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Abstract We study the superreplication of contingent claims under model uncer-
tainty in discrete time. We show that optimal superreplicating strategies exist in a
general measure-theoretic setting; moreover, we characterize the minimal superrepli-
cation price as the supremum over all continuous linear pricing functionals on a suit-
able Banach space. The main ingredient is a closedness result for the set of claims
which can be superreplicated from zero capital; its proof relies on medial limits.
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1 Introduction

A classical probabilistic model of a financial market consists of a measurable space
(Ω,F) and a probability measure P determining the distribution of stock prices.
Such a model includes randomness in the sense that we do not specify a priori which
events will take place; however, we do specify the likelihood of any outcome pre-
cisely. In standard pricing procedures, a model is chosen from a parametric family
and the parameters are determined through a calibration. It is understood that the
model is an ad-hoc tool rather than an accurate representation of the market dynam-
ics; for instance, if the calibration is repeated at a subsequent date, it will lead to
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different parameter values. As a result of the estimation error for the parameters and,
possibly more importantly, the choice of the parametric family in the first place, there
is a substantial model risk in the pricing and hedging of contingent claims. Model
uncertainty, as we understand it, refers to a situation where the distributions are not
assumed to be (completely) known a priori. Rather than having a single probabilistic
model, we may want to take into account a whole collection P of possible models,
each model being represented by a probability measure on (Ω,F). For instance, this
collection may include binomial models with different parameters, but also a mix of
different “types” of models, e.g., with discrete and continuous marginal distributions.

We study the superreplication of contingent claims under model uncertainty. Us-
ing the worst-case approach to consistently address this “Knightian” uncertainty,
we require the superreplication to hold simultaneously under all measures P ∈ P
(“P-q.s.”). More precisely, given an adapted process S and a random variable f , we
are interested in determining the minimal superreplication price

x∗(f ) = inf{x ∈ R : ∃H such that x + H • ST ≥ f P-q.s.};
here H is a trading strategy (defined simultaneously under all P ∈ P) and H • ST

is the terminal wealth resulting from trading in S at the discrete dates t = 1, . . . , T

according to H . The difference x∗(f ) + x∗(−f ) between super- and subreplication
price gives a bound for a model risk in the pricing of f , relative to the chosen col-
lection P of models. Moreover, we want to show that an optimal superreplicating
strategy exists, i.e., that the infimum is actually attained for some H .

Both problems are well understood in the absence of model uncertainty. Indeed,
when P contains only one probability measure P , then an optimal strategy exists and

x∗(f ) = sup
Q∈Me(P )

EQ[f ],

where Me(P ) denotes the set of all probability measures Q, equivalent to P , such
that S is a Q-martingale. This holds under a no-arbitrage condition which by the fun-
damental theorem of asset pricing is equivalent to Me(P ) being nonempty, and em-
bodies a fundamental duality between wealth processes and the linear pricing func-
tionals {EQ[·],Q ∈ Me(P )}. It is well known that the price x∗(f ) can be relatively
large for practical purposes; however, superreplication is of primal theoretical impor-
tance, for instance, in the solution of portfolio optimization problems. We refer to [6]
and the references therein for the classical theory, and in particular to [16] for the
discrete-time case.

Our aim is to obtain similar results in the situation of model uncertainty, i.e., when
P can have many elements. It is certainly reasonable to suppose that each of the pos-
sible models P ∈P is viable in the usual sense and thus admits an equivalent martin-
gale measure for S. As the superreplication problem depends only on the nullsets of
the given measures, we may replace each P ∈ P by one of its equivalent martingale
measures and as a result, we may assume directly that P itself consists of martingale
measures. We want to include specifically the possibility that P is nondominated in
the sense that there exists no reference probability measure P∗ with respect to which
all P ∈ P are absolutely continuous; in fact, we should like to unify, and interpolate
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between, the classical case where P is a singleton and the completely model-free
case where no probabilistic assumptions are made and P consists of all martingale
measures for S, possibly mutually singular. Our main result (Theorem 5.4) states
that optimal superreplicating strategies exist in a general measure-theoretic setting.
Moreover, x∗(f ) is described as the supremum over all continuous linear pricing
functionals on a certain Banach space.

