35].
As a consequence, there have been extensive debates on issues related to diversifica-
tion, aggregation, economic interpretation, optimization, extreme behaviour, robust-
ness and backtesting of VaR and ES. We omit a detailed analysis here and refer to
Embrechts et al. [15], Emmer et al. [16] and the references therein.

Here are some of the issues raised. VaR is not coherent, but it is elicitable (see
Gneiting [18, Theorem 9]; that paper also contains some earlier references), easy to
backtest and more robust with respect to statistical uncertainty, as argued in Gneiting
[18] and Cont et al. [10]. ES is coherent, but not elicitable and difficult to backtest.
There have been extensive discussions on the problematic diversification and aggre-
gation issues of VaR due to its lack of subadditivity; see, for example, Embrechts
et al. [14]. Daníelsson et al. [11] argue that the violation of subadditivity for VaR is
rare in practice. VaR, being a quantile, does not address the crucial “what if” question,
i.e. what are the consequences if a particular rare event (measured by VaR) occurs.
Whereas this was clear since its introduction within the financial industry around
1994, it took some serious financial crises to bring this issue fully onto the regulatory
agenda.

The importance of robustness properties of risk measures has only fairly recently
become a focal point of regulatory attention. By now, numerous academic as well
as applied papers address the topic. Conflicting views typically result from different
notions of robustness; Embrechts et al. [15] contains a brief discussion and some
references. In the present paper, the measurement of aggregated risk positions under
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uncertainty with respect to the dependence structure of the underlying risk factors
will be discussed. We show that ES enjoys a new property of aggregation-robustness
which VaR generally does not have.

The mathematical property of (non-)subadditivity of a risk measure becomes rel-
evant upon analysing the aggregate position of a portfolio. As is often the case in
practice, the dependence structure among individual risks in a portfolio is difficult to
obtain from a statistical point of view, while the marginal distributions of the indi-
vidual risks (assets) may typically be easier to model; see, for instance, Embrechts
et al. [14] and Bernard et al. [7]. Modelling a high-dimensional dependence structure
is well known to be data-costly, and dimension reduction techniques such as vine
copulas, hierarchical structures and very specific parametric models often have to be
implemented. Whereas such simplifying techniques in general create computational
and modelling ease, they typically involve considerable model uncertainty. This leads
to a notion of dependence uncertainty (DU) in risk aggregation, a concept of main
interest for this paper.

From a mathematical or statistical point of view, it is clearly better to look at
robustness properties of a model at the level of the joint distribution of the risk fac-
tors. The main reason for separating the two (marginals, dependence) is because of
processes in practice, where indeed the two are often modelled separately. This is
particularly true in a stress testing environment.

Hence for this paper, we introduce the notion of aggregation-robustness to study
properties of risk measures for aggregation in the presence of dependence uncertainty.
The new notion is based on the classic notion of robustness for statistical functionals
in, e.g. Huber and Ronchetti [21]. However, as opposed to the conclusions in Cont
et al. [10], we show that when model uncertainty lies solely at the level of the depen-
dence structure, coherent distortion risk measures (such as ES) are continuous with
respect to weak convergence of the underlying distributions, whereas VaR in gen-
eral is not. This result supports the use of ES for risk aggregation, especially when
statistical information on marginal distributions is reliable.

Under DU, the attainable values of a risk measure lie in an interval. This interval
can be seen as a measurement of model uncertainty for that risk measure. When a
risk measure is used to quantify the riskiness of an aggregate position of a portfolio,
the ratio between the risk measure of the aggregate risk and the sum of the risk mea-
sures of the marginal risks is called a diversification ratio. The diversification ratio
measures how good the risks in a portfolio hedge (compensate for) each other. With
only models for marginal distributions available, the diversification ratio also takes
values in a DU-interval.

To study the DU-interval of VaR and ES and their diversification ratios, one needs
to calculate the worst-case and best-case values of VaR and ES under dependence
uncertainty. Due to the subadditivity of ES, the worst-case value of ES is the sum of
the ES of the marginal risks. However, the other three quantities (best- and worst-case
VaR, best-case ES) are in general unknown. Partial results exist. The worst-case value
of VaR for n = 2 was given in Makarov [27] based on early results in multivariate
probability theory. Embrechts and Puccetti [13] gave a dual bound for the worst-case
VaR for n � 3 in the homogeneous model, i.e. when all marginal risks have the same
distribution. Partial solutions for the worst-case and best-case values of VaR are to
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be found in Wang et al. [40], Puccetti and Rüschendorf [30] and Bernard et al. [7],
based on the notion of complete mixability (CM) introduced in Wang and Wang [37].
A fast algorithm to numerically calculate the worst-case and best-case values of VaR
under general conditions was introduced in Embrechts et al. [14]; this is the so-called
rearrangement algorithm (RA). For the best-case ES, some partial analytical results
can be found in Bernard et al. [7] and Cheung and Lo [9], and a numerical procedure
was proposed by Puccetti [29].

In most of the existing analytical results, it is assumed that the marginal distribu-
tions are identical (homogeneous case), with some extra conditions on the shape of
the underlying risk factor densities (assumed to exist). In this paper, we relax the as-
sumptions on the marginal distributions. Instead of explicit values for the worst-case
and best-case VaR, we obtain approximations. The new results obtained can be used
within a discussion on capital requirement; they, moreover, yield a DU-interval for
VaR and its diversification ratio.

Further understanding of the worst-case VaR can be obtained through the asymp-
totic behaviour as the number of risks in the portfolio grows to infinity, i.e. for a large
portfolio regime. In the homogeneous case, Puccetti and Rüschendorf [31] obtained
an asymptotic equivalence between the worst-case VaR and the worst-case ES under
dependence uncertainty, and this under a strong condition on the identical marginal
distributions. The required condition was later weakened by Puccetti et al. [32] (based
on further results on complete mixability) and Wang [39] (based on a duality result
obtained in Rüschendorf [33]). It was finally removed by Wang and Wang [38] (based
on the notion of extreme negative dependence). When the marginal distributions are
not identical, Puccetti et al. [32] also obtained the asymptotic equivalence under the
assumption that only finitely many different choices of the marginal distributions can
appear; this mathematically allows a reduction to the case of identical marginal dis-
tributions. In this paper, we give a unifying result on this asymptotic equivalence, by
allowing the marginal distributions to be arbitrary. Only weak uniformity conditions
on the moments of the marginal distributions are required for our results to hold.
These conditions are easily justified in practice and are necessary for the most gen-
eral equivalence to hold. The new results lead to the asymptotic DU-spread of VaR
and ES, and show that VaR in general yields a larger DU-spread compared to ES.

The rest of the paper is organized as follows. In Sect. 2, we introduce the notion
of aggregation-robustness and show that ES is aggregation-robust but VaR is not.
In Sect. 3, we give new bounds on the diversification ratios under dependence uncer-
tainty, and establish an asymptotic equivalence between VaR and ES under a worst-
case scenario. The dependence uncertainty spreads of VaR and of ES are derived and
compared in Sect. 4. In Sect. 5, numerical examples are presented to illustrate our
results. Section 6 draws some conclusions. All proofs are put in the Appendix.

Throughout the paper, we let (Ω,A,P) be an atomless probability space
and L0 := L0(Ω,A,P) the set of all (equivalence classes of) real-valued random
variables on that probability space. Elements of L0 are often referred to as risks.
Their distribution functions are simply referred to as distributions. We write X ∼ F

to denote F(x) = P[X � x], x ∈ R. We also denote the generalized inverse func-
tion of F by F−1, that is, F−1(p) = inf{t ∈ R : F(t) � p} for p ∈ (0,1], and
F−1(0) = inf{t ∈R : F(t) > 0}.
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2 Robustness of VaR and ES for risk aggregation

2.1 Robustness of risk measures

The robustness of a statistical functional or an estimation procedure describes the
sensitivity to underlying model deviations and/or data changes. Different definitions
and interpretations of robustness exist in the literature; see, for example, Huber and
Ronchetti [21] from a purely statistical perspective, Hansen and Sargent [20] in the
context of economic decision making, and Ben-Tal et al. [6] within optimization. In
statistics, robustness mainly concerns the so-called distributional (or Hampel–Huber)
robustness: the statistical consequences when the shape of the actual underlying dis-
tribution deviates slightly from the assumed model.

