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Abstract We study a novel pricing operator for complete, local martingale models.
The new pricing operator guarantees put-call parity to hold for model prices and the
value of a forward contract to match the buy-and-hold strategy, even if the underly-
ing follows strict local martingale dynamics. More precisely, we discuss a change of
numéraire (change of currency) technique when the underlying is only a local mar-
tingale, modelling for example an exchange rate. The new pricing operator assigns
prices to contingent claims according to the minimal cost for superreplication strate-
gies that succeed with probability one for both currencies as numéraire. Within this
context, we interpret the lack of the martingale property of an exchange rate as a re-
flection of the possibility that the numéraire currency may devalue completely against
the asset currency (hyperinflation).

Keywords Foreign exchange · Pricing operator · Put-call parity · Strict local
martingales · Föllmer measure · Change of numéraire · Hyperinflation

Mathematics Subject Classification 60G99 · 60H99 · 91G20

JEL Classification G13

The views represented herein are the authors’ own views and do not necessarily represent the views
of Morgan Stanley or its affiliates and are not a product of Morgan Stanley research.

P. Carr
Courant Institute, New York University, New York, NY, USA
e-mail: pcarr@nyc.rr.com

T. Fisher
e-mail: traviswfisher@gmail.com

J. Ruf (B)
Oxford-Man Institute of Quantitative Finance and Mathematical Institute, University of Oxford,
Oxford, UK
e-mail: johannes.ruf@oxford-man.ox.ac.uk

mailto:pcarr@nyc.rr.com
mailto:traviswfisher@gmail.com
mailto:johannes.ruf@oxford-man.ox.ac.uk


116 P. Carr et al.

1 Introduction

We propose to modify the notion of a contingent claim price in the setting where the
source of uncertainty is a strict local martingale rather than a martingale. More pre-
cisely, we propose to use as a pricing operator for contingent claims the minimal cost
for superreplicating a given contingent claim simultaneously under two probability
measures. In the case of foreign exchange markets with X modelling the exchange
rate (for example, the price of one Euro in dollars), the two measures can be thought
of as a “dollar measure” and a “Euro measure” corresponding to the choice of dollars
or Euros as numéraires. The two measures are not equivalent if X is a strict local
martingale (that is, a local martingale that is not a martingale). In this case, the cost
for joint superreplication is higher than the expected value under the local martingale
measure.

Our main result is Theorem 3.4, which provides a formula for the minimum joint
superreplication cost in a complete market. This approach restores put-call parity and
international put-call equivalence for model prices, and gives the price X0 for the
contingent claim that pays XT at time T . Our pricing formula agrees with the pro-
posals of other authors (Lewis [25], Madan and Yor [26], Andersen [1]); the novelty
is the rigorous justification of this formula as a hedging cost.

The mathematical contribution of this paper is mainly contained in Sect. 2 and the
Appendix. We show how to construct the measure corresponding to a numéraire that
is allowed to vanish. Towards this end, we construct the Föllmer measure for non-
negative local martingales, extending the corresponding results for strictly positive
local martingales. We also develop a stochastic calculus for the suggested change of
measure, in which neither measure dominates the other one.

Section 3 contains the main financial results of the paper. Our approach uses two
numéraires simultaneously, which requires us to re-introduce the notions of market
completeness and superreplication. We introduce a model of the market and define
trading strategies and contingent claim replication. After proving our main result on
the minimal replicating price, we give numerous corollaries and examples.

In Sect. 4, we consider a physical measure under which both currencies might
completely devalue against the other. In such a situation, an equivalent probability
measure under which the exchange rate follows local martingale dynamics cannot
exist. Instead, each risk-neutral measure is only absolutely continuous with respect
to the physical measure. However, as one may use both currencies as hedging instru-
ments, superreplication of contingent claims might still be possible. We provide a set
of conditions under which replicating strategies exist, and we show in Proposition 4.2
how the minimal cost for such a strategy is exactly given by the pricing operator of
this paper.

This point of view gives us an interpretation of the lack of the martingale property
of an exchange rate under a risk-neutral probability measure, as the positive prob-
ability of complete devaluations of currencies (corresponding to explosions of the
exchange rate) occurring under some dominating probability measure. We remark
that this dominating probability measure usually does not correspond to the Föllmer
measure, which we shall discuss below, but is equivalent to the sum of the Föllmer
measure and the original measure.
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1.1 Related literature

We now link our financial results to relevant literature:
Strict local martingales, that is, local martingales that are not martingales, have

recently been introduced in the financial industry to model exchange rates under the
risk-neutral measure. This is due to the fact that they are able to well capture observed
features of the market such as implied volatility surfaces and that they are easily ana-
lytically tractable. An important example is the class of “quadratic normal volatility”
models, a family of local martingales which are studied for example in Andersen
[1] and in our companion paper Carr et al. [2]. There is a vast literature on pricing
options in strict local martingale models, often coined “bubbles”. For an overview
of this literature, we refer the interested reader to the recent survey by Protter [31].
Heston et al. [18] were among the first to point out that put-call parity usually does
not hold in strict local martingale models. For a discussion of these models specif-
ically in the context of foreign exchange, we refer the reader to Jarrow and Protter
[21]. Further models in which strict local martingales appear can be found among the
class of stochastic volatility models; Sin [40] was among the first to point this out.
For example, in the log-normal SABR model, if the asset price process is positively
correlated with the stochastic volatility process, then it follows strict local martingale
dynamics; see Example 6.1 in Henry-Labordère [17].

Several papers suggest adjustments to the pricing of contingent claims by expec-
tations in strict local martingale models in order to address the lack of put-call parity:

Lewis [25] proposes to add a correction term to the price of a call. However, this
approach lacks a clear economic motivation. As his starting point is exactly put-
call parity for model prices, it is not clear how other contingent claims should be
priced. Cox and Hobson [4] suggest to consider collateral requirements when pricing
contingent claims; such collateral requirements correspond to a constraint on the class
of admissible trading strategies. This leads to a higher contingent claim price, but
usually does not restore put-call parity for model prices.

Madan and Yor [26] propose to take the limit of a sequence of prices obtained from
approximating the asset price by true martingales as the price for a contingent claim.
This approach also restores put-call parity for model prices. However, one might crit-
icize that the limit of the approximating prices usually does not agree with the classi-
cal price in the case that the underlying is a true martingale. For instance, consider an
arbitrage-free, complete market with corresponding risk-neutral measure Q, a stan-
dard Q-geometric Brownian motion X = (Xt )t∈[0,T ] as underlying, and a contingent
claim that pays 1{XT ∈N}/qXT

at maturity T , where qy = Q(maxt∈[0,T ] Xt ≥ y) for
all y ∈ R. This claim should have price zero as XT /∈ N almost surely. However, if
one approximates X with versions that are stopped at hitting times of integers, as in
Madan and Yor’s approach, then one obtains a price of one for that claim.

We here suggest to take an economic point of view based on a replicating argument
and derive a pricing operator that restores put-call parity, and therefore assigns model
prices that correspond to observed market prices. We thus not only justify Lewis’
pricing operator by an economic argument, but also generalize it to a wider class of
models and contingent claims.

The approach taken here can be interpreted as a link between classical pricing and
pricing under Knightian uncertainty. Pricing in the classical sense corresponds to the
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choice of one probability measure under which a contingent claim is superreplicated.
This choice implies a strong assumption on the chosen nullsets, that is, by assumption
a set of events is determined to be not relevant for computing a replicating trading
strategy. If the modeler were to consider another probability measure, other events
would be selected, leading to a different replicating price and strategy. Indeed, one
would like that the choice of probability measure should not have a large impact
on the price (or, more importantly, on the hedging strategy), or at least should be
quantifiable.

We remark that Delbaen and Schachermayer [7] work out the connection of strict
local martingales and changes of numéraires. While we understand a change of
numéraire as a combination of a change of currency and the corresponding change
of measure, they start by looking at the change of currency only. Their results imply
that in an arbitrage-free model, a change of currency leads to the existence of arbi-
trage if the corresponding exchange rate is a strict local martingale under a unique
risk-neutral measure. We circumvent the appearance of arbitrage here by associating
the change of numéraire with the introduction of a new probability measure that is
not equivalent to the old one. It is exactly this lack of equivalence which avoids the
arbitrage after the change of currency.

2 Change of measure with a nonnegative local martingale

In this section, given a probability measure Q, we construct and discuss a new prob-
ability measure ̂Q corresponding to a density process that follows local martingale
dynamics only and is allowed to hit zero. It is helpful to interpret the notation of
this section in a financial context. Towards this end, we interpret X as an exchange
rate, for example, the price of one Euro in dollars. Then Q represents the risk-neutral
measure corresponding to the dollar-numéraire and ̂Q the risk-neutral measure cor-
responding to the Euro-numéraire.

The mathematical finance literature has utilized the techniques developed by
Föllmer [12] and Meyer [27] to construct probability measures with a strict local
martingale as density process mostly in the context of arbitrage and bubbles; see
for example Delbaen and Schachermayer [6], Pal and Protter [28], Fernholz and
Karatzas [11], Ruf [34], and, parallel to the present work, Kardaras et al. [23]. Here,
we slightly extend this literature by allowing the local martingale to hit zero. On
the other hand, true martingales possibly hitting zero as density processes have been
studied by Schönbucher [39] within the area of credit risk. Schönbucher [39] terms
the corresponding measure a “survival measure”. We extend this direction of research
by allowing the change of measure to be determined by a local martingale only.

Throughout this section, we fix a time horizon T ∈ (0,∞], a stochastic basis
(Ω,FT , (Ft )t∈[0,T ],Q), and a nonnegative Q-local martingale X = (Xt )t∈[0,T ]. We
assume that x0 := X0 > 0 is deterministic, that (Ft )t∈[0,T ] is right-continuous, and
that X(ω) has right-continuous paths for all ω ∈ Ω ; see also Lemma 1.1 in Föllmer
[12] for the construction of a right-continuous version if this assumption does not
hold.

Any nonnegative random variable, such as XT , is explicitly allowed to take values
in [0,∞]. For a nonnegative random variable Z and some set A ∈ FT , we write Z1A



On the hedging of options on exploding exchange rates 119

to denote the random variable that equals Z whenever ω ∈ A, and otherwise is zero.
For any stopping time τ , we denote the stochastic process that arises from stopping
a process N = (Nt )t∈[0,T ] at time τ by Nτ = (Nτ

t )t∈[0,T ]; that is, Nτ
t := Nt∧τ for all

t ∈ [0, T ]. For any measure P on (Ω,FT ), we denote the corresponding expectation
operator by EP.

We define the stopping times

Ri := inf{t ∈ [0, T ] : Xt > i},
Si := inf{t ∈ [0, T ] : Xt < 1/i}

for all i ∈ N, set R := limi↑∞ Ri and S := limi↑∞ Si , with the convention that
inf∅ := T for some transfinite time T > ∞; see Appendix A for details. Define the
process Y = (Yt )t∈[0,T ] by Yt := 1/Xt1{R>t} for t ∈ [0, T ] and the stopping times

SY
i := inf{t ∈ [0, T ] : Yt > i},

again with inf∅ := T. We observe that Si = SY
i for all i ∈ N if X(R+t)∧T = ∞ for

all t ≥ 0. We assume that (Ft ∩FR−)t∈[0,T ] is the right-continuous modification of a
standard system; see Appendix B for notation and a discussion of this assumption.