While a domination assumption is often made for technical convenience in the
literature, nondominated models arise naturally in the representation of robust pref-
erences in decision theory, given the axiom of ambiguity aversion. As shown in [19]
for the one-period case, the numerical representation then takes the form of an in-
fimum of expected von Neumann–Morgenstern utilities, and the infimum is taken
over a set of measures that is not dominated in general. (See also [14] for a recent
continuous-time model in the context of finance.) On the other hand, allowing for
the nondominated case can also result in computational convenience, similarly as a
continuous space Ω is more likely to lead to explicit results than a discrete space. As
an example, take S to be the canonical process on the path space Ω = R

T and let P
be the set of all probabilities under which S is a martingale (here S models the price
of a forward contract). In this situation, x∗(f ) and even a corresponding strategy can
be computed quite explicitly by means of convex analysis. For the purpose of illus-
tration, consider the case where T = 1 and assume that f = f (S1). Then x∗(f ) is
given simply by the value f �(S0) of the concave envelope f # of f evaluated at the
current stock price S0; moreover, like in the familiar delta hedging, a superreplicating
strategy H can be determined by taking the (right, say) derivative of f � at S0. This
construction can be extended to the multi-period case; cf. [3]. On the other hand, one
may wonder if an optimal strategy still exists in a case where we have a prior view
on the class P of possible models and no explicit formula is available, which is the
general situation that we propose to study.

To give another example of a nondominated model, let S again be the canonical
process on Ω = R

T and let P be the set of all probabilities P such that P -a.s., S is
positive and St+1/St lies in a given interval I for all t ; i.e., there is uncertainty about
the log-increments of S and only the bound I is given. (A similar setup was used
in [11] as a discrete approximation to the G-Brownian motion of [29].) As a more
general example, given a process S on some measurable space, we can prescribe
any collection N of sets and take P to be the family of all martingale measures
not charging N . In the special case where N is the collection of nullsets of a given
reference measure P∗, this yields the classical set of absolutely continuous martingale
measures, but generically, it yields a nondominated set.

To the best of our knowledge, there are no previous existence results for super-
replication under model uncertainty in discrete time, and more generally for price
processes S with jumps (except in the case where strategies are constants; cf. [31]).
There are, however, results for continuous processes S with “volatility uncertainty”
in specific setups; see [4, 15, 26, 28, 30, 32–34] and the references therein. All these
results have been obtained by control-theoretic techniques which, as far as we have
been able to see, cannot be applied in the presence of jumps. A duality result (without
existence) for a specific topological setup in discrete time was obtained in [10], while
[9] gave a comparable result for the continuous case.



794 M. Nutz

A related topic is the so-called model-free pricing introduced by [13, 21], where
superreplication is achieved by trading in the stock S and (statically) in a given set
of options. On the dual side, this is related to the set of all martingale measures for
S which are compatible with the prices of the given options, and this set is typically
nondominated. In fact, the absence of a dominating measure is a consequence of
the absence of modeling assumptions, which is precisely the aim of the approach.
A survey can be found in [22]; recent results are [1, 2] in discrete time and [12, 18, 20]
in the continuous case. Once more, we are not aware of general existence results
in the case with jumps, and it is worth noting that in contrast to the present work,
the mentioned papers consider topological setups and contingent claims which are
functions of S alone.

