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Abstract This paper establishes a non-stochastic analog of the celebrated result by
Dubins and Schwarz about reduction of continuous martingales to Brownian mo-
tion via time change. We consider an idealized financial security with continuous
price paths, without making any stochastic assumptions. It is shown that typical price
paths possess quadratic variation, where “typical” is understood in the following
game-theoretic sense: there exists a trading strategy that earns infinite capital with-
out risking more than one monetary unit if the process of quadratic variation does
not exist. Replacing time by the quadratic variation process, we show that the price
path becomes Brownian motion. This is essentially the same conclusion as in the
Dubins–Schwarz result, except that the probabilities (constituting the Wiener mea-
sure) emerge instead of being postulated. We also give an elegant statement, inspired
by Peter McCullagh’s unpublished work, of this result in terms of game-theoretic
probability theory.
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1 Introduction

This paper is a contribution to the game-theoretic approach to probability. This ap-
proach was explored (by e.g. von Mises, Wald and Ville) as a possible basis for prob-
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ability theory at the same time as the now standard measure-theoretic approach (Kol-
mogorov), but then became dormant. The current revival of interest in it started with
A.P. Dawid’s prequential principle ([15], Sect. 5.1, [16], Sect. 3), and recent work on
game-theoretic probability includes monographs [55, 59] and papers [32, 36–39, 61].

The treatment of continuous-time processes in game-theoretic probability often
involves nonstandard analysis (see e.g. [55], Chaps. 11–14). The recent paper [60]
suggested avoiding nonstandard analysis and introduced the key technique of “high-
frequency limit order strategies,” also used in this paper and its predecessors, [67]
and [65].

An advantage of game-theoretic probability is that one does not have to start with
a full-fledged probability measure from the outset to arrive at interesting conclusions,
even in the case of continuous time. For example, ref. [67] shows that continuous
price paths satisfy many standard properties of Brownian motion (such as the absence
of isolated zeroes) and ref. [65] (developing [68] and [60]) shows that the variation
index of a non-constant continuous price path is 2, as in the case of Brownian motion.
The standard qualification “with probability one” is replaced with “unless a specific
trading strategy increases manyfold the capital it risks” (the formal definitions, as-
suming zero interest rate, will be given in Sect. 2). This paper makes the next step,
showing that the Wiener measure emerges in a natural way in the continuous trading
protocol. Its main result contains all main results of [65, 67], together with several
refinements, as special cases.

Other results about the emergence of the Wiener measure in game-theoretic proba-
bility can be found in [64] and [66]. However, the protocols of those papers are much
more restrictive, involving an externally given quadratic variation (a game-theoretic
analog of predictable quadratic variation, generally chosen by a player called Fore-
caster). In the present paper, the Wiener measure emerges in a situation with surpris-
ingly little a priori structure, involving only two players: the market and a trader.

The reader will notice that not only our main result but also many of our defi-
nitions resemble those in Dubins and Schwarz’s paper [20], which can be regarded
as the measure-theoretic counterpart of this paper. The main difference of this paper
is that we do not assume a given probability measure from the outset. A less impor-
tant difference is that our main result will not assume that the price path is unbounded
and nowhere constant (among other things, this generalization is important to include
the main results of [65, 67] as special cases). A result similar to that of Dubins and
Schwarz was almost simultaneously proved by Dambis [11]; however, Dambis, un-
like Dubins and Schwarz, dealt with predictable quadratic variation, and his result
can be regarded as the measure-theoretic counterpart of [64] and [66].

Another related result is the well-known observation (see e.g. [27], Theorem 5.39)
that in the binomial model of a financial market, every contingent claim can be repli-
cated by a self-financing portfolio whose initial price is the expected value (suitably
discounted if the interest rate is not zero) of the payoff function with respect to the
risk-neutral probability measure. This insight is, essentially, extended in this paper to
the case of an incomplete market (the price for completeness in the binomial model
is the artificial assumption that at each step the price can only go up or down by
specified factors) and continuous time (continuous-time mathematical finance usu-
ally starts from an underlying probability measure, with some notable exceptions
discussed in Sect. 12).
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This paper’s definitions and results have many connections with several other areas
of finance and stochastics, including stochastic integration, the fundamental theorems
of asset pricing, and model-free option pricing. These will be discussed in Sect. 12.