The next theorem states the main result of this section: for the nonnegative
Q-local martingale X, there exists a probability measure under which X serves as
the numéraire. We remark that we only specify the new measure on (Ω,FR−) and
not on (Ω,FT ). This is due to the fact that the original measure Q, by assumption,
does not “see” any events after the stopping time R. However, a measure on (Ω,FT )

satisfying the properties of the next theorem could be easily constructed by arbitrarily,
but consistently, extending the measure ̂Q from FR− to FT . Observe that Z1{R>τ∧T }
is FR− -measurable if Z is an Fτ∧T -measurable random variable for some stopping
time τ .

Theorem 2.1 (Change of measure with a nonnegative local martingale) There exists
a unique probability measure ̂Q on (Ω,FR−) such that

̂Q(A ∩ {R > τ ∧ T }) = EQ[1AXτ
T ]

x0
(2.1)

holds for all stopping times τ and for all A ∈ Fτ∧T . This measure also satisfies
̂Q(Ri ∧ T < R) = 1 for all i ∈ N. Moreover, we have

E
̂Q
[

Z1{R>τ∧T }
] = EQ[Z1{S>τ∧T }Xτ

T ]
x0

(2.2)

and

EQ
[

Z1{S>τ∧T }
] = x0E

̂Q[Z1{R>τ∧T }Y τ
T ] (2.3)

for all stopping times τ and Fτ∧T -measurable random variables Z ∈ [0,∞].
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The process Y satisfies

̂Q

(

inf
t∈[0,T ]Yt ≥ 0

)

= 1;

furthermore, we have

̂Q

(

inf
t∈[0,T ]Yt > 0

)

= 1

if and only if the process X is a (uniformly integrable) Q-martingale. Moreover:

1. Y is a ̂Q-supermartingale;
2. Y is a local ̂Q-martingale if and only if Q(S > Si ∧ T ) = 1 for all i ∈ N; then

(SY
i )i∈N is, under ̂Q, a localizing sequence for Y ;

3. Y is a ̂Q-martingale if and only if Q(S > T ) = 1.

Proof Without loss of generality, assume throughout the proof that x0 = 1. Observe
that XRi is a nonnegative martingale by Lemma A.3 in the Appendix; thus, it gen-
erates a measure Qi on (Ω,FRi−) by dQi := X

Ri

T dQ for all i ∈ N. Observe that
the family of probability measures (Qi )i∈N is consistent, that is, Qi+j |FRi− = Qi

for all i, j ∈ N, and that FR− = ∨

i∈NFRi−. Now, the extension Theorem V.4.1 in
Parthasarathy [29] yields the existence of a probability measure ̂Q on (Ω,FR−) such
that ̂Q|FRi− = Qi ; see Appendix B for an argument that the assumptions of that the-
orem hold.

Observe that for all A ∈Fτ∧T and stopping times τ ,

̂Q
(

A ∩ {R > τ ∧ T }) = lim
i↑∞

̂Q(A ∩ {Ri > τ ∧ T }) = lim
i↑∞Qi (A ∩ {Ri > τ ∧ T })

= lim
i↑∞EQ

[

1A∩{Ri>τ∧T }XRi

T

] = lim
i↑∞EQ

[

1A∩{Ri>τ∧T }Xτ
T

]

= EQ
[

1AXτ
T

]

.

This yields (2.1). Now, with τ = Ri and A = Ω we obtain that ̂Q(R > Ri ∧ T ) = 1
for all i ∈N. This identity implies that ̂Q(A) = ̂Q(A ∩ {R > Ri ∧ T }) = EQ[XRi

T 1A]
for all A ∈FRi− and i ∈N. Since FR− = ∨

i∈NFRi− and
⋃

i∈NFRi− is a π -system,
this yields uniqueness of ̂Q on (Ω,FR−). Then (2.2) follows from (2.1) by applying
the monotone convergence theorem, and (2.3) follows from (2.2) by using the fact
that Q(R > T ) = 1 and formally applying (2.2) to Z1{R>τ∧T }Y τ

T instead of Z, where
τ and Z are as in the theorem.

Observe that {inft∈[0,T ] Yt < 0} = ⋃

i∈N{inft∈[0,Ri ) Yt < 0} ̂Q-almost surely and
conclude that Y is ̂Q-almost surely nonnegative by dominated convergence and
applying (2.1) with τ = Ri and A = {inft∈[0,Ri ) Yt < 0} for all i ∈ N. Next, (2.1)
with τ = T and A = {inft∈[0,T ] Yt > 0} yields that ̂Q({inft∈[0,T ] Yt > 0}) = EQ[XT ],
which shows the equivalence of the positivity of Y under ̂Q and the martingale prop-
erty of X under Q.

Observe that

E
̂Q[Yt1A] = E

̂Q
[

Yt1A1{R>t}
] = Q(A ∩ {S > t}) ≤ Q(A ∩ {S > s}) = E

̂Q[Ys1A]
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by applying (2.3) twice (with Z = 1A and τ = t the first time and τ = s the
second time), for all t ∈ [0, T ], s ∈ [0, t] and A ∈ Fs . Thus, the process Y is a
̂Q-supermartingale. This implies for all stopping times τ that Y τ is a ̂Q-martingale
if and only if Q(S > τ ∧ T ) = 1, since Q(S > τ ∧ T ) = E

̂Q[Y τ
T ] again by (2.3) with

Z = 1. Using τ = T yields that Y is a ̂Q-martingale if and only if Q(S > T ) = 1,
and using τ = SY

i yields that for all i ∈ N, YSY
i is a ̂Q-martingale if and only if

Q(S > Si ∧ T ) = 1, since Q(SY
i = Si) = 1. We conclude by applying (i) and the

equivalence of (a.1) and (a.2) in Lemma A.3 in the Appendix. �

It is important to note that the measures Q and ̂Q are usually not absolutely contin-
uous with respect to each other; in particular, we can have ̂Q(R ≤ T ) > 0 = Q(R ≤ T ).
Furthermore, note that the indicators in (2.2) and (2.3) can be omitted if Z is finite or
Q(S ≤ T ) = 0 or ̂Q(R ≤ T ) = 0, respectively. In general, however, the indicators are
necessary as the example Z = 1/XS

T illustrates.

Remark 2.2 (Duality of martingale property and positivity of density processes) Ob-
serve that we have proved the equivalence of the following statements in Theo-
rem 2.1:

1. Y is a (uniformly integrable) ̂Q-martingale on [0, T ];
2. Q(S > T ) = 1.

We have also proved the equivalence of the following statements:

1. X is a (uniformly integrable) Q-martingale on [0, T ];
2. ̂Q(R > T ) = 1.

We emphasize the symmetry of these two equivalences.
This duality of the martingale property of a nonnegative local martingale under

one measure and its non-explosiveness under another measure has been utilized to
provide conditions for the martingale property of local martingales; see in particular
Cheridito et al. [3] and Ruf [35, 37].

We next derive properties of the change of measure in Theorem 2.1. In particular,
we focus on understanding which of the martingale properties of stochastic processes
survive the change of measure, possibly after modifying the processes. The discus-
sion here involves local martingales on stochastic intervals. This notion generalizes
the definition of local martingales; its precise definition can be found in Appendix A.

Proposition 2.3 (Equivalence of (local) martingales) Assume the notation of Theo-
rem 2.1 and let τ denote a stopping time and N = (Nt )t∈[0,T ] a progressively mea-
surable stochastic process taking values in [0,∞] and such that Nt = Nt1{R>t} for
all t ∈ [0, T ]. The following statements then hold:

(i) The process (Nτ
t 1{S>τ∧t})t∈[0,T ] is a Q-martingale if and only if NτY τ is a

̂Q-martingale.
(ii) The process (Nt1{S>t})t∈[0,T ] is a Q-local martingale on [0, S) (equivalently, on

[0,R ∧ S)) if and only if NY is a ̂Q-local martingale on [0,R) (equivalently, on
[0,R ∧ S)).
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(iii) If (N
Si
t 1{S>Si∧t})t∈[0,T ] is a Q-martingale for all i ∈ N, then NY is a ̂Q-local

martingale.

The proof of Proposition 2.3 is based on an extended version of Bayes’ formula
and can be found in Appendix C. Applying (i) to N ≡ 1 and to N = X with τ = T

yields exactly the equivalences of Remark 2.2. Applying (ii) to N ≡ 1 yields that
Y is a ̂Q-local martingale on [0,R ∧ S) if and only if S is announced under Q (for
example, if X does not jump to zero under Q). The example X = Y ≡ 1 shows that
the reverse direction in (iii) in Proposition 2.3 usually does not hold.

In order to better understand the change of measure suggested in this section, it is
instructive to study an extreme case where the measures Q and ̂Q are not only not
absolutely continuous with respect to each other, but even singular:

Example 2.4 (Singular measures) Assume that T ∈ (0,∞) and let X be defined by

Xt = 1 +
∫ t∧˜S

0

1√
T − u

dWu for all t ∈ [0, T ), (2.4)

where W = (Wt )t∈[0,T ] denotes a Q-Brownian motion and ˜S = S the first hitting
time of −1 by (

∫ t

0 1/
√

T − u dWu)t∈[0,T ). Since X corresponds to a deterministically
time-changed Brownian motion, we have Q(S < T ) = 1 and thus Q(XT = 0) = 1.

Under the measure ̂Q of Theorem 2.1, note that Y = (Yt )t∈[0,T ], defined by
Yt := 1/Xt1{R>t} for all t ∈ [0, T ], has the dynamics

dYt = −Y 2
t

1√
T − t

dW
̂Q

t (2.5)

for all t ∈ [0,R) and some ̂Q-Brownian motion W
̂Q := (W

̂Q

t )t∈[0,R). Thus, Y is just
a time-change of the reciprocal of a three-dimensional ̂Q-Bessel process Z start-
ing in one. To see this, define the processes Z = (Zu)u≥0 and B = (Bu)u≥0 by
Zu := YT (1−exp(−u)) and

Bu :=
∫ T (1−exp(−u))

0

1√
T − v

dW
̂Q

v for all u ≥ 0.

Then observe that dZu = −Z2
u dBu and 〈B〉u = u for all u ≥ 0 and conclude by ap-

plying Lévy’s theorem; see Theorem 3.3.16 in Karatzas and Shreve [22]. We then get
Yt = Zlog(T /(T −t)) and ̂Q(Yt > 0 for all t ∈ [0, T )) = 1 = ̂Q(YT = 0); see Sect. 3.3 of
Karatzas and Shreve [22]. Indeed, note that

̂Q(R = T ) = lim
t↑T ;t<T

̂Q(R > t) − ̂Q(R > T ) = 1.