It is clear that like in the classical case, the price x∗(f ) will often be relatively large
for practical purposes. Nevertheless, the superreplication problem is a key tool in
many situations. As an example, let us consider the mentioned problem of semistatic
hedging; clearly, the presence of options as additional hedging instruments will often
reduce the superreplication price significantly. More precisely, let S be the canon-
ical process on Ω = R

T and suppose that the marginal law μ of ST is given; this
corresponds to the availability of all European options g(ST ) as hedging instruments
at price Eμ[g]. The construction of an optimal semistatic superreplication requires a
passage to the limit of almost-optimal trading strategies Hn for the stock as well as
of options gn. After a suitable normalization of Hn, one can apply Komlós’ lemma
under the given measure μ to find a limit g of convex combinations of (gn). Then
the main question is to find an optimal hedging portfolio trading in the stock alone,
for the modified claim f − g(ST ), and this is precisely the problem under considera-
tion here. (More general forms of semistatic hedging will be studied in forthcoming
work.) This example also illustrates that it is important to allow quite general con-
tingent claims, since it may be very difficult to verify regularity assumption for the
limit g when no explicit formula is available.

The main mathematical novelty in this paper is a closedness result (Theorem 4.1)
for the cone C of contingent claims which can be superreplicated from initial cap-
ital x = 0. A natural space for this result is introduced; namely, we consider the
locally convex space L1 of measurable functions with the seminorms given by
{EP [| · |],P ∈ P}. Our result states that C is sequentially closed in L1 (which is
not a sequential space in general), and its proof makes use of so-called medial
limits (see Sect. 2 for details). To have closedness rather than sequential closed-
ness, we move to a Banach space L1 ⊆ L1 whose topology, given by the norm
‖f ‖1 = supP∈P EP [|f |], is stronger than the one of L1. The main result is then
obtained by a Hahn–Banach separation argument resembling the classical theory.
The nondominated situation entails several difficulties at the technical level, in par-
ticular regarding limits of strategies. Tools like Komlós’ lemma that are crucial in
the classical theory fail because there is fundamentally no Hilbertian structure in the
nondominated case. At the same time, measurability issues arise, due to a lack of
separability and also because there is no reference probability under which one could
complete the measure space.

There are at least two obvious questions which are not answered in this paper.
First, while x∗(f ) is described as the supremum over all continuous linear pric-
ing functionals, we do not establish that (or when, rather) we have the formula
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x∗(f ) = supP∈P EP [f ]. This question will be studied in follow-up work (cf. [5]).
Second, we do not discuss a possible extension of the present results to the case of
continuous-time processes with jumps.

The remainder of this paper is organized as follows. Section 2 states the necessary
facts about medial limits; Section 3 introduces the space L1; Section 4 contains the
market model and the closedness result; Section 5 states the main superreplication
result, and the concluding Sect. 6 provides a counterexample showing that L1 is not
sequential.

2 Medial limits

In this section, we state some properties of Mokobodzki’s medial limit (cf. [25] or
[8, X.3.55–57]), whose use in the framework of model uncertainty was first intro-
duced in [27]. In a nutshell, a medial limit is a Banach limit that preserves (uni-
versal) measurability and commutes with integration. Medial limits are usually con-
structed by a transfinite induction that uses the continuum hypothesis (the axiom that
ℵ1 = cardR). We recall that the continuum hypothesis is independent of ZFC. In
fact, it is known that medial limits exist under significantly weaker hypotheses (e.g.,
Martin’s axiom, which is compatible with the negation of the continuum hypothesis),
cf. [17, 538S], but not under ZFC alone [24]. In the remainder of the paper, we as-
sume that medial limits exist.1 Moreover, since there are then many medial limits, we
choose one and denote it by lim med. It works as follows.