The main part of the paper starts with the description of our continuous-time trad-
ing protocol and the definition of game-theoretic versions of the notion of probability
(outer and inner content) in Sect. 2. In Sect. 3 we state our main result (Theorem 3.1),
which becomes especially intuitive if we restrict our attention to the case of the ini-
tial price equal to 0 and price paths that do not converge to a finite value and are
nowhere constant: the outer and the inner content of any event that is invariant with
respect to time transformations then exist and coincide between themselves and with
its Wiener measure (Corollary 3.7). This simple statement was made possible by Pe-
ter McCullagh’s unpublished work on Fisher’s fiducial probability: McCullagh’s idea
was that fiducial probability is only defined on the σ -algebra of events invariant with
respect to a certain group of transformations. Section 4 presents several applications
(connected with [67] and [65]) demonstrating the power of Theorem 3.1. The fact
that typical price paths possess quadratic variation is proved in Sect. 8. It is, how-
ever, used earlier, in Sect. 5, where it allows us to state a constructive version of
Theorem 3.1. The constructive version, Theorem 5.1, says that replacing time by the
quadratic variation process turns the price path into Brownian motion. In Sect. 6 we
state generalizations, from events to positive bounded measurable functions, of The-
orem 3.1 and part of Theorem 5.1; these are Theorems 6.2 and 6.4, respectively. The
easy directions in Theorems 6.2 and 6.4 are proved in the same section. Sections 7
and 9 prove part of Theorem 5.1 and prepare the ground for the proof of the remaining
parts of Theorems 5.1 and 6.4 (in Sect. 10) and Theorem 6.2 (in Sect. 11). Section 12
continues the general discussion started in this section.

Words such as “positive,” “negative,” “before,” “after,” “increasing,” and “decreas-
ing” will be understood in the wide sense of ≥ or ≤, as appropriate; when necessary,
we add the qualifier “strictly.” As usual, C(E) is the space of all continuous functions
on a topological space E equipped with the sup norm. We often omit the parentheses
around E in expressions such as C[0, T ] := C([0, T ]).

2 Outer content in a financial context

We consider a game between two players, Reality (a financial market) and Sceptic
(a trader), over the time interval [0,∞). First Sceptic chooses his trading strategy
and then Reality chooses a continuous function ω : [0,∞) → R (the price path of a
security).

Let Ω be the set of all continuous functions ω : [0,∞) → R. For each t ∈ [0,∞),
Ft is defined to be the smallest σ -algebra that makes all functions ω �→ ω(s),
s ∈ [0, t], measurable. A process S is a family of functions St : Ω → [−∞,∞],
t ∈ [0,∞), each St being Ft -measurable; its sample paths are the functions
t �→ St (ω). An event is an element of the σ -algebra F∞ := ∨

t Ft , also denoted by F.
(We often consider arbitrary subsets of Ω as well.) Stopping times τ : Ω → [0,∞]
with respect to the filtration (Ft ) and the corresponding σ -algebras Fτ are defined
as usual; ω(τ(ω)) and Sτ(ω)(ω) will be simplified to ω(τ) and Sτ (ω), respectively
(occasionally, the argument ω will be omitted in other cases as well).
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The class of allowed strategies for Sceptic is defined in two steps. A simple trading
strategy G consists of an increasing sequence of stopping times τ1 ≤ τ2 ≤ · · · and, for
each n = 1,2, . . . , a bounded Fτn -measurable function hn. It is required that for each
ω ∈ Ω , limn→∞ τn(ω) = ∞. To such a G and an initial capital c ∈ R corresponds
the simple capital process