Thus, the two measures are singular with respect to each other on FT since we have
Q(R = T ) = 0 < 1 = ̂Q(R = T ); however, ̂Q is absolutely continuous with respect
to Q on Ft for all t ∈ [0, T ) since Y is a strictly positive, strict ̂Q-local martingale;
see Remark 2.2. We also note that Xt is a true Q-martingale for all t ∈ [0, T ), but
X = XT is a strict Q-local martingale.
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The next example is a slight modification of the example in Delbaen and Schacher-
mayer [9]. It here illustrates that the equivalence of two probability measures Q and
QZ on (Ω,FT ), under which X is a nonnegative right-continuous local martingale,
does not necessarily imply the equivalence of the corresponding probability mea-
sures ̂Q and ̂QZ , constructed as in Theorem 2.1. This observation is one reason why
we shall assume complete markets later on.

Example 2.5 (Lack of equivalence) Fix T ∈ (0,∞) and let X = (Xt )t∈[0,T ] and
Z = (Zt )t∈[0,T ] denote two independent processes with the same distribution as the
process X in Example 2.4. Define the stopping time

τX := inf{t ∈ [0, T ] :Xt < 1/2}

with inf∅ := T, and similarly τZ . Define now the processes X := X τX ∧τZ and
Z := ZτX ∧τZ . Since the stopping time τZ is independent from X and satisfies
Q(τZ < T ) = 1, the process X is a strictly positive true Q-martingale by a condi-
tioning argument; and similarly, so is Z.

Define now a new probability measure QZ by dQZ = ZT dQ and observe that Q
and QZ are equivalent and that the process X is a strict QZ-local martingale since

EQ
Z [XT ] = EQ[XT ZT ] = 1

2
EQ

[

XT 1{τZ<τX } + ZT 1{τX <τZ }
]

= EQ
[

XT 1{τZ<τX }
] = 1 −EQ

[

XT 1{τX <τZ }
] = 1 − 1

2
Q(τX < τZ )

= 3

4
< 1,

where we have used the definitions of QZ, τX and τZ , the facts that Q(τX = τZ ) = 0
and that X and Z have the same distribution under Q, and the martingale property of
X under Q.

Let ̂Q and ̂QZ now denote the probability measures of Theorem 2.1 with X as
density process. These two measures cannot be equivalent since X is a strictly posi-
tive true Q-martingale, but only a strict QZ-local martingale. Thus, the measures Q,
QZ and ̂Q are all equivalent, but only absolutely continuous with respect to ̂QZ .

To elaborate on this, under both measures ̂Q and ̂QZ , the process 1/X is a mar-
tingale and follows the same dynamics as the process Y in (2.5), stopped at time
τ := τX ∧ τZ . However, the distribution of τ is different under the two measures.
More precisely, under ̂Q, the stopping time τ ≤ τZ is bounded by the first time that
the nonnegative ̂Q-local martingale Z starting in 1 hits 1/2, thus ̂Q(τ < T ) = 1;
see also (ii) of Proposition C.3 in the Appendix. However, both 1/X and 1/Z are
̂QZ-martingales and the event that neither of these hits 2 has positive probability un-
der ̂QZ ; thus ̂QZ(τ > T ) > 0. This yields ̂Q(R ≤ T ) = 0 < ̂QZ(R ≤ T ), despite Q

and QZ being equivalent.
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3 Minimal joint replication price

In this section, we derive and discuss a representation of a contingent claim price,
which we define as the minimal cost of replicating the contingent claim’s payoff un-
der two probability measures simultaneously; specifically, the measure under which
the underlying follows local martingale dynamics (Q$) and the measure that corre-
sponds to the change of numéraire (Qe). We interpret a nonnegative Q$-local martin-
gale X as the current market value of one Euro in dollars, and the process Y := 1/X

under the measure Qe , derived from Q$ via the density process X (see Theorem 2.1),
as the current market value of one dollar in Euros under its corresponding numéraire
measure.

Remark 3.1 (Arbitrage and strict local martingales) Modelling asset prices with strict
local martingales usually leads to features of contingent claim prices that, on the first
look, seem to imply simple arbitrage opportunities and do not reflect our economic
understanding of financial markets. To elaborate on this issue, we remind the reader
of the standard definition of a contingent claim price in a complete market framework
as the minimal (super-)replicating cost of this contingent claim; here the replication
occurs almost surely under the unique risk-neutral measure.

Using such contingent claim prices then usually results in the loss of standard
put-call parity in strict local martingale models; see for example Cox and Hobson
[4]. Even more disturbingly, the minimal replicating price for an asset modelled as
a strict local martingale in a complete market is below its current value. Yet, due to
an admissibility constraint on trading strategies, these models do not yield arbitrage
opportunities; see also Delbaen and Schachermayer [5, 8]. For example, the strategy
of shorting the asset modelled by a strict local martingale and replicating its payoff
for a lower cost is not admissible, as it might lead to unbounded negative wealth
before the strategy matures; more details on this argument are discussed in Ruf [36].

Throughout this section, we again assume a time horizon T ∈ (0,∞] and a
filtered probability space (Ω,FT , (Ft )t∈[0,T ],Q$) that satisfies the technical condi-
tions of Appendix B. We fix a nonnegative Q$-local martingale X with almost surely
càdlàg paths (and right-continuous for all ω ∈ Ω), define the stopping times (Ri)i∈N,
(Si)i∈N, S , and R as in Sect. 2, and assume that Q$(S > Si ∧T ) = 1 for all i ∈N; that
is, X is assumed not to jump to zero. As above, we define a process Y = (Yt )t∈[0,T ]
by Yt := 1/Xt1{R>t} for all t ∈ [0, T ]. As illustrated in Theorem 2.1, there exists a
probability measure Qe , which corresponds to the probability measure with X as
numéraire, symbolically “ dQe = XT dQ$”. We then extend the measure Qe , cur-
rently defined on (Ω,FR−), to a measure on (Ω,FT ), which we again denote, with
a slightly misuse of notation, by Qe; see Appendix B.

For some d ∈ N, we assume the existence of d + 1 tradable assets with nonneg-
ative almost surely càdlàg price processes (and right-continuous for all ω ∈ Ω),
denoted by S$ = (S$,(i))i=0,1,...,d in dollars and by Se = (Se,(i))i=0,1,...,d in Eu-

ros, with S$,(i) = (S
$,(i)
t )t∈[0,T ] and Se,(i) = (S

e,(i)
t )t∈[0,T ] for all i = 0,1, . . . , d . We

assume that the processes S$,(i) have Q$-local martingale dynamics and Se,(i) have
Qe-local martingale dynamics for all i = 0,1, . . . , d . Moreover, we assume that these
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price processes describe the same assets and are consistent; that is, we assume that
S
e,(i)
t 1{R∧S>t} = S

$,(i)
t 1{R∧S>t}Yt for all t ∈ [0, T ] and i = 0,1, . . . , d . Thus, given

a dollar price process S$,(i) for the ith asset, the process Se,(i) denotes the price for
the same asset in Euros for all i = 0,1, . . . , d , as it is the dollar price multiplied by
the price of one dollar in Euros. This relationship holds up to time R ∧ S; any event
“beyond” that has probability zero under one of the two measures.

By combining Proposition 2.3 and Proposition A.4 in the Appendix, given the
Q$-dynamics of S$, we can always construct Qe-local martingales Se which satisfy
S

$,(i)
t 1{R∧S>t} = S

$,(i)
t 1{R∧S>t}Yt for all t ∈ [0, T ] and i = 0,1, . . . , d . More pre-

cisely, the equivalence in (ii) of Proposition 2.3 and our standing assumption that
Q$(S > Si ∧ T ) = 1 for all i ∈ N first yield that S$,(i)Y is a Qe-local martingale
on [0,R ∧ S). Secondly, since R ∧ S is foretellable under Qe , by Theorem 2.1, any
Qe-local martingale on [0,R∧S) can be extended to a local martingale on [0,R∧S],
and then of course to a local martingale on [0, T ] in an arbitrary manner after R ∧ S

since the dynamics under one measure only determine the dynamics under the other
measure up to the stopping time R ∧ S.

We suppose that S$,(0) and Se,(1) denote the dollar and Euro money market ac-
count, each assumed to pay zero interest; that is, S$,(0) ≡ 1 ≡ Se,(1). Thus, S$,(1) = X

denotes the price of one Euro in dollars and Se,(0) = Y the price of one dollar in Eu-
ros. More generally, part (iii) of Proposition 2.3 yields that if S$,(i) is a Q$-martingale
for some i = 1, . . . , d , then S

e,(i)
t 1{R≤t} = 0 for all t ∈ [0, T ]; in other words, the mar-

tingale property of S$,(i) under Q$ forces Se,(i) to hit zero under Qe at time R ∧ S.
Vice versa, if Se,(i) is a Qe-martingale for some i = 1, . . . , d , then S

$,(i)
t 1{S≤t} = 0

for all t ∈ [0, T ].
We now are ready to define a trading strategy, relying on stochastic integrals with

respect to the (d+1)-dimensional local martingales S$ and Se . We refer to Sects. I.4d
and III.4a in Jacod and Shiryaev [20] for a discussion of stochastic integrals when
the filtration does not satisfy the “usual assumptions”, in the case of d = 1 or all
price processes being continuous, and to Jacod [19] for the general case. We denote
by L(S$) and L(Se) the space of all predictable processes that are integrable with
respect to S$ and Se , respectively, under the corresponding measures Q$ and Qe .

Stochastic integration is used in the following definition:

Definition 3.2 (Trading strategy) A trading strategy is an Rd+1-valued process
η ∈ L(S$) ∩ L(Se) such that

– its corresponding dollar wealth process V $,η = (V
$,η
t )t∈[0,T ] and Euro wealth pro-

cess V e,η = (V
e,η
t )t∈[0,T ] defined by

V
$,η
t :=

d
∑

i=0

η
(i)
t S

$,(i)
t and V

e,η
t :=

d
∑

i=0

η
(i)
t S

e,(i)
t for all t ∈ [0, T ]

stay nonnegative almost surely under the corresponding measure Q$ and Qe , re-
spectively, and
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– the self-financing condition holds, that is,

dV
$,η
t =

d
∑

i=0

η
(i)
t dS

$,(i)
t and dV

e,η
t =

d
∑

i=0

η
(i)
t dS

e,(i)
t for all t ∈ [0, T ],

where the dynamics are computed under the corresponding measure Q$ and Qe .

We say that η is a trading strategy for initial capital v ∈ [0,∞) expressed in dollars if

v = V
$,η
0 =

d
∑

i=0

η
(i)
0 S

$,(i)
0

holds; and similarly for initial capital v expressed in Euros.

Thus, at any time t ∈ [0, T ], each component of ηt determines the current number
of shares of each asset held at that point of time. Note that

V
e,η
t 1{R∧S>t} = V

$,η
t 1{R∧S>t}Yt for all t ∈ [0, T ]. (3.1)

Thus, the nonnegativity condition on V $,η implies the one on V e,η, but only up to
the stopping time R. Moreover, a simple application of Itô’s rule yields that the self-
financing condition under Q$ implies the one under Qe , but again only up to the
stopping time R; see also Geman et al. [14].