If (xn)n≥1 is a bounded sequence of real numbers, lim medxn is a number be-
tween lim infxn and lim supxn, and if (fn)n≥1 is a uniformly bounded sequence
of random variables on a measurable space (Ω,F), f = lim medfn is defined via
f (ω) := lim medfn(ω). The first important property of the medial limit is that f is
then universally measurable, i.e., measurable with respect to the σ -field

F∗ :=
⋂

P∈M1(Ω,F)

F ∨N P ,

where M1(Ω,F) is the set of all probability measures on F and N P is the collection
of P -nullsets. In particular, if F is universally complete (i.e., F = F∗), then the me-
dial limit preserves F -measurability. The second important property is that lim med
commutes with integration; that is,

∫
(lim medfn)dμ = lim med

∫
fn dμ

whenever μ is a finite (possibly signed) measure on (Ω,F). We refer to [25, Theo-
rem 2] for these results. The medial limit can be extended to nonnegative sequences
(xn)n≥1 via

lim medxn := sup
m∈N

lim med(xn ∧ m) ∈ [0,∞].

1In fact, we see little reason not to follow the advice of Dellacherie and Meyer [7, p. 5] and “adopt the
continuum hypothesis with the same standing as the Axiom of Choice.”
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If (xn)n≥1 is a general sequence, we set

lim medxn := lim medx+
n − lim medx−

n

provided that the limits on the right-hand side are both finite (or, equivalently,
that lim med |xn| < ∞). The following properties are consequences of the fact that
lim med commutes with integration; cf. the proofs of [25, Theorems 3, 4].

Lemma 2.1 Let (fn)n≥1 be a sequence of random variables on (Ω,F) and set

f :=
{

lim medfn if lim med |fn| < ∞,

+∞ otherwise.

Moreover, let μ be a finite signed measure on (Ω,F). Then:

1. We have
∫ |f |d|μ| ≤ supn

∫ |fn|d|μ|.
2. If the sequence (fn)n≥1 is μ-uniformly integrable, then f is μ-integrable and∫

f dμ = lim med
∫

fn dμ.
3. If (fn)n≥1 converges in μ-measure to some μ-a.e. finite random variable g, then

f = g μ-a.e.

3 The space L1

Let P be a collection of probability measures on a measurable space (Ω,F). A subset
A ⊆ Ω is called P-polar if A ⊆ A′ for some A′ ∈ F satisfying P(A′) = 0 for all
P ∈ P , and a property is said to hold P-quasi surely or P-q.s. if it holds outside
a P-polar set. Consider the set of F -measurable, real-valued functions on Ω and
identify any two functions which coincide P-q.s. We denote by L0 = L0(Ω,F ,P)

the set of all such equivalence classes; in the sequel, we shall often not distinguish
between these classes and actual functions.

Definition 3.1 The space L1(Ω,F ,P) consists of all f ∈ L0(Ω,F ,P) such that
‖f ‖L1(P ) := EP [|f |] < ∞ for all P ∈ P . We equip L1(Ω,F ,P) with the Haus-
dorff, locally convex vector topology which is induced by the family of seminorms
{‖ · ‖L1(P ) : P ∈ P}.

To wit, a net (fλ) in L1 = L1(Ω,F ,P) converges to f ∈ L1 in L1 (i.e., in the
topology of L1) if and only if EP [|fλ −f |] → 0 for all P ∈ P , that is, if convergence
holds in each of the spaces L1(P ). It is important that the closedness of a set in L1 is
not determined by sequences in general (cf. Example 6.1); in other words, we have to
distinguish sequential closedness and topological closedness. This is at the heart of
certain difficulties that we have encountered in our study; for instance, it is the reason
why the problem mentioned in Remark 5.5(ii) below is nontrivial.

The space L1(Ω,F ,Q) is defined similarly when Q is a family of finite, possibly
signed measures. In accordance with the usual notion of boundedness in a topological
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vector space, we say that a subset Θ ⊆ L1(Ω,F ,Q) is bounded if

sup
f ∈Θ

‖f ‖L1(Q) < ∞ for all Q ∈ Q.

The following is easily deduced from Lemma 2.1.

Lemma 3.2 Let F be universally complete and let (fn)n≥1 be a bounded sequence
in L1(Ω,F ,Q). Then

{lim med |fn| = ∞} is Q-polar

and f := lim medfn defines an element of L1(Ω,F ,Q) satisfying

‖f ‖L1(Q) ≤ sup
n

‖fn‖L1(Q) for all Q ∈Q.