K
G,c
t (ω) := c +

∞∑

n=1

hn(ω)
(
ω(τn+1 ∧ t) − ω(τn ∧ t)

)
, t ∈ [0,∞) (2.1)

(with the zero terms in the sum ignored, which makes the sum finite for each t);
the value hn(ω) will be called Sceptic’s bet (or bet on ω, or stake) at time τn, and
K

G,c
t (ω) will be referred to as Sceptic’s capital at time t .
A positive capital process is any process S that can be represented in the form

St (ω) :=
∞∑

n=1

K
Gn,cn
t (ω), (2.2)

where the simple capital processes K
Gn,cn
t (ω) are required to be positive, for all t

and ω, and the positive series
∑∞

n=1 cn is required to converge. The sum (2.2) is

always positive but allowed to take value ∞. Since K
Gn,cn

0 (ω) = cn does not depend
on ω, S0(ω) also does not depend on ω and will sometimes be abbreviated to S0.

Remark 2.1 The financial interpretation of a positive capital process (2.2) is that it
represents the total capital of a trader who splits his initial capital into a countable
number of accounts, and on each account runs a simple trading strategy making sure
that this account never goes into debit.

The outer content of a set E ⊆ Ω (not necessarily E ∈ F) is defined as

P(E) := inf
{
S0

∣
∣ ∀ω ∈ Ω : lim inf

t→∞ St (ω) ≥ 1E(ω)
}
, (2.3)

where S ranges over the positive capital processes and 1E stands for the indicator
function of E. In the financial terminology (and ignoring the fact that the inf in (2.3)
need not be attained), P(E) is the price of the cheapest superhedge for the European
contingent claim paying 1E at time ∞. It is easy to see that the lim inft→∞ in (2.3)
can be replaced by supt (and, therefore, by lim supt→∞): we can always stop (i.e., set
all bets to 0) when S reaches the level 1 (or a level arbitrarily close to 1).

We say that a set E ⊆ Ω is null if P(E) = 0. If E is null, there is a positive
capital process S such that S0 = 1 and limt→∞ St (ω) = ∞ for all ω ∈ E (it suffices
to sum over ε = 1/2,1/4, . . . positive capital processes Sε satisfying Sε

0 = ε and
lim inft→∞ Sε

t ≥ 1E). A property of ω ∈ Ω will be said to hold for typical ω if the
set of ω where it fails is null. Correspondingly, a set E ⊆ Ω is full if P(Ec) = 0,
where Ec := Ω \ E stands for the complement of E.

We can also define inner content by

P(E) := 1 − P
(
Ec

)
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(intuitively, this is the price of the most expensive subhedge of 1E). This notion of
inner content will not be useful in this paper (but a simple modification will be).

Remark 2.2 Another natural setting is where Ω is defined as the set of all continuous
functions ω : [0, T ] → R for a given constant T (the time horizon). In this case the
definition of outer content simplifies: instead of lim inft→∞ St (ω), we have simply
ST (ω) in (2.3).

Remark 2.3 Alternative names (used in e.g. [55]) for outer and inner content are
upper and lower probability in the case of sets and upper and lower expectation in
the case of functions (the latter case will be considered in Sect. 6). Our terminol-
ogy essentially follows refs. [31] and [56], but we drop “probability” in outer/inner
probability content. We also avoid expressions such as “for almost all” and “almost
surely.” Hopefully, this terminology will remind the reader that we do not start from a
probability measure on Ω . For terminology used in the finance literature, see Sect. 12.