We call any pair of FT -measurable random variables (D$,De) a contingent claim
if De1{R∧S>T } = D$1{R∧S>T }YT . The random variable D$ (De) corresponds to the
dollar (Euro) price of a contingent claim, as seen by the dollar (Euro) investor. We
remind the reader that the event {S ≤ T } has zero Qe-probability, but might have
positive Q$-probability, and the converse statement holds for the event {R ≤ T }.

We represent a contingent claim as a pair of random variables so that we can
exactly express its payoff both in dollars and in Euros including in the event of X hit-
ting infinity. For example, the contingent claim (XT ,1) pays off one Euro at maturity,
while the contingent claim (XT ,1{R>T }) pays off one Euro if the price of one Euro in

dollars did not explode. For K ≥ 0, the claims D
C,$
K := ((XT − K)+, (1 − KYT )+)

and D
P,$
K := ((K − XT )+, (KYT − 1)+) are called call and put, respectively, on one

Euro with strike K and maturity T . Equivalently, by exchanging the first with the sec-
ond component and XT with YT , we define calls and puts on one dollar and denote
them by D

C,e
K and D

P,e
K . In foreign exchange markets, self-quantoed calls are traded,

defined as D
SQC,$
K := XT D

C,$
K = (XT (XT − K)+, (XT − K)+) for some K ≥ 0.

We shall assume that the market is complete both for the dollar investor and for the
Euro investor; that is, for any contingent claim (D$,De) with D$, De taking values
in [0,∞), there exist trading strategies η$ and ηe such that

Q$(V
$,η$

T = D$) = 1 = Qe
(

V
e,ηe

T = De)

and such that V $,η$
is a Q$-martingale and V e,ηe is a Qe-martingale. The replicabil-

ity of any contingent claim under Q$ does not necessarily imply that any contingent
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claim can be replicated under Qe , since the two measures are not equivalent in gen-
eral.

Remark 3.3 (A seeming paradox) Let the exchange rate X be a strict Q$-local mar-
tingale hitting zero with positive probability. Then Y is a strict Qe-local martingale
and we have the following paradox. Under the dollar measure, one can replicate the
payoff of one Euro less than one Euro; simultaneously, under the Euro measure, one
can replicate the payoff of one dollar for less than one dollar. To conclude, the ex-
change rate reflects an overly high price (compared to their replicating cost) both for
the dollar and for the Euro; thus it is at the same time too high and too low for the
dollar. This paradox can be explained by recalling that the two measures Q$ and Qe

are not equivalent; and therefore the investors are concerned with different events
when replicating a Euro or a dollar.

The next theorem constitutes the core result of this section; we recall our standing
assumption that Q$(S > Si ∧ T ) = 1 for all i ∈N.

Theorem 3.4 (Minimal joint replicating price) Define the dollar and Euro pricing
operators as

p$(D) = EQ
$[

D$] + x0E
Q
e[

De1{R≤T }
]

, (3.2)

pe(D) = EQ
e[

De] + 1

x0
EQ

$[
D$1{S≤T }

] = p$(D)

x0
, (3.3)

for a contingent claim D = (D$,De). Whenever D is nonnegative, the minimal joint
Q$- and Qe-replicating price expressed in dollars (Euros) is p$(pe). More pre-
cisely, there exists a trading strategy η for initial capital p$(D) (expressed in dollars)
with

Q$(V
$,η
T = D$) = 1 = Qe

(

V
e,η
T = De); (3.4)

and there exist no p̃ < p$(D) and no trading strategy η̃ for initial capital p̃ (ex-
pressed in dollars) such that (3.4) holds with η replaced by η̃.

Proof The second equality in (3.3) follows directly from Theorem 2.1. Since the
market is assumed to be complete, there exist trading strategies ν for initial capi-
tal p(1) := EQ

$ [D$] (in dollars) and θ for initial capital p(2) := EQ
e [De1{R≤T }] (in

Euros) such that V $,ν is a Q$-martingale, V e,θ is a Qe-martingale, and

Q$(V
$,ν
T = D$) = 1 = Qe

(

V
e,θ
T = De1{R≤T }

)

.

To show (3.4), we now prove that the trading strategy η := ν + θ replicates D$

under Q$ and De under Qe; the initial cost for η, expressed in dollars, is ex-
actly p$ = p(1) + x0p

(2). Moreover, note the identities V
$,η
T = V

$,ν
T + V

$,θ
T and

V
e,η
T = V

e,ν
T + V

e,θ
T . In order to prove that η is a trading strategy, it suffices to prove

that (a) Q$(V
$,θ
T > 0) = 0 and (b) Qe(V

e,ν
T 1{R≤T } > 0) = 0.
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For (a), note that (V
$,θ
t 1{S>t})t≥0 is a Q$-local martingale by (i) in Proposition 2.3

with N = (V
$,θ
t 1{R>t})t≥0 and τ = Ri for all i ∈ N. By taking differences, so is

(V
$,θ
t 1{S≤t})t≥0, which implies Q$({V $,θ

T > 0} ∩ {S ≤ T }) = 0. Observe next that

Q$({V $,θ
T > 0} ∩ {S ∧ Ri > T }) = x0E

Q
e[

1{V $,θ
T >0}∩{Ri>T }YT

] = 0

by (2.3) and (3.1) for all i ∈ N, which yields (a).
For (b), it suffices to show that (V

e,ν
t 1{R≤t})t∈[0,T ] is a (nonnegative) Qe-local

martingale. Since V e,ν is one, it only remains to show, by (3.1), that NY with
N := (V

$,ν
t 1{R>t})t∈[0,T ] is also a Qe-local martingale. However, this follows di-

rectly from (iii) in Proposition 2.3 since N was assumed to be a Q$-martingale.
Next, we show that η corresponds to the cheapest trading strategy. To that end,

let p̃ ∈ [0,∞) and η̃ be a trading strategy for initial capital p̃ (expressed in dol-
lars) that superreplicates D$ under Q$ and De under Qe . Then p̃ = M0 + N0,
where M and N are the martingale and strict local martingale part of the Riesz
decomposition V $,̃η = M + N under Q$ with Q$(NT = 0) = 1. More explicitly,
Mt := EQ

$ [V $,̃η
T |F0

t ] and Nt := V
$,̃η
t − Mt for all t ∈ [0, T ]; see Theorem 2.3 of

Föllmer [13] for the case of a not completed filtration.
Note that M = V $,̃ν and N = V $,˜θ for some trading strategies ν̃ and ˜θ with

η̃ = ν̃ + ˜θ . Since ν̃ superreplicates D$ under Q$, we obtain M0 ≥ EQ
$[D$]. As in

(b) in the first part of the proof, we have Qe({MT > 0} ∩ {R ≤ T }) = 0. Thus, ˜θ su-
perreplicates De under Qe . This implies that N0 ≥ x0E

Q
e [De1{R≤T }], which yields

that p̃ = M0 + N0 ≥ p$(D). �

Theorem 3.4 yields the smallest amount of dollars (Euros) needed to super-
replicate a claim D under both measures Q$ and Qe . The corresponding replicating
strategy is, as the proof illustrates, a sum of two components. The first component
is the standard strategy that replicates the claim under one of the two measures; the
second component replicates the claim under the events that only the other measure
can “see”.

The next few corollaries are direct implications of the last theorem. We usually
formulate them only in terms of the dollar pricing operator p$, but they symmetrically
also hold for the Euro pricing operator pe.

Corollary 3.5 (Linearity of pricing operator) The pricing operator p$ of (3.2) is
linear on its domain: for any claims D1 = (D$

1,De
1 ) and D2 = (D$

2,De
2 ) and any

a ∈R such that D1 and D2 are both in the domain of p$, we have

p$(D1 + aD2) = p$(D1) + ap$(D2),

where D1 + aD2 := (D$
1 + aD$

2,De
1 + aDe

2 ).

Proof The statement follows directly from the linearity of expectations. �
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Corollary 3.6 (Martingale property of wealth process) The wealth process V $,η of
Theorem 3.4 is a Q$-local martingale and thus does not introduce an arbitrage op-
portunity. It is a strict Q$-local martingale if and only if the Q$-local martingale X

is a strict Q$-local martingale and

Qe
({De > 0} ∩ {R ≤ T }) > 0.

Similarly, the wealth process V e,η is a Qe-local martingale. It is a strict Qe-local
martingale if and only if the Qe-local martingale Y is a strict Qe-local martingale
and

Q$({D$ > 0} ∩ {S ≤ T }) > 0.

Proof The local martingale property of the wealth processes under the corresponding
measures follows directly from their definition. The lack of martingale property fol-
lows from checking when the quantities p$(D) and pe(D) in (3.2) and (3.3) satisfy
p$(D) > EQ

$[D$] and pe(D) > EQ
e [De], respectively. �

Corollary 3.7 (Price of a Euro) The minimal joint Q$- and Qe-superreplicating
price of (XT ,1) is x0 (expressed in dollars) or 1 (expressed in Euros).

Proof Recall (2.2), which implies the identity x0Q
e(R ≤ T ) = x0 − EQ

$[XT ]. �

The corresponding replicating strategy is the buy-and-hold strategy of one Euro.

Corollary 3.8 (Put-call parity) The prices of puts and calls simplify under the pricing
operator p$ to

p$(D
P,$
K ) = EQ

$[
(K − XT )+

]

,

p$(D
C,$
K ) = EQ

$[
(XT − K)+

] + x0Q
e(R ≤ T );

(3.5)

moreover, the put-call parity

p$(D
C,$
K ) + K = p$(D

P,$
K ) + x0 (3.6)

holds, where K ∈ R denotes the strike of the call D
C,$
K and put D

P,$
K .

Proof The statement follows directly from (3.2) and the linearity of expectations. �

We refer to Madan and Yor [26] for alternative representations of the call price in
(3.5).

Giddy [15] introduces the notion of international put-call equivalence which re-
lates the price of a call in one currency with the price of a put in the other currency;
see also Grabbe [16].
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Corollary 3.9 (International put-call equivalence) The pricing operators p$ and pe

satisfy international put-call equivalence: for all K > 0,

p$(D
C,$
K ) = x0Kpe

(

D
P,e
1
K

)

,

p$(D
P,$
K ) = x0Kpe

(

D
C,e
1
K

)

.

Proof We obtain

x0Kpe
(

D
P,e
1
K

) = x0K

(

EQ
e
[(

1

K
− YT

)+
1{R>T }

]

+EQ
e
[

1

K
1{R≤T }

])

= x0
(

EQ
e[

(XT − K)+1{R>T }YT

] +Qe(R ≤ T )
)

= EQ
$[

(XT − K)+1{S>T }
] + x0Q

e(R ≤ T )

= p$(D
C,$
K ),

where we have used the identities of Corollary 3.8 and (2.3). The second equivalence
follows in the same way or from the put-call parity for model prices in (3.6). �

The next remark discusses how our result motivates and generalizes Lewis’ gen-
eralized pricing formulas.

Remark 3.10 (Lewis’ generalized pricing formulas) Within Markovian stochastic vo-
latility models, Lewis [25] derives call and put prices which exactly correspond to
(3.2) when applied to the call payoff D

C,$
K or put payoff D

P,$
K . Lewis starts from

the postulate that put-call parity holds, and then shows that the correction term that is
added to the expected payoff under Q$ corresponds to the probability of some process
exploding under another measure (corresponding here to Qe). We start here instead
from an economic argument by defining the price as the minimal superreplicating
cost for a contingent claim under two possibly non-equivalent measures that arise
from a change of numéraire. We then show that this directly implies put-call parity
for model prices. This approach also yields a generalization of Lewis’ pricing formula
to arbitrary, possibly path-dependent contingent claims.