A risk measure ρ is a function which maps a risk in a set X to a number,
ρ :X → (−∞,+∞], where X ⊂ L0 typically contains L∞ and is closed under ad-
dition and positive scalar multiplication. A risk measure is law-invariant if it only
depends on the distribution of the risk. We omit the general introduction of risk mea-
sures, and refer the interested reader to Föllmer and Schied [17, Chap. 4]. Since law-
invariant risk measures are a specific type of statistical functionals, their robustness
properties are already extensively studied in the statistical literature; see, e.g. Huber
and Ronchetti [21, Chap. 3].

In this paper, we focus on the two most popular risk measures: value-at-risk (VaR)
at confidence level p, defined as

VaRp(X) = inf{x ∈R : P[X � x]� p}, p ∈ (0,1),X ∈ L0,

and the expected shortfall (ES) at confidence level p, defined as

ESp(X) = 1

1 − p

∫ 1

p

VaRq(X)dq, p ∈ (0,1),X ∈ L0. (2.1)

Clearly, VaRp(X) = F−1(p) for p ∈ (0,1), where X ∼ F . Though typically it is
assumed in (2.1) that E[|X|] < ∞, we may occasionally allow that ESp(X) = ∞
for some X. On the other hand, VaRp(X) is always a finite number for all X ∈ L0.
Both risk measures occur most frequently in the setting of solvency requirements for
financial institutions; hence the appearance of “regulatory risk measures” in the title
of the paper.

It is often argued in the literature that quantile-based risk measures such as VaR
are more robust when compared to mean-based risk measures such as ES; the no-
tion of robustness used most often is Hampel’s (Hampel [19]). ES is only robust
with respect to stronger metrics (e.g. the Wasserstein distance); arguments of this
type can be found for instance in Cont et al. [10], Kou and Peng [23] and Emmer
et al. [16]. More general results on continuity of law-invariant risk measures with
respect to certain metrics on sets of probability measures are provided in Krätschmer
et al. [25]. It is well known that the qualitative robustness of a statistical estimator,
as in Hampel [19], is equivalent to the continuity of the corresponding risk measure
at the true distribution, with respect to the weak topology. In general, to analyse sta-
tistical robustness of a given risk measure, one typically studies continuity properties
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of that risk measure in a given metric d , say. It would hence be proper in such a
case to talk about d-robustness. Hence we say that a law-invariant risk measure ρ

is d-robust at a distribution F if d(Fn,F ) → 0 implies that ρ(Xn) → ρ(X), where
Xn ∼ Fn,n = 1,2, . . . , and X ∼ F . For example, the Lévy distance is used in Cont
et al. [10] to measure the difference between any two univariate distributions F and
G by

d(F,G) := inf{ε > 0 : F(x − ε) − ε < G(x) < F(x + ε) + ε, ∀x ∈R}.
Note that the Lévy distance metrizes the weak topology on the set of distributions.
A law-invariant risk measure is said to be robust in Hampel’s sense if it is continuous
with respect to convergence in distribution. Other metrics can also be used for the
analysis of robustness; see Krätschmer et al. [24, 25] and Cambou and Filipović [8].
It is a very classical result that the pth (lower) quantile functional F �→ F−1(p) (and
so VaRp) is weakly continuous at each F0 for which the mapping s �→ F−1

0 (s) is con-
tinuous at s = p. A more general result can be found, for instance, in van der Vaart
[36, Lemma 21.2]. In Krätschmer et al. [25], it is argued that Hampel’s notion of (sta-
tistical) robustness is less relevant for risk management. Using a different definition,
they introduce a continuous scale of robustness.

In the following, we introduce a new, in our opinion practically relevant notion of
robustness for risk aggregation, which turns out to favour ES over VaR.

2.2 Aggregation-robustness

In this section, we show that VaR is more sensitive to model uncertainty at the level
of dependence than ES. For single risks Xi , i = 1, . . . , n, the aggregate risk S is sim-
ply defined as S = X1 + · · · + Xn. Often in practice, a joint model of X1, . . . ,Xn is
chosen in two stages: n marginal distributions F1, . . . ,Fn and a dependence struc-
ture (often through a copula C). Whereas the modelling of marginal distributions is
fairly standard, the dependence structure can be really difficult to model, statistically
estimate and test. Considerable model uncertainty, which is often different in nature
from the model uncertainty of marginal distributions, arises from modelling the de-
pendence structure. In the following, we study sensitivity with respect to uncertainty
in the dependence structure; for the purpose of this paper, we assume the marginal
distributions F1, . . . ,Fn are given.

When the dependence structure between the risks is unknown, the possible distri-
butions of S form a set. We denote the (F1, . . . ,Fn)-admissible class as

Sn(F1, . . . ,Fn) = {X1 + · · · + Xn : Xi ∼ Fi, i = 1, . . . , n},
or simply Sn = Sn(F1, . . . ,Fn) if (F1, . . . ,Fn) is clear from the context. Sn is the
set of all possible aggregate risks. Risk aggregation with dependence uncertainty con-
cerns the probabilistic and statistical behaviour of S ∈ Sn; in particular, Sn is closed
with respect to the weak topology (see Bernard et al. [7]). We say that an admissible
class Sn is compatible with a risk measure ρ : X → (−∞,+∞] if Xi ∈ X , Xi ∼ Fi

(note that this implies Sn ⊂ X since X is closed under addition) and ρ(Xi) < ∞, for
i = 1, . . . , n.
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Definition 2.1 (Aggregation-robustness) We say that a law-invariant risk measure
ρ :X → (−∞,+∞] is aggregation-robust if ρ is continuous with respect to weak
convergence in each admissible class Sn compatible with ρ.

The robustness character of Definition 2.1 in intuitively clear. If the joint distri-
butions of (X1, . . . ,Xn) and (Y1, . . . , Yn) are close according to the Lévy metric,
then the distributions of X1 + · · · + Xn and Y1 + · · · + Yn are also close accord-
ing to the Lévy metric. As a consequence, ρ is insensitive to small perturbations of
the joint distribution of the underlying risk factors, keeping the marginal distribu-
tions of the individual risks fixed. It is clear that Hampel’s robustness, as discussed
above, without the restriction of risks being in a common admissible class, implies
aggregation-robustness. When the dependence structure is modelled by copulas, our
definition of robustness implies that a risk measure is insensitive to the copula of the
individual risks when the marginal distributions are assumed to be known. The fact
that in Definition 2.1 we look at risks in Sn reflects our interest in aggregation and
diversification. One could, of course, look at other functional-robustness definitions
beyond aggregation (summation).

Example 2.2 (VaR is not aggregation-robust) For t ∈ [0,1], let Xt and Yt have the
joint distribution Ct given by

Ct(x, y) = txy + (1 − t)
(

max
{

min{x,1/2} + min{y,1/2} − 1/2,0
}

+ max{x + y − 3/2,0})

for x, y ∈ [0,1]. It is easy to see that Xt and Yt are both U[0,1]-distributed, hence Ct

is a copula, for t ∈ [0,1]. Note that Ct , t ∈ (0,1), is a mixture of the independence
copula C1 and another copula

C0 : [0,1]2 → [0,1],
(x, y) �→ max

{
min{x,1/2} + min{y,1/2} − 1/2,0

} + max{x + y − 3/2,0}.
C0 is the ordinal sum of two Fréchet lower copulas; see Nelsen [28, Sect. 3.2.2].

It is immediate that the distribution of Xt + Yt for t ∈ (0,1] is symmetric, centred
at 1, with positive density on the interval (1/2,3/2). Thus, VaR1/2(Xt + Yt ) = 1. It
is also straightforward that X0 + Y0 is a discrete random variable on {1/2,3/2} with
VaR1/2(X0 + Y0) = 1/2. As a consequence,

VaR1/2(X0 + Y0) 	= lim
t→0

VaR1/2(Xt + Yt ).

Based on the simple fact that Xt + Yt → X0 + Y0 weakly as t goes to zero, we
conclude that VaR1/2 is not aggregation-robust.