3 Main result: abstract version

A time transformation is defined to be a continuous increasing (not necessarily
strictly increasing) function f : [0,∞) → [0,∞) satisfying f (0) = 0. Equipped with
the binary operation of composition, (f ◦g)(t) := f (g(t)), t ∈ [0,∞), the time trans-
formations form a (non-commutative) monoid, with the identity time transformation
t �→ t as the unit. The action of a time transformation f on ω ∈ Ω is defined to be the
composition ωf := ω◦f ∈ Ω , (ω◦f )(t) := ω(f (t)). The trail of ω ∈ Ω is the set of
all ψ ∈ Ω such that ψf = ω for some time transformation f . (These notions are of-
ten defined for groups rather than monoids: see e.g. [47]; in this case the trail is called
the orbit. In their “time-free” considerations, Dubins and Schwarz [20, 53, 54] make
simplifying assumptions that make the monoid of time transformations a group; we
make similar assumptions in Corollary 3.7.) A subset E of Ω is time-superinvariant
if together with any ω ∈ Ω , it contains the whole trail of ω; in other words, if for each
ω ∈ Ω and each time transformation f , it is true that

ωf ∈ E =⇒ ω ∈ E. (3.1)

The time-superinvariant class I is defined to be the family of those events (elements
of F) that are time-superinvariant.

Let c ∈ R. The probability measure Wc on Ω is defined by the conditions that
ω(0) = c with probability one and, for all 0 ≤ s < t , ω(t) − ω(s) is independent
of Fs and has the Gaussian distribution with mean 0 and variance t − s. (In other
words, Wc is the distribution of Brownian motion started at c.) In this paper, we rely
on the classical arguments for the existence of Wc (see e.g. [35], Chap. 2).

Theorem 3.1 Let c ∈ R. Each event E ∈ I such that ω(0) = c for all ω ∈ E satisfies

P(E) = Wc(E). (3.2)
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The main part of (3.2) is the inequality ≤, whose proof will occupy us in
Sects. 7–11. The easy part ≥ will be established in Sect. 6.

Remark 3.2 The time-superinvariant class I is closed under countable unions and in-
tersections; in particular, it is a monotone class. However, it is not closed under com-
plementation, and so is not a σ -algebra (unlike McCullagh’s invariant σ -algebras).
An example of a time-superinvariant event E such that Ec is not time-superinvariant
is the set of all increasing (not necessarily strictly increasing) ω ∈ Ω satisfying
limt→∞ ω(t) = ∞: the implication (3.1) is violated when ω is the identity function
(i.e., ω(t) = t for all t), f = 0, and we have Ec in place of E.

Remark 3.3 This remark explains the intuitive meaning of time-superinvariance. Let
f be a time transformation. Transforming ω into ωf is either trivial (ω is replaced by
the constant ω(0), if f = 0) or can be split into three steps: (a) remove [T ,∞) from
the domain of ω, i.e., transform ω into ω′ := ω|[0,T ), for some T ∈ (0,∞] (namely,
T := limt→∞ f (t)); (b) continuously deform the time interval [0, T ) into [0, T ′) for
some T ′ ∈ (0,∞], i.e., transform ω′ into ω′′ ∈ C[0, T ′) defined by ω′′(t) := ω′(g(t))

for some increasing homeomorphism g : [0, T ′) → [0, T ) (e.g., the graph of g can be
obtained from the graph of f by removing all horizontal pieces); (c) insert countably
many (perhaps a finite number of, perhaps zero) horizontal pieces into the graph of ω′′
making sure to obtain an element of Ω (inserting a horizontal piece means replacing
ψ ∈ Ω with