Moreover, if (fn)n≥1 has a limit g in L1(Ω,F ,Q), then f = g Q-q.s.

4 Sequential closedness of C⊆ L1

Let (Ω,F) be a measurable space equipped with a filtration (Ft )t∈{0,1,...,T }, where
T ∈ N. We assume throughout that

Ft is universally complete, for all t .

Moreover, let S be a scalar adapted process, the stock price process. We consider
a nonempty set P of martingales measures for S, i.e., probability measures under
which S is a martingale. We denote by H the set of predictable processes, the trading
strategies. Given H ∈H, the corresponding wealth process (from initial capital zero)
is the discrete-time integral process

H • S = (H • St )t∈{0,1,...,T }, H • St =
t∑

u=1

HuΔSu,

where ΔSu = Su − Su−1 is the price increment.
The main result of this section is that the cone C of all claims which can be super-

replicated from initial capital x = 0 is sequentially closed in L1 = L1(Ω,F ,P). We
denote by L0+ the set of (P-q.s.) nonnegative random variables.

Theorem 4.1 Let P �= ∅ be a set of martingale measures for S and

C := ({H • ST : H ∈H} −L
0+
) ∩L

1.

Then C is sequentially closed in L1.

Before stating the proof of the theorem, we show the following “compactness”
property; it should be seen as a consequence of the “absence of arbitrage” which is
implicit in our setup because P consists of martingale measures.
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Lemma 4.2 Let (Wn = Hn • ST − Kn)n≥1 ⊆ C be a sequence which is bounded
in L1. Then for all t ∈ {1, . . . , T },

(Hn
t ΔSt )n≥1 is bounded in L

1.

Proof It suffices to show that for each t ∈ {1, . . . , T },
(Hn • St )n≥1 is bounded in L1. (4.1)

Since (Wn)n≥1 is bounded in L1 and Kn is nonnegative, it follows immediately
that ((Hn • ST )−)n≥1 is also bounded in L1. Now fix n and P ∈ P and recall
that P is a martingale measure for S. Therefore, the stochastic integral Hn • S is
a local P -martingale, but since we already know that EP [(Hn • ST )−] < ∞, we
even have that Hn • S is a true martingale; cf. [23, Theorems 1, 2]. As a result,
EP [(Hn • ST )+] = EP [(Hn • ST )−] for all n and P , and therefore ((Hn • ST )+)n≥1
is bounded in L1, like the sequence of negative parts. So far, we have shown that

(Hn • ST )n≥1 is bounded in L1. (4.2)

To obtain the same statement for t < T , we note that for every P ∈ P , the martingale
property of Hn • S yields that

‖Hn • St‖L1(P ) = ‖EP [Hn • ST |Ft ]‖L1(P ) ≤ ‖Hn • ST ‖L1(P ),

since the conditional expectation is a contraction on L1(P ). Hence (4.2) implies the
claim (4.1). �

Proof of Theorem 4.1 Let Wn = Hn • ST − Kn be a sequence in C which converges
to some W ∈ L1; we need to find H ∈ H such that W − H • ST ≤ 0 P-q.s. Indeed,
being convergent in L1, the sequence (Wn)n≥1 is necessarily bounded in L1; hence
by Lemma 4.2, (Hn

t ΔSt )n≥1 is bounded in L1 for fixed t ∈ {1, . . . , T }. As S is a
martingale and in particular integrable under each P ∈ P , we can define the finite
signed measures Qt,P by

dQt,P /dP = ΔSt .

Let Q = (Qt,P )P∈P ; then the above means that the sequence (Hn
t )n≥1 is bounded

in L1(Ω,Ft ,Q). Thus, Lemma 3.2 implies that Ht := lim medHn
t is finite Q-q.s.