To build an example for VaRp , p ∈ (1/2,1), let A be an event of probability
2 − 2p, independent of Xt and Yt , and let Zt = IAXt , Wt = IAYt for each t ∈ [0,1].
By construction it is clear that Zt , Wt , t ∈ [0,1], are all identically distributed, and

VaRp(Zt + Wt) = VaR1/2(Xt + Yt ), t ∈ [0,1].
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Analogously to the above argument, we have d(Zt + Wt,Z0 + W0) → 0 as t goes
to zero, but VaRp(Z0 + W0) 	= limt→0 VaRp(Zt + Wt). Putting a negative sign in
front of Zt and Wt , we obtain that VaRp , p ∈ (0,1/2), is also discontinuous in an
admissible class. This shows that VaRp is not aggregation-robust for any p ∈ (0,1).

The non-aggregation-robustness of VaRp essentially comes from the fact that it
is not continuous with respect to weak convergence (Hampel’s robustness). Suppose
that VaRp is not continuous at some distribution, say F0. One may find Fn,n ∈ N,
which converge to F0 weakly, but F−1

n (p),n ∈ N, do not converge to F−1
0 (p); if in

addition, such Fn,n ∈ N, and F0 lie in the same admissible class, then VaRp is not
aggregation-robust. That leads to the construction in Example 2.2.

In the above example, the joint distribution Ct with a small t > 0 can be seen
as the joint distribution C0 influenced by a small perturbation. It is moreover worth
noting that in Example 2.2, the marginal distributions of Xt and Yt are continuous
with positive densities. Hence, even if the true marginal distributions are known to
have positive densities, VaR can still be discontinuous in aggregation. When one con-
siders absolutely continuous models for a single risk, one has Hampel’s robustness
for VaRp; however, considering absolutely continuous marginal models is not suffi-
cient for the aggregation-robustness of VaRp . On the other hand, we shall see that ES
is aggregation-robust, although it is well known to be non-robust in Hampel’s sense
(see Cont et al. [10]) since it is discontinuous at any distribution with respect to the
weak topology.

For generality, we study the aggregation-robustness of distortion risk measures,
defined as

ρ(X) =
∫
R

xdh
(
F(x)

)
, X ∈X ,X ∼ F, (2.2)

where X is a set of random variables such that the integral in (2.2) is properly defined,
and h : [0,1] → [0,1] is a nondecreasing function with h(0) = 0, h(1) = 1; h is
called the distortion function of ρ. If h has left limits and is right-continuous, i.e. h

is a distribution function on [0,1], then

ρ(X) =
∫ 1

0
F−1(t)dh(t), X ∈X ,X ∼ F. (2.3)

See Wang et al. [41] for distortion risk measures in the context of insurance pre-
mium calculations, Kusuoka [26] for their connection with coherent risk measures,
and Cont et al. [10] for their robustness properties. A distortion risk measure ρ is
coherent if and only if h is convex, in which case ρ is called a spectral risk mea-
sure; see Acerbi [2]. Distortion risk measures are also closely related to L-statistics;
see Huber and Ronchetti [21, Sect. 3.3]. For p ∈ (0,1), VaRp and ESp are special
cases of distortion risk measures, with distortion functions h(t) = I{t�p}, t ∈ [0,1],
and h(t) = I{t�p}(t − p)/(1 − p), t ∈ [0,1], respectively.

Note that X has to be closed under addition, hence it may fail to contain all X such
that the integral in (2.2) is properly defined. For coherent distortion risk measures, one
may consider the set X0 defined by

X0 = {X ∈ L0 : E[X−] < ∞} ⊃ L1.
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It is easy to check by the convexity of h that all coherent distortion risk measures are
properly defined on X0. Our main result on aggregation-robustness now becomes:

Theorem 2.3 All coherent distortion risk measures on X0 with a continuous distor-
tion function are aggregation-robust.

As a coherent distortion risk measure has a convex distortion function, assuming
continuity only excludes a jump of the distortion function at 1. Theorem 2.3 says that
when the model uncertainty lies at the level of dependence but not at the level of the
marginal distributions, coherent distortion risk measures such as ES are continuous
with respect to weak convergence.

Our result can be interpreted as follows. For a distribution F and a random variable
X ∼ F , even adding constraints on marginal distributions of the aggregation model of
X, F �→ VaRp(X) is still not continuous (with respect to weak convergence), whereas
F �→ ESp(X) is continuous with these constraints. It should not be interpreted as an
argument against the classic continuity results of VaR, noting that VaR is continuous
at most commonly used distributions in financial risk management.

Remark 2.4 Cont et al. [10] also introduced the notion of C-robustness, where C is a
set of distributions. A risk measure ρ is C-robust if ρ is continuous in C with respect
to the Lévy distance; see Cont et al. [10, Proposition 2]. Using this notion, VaRp is
Cp-robust, where Cp is the set of distributions F for which F−1 is continuous at p. If
we denote by D(Sn) the set of all possible distributions for an admissible class Sn,
then ρ is aggregation-robust if and only if ρ is D(Sn)-robust for all possible choices
of n ∈N and D(Sn), in which Sn is compatible with ρ.

In the case X = L∞, we obtain that a continuous distortion function is a necessary
and sufficient condition for the aggregation-robustness of distortion risk measures.

Theorem 2.5 A distortion risk measure on X = L∞ is aggregation-robust if and
only if its distortion function h is continuous on [0,1].

Finally, we remark that it would be of much interest to characterize aggregation-
robust statistical functionals (risk measures) other than the class of distortion risk
measures. Such a characterization is beyond the scope of this paper, and we leave it
for future work.

3 Bounds on VaR aggregation

In Sect. 2, we mainly looked at the sensitivity properties of risk measures on aggre-
gated risks under small changes of the underlying dependence assumptions. In this
section, for VaR, we concentrate on deviations (possibly) far away from some true
underlying, though unknown, dependence structure. Such results can be used to anal-
yse extreme scenarios for risk aggregation and may be helpful in order to determine
conservative capital requirements under model (i.e. dependence) uncertainty; for a
real life example on this, see Aas and Puccetti [1].
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3.1 Aggregation and diversification under dependence uncertainty

We start with the motivating notion of diversification ratio, which is closely related to
the aggregation of VaR. Given a portfolio consisting of individual risks X1, . . . ,Xn,
the diversification ratio of VaR at confidence level p ∈ (0,1) is defined as

Δ
p
n = VaRp(X1 + · · · + Xn)∑n

i=1 VaRp(Xi)
.

The diversification ratio measures a kind of diversification benefit, and is, for in-
stance, widely used in operational risk (see the examples in Embrechts et al. [14]).
In the latter context, Xi corresponds to next year’s operational risk loss in business
line i, i = 1, . . . , n (n = 8, typically); often explicit models for the loss-dependence
among business lines are not available. For capital charge purposes, one estimates the
total capital requirement for the superposition of the risks in each business line. One
then typically adds up the risk measures across all business lines, and multiplies by
a factor which is an estimate of Δ

p
n . For this purpose, one needs a joint model of the

risks X1, . . . ,Xn.
With a known joint distribution of (X1, . . . ,Xn), Δ

p
n may be calculated theoreti-

cally. If Δ
p
n � 1, we say there is a diversification benefit in the portfolio; if Δ

p
n � 1,

we say there is a diversification penalty. When F1, . . . ,Fn are known and the joint
model of (X1, . . . ,Xn) is unspecified, the worst diversification ratio is defined as

Δ
p

n = sup{VaRp(X1 + · · · + Xn) : Xi ∼ Fi, i = 1, . . . , n}∑n
i=1 VaRp(Xi)

= sup{VaRp(S) : S ∈Sn}∑n
i=1 VaRp(Xi)

.

By definition, Δ
p

n � 1 if
∑n

i=1 VaRp(Xi) > 0. In the following, we denote the
comonotonic VaR by VaR+

p (Sn), i.e.

VaR+
p (Sn) =

n∑
i=1

VaRp(Xi).