ψ ′(t) :=

⎧
⎪⎨

⎪⎩

ψ(t) if t < a

ψ(a) if a ≤ t < b

ψ(t + a − b) if t ≥ b,

for some a and b, a < b, in the domain of ψ , or

ψ ′(t) :=
{

ψ(t) if t < c

lims→c ψ(s) if t ≥ c

if the domain of ψ is [0, c) for some c < ∞ and lims→c ψ(s) exists in R). Therefore,
the trail of ω ∈ Ω consists of all elements of Ω that can be obtained from ω by an
application of the following steps: (a) remove any number of horizontal pieces from
the graph of ω; let [0, T ) be the domain of the resulting function ω′ (it is possible that
T < ∞; if T = 0, output any ω′′ ∈ Ω satisfying ω′′(0) = ω(0)); (b) assuming T > 0,
continuously deform the time interval [0, T ) into [0, T ′) for some T ′ ∈ (0,∞]; let
ω′′ be the resulting function with the domain [0, T ′); (c) if T ′ = ∞, output ω′′; if
T ′ < ∞ and limt→T ′ ω(t) exists in R, extend ω′′ to [0,∞) in any way making sure
that the extension belongs to Ω and output the extension; otherwise, nothing is out-
put. A set E is time-superinvariant if and only if application of these last three steps,
(a)–(c), never leads outside E.

Remark 3.4 By the Dubins–Schwarz result [20] and Lemma 3.5 below, we can re-
place Wc in the statement of Theorem 3.1 by any probability measure P on (Ω,F)
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such that the process Xt(ω) := ω(t) is a martingale with respect to P and the fil-
tration (Ft ), is unbounded P -a.s., is nowhere constant P -a.s., and satisfies X0 = c

P -a.s.

Because of its generality, some aspects of Theorem 3.1 may appear counterintu-
itive. (For example, the conditions we impose on E imply that E contains all ω ∈ Ω

satisfying ω(0) = c whenever E contains the constant c.) In the rest of this section,
we specialize Theorem 3.1 to the more intuitive case of divergent and nowhere con-
stant price paths.

Formally, we say that ω ∈ Ω is nowhere constant if there is no interval (t1, t2),
where 0 ≤ t1 < t2, such that ω is constant on (t1, t2); we say that ω is divergent if
there is no c ∈ R such that limt→∞ ω(t) = c; and we let DS ⊆ Ω stand for the set of
all ω ∈ Ω that are divergent and nowhere constant. Intuitively, the condition that the
price path ω should be nowhere constant means that trading never stops completely,
and the condition that ω should be divergent will be satisfied if ω’s volatility does
not eventually die away (cf. Remark 5.2 in Sect. 5 below). The conditions of being
divergent and nowhere constant in the definition of DS are similar to, but weaker than,
Dubins and Schwarz’s [20] conditions of being unbounded and nowhere constant.

All unbounded and strictly increasing time transformations f : [0,∞) → [0,∞)

form a group, which will be denoted G. Let us say that an event E is time-invariant
if it contains the whole orbit {ωf | f ∈ G} of each of its elements ω ∈ E. It is clear
that DS is time-invariant. Unlike I, the time-invariant events form a σ -algebra: Ec is
time-invariant whenever E is (cf. Remark 3.2).

The following two lemmas will be needed to specialize Theorem 3.1 to subsets
of DS. First of all, it is not difficult to see that for subsets of DS, there is no difference
between time-invariance and time-superinvariance (which makes the notion of time-
superinvariance much more intuitive for subsets of DS).

Lemma 3.5 An event E ⊆ DS is time-superinvariant if and only if it is time-invariant.

Proof If E (not necessarily E ⊆ DS) is time-superinvariant, ω ∈ E and f ∈ G, we
have ψ := ωf ∈ E as ψf −1 = ω. Therefore, time-superinvariance always implies
time-invariance.

It is clear that for all ψ ∈ Ω and time transformations f , ψf /∈ DS unless f ∈ G.
Let E ⊆ DS be time-invariant, ω ∈ E, f a time transformation, and ψf = ω. Since
ψf ∈ DS, we have f ∈ G, and so ψ = ωf −1 ∈ E. Therefore, time-invariance implies
time-superinvariance for subsets of DS. �

Lemma 3.6 An event E ⊆ DS is time-superinvariant if and only if DS\E is time-
superinvariant.