Example 3.11 (Singular measures (continued)) We continue here our discussion of
Example 2.4 with Q$ = Q and Qe = ̂Q. Although the exchange rate X is a Q$-local
martingale, from the classical point of view of a dollar investor, the minimal super-
replicating price of one Euro at time T is zero because under Q$ there are only paths
under which this contingent claim becomes worthless. However, by means of the
correction term, (3.2) yields a price p$((XT ,1)) = x0 when considering the min-
imal joint Q$- and Qe-superreplicating price of one Euro. For the self-quantoed
call D

SQC,$
K , the classical price would again be zero; however, considering also

the paths that the Euro investor under Qe can see, Theorem 3.4 suggests a price
p$(D

SQC,$
K ) = ∞ since EQ

e [(XT − K)+] = ∞.
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In many applications, however, the measures Q$ and Qe do not become singular.
Often, one of them is absolutely continuous with respect to the other. In this case, the
formulas for computing p$(D) and pe(D) simplify:

Corollary 3.12 (Absolutely continuous measures) If Q$(S > T ) = 1, that is, if Y is
a Qe-martingale, then pe can be computed as

pe
(

(D$,De)
) = EQ

e [De].

If Qe(R > T ) = 1, that is, if X is a Q$-martingale, then

p$((D$,De)
) = EQ

$ [D$].

Proof Assume that Q$(S > T ) = 1. Then Remark 2.2 implies that Q$ is abso-
lutely continuous with respect to Qe . Thus, if a trading strategy superreplicates
De Qe-almost surely for a Euro investor, then it also superreplicates D$ Q$-almost
surely for a dollar investor. The second statement can be shown analogously. �

Example 3.13 (Reciprocal of the three-dimensional Bessel process) We set d = T = 1
and let X denote a nonnegative Q$-local martingale distributed as the reciprocal of a
three-dimensional Bessel process starting in 1; in particular, there exists a Brownian
motion W = (Wt)t∈[0,T ] such that

Xt = 1 +
∫ t

0
X2

u dWu for all t ∈ [0, T ].

It is well known that X is strictly positive and that Y is a Qe-Brownian motion
stopped when it hits zero; see for example Delbaen and Schachermayer [6]. Since X

is strictly positive, the discussion in Remark 2.2 yields that Q$ is absolutely continu-
ous with respect to Qe; thus, Corollary 3.12 applies.

Let us study the self-quantoed call D
SQC,$
K . Since Brownian motion hits 0 in

any time interval with positive probability, we obtain that X hits ∞ with positive
Qe-probability. This yields directly a minimal joint Q$- and Qe-superreplicating
price of p$(D

SQC,$
K ) = ∞. It is interesting to note that as in Example 3.11, the clas-

sical price is finite; in fact,

EQ
$[

XT (XT − K)+
]

≤ EQ
$[X2

T ] = EQ
e[

XT 1{R>T }
]

= 1√
2πT

∫ ∞

0

1

y

(

exp
(

− (y − 1)2

2T

)

− exp
(

− (y + 1)2

2T

)

)

dy < ∞

for all K ≥ 0, where we have plugged in the density of killed Brownian motion; see
Exercise III.1.15 in Revuz and Yor [32].
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We remark that as a corollary of Remark 2.2, our setup contains only positive
“bubbles” under the corresponding measure. A bubble is usually defined as the dif-
ference of the current price and the expectation of the terminal value of an asset, that
is, x0 − EQ

$[XT ] and 1/x0 − EQ
e [YT ], respectively. It is possible that both bubbles

are strictly positive; however, negative bubbles cannot occur by the supermartingale
property of the asset price processes under the corresponding measure. This contrasts
Jarrow and Protter [21], where negative bubbles are discussed, however only when
considering the dollar measure Q$, which is not the risk-neutral measure of a Euro
investor.

In the next section, we provide an interpretation of a bubble (lack of the martin-
gale property of the exchange rate) as the possibility of a hyperinflation under some
dominating “real-world” measure P. If for both currencies such hyperinflations have
positive P-probability, then X and Y both have a positive bubble.

4 A physical measure

In this section, we start by specifying a physical probability measure P instead of a
risk-neutral probability measure Q$. We again assume a time horizon T ∈ (0,∞]
and a filtered probability space (Ω,FT , (Ft )t∈[0,T ],P) that satisfies the technical
conditions of Appendix B. Let X = (Xt )t∈[0,T ] denote a process taking values
in [0,∞] with right-continuous paths for all ω ∈ Ω . Define the stopping times
(Ri)i∈N, (Si)i∈N, S and R as in Sect. 2 and assume that P(Si ∧ T < S) = 1 for all
i ∈ N, X(R+t)∧T = ∞ if R ≤ T and X(S+t)∧T = 0 if S ≤ T for all t ≥ 0. In par-
ticular, this assumption implies that no oscillations can occur; that is, the events
H $ := {R ≤ T } and He := {S ≤ T } are disjoint. Suppose that P(H $) < 1 and
P(He) < 1. Define again Y = (Yt )t∈[0,T ] by Yt := 1/Xt1{R>t} for all t ∈ [0, T ].

Under the physical probability measure P, the events H $ and He may both have
positive probability. We interpret these events as the complete devaluation (hyperin-
flation) of the dollar or Euro currency with respect to the other. Such hyperinflations
have been observed; for example, the exchange rate between the American and Ger-
man currencies changed by a factor of 1010 from January 1922 to December 1923,
as described in Sargent [38]. During a hyperinflation, the interest rate of the inflating
currency tends to become very large, and so far, we have assumed zero interest rates.
We may reinterpret XT as the forward exchange rate of dollars per Euro at time T , as
opposed to a spot exchange rate. This is consistent with various interest rate assump-
tions, including the possibility that the dollar (respectively Euro) interest rate should
explode when the dollar (respectively Euro) experiences a hyperinflation.

If P(H $) > 0 and P(He) > 0, then no risk-neutral measure equivalent to P can
exist such that either X or Y follow local martingale dynamics. Nevertheless, pricing
and hedging of contingent claims might still be possible. Towards this end, let us
introduce the two artificial measures

P$(·) := P(· |H $c

) = P(· |R > T ),

Pe(·) := P(· |Hec

) = P(· |S > T ),
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where we have conditioned the physical measure P on the events H $c
and Hec

that no
hyperinflation occurs. Note that both measures P$ and Pe are absolutely continuous
with respect to P and that P is absolutely continuous with respect to their average
(P$ + Pe)/2.

As in Sect. 3, for some d ∈ N, we assume the existence of d + 1 tradable
assets with nonnegative price processes, denoted by S$ = (S$,(i))i=0,1,...d in dol-

lars and by Se = (Se,(i))i=0,1,...d in Euros; as before, with S$,(i) = (S
$,(i)
t )t∈[0,T ]

and Se,(i) = (S
e,(i)
t )t∈[0,T ] for all i = 0,1, . . . , d . We also assume again that

S
e,(i)
t 1{R∧S>t} = S

$,(i)
t 1{R∧S>t}Yt for all t ∈ [0, T ] and i = 0,1, . . . , d and that

S$,(1) = X and Se,(0) = Y . Moreover, we assume that S$ and Se have càdlàg paths
P$- and Pe-almost surely, respectively.

Suppose that there exists exactly one probability measure Q$ (Qe) that is equiva-
lent to P$ (Pe) and under which the processes S$ (Se) are local martingales. Consider
the condition of no obvious hyperinflations (NOH):

(NOH) The probability measures P$ and Pe are equivalent on F(Ri∧Sj )− for all i,

j ∈ N.

This condition corresponds to an environment in which at no time, one knows that a
certain hyperinflation will occur P-almost surely; that is, hyperinflations occur as a
surprise. To see this, assume that the condition (NOH) does not hold. Then there exist
i, j ∈ N and a set A ∈ F(Ri∧Sj )− such that for example P$(A) = 0 and Pe(A) > 0,

which implies A ⊂ H $ (modulo P). Thus, for some paths one knows that a hyperin-
flation will occur before it occurs. As the next lemma shows, the condition (NOH)
brings us back to the framework of Theorems 2.1 and 3.4.

Lemma 4.1 ((NOH) and change of numéraire) The following two conditions are
equivalent:

(i) The condition (NOH) holds.
(ii) The equality in (2.1) of Theorem 2.1 holds for all stopping times τ and A ∈Fτ∧T

with ̂Q replaced by Qe and Q replaced by Q$.

The proof of this equivalence is based on the assumption that Qe is the unique
probability measure equivalent to Pe such that Se are Qe-local martingales. It is
contained in Appendix D.

The next proposition yields that the minimal cost (expressed in dollars) for repli-
cating a contingent claim D = (D$,De) P-almost surely is given by (3.2) in Theo-
rem 3.4 if condition (NOH) holds. More precisely, one can find a trading strategy η,
in the sense of Definition 3.2, such that the corresponding terminal wealth satisfies
P$(V

$,η
T = D$) = 1 = Pe(V

e,η
T = De). Since P and (P$ +Pe)/2 are equivalent, we

interpret η as a replication strategy under the physical measure P.

Proposition 4.2 (Minimal replication cost under P) Assume that the condition
(NOH) holds. Then the minimal replicating cost for a contingent claim
D = (D$,De) under P is exactly the one computed in Theorem 3.4.
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Proof Theorem 3.4 yields the minimal joint replicating cost of a claim under Q$

and under any extension of the corresponding measure after a change of numéraire.
However, Lemma 4.1 shows that Qe is exactly such an extension if (NOH) holds.
This yields the assertion since Q$ and Qe are equivalent to P$ and Pe , respectively. �

We also obtain an interpretation of the lack of martingale property of X under
the risk-neutral measure Q$ as the possibility of an explosion under the physical
measure P:

Corollary 4.3 (Interpretation of the lack of the martingale property) Assuming the
condition (NOH), we have P(H $) > 0 if and only if X is a strict Q$-local martingale;
equivalently, we have P(He) > 0 if and only if Y is a strict Qe-local martingale.

Proof Note that P(H $) > 0 if and only if Pe(H $) > 0, which is equivalent to
Qe(H $) > 0. Lemma 4.1 and Remark 2.2 then yield the first equivalence of the
assertion. The second follows in the same manner. �

If the condition (NOH) does not hold, then Theorem 3.4 still provides an upper
bound for the minimal replicating cost of a contingent claim. However, as the next
example shows, the expression in (3.2) usually does not give the smallest minimal
replicating cost under P.

Example 4.4 (Condition (NOH) not satisfied) We fix d = 1 and T = 1. Let U denote
an F0-measurable random variable taking values in {−1,1} with P(U = 1) ∈ (0,1).
Furthermore, define X = (Xt )t∈[0,T ] by Xt := (Zt )

U for all t ∈ [0,1], where
Z = (Zt )t∈[0,T ] has the same distribution as the process in (2.4). Thus H $ = {U = −1}
and He = {U = 1}, and the condition (NOH) is not satisfied.