Note here that Sn is symbolic and does not represent a particular random variable.
The calculation of Δ

p

n , as a measure of the worst-case diversification effect of VaR,
serves two purposes:

– (Conservative capital requirement) Δ
p

n VaR+
p (Sn) can be used as the most conser-

vative capital requirement in the case of given (or estimated) marginal distributions
F1, . . . ,Fn of the individual risks.

– (Measurement of model uncertainty) If Δ
p

n is small, then the model uncertainty is
small, and the risk measure VaR is considered as less problematic in risk aggre-
gation; capital requirement principles based on VaR+

p become more plausible. If

Δ
p

n is large, then the model uncertainty is severe, and arguments of diversification
benefit need to be taken with care.
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The best diversification ratio, replacing the sup by an inf, can be studied similarly.
Since we are more interested in the worst case (corresponding to a conservative cap-
ital requirement), we omit a discussion of the best diversification ratio.

In the recent literature (see, for instance, Embrechts et al. [15]), it was shown that
the value of Δ

p

n is closely related to the risk measure ES. Denote the worst-case ES by
ESp(Sn) = sup{ESp(S) : S ∈Sn}; since ES is subadditive and comonotonic additive,
we have that

ESp(Sn) =
n∑

i=1

ESp(Xi) = ES+
p (Sn),

where the latter +-notation is in line with the notation used for the comonotonic VaR
case. Since VaR is bounded by ES, the worst-case VaR is bounded by the worst-case
ES. If VaR+

p (Sn) > 0, we have for Δ
p

n the direct upper bound

1 � Δ
p

n �
ES+

p (Sn)

VaR+
p (Sn)

= ESp(Sn)

VaR+
p (Sn)

. (3.1)

See also Embrechts et al. [15] for a discussion on this upper bound. Later in this sec-
tion, we show that the second inequality in (3.1) is asymptotically sharp as n → ∞.

By definition, calculation of the worst diversification ratio is equivalent to the
calculation of the worst-case VaR

VaRp(Sn) := sup{VaRp(S) : S ∈ Sn}. (3.2)

For the history and a general discussion on problems related to (3.2) from the per-
spective of quantitative risk management, we refer to Embrechts et al. [15]. When
F1 = F2 = · · · = Fn =: F , i.e. in the homogeneous case, Wang et al. [40] obtained
VaRp(Sn) for F with a tail-decreasing density. If F1, . . . ,Fn are not identical, explicit
calculations of VaRp(Sn) and Δ

p

n are not available in general. Embrechts et al. [14]
introduced the rearrangement algorithm to numerically calculate VaRp(Sn) based on
a discretized approximation.

Regarding the asymptotic behaviour of VaRp(Sn) and Δ
p

n , Puccetti and Rüschen-
dorf [31] obtained that, as n → ∞,

VaRp(Sn)

ESp(Sn)
→ 1, (3.3)

in the homogeneous case under a restrictive condition on the marginal distributions.
See also Wang [39] and Wang and Wang [38] for weaker conditions so that (3.3)
holds. Puccetti et al. [32] considered the case when there are finitely many differ-
ent marginal distributions in the sequence F1,F2, . . . and obtained the same equiva-
lence (3.3). A consequence of (3.3) is that

lim
n→∞Δ

p

n = lim
n→∞

ESp(Sn)

VaR+
p (Sn)

, (3.4)
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provided that the right-hand limit exists. That is, the second inequality in (3.1) is
asymptotically sharp. However, as mentioned above, the existing results only deal
with the (almost) homogeneous case, and some specific assumptions on the marginal
distributions need to be imposed. Later in this section, we provide analytical approx-
imations for VaRp(Sn) and Δ

p

n . Based on these results, we give a proof of (3.3) and
(3.4) under very general conditions and, moreover, obtain a rate of convergence.

3.2 Bounds on VaR aggregation for a finite number of risks

In this section, we give inequalities for the worst-case and best-case VaR and its
diversification ratio. For a distribution Fi , define

μ(i)
p,q = 1

q − p

∫ q

p

F−1
i (t)dt,

for 1 � q > p � 0, i = 1, . . . , n. Note that μ
(i)
0,q and μ

(i)
p,1 might be infinite. Using the

above notation, it is immediate that

ESp(Sn) =
n∑

i=1

ESp(Xi) =
n∑

i=1

μ
(i)
p,1.

For future discussion, we also denote the best-case VaR by VaRp(Sn), that is,

VaRp(Sn) = inf
S∈Sn

VaRp(S),

and the best-case ES by ESp(Sn), that is,

ESp(Sn) = inf
S∈Sn

ESp(S).

Analytical formulas for each of VaRp(Sn), VaRp(Sn) and ESp(Sn) are not available
under general assumptions on the marginal distributions; see Bernard et al. [7] and
Embrechts et al. [15] for existing results.

The following theorem contains our main result regarding approximations of
VaRp(Sn) and VaRp(Sn).

Theorem 3.1 For any distributions F1, . . . ,Fn, we have for p ∈ (0,1) that

sup
q∈(p,1]

{
n∑

i=1

μ(i)
p,q − max

i=1,...,n

(
F−1

i (q) − F−1
i (p)

)}
� VaRp(Sn) � ESp(Sn), (3.5)

and

n∑
i=1

μ
(i)
0,p � VaRp(Sn)� inf

q∈[0,p)

{
n∑

i=1

μ(i)
q,p + max

i=1,...,n

(
F−1

i (q) − F−1
i (p)

)}
. (3.6)

In particular, if F1, . . . ,Fn are supported on [a, b], a < b, a, b ∈R, then

ESp(Sn) − (b − a) � VaRp(Sn) � ESp(Sn).



Aggregation-robustness and model uncertainty 775

Note that in the case when all marginal distributions are bounded, VaRp(Sn) and
ESp(Sn) differ by at most a constant which does not depend on n. Theorem 3.1 can
also be formulated for the worst diversification ratio of VaR.

Corollary 3.2 For any distributions F1, . . . ,Fn, suppose that VaR+
p (Sn) > 0. We

have for p ∈ (0,1) that

sup
q∈(p,1]

∑n
i=1 μ

(i)
p,q − maxi=1,...,n(F

−1
i (q) − F−1

i (p))

VaR+
p (Sn)

�Δ
p

n � ESp(Sn)

VaR+
p (Sn)

. (3.7)

In particular, if F1, . . . ,Fn are supported in [a, b], a < b, a, b ∈R, then

ESp(Sn)

VaR+
p (Sn)

− b − a

VaR+
p (Sn)

�Δ
p

n � ESp(Sn)

VaR+
p (Sn)

. (3.8)

In the homogeneous case F := F1 = F2 = · · · , the left- and right-hand sides
of (3.8) both converge to ESp(X)

VaRp(X)
as n → ∞, where X ∼ F , assuming VaRp(X) 	= 0.

In the following, we study the limit, as n goes to infinity, of the worst- and best-case
VaR and its diversification ratio under general marginal assumptions.

3.3 Asymptotic equivalence and limit of the worst diversification ratio

Based on Theorem 3.1, we now derive the asymptotic equivalence between the worst-
case VaR and the worst-case ES under very weak general conditions. For an asymp-
totic analysis, some uniformity conditions on Fi, i ∈ N, need to be imposed. In what
follows, Xi is any random variable with distribution Fi , i ∈ N. Define the following
conditions, for some p ∈ (0,1) and k > 1:

E
[|Xi −E[Xi]|k

]
< M for some M > 0, (3.9)

lim inf
n→∞ n−1/k

n∑
i=1

ESp(Xi) = +∞, (3.10)

C0 := lim inf
n→∞

1

n

n∑
i=1

ESp(Xi) > 0. (3.11)

The above conditions only concern the moments of Fi , i ∈N, and they are quite weak
and commonly satisfied. Condition (3.9) is a uniform boundedness condition, ensur-
ing that the aggregate portfolio Sn does not contain a single risk with a too heavy tail
that dominates the other risks. Condition (3.10) is imposed to guarantee that the aver-
age ES of the sequence of risks does not vanish to zero too fast. The condition (3.11)
is a stronger version of (3.10). In particular, in the homogeneous case when Fi , i ∈N,
are identical, ESp(X1) > 0 implies (3.11) and hence it also implies (3.10). We also
remark that condition (3.12) below is stronger than condition (3.9):

E[|Xi |k] is uniformly bounded in i. (3.12)
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Theorem 3.3 Suppose that the distributions Fi, i ∈ N, satisfy (3.9) and (3.10) for
some p ∈ (0,1) and k > 1. Then

lim
n→∞

VaRp(Sn)

ESp(Sn)
= 1. (3.13)

If in addition (3.10) is replaced by (3.11), then for sufficiently large n,

1 � VaRp(Sn)

ESp(Sn)
� 1 − Cn−1+1/k, (3.14)

where

C =
(

1

1 − p

k

k − 1
+ 1

)
M1/k

C0
+ ε > 0,

M is given in (3.9), C0 is given in (3.11), and ε is any fixed positive real number.