Proof This follows immediately from Lemma 3.5. �

For time-invariant events in DS, (3.2) can be strengthened to assert the coincidence
of the outer and the inner content of E with Wc(E). However, the notions of outer
and inner content have to be modified slightly.
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For any B ⊆ Ω , a restricted version of outer content can be defined by

P(E;B) := inf
{
S0

∣
∣ ∀ω ∈ B : lim inf

t→∞ St (ω) ≥ 1E(ω)
}

= P(E ∩ B),

with S again ranging over the positive capital processes. Intuitively, this is the def-
inition obtained when Ω is replaced by B: we are told in advance that ω ∈ B . The
corresponding restricted version of inner content is

P(E;B) := 1 − P
(
Ec;B) = P

(
E ∪ Bc

)
.

We use these definitions only in the case where P(B) = 1. Lemma 7.3 below shows
that in this case P(E;B) ≤ P(E;B).

We say that P(E;B) and P(E;B) are restricted to B . It should be clear by now
that these notions are not related to conditional probability P(E | B). Their analogs
in measure-theoretic probability are the function E �→ P(E ∩ B), in the case of outer
content, and the function E �→ P(E ∪Bc), in the case of inner content (assuming B is
measurable). Both functions coincide with P when P(B) = 1.

We also use the restricted versions of the notions “null,” “for typical,” and “full.”
For example, E being B-null means P(E;B) = 0.

Theorem 3.1 immediately implies the following statement about the emergence
of the Wiener measure in our trading protocol (another such statement, more general
and constructive but also more complicated, will be given in Theorem 5.1(b)).

Corollary 3.7 Let c ∈ R. Each event E ∈ I satisfies

P
(
E;ω(0) = c,DS

) = P
(
E;ω(0) = c,DS

) = Wc(E) (3.3)

(in this context, ω(0) = c stands for the event {ω ∈ Ω | ω(0) = c} and the comma
stands for the intersection).

Proof The events E ∩ DS∩{ω | ω(0) = c} and Ec ∩ DS∩{ω | ω(0) = c} belong to
I; for the first of them, this immediately follows from DS ∈ I and I being closed
under intersections (cf. Remark 3.2), and for the second, it suffices to notice that
Ec ∩ DS = DS\(E ∩ DS) ∈ I (cf. Lemma 3.6). Applying (3.2) to these two events
and making use of the inequality P ≤ P (cf. Lemma 7.3 and Eq. (7.1) below), we
obtain

Wc(E) = 1 − Wc

(
Ec ∩ DS∩{

ω | ω(0) = c
}) = 1 − P

(
Ec;ω(0) = c,DS

)

= P
(
E;ω(0) = c,DS

) ≤ P
(
E;ω(0) = c,DS

)

= Wc

(
E ∩ DS∩{

ω | ω(0) = c
}) = Wc(E). �

We can express the equality (3.3) by saying that the game-theoretic probability
of E exists and is equal to Wc(E) when we restrict our attention to ω in DS satisfying
ω(0) = c.
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4 Applications

The main goal of this section is to demonstrate the power of Theorem 3.1; in par-
ticular, we shall see that it implies the main results of [67] and [65]. One corollary
(Corollary 4.5) of Theorem 3.1 solves an open problem posed in [65], and two other
corollaries (Corollaries 4.6 and 4.7) give much more precise results. At the end of
the section, we draw the reader’s attention to several events such that Theorem 3.1
together with very simple game-theoretic arguments show that they are full, while the
fact that they are full does not follow from Theorem 3.1 alone.

In this section, we deduce the main results of [67] and [65] and other results
as corollaries of Theorem 3.1 and the corresponding results for measure-theoretic
Brownian motion. It is, however, still important to have direct game-theoretic proofs
such as those given in [65, 67]. This will be discussed in Remark 4.11.

The following obvious fact will be used constantly in this paper: restricted outer
content is countably (in particular, finitely) subadditive. (Of course, this fact is obvi-
ous only because of our choice of definitions.)

Lemma 4.1 For any B ⊆ Ω and any sequence of subsets E1,E2, . . . of Ω ,

P

( ∞⋃

n=1

En;B
)

≤
∞∑

n=1

P(En;B).

In particular, a countable union of B-null sets is B-null.