Consider the contingent claim D = (1,1), which pays either one dollar if the
dollar does not hyperinflate or otherwise one Euro. Then (3.2) yields a price (in
dollars) of p$(D) = 1 + 1 = 2. However, at time zero, it is already known which
of the two currencies defaults, as U is F0-measurable. Thus, the trading strategy
η = (1{U=1},1{U=−1}), holding one unit of the corresponding currency, perfectly
replicates the contingent claim at an initial cost of only one dollar.

5 Conclusion

Based on a replication argument, we have introduced a novel pricing operator for
contingent claims that restores put-call parity and international put-call equivalence
for model prices. If the underlying is a true martingale, our pricing operator is just the
classical replication price. Furthermore, we have interpreted the lack of the martin-
gale property of an underlying price process under the risk-neutral probability as the
positive probability of an explosion (hyperinflation) under some dominating physical
measure.

Two directions of future research arise. First, we have focused on the case of two
currencies, corresponding to one exchange rate only. It would be interesting to ex-
tend the results of this paper to multiple currencies and to find a consistent way
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to describe devaluations of currencies with respect to several other currencies. The
numéraire-free approach taken in Yan [41] might be very useful. Second, through-
out this paper we have relied on the assumption that markets are complete. Again, it
would be interesting to consider incomplete markets and to develop a theory of joint
superreplication in such markets.
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Appendix A: Local martingales on stochastic intervals

In this appendix, we provide some technical results for stochastic processes that sat-
isfy the local martingale property up to a stopping time. Such stochastic processes
appear throughout this paper.

Similarly to Perkowski and Ruf [30], we consider the time set T := [0,∞] ∪ {T},
where T represents a time “beyond horizon”; the natural ordering is extended to T
by t < T for all t ∈ [0,∞]. For any t ∈ T and any sequence (ti)i∈N with ti ∈ T for
all i ∈ N, we write limi↑∞ ti = t if either t = T and infi≥j ti = T for some j ∈ N, or
if t < T, supi≥j ti < T and limi↑∞;i≥j ti = t for some j ∈N.

Throughout this appendix, we fix a time horizon T ∈ (0,∞], an arbitrary stochas-
tic basis (Ω,FT , (Ft )t∈[0,T ],P), and a process N = (Nt )t∈[0,T ] taking values in
[−∞,∞]. For a T -valued random variable τ , we define the stopped stochastic pro-
cess Nτ = (Nτ

t )t∈[0,T ] := (Nt∧τ )t∈[0,T ]. Throughout this appendix, we fix a stopping
time τ , which is a map τ : Ω → T such that {τ ≤ t} ∈ Ft for all t ∈ [0, T ]. If not
specified further, all (in)equalities are interpreted in the P-almost sure sense.

We start with a definition.

Definition A.1 (Local martingale on a stochastic interval) We call N :

(1) a local martingale on [0, τ ] if there exists a nondecreasing sequence of stopping
times (τi)i∈N with limi↑∞ τi > τ ∧ T such that Nτi∧τ is a martingale for all
i ∈ N;

(2) a local martingale on [0, τ ) if there exists a nondecreasing sequence of stopping
times (τi)i∈N with limi↑∞ τi = τ such that Nτi is a martingale for all i ∈N.

In particular, if T = τ = ∞, then a local martingale on [0, τ ) corresponds exactly
to the usual notion of a local martingale. Observe that if N is a local martingale on
[0, τ ], then it is a local martingale on [0, τ ). If the definition of a local martingale
on [0, τ ) required additionally the assumption that τi < τ for all i ∈ N (something
that Definition A.1 does not require), this implication would in general not hold true;
consider for example a compensated Poisson process and τ the time of its first jump.
Observe also that if τ̃ is a stopping time with τ̃ ∧ T < ε ∨ τ for all ε > 0, then any
local martingale on [0, τ ) is also a local martingale on [0, τ̃ ].
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In the following, we repeatedly use the fact that

Nη1∨η2 = Nη1 + Nη2 − Nη1∧η2

is a (local) martingale if Nη1 and Nη2 are (local) martingales for some stopping times
η1 and η2. The next lemma is useful in several of the proofs in this paper.

Lemma A.2 (Localization sequence for a local martingale on a stochastic interval)
The following two statements are equivalent:

(a.1) N is a local martingale on [0, τ ].
(a.2) There exists a nondecreasing sequence of stopping times (τi)i∈N such that

limi↑∞ τi > τ ∧ T and that N is a local martingale on [0, τi ∧ τ ] for all i ∈N.

The following three statements are equivalent:

(b.1) N is a local martingale on [0, τ ).
(b.2) There exists a nondecreasing sequence of stopping times (τi)i∈N such that

limi↑∞ τi = τ and that N is a local martingale on [0, τi] for all i ∈ N.
(b.3) There exists a nondecreasing sequence of stopping times (τi)i∈N such that

limi↑∞ τi = τ and that N is a local martingale on [0, τi) for all i ∈N.

Proof For the first part, we only need to show the implication from (a.2) to (a.1).
Thus, assume (a.2), which yields that there exists for all i ∈N a stopping time ηi with
P(ηi ≤ τi ∧ τ ∧ T ) ≤ 2−i such that Nηi∧τi∧τ is a martingale. For all i ∈ N, define
τ̃i = maxj∈{1,...,i}(ηj ∧ τj ) and observe that Nτ̃i∧τ is a martingale for all i ∈ N and
that limi↑∞ τ̃i > τ ∧ T . This shows that (a.1) holds.

For the second part, we only need to show the implication from (b.3) to (b.1).
Assume now (b.3). Then there exists a nondecreasing sequence of stopping times
(ηi)i∈N such that

P
(

({τi = T} ∩ {ηi < T}) ∪ ({τi < T} ∩ {ηi < (τi − 2−i ) ∧ i})) ≤ 2−i

and Nηi is a martingale for all i ∈ N. Define τ̃i := τ ∧ maxj∈{1,...,i} ηi and observe
that Nτ̃i is a martingale for all i ∈ N and that limi↑∞ τ̃i = τ , which yields (b.1). �

For the next lemma, observe that the random times

ρj := inf{t ∈ [0, T ] : Nτ
t > j} (A.1)

with inf∅ := T for all j ∈ N take values in [0, τ ∧T ]∪T and are stopping times if the
underlying filtration (Ft )t∈[0,T ] is right-continuous and N(ω) is a right-continuous
path for all ω ∈ Ω ; see for example Problem 1.2.6 in Karatzas and Shreve [22].

Lemma A.3 (Localization sequence for a nonnegative local martingale) Assume
that the underlying filtration (Ft )t∈[0,T ] is right-continuous and N(ω) is a right-
continuous path taking values in [0,∞] for all ω ∈ Ω . Define the stopping times
(ρj )j∈N as in (A.1) and ρ := limj↑∞ ρj . Then the following statements hold:
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(i) If Nρj ∧τ is a supermartingale for all j ∈ N (in particular, if Nτ is a supermartin-
gale), then ρ = T.

(ii) If Nρj ∧τ
(j)
i is a supermartingale for all i, j ∈ N for some nondecreasing se-

quences of stopping times (τ
(j)
i )i∈N with limi↑∞ τ

(j)
i = τ for all j ∈ N, then

ρ ≥ τ .

The following statements are equivalent:

(a.1) N is a local martingale on [0, τ ].
(a.2) Nρj ∧τ is a uniformly integrable martingale for all j ∈ N.
(a.3) Nρj is a local martingale on [0, τ ] for all j ∈ N.

The following statements are equivalent:

(b.1) N is a local martingale on [0, τ ).
(b.2) Nρj ∧τi is a uniformly integrable martingale for all i, j ∈ N for some nonde-

creasing sequence of stopping times (τi)i∈N with limi↑∞ τi = τ .
(b.3) Nρj is a local martingale on [0, τ ) for all j ∈ N.

Proof Assume that Nρj ∧τ is a nonnegative supermartingale and note that N
ρj ∧τ

T ≥ j

if ρj ≤ τ ∧ T ; thus P(ρj ≤ τ ∧ T ) ≤ N0/j for all j ∈ N, which yields (i). Next,

assume that there exist sequences of stopping times (τ
(j)
i )i∈N such that Nρj ∧τ

(j)
i is a

supermartingale for all i, j ∈ N. Fix a sequence (ij )j∈N so that

P
(

({τ = T} ∩ {τ (j)
ij

< T}) ∪ ({τ < T} ∩ {τ (j)
ij

< (τ − 2−j ) ∧ j})) ≤ 2−j .

Then we have N0 ≥ E[N
ρj ∧τ

(j)
ij

T ] ≥ jP(ρj ≤ τ
(j)
ij

∧ T ) and thus

P
(

({τ = T} ∩ {ρj < T}) ∪ ({τ < T} ∩ {ρj < (τ − 2−j ) ∧ j})) ≤ N0

j
+ 2−j

for all j ∈ N, which yields (ii).
Now assume (a.1) and observe that supt∈[0,T ] N

ρj ∧τ

t ≤ j +N
ρj ∧τ

T and that N
ρj ∧τ

T

is integrable for all j ∈ N since Nτ is a supermartingale. This observation in con-
junction with dominated convergence shows (a.2). Next, assume (a.3) and observe
that Nρj is a supermartingale on [0, τ ] for all j ∈ N, and thus ρ = T by (i). The first
part of Lemma A.2 then yields (a.1).

Now assume (b.1), which gives the existence of a nondecreasing sequence of stop-
ping times (τi)i∈N with limi↑∞ τi = τ such that N is a local martingale on [0, τi] for
all i ∈ N. Using the implication of (a.1) to (a.2) with τ replaced by τi for all i ∈ N,
we observe that (b.2) holds. Next, assume (b.3). Then (ii) yields that ρ ≥ τ and the
second part of Lemma A.2 then yields (b.1). �

Note that the implication of (b.3) to (b.1) in Lemma A.3 with T = τ = ∞ yields
that any nonnegative right-continuous process N is automatically a local martingale
(on [0,∞)) if Nρj is a local martingale (on [0,∞)) for all j ∈ N. Furthermore, by
(ii), Nρj is a supermartingale for all j ∈ N if and only if N is a supermartingale.
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We call the stopping time τ foretellable if there exists a nondecreasing sequence
of stopping times (τi)i∈N such that limi↑∞ τi = τ (in particular, there exists some
i(ω) ∈ N with τi(ω)(ω) = T if τ(ω) = T) and τi ∧ T < τ ∨ ε for all i ∈ N and ε > 0.
We then call (τi)i∈N an announcing sequence for τ .

The following result illustrates that a nonnegative local martingale on a half-open
stochastic interval (with respect to a foretellable stopping time) can be extended
to one on a closed interval. For example, if N is defined by Nt := 1{t<τ } for all
t ∈ [0, T ], then N can be extended to a process M = (Mt)t∈[0,T ] with Mt := 1 for all
t ∈ [0, T ], representing a local martingale on [0, T ].