Theorem 3.3 establishes the asymptotic equivalence of the worst-case ES and the
worst-case VaR for risk aggregation for general, possibly inhomogeneous portfolios.
As mentioned in Sect. 3.1, homogeneous or almost-homogeneous cases for which
(3.13) holds were previously obtained in the literature. While existing methods of
proof were mainly based on the theory of complete mixability, an extension using the
same techniques to arbitrarily many different marginal distributions was not possible.

Similarly to Theorem 3.3, we can obtain the limit of the best-case VaR bounds. In
the following, we define the left-tail ES (LES) as

LESp(X) = 1

p

∫ p

0
VaRq(X)dq = −ES1−p(−X),

and denote its best-case value under dependence uncertainty by

LESp(Sn) := inf
S∈Sn

LESp(S) =
n∑

i=1

LESp(Xi) =
n∑

i=1

μ
(i)
0,p,

where the second equality can be seen from the symmetry between ES and LES. For
the best-case VaR bounds, we use a slightly different set of conditions. For some
p ∈ (0,1) and k > 1, we introduce

lim inf
n→∞ n−1/k

n∑
i=1

LESp(Xi) = +∞, (3.15)

C0 := lim inf
n→∞

1

n

n∑
i=1

LESp(Xi) > 0. (3.16)

The following corollary is obtained from Theorem 3.3 by symmetry:
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Corollary 3.4 Suppose that the distributions Fi, i ∈ N, satisfy (3.9) and (3.15) for
some p ∈ (0,1) and k > 1, then

lim
n→∞

VaRp(Sn)

LESp(Sn)
= 1.

If, in addition, (3.15) is replaced by (3.16), then for sufficiently large n,

1 �
VaRp(Sn)

LESp(Sn)
� 1 − Cn−1+1/k,

where

C =
(

1

1 − p

k

k − 1
+ 1

)
M1/k

C0
+ ε > 0,

M is given in (3.9), C0 is given in (3.16), and ε is any fixed positive real number.

Remark 3.5 The conditions (3.15) and (3.16) are slightly stronger than (3.10)
and (3.11), respectively, and this asymmetry is due to the fact that we mainly consider
the cases when the aggregate risk measures LES and ES are positive. The asymmetry
can be trivially removed by assuming

lim inf
n→∞

∣∣∣∣∣
1

n

n∑
i=1

LESp(Xi)

∣∣∣∣∣ > C0

instead of (3.15).

Finally, we remark that the limit of Δ
p

n as n → ∞ can be obtained directly from
Theorem 3.3. Suppose the continuous distributions Fi, i ∈N, satisfy (3.9) and (3.10)
for some p ∈ (0,1) and k > 1. Then, as n → ∞,

Δ
p

n

VaR+
p (Sn)

ESp(Sn)
→ 1.

If in addition Rp := lim
n→∞

ESp(Sn)

VaR+
p (Sn)

exists in [1,∞], then Δ
p
n → Rp as n → ∞.

4 Uncertainty spread of VaR and ES

In addition to the distribution-wise continuity as discussed in Sect. 2, in this section,
based on results obtained in Sect. 3, we study the uncertainty spread of VaR and
ES when the dependence structure is unspecified. This quantifies the magnitude of
dependence uncertainty in a model for risk aggregation. We show that VaR gener-
ally exhibits a larger spread compared to ES. This result suggests that VaR is more
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sensitive to dependence uncertainty compared to ES. For p ∈ (0,1), we define the
dependence uncertainty spread (DU-spread) of VaRp as

VaRp(Sn) − VaRp(Sn),

and of ESp as

ESp(Sn) − ESp(Sn).

See Embrechts et al. [15] for a discussion on the DU-spread of VaR and its relevance
in risk management.

By definition, ESp(X) � VaRp(X) for any risk X, and the inequality is strict when
X has a continuous distribution. Naturally, when switching from VaR to ES for the
purpose of capital requirement, one should consider a lower confidence level for ES.
In the most recent consultative document BCBS [5], it was proposed that for internal
risk models, VaR0.99 should be replaced by ES0.975 which often yields a similar value
to VaR0,99 for light-tailed risks. Under the Swiss Solvency Test (SST), VaR0.995 is
used to compare with ES0.99 to calculate the capital requirement for the change in
the risk bearing capital (RBC) over a one-year period; see EIOPA [12, p. 32]. Kou
and Peng [23] also proposed that in order to compare with ESp , one could use the
corresponding median shortfall (MS), which is the median of the conditional tail
distribution above VaRp and hence satisfies

MSp(X) = VaR(p+1)/2(X);
thus it is consistent with the SST regime. Hence it may be useful to compare the
DU-spread of VaRq and that of ESp for q � p. The following proposition compares
the DU-spread of VaRq and that of ESp in the asymptotic sense. In what follows, we
denote by μn the summation of the means of F1, . . . ,Fn, assumed to exist. We need
an additional condition to avoid degenerate cases: for some p ∈ (0,1),

lim inf
n→∞

1

μn

n∑
i=1

ESp(Xi) > 1. (4.1)

Theorem 4.1 Suppose 1 > q � p > 0.

(i) Suppose that the distributions Fi, i ∈N, satisfy (3.9), (3.15) and (4.1). Then

lim inf
n→∞

VaRq(Sn) − VaRq(Sn)

ESp(Sn) − ESp(Sn)
= lim inf

n→∞
ESq(Sn) − LESq(Sn)

ESp(Sn) − ESp(Sn)

� lim inf
n→∞

ESq(Sn) − μn

ESp(Sn) − μn

� 1. (4.2)

(ii) Suppose that the distributions Fi, i ∈ N, are identical and equal to a non-
degenerate distribution F , and E[|X|k] < ∞ for some k > 1, where X ∼ F .
Then

lim inf
n→∞

VaRq(Sn) − VaRq(Sn)

ESp(Sn) − ESp(Sn)
� ESq(X) − LESq(X)

ESp(X) −E[X] � 1. (4.3)
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Theorem 4.1 suggests that VaR is overall more sensitive to dependence uncer-
tainty for large n, compared to ES. Numerical evidence of the comparison of the
DU-spreads for VaR and ES at the same level can be found in Sect. 5, even for small
values of n. Note that although the DU-spread of ES is smaller than that of VaR
asymptotically, both risk measures have a rather large uncertainty spread in general,
suggesting that dependence uncertainty in risk aggregation must be taken with care,
no matter whether ES or VaR is chosen as the underlying risk measure; see Aas and
Puccetti [1] for values in the context of a real life example.

Remark 4.2 In the homogeneous case, for any continuous distribution F , the limit
of the DU-spread ratio in (4.3) is strictly greater than 1 since LESq(X) < E[X]
and ESq(X) > ESp(X). In the case q = p, we note that for light-tailed risks X,
LESp(X) is slightly smaller than E[X]; for heavy-tailed risks X, LESp(X) can
be significantly smaller than E[X], leading to a much larger DU-spread of VaR.
From Theorem 4.1, we can also see that, approximately, the VaRq interval under
DU is [∑n

i=1 LESq(Xi),
∑n

i=1 ESq(Xi)] and the ESp interval under DU is given by
[∑n

i=1 E[Xi], ∑n
i=1 ESp(Xi)].

In the following, we give a result for finite n, in the case of bounded risks. A proof
can be directly obtained from Theorem 3.1.