Setting Ht = 0 on the set {lim med |Hn
t | = +∞} ∈Ft , we obtain a process H ∈H. It

remains to check that K := H • ST −W is nonnegative P-q.s. Indeed, since Wn → W

in L1, we know from Lemma 3.2 that W = lim medWn P-q.s. In view of

H • ST =
T∑

t=1

(lim medHn
t )ΔSt

= lim med
T∑

t=1

Hn
t ΔSt = lim med(Hn • ST ) P-q.s.,
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we conclude that

K = H • ST − W = lim med(Hn • ST − Wn) = lim medKn P-q.s.

As each Kn is nonnegative, the result follows. �

5 Main result

In this section, we show that optimal superreplicating strategies exist, and we charac-
terize the minimal superreplication price in a dual way. As in the preceding section,
P is a nonempty set of martingale measures for the scalar process S which is adapted
to the universally complete filtration (Ft ).

Definition 5.1 We introduce the normed vector space

L1 = {f ∈ L
1 : ‖f ‖1 < ∞}, where ‖f ‖1 = supP∈P EP [|f |].

We remark that if a nonnegative claim f ∈ L0 can be superreplicated from some
finite (deterministic) initial capital, then necessarily f ∈ L1.

Definition 5.2 We introduce the cone

C := C∩ L1 = ({H • ST : H ∈H} −L
0+
) ∩ L1,

as well as the set of continuous linear pricing functionals,

Π = {
 ∈ (L1)∗ : 
(C) ⊆ R− and 
(1) = 1}.

Note that Π is indeed the set of all continuous and linear pricing mechanisms
which are consistent with obvious no-arbitrage considerations. As C contains the
nonpositive elements of L1, we see that 
(C) ⊆ R− implies that 
 is positive, i.e.,

(f ) ≥ 0 whenever f ≥ 0 P-q.s.

It is obvious that L1 ⊆ L1 and that the topology of L1 is stronger than the one
of L1. Since sequential closedness and topological closedness are equivalent in a
normed space (which is indeed the reason for moving from L1 to L1), the following
is then an immediate consequence of Theorem 4.1.

Corollary 5.3 Let P �= ∅ be a set of martingale measures for S. Then C is closed
in L1.

The following is our main result: an optimal superreplicating strategy exists and
the minimal superreplication price is given by the supremum over all linear prices.

Theorem 5.4 Let P �= ∅ be a set of martingale measures for S and let f ∈ L1. Then

sup

∈Π


(f ) = inf{x ∈ R : ∃H ∈H such that x + H • ST ≥ f P-q.s.}, (5.1)

and the infimum is attained whenever it is not equal to +∞.
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We emphasize that a priori, (5.1) is an identity in (−∞,∞], with the usual conven-
tion inf∅ = +∞. (As f ∈ L1, the value −∞ is clearly not possible for the left-hand
side.)

Proof We first show the inequality “≤” in (5.1). Nothing is to be proved if the set on
the right-hand side is empty. Hence, let x ∈R and H ∈ H be such that

x + H • ST ≥ f P-q.s.

As f ∈ L1, this implies that (H • ST )− ≤ (f − x)− ∈ L1. On the other hand, as in
the proof of Lemma 4.2, we have EP [(H • ST )+] = EP [(H • ST )−] for all P ∈ P ,
and so we deduce that (H • ST )+ ∈ L1 as well. As a result, we have that H • ST ∈ C.
Now let 
 ∈ Π ; then positivity and the defining properties of Π yield that


(f ) ≤ 
(x + H • ST ) = x + 
(H • ST ) ≤ x,

which proves the desired inequality.
We turn to the inequality “≥” in (5.1) and the existence of an optimal superrepli-

cating strategy. Let x := sup
∈Π 
(f ) ∈ (−∞,∞]. If x = +∞, nothing remains to
be shown, so we may assume that x is finite and show that f ∈ x + C (which imme-
diately yields both the inequality and the existence).