Proposition A.4 (Extension of local martingales on a stochastic interval) Suppose
that the assumptions of Lemma A.3 hold and assume that τ is foretellable and
that N is a local martingale on [0, τ ). Then there exists a unique local martingale
M = (Mt)t∈[0,T ] on [0, T ] such that M = Mτ , (Mt1{t<τ })t∈[0,T ] = (Nt1{t<τ })t∈[0,T ],
M0 = N0 and, moreover, lims↑τ(ω) Ms(ω) = Mt(ω) for all ω ∈ Ω with τ(ω) /∈ {0,T}.
The process M has nonnegative and right-continuous paths.

Proof The uniqueness of M follows directly from its left-continuity at time τ . Let
(τi)i∈N denote an announcing sequence for τ and (̃τi)i∈N a nondecreasing sequence
of stopping times such that Nτ̃i is a martingale for all i ∈ N and limi↑∞ τ̃i = τ . We
assume without loss of generality that τi = τi ∧ τ̃i for all i ∈N. Observe that Nτi is a
nonnegative supermartingale for all i ∈ N. By imitating the proof of Theorem 1.3.15
in Karatzas and Shreve [22] based on Doob’s up- and down-crossing inequalities
(replace therein n by τn for all n ∈ N and ∞ by τ ), we obtain that Mt := limi↑∞ N

τi
t

for all t ∈ [0, T ] exists.
We need to show that M defined in this way is a local martingale on [0, T ].

By Lemma A.3, it suffices to show that Mρ̃j is a martingale for all j ∈ N, where
ρ̃j := inf{t ∈ [0, T ] : Mt > j} with inf∅ := T. Fix an arbitrary j ∈ N and observe
that by dominated and monotone convergence

E
[

M
ρ̃j

T

] = E

[

lim
i↑∞N

τi

T 1{τi<ρ̃j }
]

+E

[

lim
i↑∞N

ρ̃j

T 1{τi≥ρ̃j }
]

= lim
i↑∞E

[

N
ρ̃j ∧τi

T

]

,

= N0 = M0,

which yields the statement since by Fatou’s lemma, Mρ̃j is a supermartingale. �

We warn the reader that usually Mτ
T �= Nτ

T , even if N is a martingale on [0, τ ],
since N need not be left-continuous at τ . We also refer the reader to the related
Exercise IV.1.48 in Revuz and Yor [32], where the case of not necessarily nonnegative
local martingales is treated.

Appendix B: Conditions on the filtration in Sects. 2–4

In this appendix, we discuss the technical assumptions on the underlying filtration
that are necessary for the results in Sects. 2–4. Throughout this appendix, we fix
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a time horizon T ∈ (0,∞] and denote a set of states by Ω �= ∅ and a filtration by
(Ft )t∈[0,T ].

We refer to Appendix A for the definition of a stopping time. For any stopping
time τ , we define

Fτ := {

A ∈FT

∣

∣A ∩ {τ ≤ t} ∈Ft for all t ∈ [0, T ]}

and

Fτ− := σ
({

A ∩ {τ > t} ∣

∣A ∈ Ft for some t ∈ [0, T ]} ∪F0
0

)

,

if (Ft )t∈[0,T ] is the right-continuous modification of a filtration (F0
t )t∈[0,T ]; see

p. 156 in Föllmer [12].
In Sect. 2, we are constructing a probability measure on (Ω,FR−) for a cer-

tain stopping time R := limi↑∞ Ri , where (Ri)i∈N is a sequence of nondecreasing
stopping times, defined in Sect. 2. This construction is based on an extension the-
orem, more precisely on Theorem V.4.1 in Parthasarathy [29], and thus requires
certain technical assumptions on the filtration (F)t∈[0,T ]. Specifically, we require in
Sects. 2–4 that

(i) (Ft )t∈[0,T ] be the right-continuous modification of a filtration (F0
t )t∈[0,T ], and

(ii) (FRi−)i∈N be a standard system, as defined in Sect. 6 of Föllmer [12].

Furthermore, in Sect. 3, we require that

(iii) any probability measure P on (Ω,FR−) can be extended to a probability mea-
sure ˜P on (Ω,FT ).

A sufficient condition for requirement (ii) is that

(̂Ft )t∈[0,T ] := (Ft ∩FR−)t∈[0,T ]

is the right-continuous modification of a standard system (RCMSS); see Remark 6.1.1
in Föllmer [12], applied to the filtration (Gt )t≥0 with Gt := ̂F1/(1−t)−1 if T = ∞, and
Gt := ̂FtT otherwise, for all t ∈ [0,1], and Gt = ̂FT for all t > 1. We remark that
(̂Ft )t∈[0,T ] then usually does not satisfy the “usual conditions” as it is not completed
under some probability measure. Observe that if (F0

t )t∈[0,T ] is a standard system,
then so is (F0

t ∩FR−)t∈[0,T ].
In the following, we provide a canonical example for Ω and for a filtration

(Ft )t∈[0,T ], such that (Ft ∩FR−)t∈[0,T ] is an RCMSS. This example provides a suf-
ficiently rich structure so that one might as well assume, throughout this paper, that
the underlying filtered measurable space is of that form.

Towards this end, let E denote any locally compact space with countable base
(for instance, E = Rn for some n ∈ N), and let Ω denote the space of right-
continuous paths ω : [0, T ] → [0,∞] × E whose first component ω(1) satisfies
ω(1)(R(ω) + t) = ∞ for all t ≥ 0, and that have left limits on (0,R(ω)), where R(ω)

denotes the first time that ω(1) = ∞. Let (F0
t )t∈[0,T ] denote the filtration generated by

the paths and (Ft )t∈[0,T ] its right-continuous modification. Then it follows as in Del-
lacherie [10], Meyer [27] and Example 6.3.2 of Föllmer [12] that (Ft ∩FR−)t∈[0,T ]



140 P. Carr et al.

is an RCMSS. We identify the process X(ω), which appears in Sect. 2, with the first
coordinate of ω.

Observe that in the canonical setup of the last paragraph, the extension of require-
ment (iii) always exists. To see this, define ˜P(A) := P(ωR− ∈ A) for all A ∈ FT ,
where ωR− ∈ Ω is given for all ω ∈ Ω by

ωR−(t) := ω(t)1{t<R(ω)} + (∞ × e)1{t≥R(ω)}

for some e ∈ E for all t ∈ [0, T ]. This specific construction then yields one extension
˜P on (Ω,FT ).

Appendix C: Proof of Proposition 2.3 and further statements concerning the
change of measure in Sect. 2

In this appendix, we provide additional statements on the change of measure sug-
gested in Sect. 2 and on the proof of Proposition 2.3. We refer to Appendix A for the
definition of a stopping time.

Below, we shall rely on the next lemma:

Lemma C.1 (Convergence of stopping times) Assume the setup of Theorem 2.1 and
fix a stopping time τ . Then we have Q(S > τ) = 0 if and only if ̂Q(R > τ) = 0.

Proof Without loss of generality, we set x0 = 1. Then (2.1) yields that

̂Q(R > τ) = ̂Q({τ ≤ T } ∩ {R > τ ∧ T }) = EQ
[

1{τ≤T }Xτ
T

] ≤ EQ
[

1{S>τ }Xτ
T

]

,

which yields one direction of the statement. The other direction follows from (2.3) in
the same manner. �

Next, we formulate a generalized version of Bayes’ formula. If X is a Q-
martingale, this formula is well known; see for example Lemma 3.5.3 in Karatzas
and Shreve [22]. If X is a strictly positive continuous Q-local martingale, Bayes’
formula has been derived in Ruf [33].

Proposition C.2 (Bayes’ formula) Assume the setup of Theorem 2.1 and fix two stop-
ping times ρ, τ with ρ ≤ τ Q- and ̂Q-almost surely and an Fτ∧T -measurable random
variable Z ∈ [0,∞]. Then we have the Bayes’ formula

E
̂Q
[

Z1{R>τ∧T }Y τ
T

∣

∣Fρ

]

1{S>ρ∧T } = EQ
[

Z1{S>τ∧T }
∣

∣Fρ

]

1{R>ρ∧T }Yρ
T (C.1)

= EQ
[

Z1{S>τ∧T }
∣

∣Fρ

]

1{R>ρ∧T }Yρ
T 1{S>ρ∧T }.

This equality holds Q- and ̂Q-almost surely.

Proof Without loss of generality, assume that x0 = 1. Then (C.1) holds ̂Q-almost
surely since ̂Q(S > ρ ∧ T ) = 1 and for all A ∈Fρ ,

E
̂Q
[

1AZ1{R>τ∧T }Y τ
T

] = EQ
[

1AZ1{S>τ∧T }
] = EQ

[

1AE
Q[Z1{S>τ∧T } |Fρ]]

= E
̂Q
[

1AE
Q[Z1{S>τ∧T } |Fρ]1{R>ρ∧T }Yρ

T

]

.
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Moreover, (C.1) holds Q-almost surely since Q(R > ρ ∧ T ) = 1 and

EQ
[

1AZ1{S>τ∧T }Yρ
T

] = E
̂Q
[

1AZ1{R>τ∧T }Yρ
T Y τ

T

]

= E
̂Q
[

1AE
̂Q[Z1{R>τ∧T }Y τ

T |Fρ]Yρ
T

]

= EQ
[

1AE
̂Q[Z1{R>τ∧T }Y τ

T |Fρ]1{S>ρ∧T }
]

for all A ∈Fρ . �

Bayes’s formula yields a simple proof of Proposition 2.3:

Proof of Proposition 2.3 The statement in (i) is a corollary of Proposition C.2 if we
replace τ by τ ∧ t and use Z = Nτ

t and ρ = τ ∧ s in (C.1) for all t ∈ [0, T ] and
s ∈ [0, t].

Assume now that (Nt1{S>t})t∈[0,T ] is a Q-local martingale on [0, S). Then there
exists a nondecreasing sequence of stopping times (τi)i∈N with Q(limi↑∞ τi = S) = 1
and such that (Nτt 1{S>τi∧t})t∈[0,T ] is a Q-martingale for all i ∈ N. Now, (i) implies
that Nτi Y τi is a ̂Q-martingale. An application of Lemma C.1 with τ := limi↑∞ τi

yields that NY is a ̂Q-local martingale on [0,R). The reverse direction follows in the
same manner. This yields (ii).

Assume next that (N
Si
t 1{S>Si∧t})t∈[0,T ] and thus (N

SY
i

t 1{S>SY
i ∧t})t∈[0,T ] are

Q-martingales for all i ∈ N. Then the statement in (iii) follows from (i) and the
fact that ̂Q(limi↑∞ SY

i > T ) = 1 by (i) in Lemma A.3. �

We conclude this appendix by providing a Girsanov-type result. Towards this end,
denote the quadratic covariation process of two Q-semimartingales N(1) and N(2)

with càdlàg paths by [N(1),N(2)] = ([N(1),N(2)]t )t∈[0,T ]. If X has càdlàg paths, the
process NSi is a Q-semimartingale with càdlàg paths and [N,X]Si := [NSi ,X] has
Q-integrable variation for all i ∈N, then the quadratic covariation process [N,X] has
a compensator “up to time S”, that is, there exists a process 〈N,X〉 = (〈N,X〉t )t∈[0,T ]
such that 〈N,X〉Si is the compensator of [N,X]Si for all i ∈N; see Theorem III.3.11
of Jacod and Shiryaev [20]. For any càdlàg stochastic process Z = (Zt )t∈[0,T ], we
define Zt− := lims↑t Zs for all t ∈ (0, T ) and Z0− := Z0.