Corollary 4.3 Suppose that 1 > q � p > 0, the distributions F1, . . . ,Fn are sup-
ported in [a, b], a < b, a, b ∈ R, and

n∑
i=1

(
ESq(Xi) +E[Xi] − ESp(Xi) − LESq(Xi)

)
> 2(b − a), (4.4)

where Xi ∼ Fi , i = 1, . . . , n. Then

VaRq(Sn) − VaRq(Sn)

ESp(Sn) − ESp(Sn)
> 1.

Note that in Corollary 4.3, since ESq(Xi) � ESp(Xi) and E[Xi]� LESq(Xi), the
left-hand side of (4.4) is the summation of n nonnegative terms, while the right-hand
side of (4.4) is a constant. Hence (4.4) holds for n sufficiently large as long as the
summation of the left-hand side of (4.4) diverges as n → ∞.

We remark that it remains theoretically unclear under what conditions the
DU-spread of VaRq is larger than (or equal to) that of ESp for finite n and q � p. In
all our numerical examples (see Sect. 5 below), VaRq always has a larger DU-spread
than ESp .

5 Numerical examples

As suggested by BCBS [5], the risk measure ES0.975 is a candidate proposed to re-
place VaR0.99. The SST (see EIOPA [12]) used VaR(1+p)/2 to compare with ESp .
Based on such considerations, we provide in this section the worst- and best-case
values of VaR0.99, VaR0.9875, VaR0.975 and ES0.975 for different portfolios under de-
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Table 1 Bounds obtained with RA (Δx = 10−6), model (A), mixed portfolio

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(Sn) 22.48 44.88 22.40 22.52 55.59 33.07 29.15 102.35 73.20

VaR0.975(Sn) 9.79 41.46 31.67 10.04 52.67 42.63 21.44 100.65 79.21

VaR0.9875(Sn) 12.06 56.21 44.16 12.06 69.03 56.98 22.12 126.63 104.51

VaR0.99(Sn) 12.96 62.01 49.05 12.96 75.34 62.38 22.29 136.30 114.01

ES0.975(Sn)

VaR0.975(Sn)
1.08 1.06 1.02

Table 2 Bounds obtained with RA (Δx = 10−6), model (B), light-tailed portfolio

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(Sn) 4.72 10.71 5.99 24.55 63.19 38.63 31.33 126.38 95.04

VaR0.975(Sn) 3.69 10.57 6.88 13.61 61.41 47.81 13.61 125.73 112.13

VaR0.9875(Sn) 4.38 12.15 7.77 19.20 78.75 59.55 19.20 160.75 141.55

VaR0.99(Sn) 4.61 12.66 8.05 21.21 84.80 63.59 21.21 172.96 151.75

ES0.975(Sn)

VaR0.975(Sn)
1.01 1.03 1.01

Table 3 Bounds obtained with RA (Δx = 10−6), model (C), Pareto portfolio

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(Sn) 103.8 172.6 68.8 166.2 345.1 178.9 266.2 690.3 424.1

VaR0.975(Sn) 15.7 130.6 114.9 21.8 291.3 269.5 43.5 620.8 577.3

VaR0.9875(Sn) 22.6 207.3 184.7 27.6 462.4 434.8 46.7 985.5 938.8

VaR0.99(Sn) 25.5 240.5 215.0 30.5 536.5 506.0 47.5 1143.6 1096.0

ES0.975(Sn)

VaR0.975(Sn)
1.32 1.19 1.11

pendence uncertainty. We compare the DU-spread of VaR and ES in each model,
and also look at the influence of the number n of risks in the portfolio. The numerical
calculation is carried out through the rearrangement algorithm (RA) described in Em-
brechts et al. [14], with discretization step Δx = 10−6. The following three models
are considered, and the results for n = 5,10,20 are reported in Tables 1, 2, 3.

(A) (Mixed portfolio) Sn = X1 +· · ·+Xn, where Xi ∼ Pareto(2+0.1i), i = 1, . . . ,5,
and Xi ∼ Exp(i − 5), i = 6, . . . ,10, and Xi ∼ lognormal(0, (0.1(i − 10))2),
i = 11, . . . ,20.

(B) (Light-tailed portfolio) Sn = Y1 + · · · + Yn, where Yi ∼ Exp(i), i = 1, . . . ,5;

Yi ∼ Weibull(i − 5,1/2), i = 6, . . . ,10; Yi
d= Yi−10, i = 11, . . . ,20.

(C) (Pareto portfolio) Sn = Z1 + · · · + Zn, where Zi ∼ Pareto(1.5), i = 1, . . . ,20.
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From Tables 1–3, we have the following observations:

(i) The worst-case VaR at level 0.975 and the worst-case ES at level 0.975 are very
close, even for small values of n, in all models considered (cf. Theorem 3.3,
(3.13)).

(ii) The ratio between the worst-case VaR at level 0.975 and the worst-case ES at
level 0.975 goes to 1 as n grows large. In the heavy-tailed model (C), the con-
vergence is relatively slow (cf. Theorem 3.3, (3.14)).

(iii) The DU-spreads of VaR0.99, VaR0.985 and VaR0.975 are larger than those of
ES0.975 in all considered models (cf. Theorem 4.1).

(iv) In the heavy-tailed model (C), the DU-spreads of VaR are significantly larger
than those of ES (cf. Remark 4.2).

6 Conclusion

In this paper, we have considered the risk measures VaR and ES under dependence
uncertainty. We have introduced the notion of aggregation-robustness and have shown
that all coherent distortion risk measures, including ES, are aggregation-robust, but
VaR is not. We have also derived bounds for the worst- and best-case VaR in ag-
gregation and its diversification ratio under dependence uncertainty. An asymptotic
equivalence between VaR and ES for inhomogeneous portfolios under the weakest so
far known conditions on the marginal distributions has been established. It has been
shown that when the number of risks in aggregation is large, VaR generally exhibits
a larger uncertainty spread compared to ES at the same or a lower confidence level.
Numerical examples have been provided to support our theoretical results. The main
results in this paper suggest that ES is less sensitive with respect to dependence un-
certainty in aggregation, and it typically has a smaller uncertainty spread compared
to VaR.
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Appendix: Proofs

A.1 A useful lemma

Before presenting the main proofs, we first state a lemma that is essential in proving
the main results in Sects. 3 and 4 in this paper. Recall the definitions of the essential
supremum and the essential infimum of random variables: for any random variable S,

ess sup S = sup{t : P[S � t] < 1},
ess inf S = inf{t : P[S � t] > 0}.

We denote Sn = X1 + · · · + Xn in the following. We remind the reader that this Sn is
different from the symbolic one in the notation of VaRp(Sn). We hope this will not
lead to notational confusion.
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Lemma A.1 Suppose that Fi, i ∈ N, is a sequence of distributions on [0,1]. Then
there exist Xi ∼ Fi , i ∈ N, such that for each n ∈N,

ess sup Sn − ess inf Sn � 1.

Proof We first show that if X and Y are countermonotonic and both take values in
[0,1], then ess sup (X + Y) − ess inf (X + Y) � 1. Since X and Y are countermono-
tonic, there exists U ∼ U[0,1] such that X = F−1(U) and Y = G−1(1 − U), where
F and G are the distributions of X and Y , respectively. For u,v ∈ (0,1), one of
F−1(u) − F−1(v) and G−1(1 − u) − G−1(1 − v) is nonpositive. Hence,

F−1(u) + G−1(1 − u) − (
F−1(v) + G−1(1 − v)

)

= (
F−1(u) − F−1(v)

) + (
G−1(1 − u) − G−1(1 − v)

)

� max{F−1(u) − F−1(v),G−1(1 − u) − G−1(1 − v)}
� 1.

Thus,

ess sup (X + Y) − ess inf (X + Y)

= sup
u∈(0,1)

{F−1(u) + G−1(1 − u)} − inf
v∈(0,1)

{F−1(v) + G−1(1 − v)} � 1.