We first consider the case where f is uniformly bounded from above. Suppose
for contradiction that f /∈ x + C. Since the convex cone C is closed in L1 by Corol-
lary 5.3, the Hahn–Banach theorem yields a continuous linear functional 
 : L1 → R

such that

sup
W∈C


(W) < 
(f − x) < ∞. (5.2)

In fact, since C is a cone containing zero, supW∈C 
(W) < ∞ implies that

sup
W∈C


(W) = 0, (5.3)

and in particular (5.2) states that

sup

∈Π


(f ) = x < 
(f ). (5.4)

Of course, (5.3) shows that 
(C) ⊆ R−; in particular, 
 is positive. As f + is bounded,
we have f − x ≤ n for n large and hence

0 < 
(f − x) ≤ lim sup
n→∞


(n).

This shows that 
(1) = n−1
(n) > 0. By a normalization, we may assume that

(1) = 1; but then 
 ∈ Π , which contradicts (5.4).

It remains to consider the case where f + may be unbounded. By the above, we
have that (f ∧ n) − x ∈ C for all n ≥ 0. Hence, as (f ∧ n) − x → f − x in L1,
Theorem 4.1 implies that f − x ∈ C. �
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Remark 5.5 (i) It is not hard to see that the theorem is indeed a genuine generalization
of the classical superreplication duality mentioned in the introduction (apart from our
assumption that the σ -fields are universally complete).

(ii) It is interesting to find conditions guaranteeing that

sup

∈Π


(f ) = sup
P∈P

EP [f ],

which together with (5.1) would yield an even closer analogue of the classical duality.
A partial answer (for a special case) can already be found in [10]. The general case is
deferred to future work (cf. [5]).

6 A counterexample

The subsequent example features a σ -convex set P of martingale measures for the
trivial process S ≡ 0 and shows that a positive, sequentially continuous functional 


on L1 need not be continuous. (Note that C = L1− when S ≡ 0, so that positivity and

(C) ⊆ R− are equivalent.) In particular, the null space of 
 is then a sequentially
closed set which is not topologically closed.

Example 6.1 Let Ω = [0,1], let F be its Borel σ -field and let

P =
{∑

k≥1

αkδxk
: (xk)k≥1 ⊆ [0,1], 0 ≤ αk ≤ 1,

∑

k≥1

αk = 1

}
.

Then we claim that the Lebesgue measure μ induces a sequentially continuous func-
tional on L1(Ω,F ,P) which is not topologically continuous.

Proof Any f ∈ L1 is bounded, for otherwise there exist xn ∈ [0,1] such that
|f (xn)| ≥ 2n and therefore EP [|f |] = +∞ for P := ∑

n≥1 2−nδxn , contradicting
that P ∈ P . Moreover, a sequence (fn) in L1 converges to zero if and only if it is
uniformly bounded and converges pointwise, i.e.,

sup
n≥1,x∈[0,1]

|fn(x)| < ∞ and fn(x) → 0, x ∈ [0,1]. (6.1)

Indeed, (6.1) implies the convergence in L1 by the bounded convergence theorem (ap-
plied for each P ∈P). Conversely, let (fn) converge to zero in L1; then the pointwise
convergence must hold since δx ∈ P for all x ∈ [0,1]. Moreover, being convergent
in L1, (fn)n≥1 must be bounded in L1(P ) for every P ∈ P . If (fn)n≥1 is not uni-
formly bounded, then after passing to a subsequence, there exist xn ∈ [0,1] such that
|fn(xn)| ≥ n2n. Hence,

sup
n≥1

EP [|fn|] = +∞ for P :=
∑

n≥1

2−nδxn,

which is again a contradiction. Therefore, we have the characterization (6.1) for se-
quential convergence in L1.
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As a consequence, 
 = Eμ[·] is a sequentially continuous linear functional on L1

for any probability measure μ. However, when μ is the Lebesgue measure, 
 cannot
be topologically continuous because otherwise Eμ[·] would have to be dominated by
finitely many of the seminorms {EP [| · |],P ∈P}, which is clearly not the case. �
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