Proposition C.3 (Girsanov-type theorem) Assume the setup of Theorem 2.1 and let
N = (Nt )t∈[0,T ] denote a progressively measurable stochastic process taking val-
ues in [−∞,∞] such that Nt = Nt1{R>t} for all t ∈ [0, T ] and such that NSi is a
Q-semimartingale with càdlàg paths for all i ∈ N. Suppose that X has càdlàg paths.
We then have the following statements:

(i) The process NRi is a ̂Q-semimartingale with càdlàg paths for all i ∈ N.
(ii) If N is a Q-local martingale on [0, S) (equivalently, on [0,R ∧ S)) and if

[N,X]Si has Q-integrable variation for all i ∈ N, then ˜N = (˜Nt)t∈[0,T ] defined
by

˜Nt := Nt −
∫ t

0
Ys− d〈N,X〉s for all t ∈ [0, T ]

is a ̂Q-local martingale on [0,R) (equivalently, on the interval [0,R ∧ S)).
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(iii) If N is a Q-local martingale on [0, S) (equivalently, on [0,R ∧ S)) and if we
have Q(S > Si ∧ T ) = 1 for all i ∈N, then ̂N = (̂Nt)t∈[0,T ] defined by

̂Nt := Nt −
∫ t∧S

0
Ys d[N,X]s for all t ∈ [0, T ]

is a ̂Q-local martingale on [0,R) (equivalently, on the interval [0,R ∧ S)).

Proof The proof is based on a simple localization argument. Observe that

d̂Q
∣

∣

FRi
∩FR− = X

Ri

T dQ
∣

∣

FRi
∩FR−,

so that ̂Q is absolutely continuous with respect to Q on FRi
∩ FR− for all i ∈ N.

Thus (i) corresponds directly to Theorem III.3.13 in Jacod and Shiryaev [20]. By
Theorems III.3.11 in Jacod and Shiryaev [20], the process ˜NRi is a ̂Q-local martin-
gale; thus ˜N is a ̂Q-local martingale on [0,Ri) for all i ∈ N. Lemma A.2 then yields
(ii). Similar reasoning yields that ̂N is a ̂Q-local martingale on [0,R) by applying
Theorem 3 in Lenglart [24], after observing that the proof therein also works for
probability spaces that do not satisfy the usual assumptions. �

Remark C.4 (Lack of martingale property in Proposition C.3) One might wonder
whether (ii) or (iii) of Proposition C.3 can be strengthened by replacing each “local
martingale” by “martingale”. Example 2.5 illustrates that such a statement would be
false, even in the case of X being a strictly positive, true Q-martingale. To see this,
replace ̂Q by QZ and the processes N by X and X by Z in Proposition C.3. Then N

is a true Q-martingale, but ˜N = ̂N = N is only a strict QZ-local martingale.

Appendix D: Proof of Lemma 4.1

In this appendix, we provide the

Proof of Lemma 4.1 The fact that (ii) implies (i) follows directly from (2.2) and
(2.3) with Z = 1A and τ = Ri ∧ Sj for all A ∈ FRi∧Sj

and i, j ∈ N, since

Qe(R > Ri ∧ T ) = 1 = Q$(S > Sj ∧ T ).
For the reverse direction, fix a stopping time τ and note that it suffices to show

(2.1) for events A ∈Fτ∧T that satisfy

A = A ∩ {R > τ ∧ T } ∩ {S > τ ∧ T },
since Qe(S ≤ T ) = 0 as Y is a Qe-local martingale and thus cannot explode. There-
fore, we may assume without loss of generality that A ∈ F(R∧S)−. Let ̂Q$ denote the
unique probability measure on (Ω,FR−) that was constructed in Theorem 2.1 with
Q replaced by Q$. We need to show the identity ̂Q$|F(R∧S)− = Qe|F(R∧S)− .

Since
⋃

i,j∈NF(Ri∧Sj )− is a π -system that generates F(R∧S)−, it suffices to

show that ̂Q$|F(Ri∧Sj
)− = Qe|F(Ri∧Sj )− for all i, j ∈ N. Next, fix i, j ∈ N and note
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that by (i), ̂Q$ and Qe are equivalent on F(Ri∧Sj )−. Therefore, the Qe-martingale

Z = (Zt )t∈[0,T ] with Zt := d̂Q$/dQe|Ft∩F(Ri∧Sj )− for all t ∈ [0, T ] is well de-

fined. We need to show that ZT = 1. Observe that the measure ˜Qe defined by
d ˜Qe/dQe = ZT is also equivalent to Pe and the processes Se are ˜Qe-local mar-
tingales; see also Proposition 2.3. Since Qe was assumed to be unique among these
measures, we conclude. �
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3. Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-

diffusion processes. Ann. Appl. Probab. 15, 1713–1732 (2005)
4. Cox, A., Hobson, D.: Local martingales, bubbles and option prices. Finance Stoch. 9, 477–492 (2005)
5. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math.

Ann. 300, 463–520 (1994)
6. Delbaen, F., Schachermayer, W.: Arbitrage possibilities in Bessel processes and their relations to local

martingales. Probab. Theory Relat. Fields 102, 357–366 (1995)
7. Delbaen, F., Schachermayer, W.: The no-arbitrage property under a change of numéraire. Stoch. Stoch.

Rep. 53, 213–226 (1995)
8. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic

processes. Math. Ann. 312, 215–250 (1998)
9. Delbaen, F., Schachermayer, W.: A simple counterexample to several problems in the theory of asset

pricing. Math. Finance 8, 1–11 (1998)
10. Dellacherie, C.: Ensembles aléatoires. I. In: Dold, A., Eckmann, B. (eds.) Séminaire de Probabilités,

III. Lecture Notes in Mathematics, vol. 88, pp. 97–114. Springer, Berlin (1969)
11. Fernholz, D., Karatzas, I.: On optimal arbitrage. Ann. Appl. Probab. 20, 1179–1204 (2010)
12. Föllmer, H.: The exit measure of a supermartingale. Z. Wahrscheinlichkeitstheor. Verw. Geb. 21, 154–

166 (1972)
13. Föllmer, H.: On the representation of semimartingales. Ann. Probab. 1, 580–589 (1973)
14. Geman, H., El Karoui, N., Rochet, J.: Changes of numéraire, changes of probability measure and

option pricing. J. Appl. Probab. 32, 443–458 (1995)
15. Giddy, I.: Foreign exchange options. J. Futures Mark. 3, 143–166 (1983)
16. Grabbe, J.: The pricing of call and put options on foreign exchange. J. Int. Money Financ. 2, 239–253

(1983)
17. Henry-Labordère, P.: Analysis, Geometry, and Modeling in Finance. Advanced Methods in Option

Pricing. Chapman & Hall, Boca Raton (2009)
18. Heston, S., Loewenstein, M., Willard, G.: Options and bubbles. Rev. Financ. Stud. 20, 359–390

(2007)
19. Jacod, J.: Intégrales stochastiques par rapport à une semimartingale vectorielle et changements de

filtration. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités, XIV. Lecture Notes in Mathematics,
vol. 784, pp. 161–172. Springer, Berlin (1980)

20. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
21. Jarrow, R., Protter, P.: Foreign currency bubbles. Rev. Deriv. Res. 14, 67–83 (2011)
22. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York

(1991)
23. Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martingales and bubbles. Preprint

arXiv:1108.4177 (2012)
24. Lenglart, E.: Transformation des martingales locales par changement absolument continu de proba-

bilités. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39, 65–70 (1977)
25. Lewis, A.L.: Option Valuation under Stochastic Volatility. Finance Press, Newport Beach (2000)
26. Madan, D., Yor, M.: Itô’s integrated formula for strict local martingales. In: Émery, M., Yor, M. (eds.)

Séminaire de Probabilités, XXXIX. Lecture Notes in Mathematics, vol. 1874, pp. 157–170. Springer,
Berlin (2006)

http://arxiv.org/abs/arXiv:1108.4177


144 P. Carr et al.

27. Meyer, P.: La mesure de H. Föllmer en théorie de surmartingales. In: Dold, A., Eckmann, B. (eds.)
Séminaire de Probabilités, VI. Lecture Notes in Mathematics, vol. 258, pp. 118–129. Springer, Berlin
(1972)

28. Pal, S., Protter, P.E.: Analysis of continuous strict local martingales via h-transforms. Stoch. Process.
Appl. 120, 1424–1443 (2010)

29. Parthasarathy, K.: Probability Measures on Metric Spaces. Academic Press, New York (1967)
30. Perkowski, N., Ruf, J.: Conditioned martingales. Electron. Commun. Probab. 17, 1–12 (2012)
31. Protter, P.: A mathematical theory of financial bubbles. In: Henderson, V., Sircair, R. (eds.) Princeton

Lectures on Mathematical Finance, Paris, pp. 1–108. Springer, Cham (2013)
32. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)
33. Ruf, J.: Optimal trading strategies under arbitrage. Ph.D. thesis, Columbia University, New York, USA

(2011) http://academiccommons.columbia.edu/catalog/ac:131477
34. Ruf, J.: Hedging under arbitrage. Math. Finance 23, 297–317 (2013)
35. Ruf, J.: The martingale property in the context of stochastic differential equations. Preprint (2013).

arXiv:1306.0218
36. Ruf, J.: Negative call prices. Ann. Finance 9, 787–794 (2013)
37. Ruf, J.: A new proof for the conditions of Novikov and Kazamaki. Stoch. Process. Appl. 123, 404–421

(2013)
38. Sargent, T.J.: The ends of four big inflations. In: Hall, R.E. (ed.) Inflation: Causes and Effects, pp.

41–98. University of Chicago Press, Chicago (1982)
39. Schönbucher, P.J.: A Libor market model with default risk. Preprint, available at SSRN (2000).

http://ssrn.com/abstract=261051 or doi:10.2139/ssrn.261051
40. Sin, C.: Complications with stochastic volatility models. Adv. Appl. Probab. 30, 256–268 (1998)
41. Yan, J.A.: A new look at the fundamental theorem of asset pricing. J. Korean Math. Soc. 35, 659–673

(1998)

http://academiccommons.columbia.edu/catalog/ac:131477
http://arxiv.org/abs/arXiv:1306.0218
http://ssrn.com/abstract=261051
http://dx.doi.org/10.2139/ssrn.261051

	On the hedging of options on exploding exchange rates
	Abstract
	Introduction
	Related literature

	Change of measure with a nonnegative local martingale
	Minimal joint replication price
	A physical measure
	Conclusion
	Acknowledgements
	Appendix A: Local martingales on stochastic intervals
	Appendix B: Conditions on the ﬁltration in Sects. 2-4
	Appendix C: Proof of Proposition 2.3 and further statements concerning the change of measure in Sect. 2
	Appendix D: Proof of Lemma 4.1
	References