Let X1 ∼ F1. For k � 2, choose Xk to be countermonotonic with Sk−1. Since
ess sup (X1) − ess inf (X1) � 1, by induction we get that

ess sup (Sk) − ess inf (Sk) = ess sup (Sk−1 + Xk) − ess inf (Sk−1 + Xk)� 1

for all k � 2. �

Remark A.2 Lemma A.1 is of independent interest in the theory of negative depen-
dence. Indeed, it shows that an extremely negatively dependent sequence always ex-
ists for uniformly bounded marginal distributions. The definition of and details on
extremely negative dependence can be found in Wang and Wang [38]. In the latter
paper, it was shown that an extremely negatively dependent sequence always exists
for identical marginal L1-distributions. Lemma A.1, as a new contribution, confirms
that the same statement holds for inhomogeneous marginal distributions if we assume
uniform boundedness.

The following useful corollary is directly implied by Lemma A.1.

Corollary A.3 Suppose that Fi, i ∈ N, is a sequence of distributions with bounded
support. Then there exist Xi ∼ Fi , i ∈N, such that for each n ∈ N,

|Sn −E[Sn]| � Ln.

where Ln is the largest length of the support of Fi, i = 1, . . . , n, that is,

Ln = max{ess sup Xi − ess inf Xi : Xi ∼ Fi, i = 1, . . . , n}.
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A.2 Proof of Theorem 2.3

Proof Suppose ρ is a coherent distortion risk measure with distortion function h.
Since h is increasing and convex on (0,1), its has a left derivative on (0,1), denoted
as

δ(t) := lim
x→0+

h(t) − h(t − x)

x
, t ∈ (0,1).

It follows from (2.3) that ρ(X) = ∫ 1
0 VaRt (X)dh(t) = ∫ 1

0 VaRt (X)δ(t)dt . Note that
since Sn is compatible with a coherent risk measure ρ, we have that E[|Xi |] < ∞,
Xi ∼ Fi , i = 1, . . . , n. For q ∈ (1/2,1), define

ρ̃q(X) = 1

1 − h(q)

∫ 1

q

VaRt (X)δ(t)dt, X ∈ X0.

We can easily check that ρ̃q is also a coherent distortion risk measure.
For any S ∈ Sn(F1, . . . ,Fn), write S = X1 + · · · + Xn, where Xi ∼ Fi ,

i = 1, . . . , n. For q ∈ (1/2,1), we have that
∣∣∣∣ρ(S) −

∫ q

1−q

VaRt (S)δ(t)dt

∣∣∣∣ =
∣∣∣∣∣
∫ 1−q

0
VaRt (S)δ(t)dt +

∫ 1

q

VaRt (S)δ(t)dt

∣∣∣∣∣

�
∣∣∣∣∣
∫ 1−q

0
VaRt (S)δ(t)dt

∣∣∣∣∣ + ∣∣(1 − h(q)
)
ρ̃q(S)

∣∣

� δ(1 − q)

∫ 1−q

0
|VaRt (S)|dt + ∣∣(1 − h(q)

)
ρ̃q(S)

∣∣ .
Note that

∣∣(1 − h(q)
)
ρ̃q(S)

∣∣�
∣∣∣∣
(
1 − h(q)

) n∑
i=1

ρ̃q(Xi)

∣∣∣∣ =
∣∣∣∣

n∑
i=1

∫ 1

q

VaRt (Xi)δ(t)dt

∣∣∣∣.
On the other hand, by the comonotonic additivity of VaRt , t ∈ (0,1), we have that

∫ 1−q

0
|VaRt (S)|dt =

∫ 1−q

0
|VaRt (SI{S�0}) + VaRt (SI{S<0})|dt

�
∫ 1−q

0
VaRt (SI{S�0})dt +

∫ 1−q

0
VaR1−t (−SI{S<0})dt

�
∫ 1−q

0
VaRt (|S|)dt +

∫ 1−q

0
VaR1−t (|S|)dt

� 2(1 − q)ESq(|S|)

� 2(1 − q)

n∑
i=1

ESq(|Xi |)

= 2
n∑

i=1

∫ 1

q

VaRt (|Xi |)dt.



784 P. Embrechts et al.

Note that for i = 1, . . . , n, ρ(Xi) < ∞ implies that
∫ 1
q

VaRt (Xi)δ(t)dt → 0 as

q → 1, and that E[|Xi |] < ∞ implies that
∫ 1
q

VaRt (|Xi |)dt → 0 as q → 1. As a
consequence, as q → 1,

η(q) :=
∣∣∣∣ρ(S) −

∫ q

1−q

VaRt (S)δ(t)dt

∣∣∣∣ −→ 0

uniformly in S ∈ Sn. Therefore, for each ε > 0, there exists 1/2 < q < 1 such that
η(q) < ε/3. By Theorem 1 of Cont et al. [10], the distortion risk measure

ρ̂q(X) := 1

2q − 1

∫ q

1−q

VaRt (X)δ(t)dt, X ∈X0

is continuous at all distributions with respect to weak convergence. As a consequence,
for fixed q ∈ (1/2,1) and S,S1, S2, . . . ∈ Sn with Sk → S weakly as k → ∞, we
have that there exists K0 ∈ N such that for k � K0, |ρ̂q(Sk) − ρ̂q(S)| < ε/3. There-
fore, as k → ∞,

|ρ(Sk) − ρ(S)| � (2q − 1)|ρ̂q(Sk) − ρ̂q(S)| + 2η(q) < ε.

Since ε is arbitrary, we conclude that ρ is aggregation-robust. �

A.3 Proof of Theorem 2.5

Proof We first show that distortion risk measures with a continuous distortion func-
tion on [0,1] are aggregation-robust. Since X = L∞, we suppose for some M > 0
that |Xi |� M a.s., Xi ∼ Fi , for all i = 1,2, . . . For q ∈ (1/2,1), we have that

η(q) :=
∣∣∣∣ρ(S) −

∫ q

1−q

VaRt (S)dh(t)

∣∣∣∣

=
∣∣∣∣∣
∫ 1−q

0
VaRt (S)dh(t) +

∫ 1

q

VaRt (S)dh(t)

∣∣∣∣∣
�nMh(1 − q) + nM

(
h(1) − h(q)

) −→ 0,

uniformly in S ∈Sn. The rest of the proof is similar to the proof of Theorem 2.3.
Now suppose that h is discontinuous at p ∈ (0,1). Using the same argument as

in Example 2.2, we can see that ρ is not aggregation-robust. The case where h is
discontinuous at p = 0 or p = 1 can be obtained with similar counterexamples. �

A.4 Proof of Theorem 3.1

We use the following lemma, where an alternative definition of VaR is used, namely

VaR∗
p(X) = inf{x ∈R : P[X � x] > p}, p ∈ (0,1).

The following lemma is analogous to Lemma 4.3 of [7], with the continuity condition
on the marginal distributions removed. In the following, we set Sn = Sn(F1, . . . ,Fn).
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Lemma A.4 For p ∈ (0,1),

sup
S∈Sn

VaR∗
p(S) = sup{ess inf S : S ∈Sn(Fp,1, . . . ,Fp,n)}, (A.1)

inf
S∈Sn

VaRp(S) = inf{ess sup S : S ∈Sn(F
p

1 , . . . ,F
p
n )}, (A.2)

where Fp,i is the distribution of F−1
i (p + (1 − p)U), and F

p
i is the distribution of

F−1
i (pU), i = 1, . . . , n, for a random variable U uniformly distributed on [0,1].

Proof We only need to show (A.1), as (A.2) is symmetric to (A.1). First, we show
that

sup
S∈Sn

VaR∗
p(S) � sup{ess inf S : S ∈Sn(Fp,1, . . . ,Fp,n)} =: a0.

For any T ∈ Sn, denote its distribution by FT . Let U ∼ U[0,1] be such that
T = F−1

T (U), and define A0 = {U � p}. Write T = X1 + · · · + Xn where Xi ∼ Fi ,
i = 1, . . . , n. Clearly, the conditional random variable T |A0 = X1|A0 + · · · + Xn|A0
is dominated (in stochastic order) by some S0 ∈ Sn(Fp,1, . . . ,Fp,n) since each Xi |A0

is dominated by some X̂i ∼ Fp,i . This implies that ess sup T0 � a0, where T0 is dis-
tributed as T |A0. Therefore, VaR∗

p(T ) = ess sup T0 � a0.
Next we show that

sup
S∈Sn

VaR∗
p(S) � a0.

Note that by Lemma 4.2 of Bernard et al. [7], there exists S0 ∈ Sn(Fp,1, . . . ,Fp,n)

such that ess inf S0 = a0. Let U0 be a U[0,1] random variable, independent of S0.
Write

T1 =
n∑

i=1

F−1
i (U0)I{U0<p} + S0I{U0�p}.

It is easy to check that T1 ∈ Sn. As a consequence, VaR∗
p(T1) � ess sup S0 = a0. �

Proof of Theorem 3.1 We first show that for p ∈ (0,1) and q ∈ (p,1],
sup{ess inf S : S ∈ Sn(Fp,1, . . . ,Fp,n)}

�
n∑

i=1

μ(i)
p,q − max

i=1,...,n

(
F−1

i (q) − F−1
i (p)

)
. (A.3)

Since the case when F−1
i (q) = ∞ for some i is trivial, we suppose that F−1

i (q) < ∞
for all i = 1, . . . , n.

Let F
(i)
p,q be the distribution of Wi = F−1

i (p + (q − p)U) for 0 < p < q � 1. By

Corollary A.3, there exist random variables Xi ∼ F
(i)
p,q , i = 1, . . . , n, such that

X1 + · · · + Xn �
n∑

i=1

μ(i)
p,q − max

i=1,...,n

(
F−1(q) − F−1(p)

)
.
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Let Zi , i = 1, . . . , n, be any random variables with distribution Fq,i , and let C be a set
independent of X1, . . . ,Xn,Z1, . . . ,Zn, for which P[C] = (q − p)/(1 − p). Define
Yi = XiIC + Zi(1 − IC) for i = 1, . . . , n. It is straightforward to check that Yi has
distribution Fp,i and

Y1 + · · · + Yn � X1 + · · · + Xn �
n∑

i=1

μ(i)
p,q − max

i=1,...,n

(
F−1

i (q) − F−1
i (p)

)
.

Thus

ess inf (Y1 + · · · + Yn) �
n∑

i=1

μ(i)
p,q − max

i=1,...,n

(
F−1

i (q) − F−1
i (p)

)
,

and we obtain (A.3). Since VaRp(X) � VaR∗
r (X) for any r < p and any random

variable X, we have that

VaRp(Sn) � lim
r→p− sup

S∈Sn

VaR∗
r (S)

� lim
r→p−

( n∑
i=1

μ(i)
r,q − max

i=1,...,n

(
F−1

i (q) − F−1
i (r)

))

=
n∑

i=1

μ(i)
p,q − max

i=1,...,n

(
F−1

i (q) − F−1
i (p)

)
.

Note that here we use the fact that F−1
i is left-continuous for each i. Now, we

have (A.3), and with Lemma A.4, we obtain the first inequality in (3.5). On the other
hand,

VaRp(Sn)� sup
S∈Sn

VaR∗
p(S) = sup{ess inf S : S ∈ Sn(Fp,1, . . . ,Fp,n)}�

n∑
i=1

μ
(i)
p,1

always holds. Thus we obtain (3.5). We can show (3.6) similarly. �

A.5 Proof of Theorem 3.3

Proof First, let us assume that E[Xi] = 0 for all i ∈ N. Note that

ESp(Sn) =
n∑

i=1

ESp(Xi) =
n∑

i=1

μ
(i)
p,1

for Xi ∼ Fi . We use (3.5) and take qn = 1−n−1 for n large enough such that qn > p.
By (3.10), we have

∑n
i=1 μ

(i)
p,1 > 0 for large n.

Note that by (3.9), E[|Xi |k] � M uniformly. Therefore, [F−1
i (t)]k(1 − t) �M for

t ∈ (0,1), and we have

F−1
i (t) �

(
M

1 − t

)1/k

, t ∈ (0,1), i ∈ N.
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Note that for Xi ∼ Fi ,

μ
(i)
p,1 − μ(i)

p,qn
= 1

1 − p
E

[
XiI{Xi�F−1

i (p)}
] − 1

qn − p
E

[
XiI{F−1

i (qn)�Xi�F−1
i (p)}

]

� 1

1 − p
E

[
XiI{Xi�F−1(qn)}

]

= 1

1 − p

∫ 1

qn

F−1
i (t)dt

� 1

1 − p

∫ 1

qn

(
M

1 − t

)1/k

dt

= 1

1 − p

1

1 − 1/k
M1/k(1 − qn)

1−1/k.

As a consequence, we have

sup
S∈Sn

VaRp(S) �
n∑

i=1

μ(i)
p,qn

− max
i=1,...,n

(F−1
i (qn) − F−1

i (p))

�
n∑

i=1

μ
(i)
p,1 −

n∑
i=1

(μ
(i)
p,1 − μ(i)

p,qn
) − max

i=1,...,n
F−1

i (qn)

�
n∑

i=1

μ
(i)
p,1 −

n∑
i=1

1

1 − p

1

1 − 1/k
M1/k(1 − qn)

1−1/k

−
(

M

1 − qn

)1/k

=
n∑

i=1

μ
(i)
p,1 − 1

1 − p

1

1 − 1/k
M1/kn1/k − M1/kn1/k

=
n∑

i=1

μ
(i)
p,1 − O(n1/k). (A.4)

By (3.10), it follows that

1 � VaRp(Sn)∑n
i=1 μ

(i)
p,1

� 1 − O(n1/k)∑n
i=1 μ

(i)
p,1

−→ 1 as n → ∞,

hence we obtain (3.13).
Now for the case that E[Xi] 	= 0 for some i ∈N, we denote by F ∗

i the distribution
of Xi −E[Xi] and set

S
∗
n = {Y1 + · · · + Yn : Yi ∼ F ∗

i , i = 1, . . . , n}.



788 P. Embrechts et al.

Then by (A.4), with Sn replaced by S∗
n, we have

sup
S∈Sn

VaRp(S) = sup
S∈S∗

n

VaRp(S) +
n∑

i=1

E[Xi]

=
n∑

i=1

(μ
(i)
p,1 −E[Xi]) − O(n1/k) +

n∑
i=1

E[Xi]

=
n∑

i=1

μ
(i)
p,1 − O(n1/k).

Thus, (A.4) still holds for Sn in the case E[Xi] 	= 0 for some i.
When (3.11) holds, by (A.4), we have that

1 � VaRp(Sn)∑n
i=1 μ

(i)
p,1

� 1 − ( 1
1−p

k
k−1 + 1)M1/k(n1/k)∑n

i=1 μ
(i)
p,1

� 1 − Cn−1+1/k,

for n sufficiently large. This leads to (3.14) and completes the proof of the theorem. �

A.6 Proof of Theorem 4.1

Proof (i) Let us introduce an = VaRq(Sn), bn = VaRq(Sn), cn = ESq(Sn) and
dn = LESq(Sn). We have that

lim inf
n→∞

an − bn

cn − dn

= lim inf
n→∞

an/cn − bn/cn

1 − dn/cn

= lim inf
n→∞

an/cn − (bn/dn)(dn/cn)

1 − dn/cn

.

Note that by (4.1), we have lim supn→∞ dn/cn < 1. Further, by Theorem 3.3 and
Corollary 3.4, we have an/cn → 1 and bn/dn → 1. As a consequence,

lim inf
n→∞

an − bn

cn − dn

� 1.

Since cn � an � bn � dn, we have that

an − bn

cn − dn

� 1 =⇒ lim
n→∞

an − bn

cn − dn

= 1.

Write

ESq(Sn) − LESq(Sn)

ESp(Sn) − ESp(Sn)
= VaRq(Sn) − VaRq(Sn)

ESp(Sn) − ESp(Sn)

an − bn

cn − dn

,

and we obtain the first equality in (4.2). The rest of (4.2) follows by noting
that ESq(X) � ESp(X) � E[X] � LESq(X) for any random variable X and any
0 < p � q < 1.

(ii) This can be obtained from part (i) by noting that (3.9), (3.15) and (4.1) are all
satisfied by the distribution of X + c, where c is some constant. �
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