4.1 Points of increase

Let us say that t ∈ [0,∞) is a point of increase for ω ∈ Ω if there exists δ > 0
such that ω(t1) ≤ ω(t) ≤ ω(t2) for all t1 ∈ ((t − δ)+, t] and t2 ∈ [t, t + δ). Points of
decrease are defined in the same way except that ω(t1) ≤ ω(t) ≤ ω(t2) is replaced by
ω(t1) ≥ ω(t) ≥ ω(t2). We say that ω is locally constant to the right of t ∈ [0,∞) if
there exists δ > 0 such that ω is constant over the interval [t, t + δ].

A slightly weaker form of the following corollary was proved directly (by adapting
Burdzy’s [8] proof) in [67].

Corollary 4.2 Typical ω have no points t of increase or decrease such that ω is not
locally constant to the right of t .

This result (without the clause about local constancy) was established by Dvoret-
zky, Erdős and Kakutani [24] for Brownian motion, and Dubins and Schwarz [20]
noticed that their reduction of continuous martingales to Brownian motion shows
that it continues to hold for all almost surely unbounded continuous martingales that
are almost surely nowhere constant. We apply Dubins and Schwarz’s observation in
the game-theoretic framework.

Proof of Corollary 4.2 Let us first consider only the ω ∈ Ω satisfying ω(0) = 0.
Consider the set E of all ω ∈ Ω that have points t of increase or decrease such that
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ω is not locally constant to the right of t and ω is not locally constant to the left
of t (with the obvious definition of local constancy to the left of t ; if t = 0, every ω

is locally constant to the left of t). Since E is time-superinvariant (cf. Remark 3.3),
Theorem 3.1 and the Dvoretzky–Erdős–Kakutani result show that the event E is null.
And the following standard game-theoretic argument (as in [67], Theorem 1) shows
that the event that ω is locally constant to the left but not locally constant to the right
of a point of increase or decrease is null. For concreteness, we consider the case of
a point of increase. It suffices (see Lemma 4.1) to show that for all rational numbers
b > a > 0 and D > 0, the event that

inf
t∈[a,b]ω(t) = ω(a) ≤ ω(a) + D ≤ sup

t∈[a,b]
ω(t) (4.1)

is null. The simple capital process that starts from ε > 0, bets h1 := 1/D at τ1 = a,
and bets h2 := 0 at time τ2 := min{t ≥ a | ω(t) ∈ {ω(a) − Dε,ω(a) + D}} is positive
and turns ε (an arbitrarily small amount) into 1 when (4.1) happens. (Notice that this
argument works both when t = 0 and when t > 0.)

It remains to get rid of the restriction ω(0) = 0. Fix a positive capital process S

satisfying S0 < ε and reaching 1 on ω with ω(0) = 0 that have at least one point t of
increase or decrease such that ω is not locally constant to the right of t . Applying S

to ω − ω(0) gives another positive capital process, which will achieve the same goal
but without the restriction ω(0) = 0. �

It is easy to see that the qualification about local constancy to the right of t in
Corollary 4.2 is essential.

Proposition 4.3 The outer content of the following event is one: There is a point t of
increase such that ω is locally constant to the right of t .

Proof This proof uses Lemma 7.2 stated in Sect. 7 below. Consider the continuous
martingale which is Brownian motion that starts at 0 and is stopped as soon as it
reaches 1. �

4.2 Variation index

For each interval [u,v] ⊆ [0,∞), each p ∈ (0,∞) and each ω ∈ Ω , the strong p-
variation of ω over [u,v] is defined as

v[u,v]
p (ω) := sup

κ

nκ∑

i=1

∣
∣ω(ti) − ω(ti−1)

∣
∣p, (4.2)

where κ ranges over all partitions u = t0 ≤ t1 ≤ · · · ≤ tnκ = v of the interval [u,v]. It
is obvious that there exists a unique number vi[u,v](ω) ∈ [0,∞], called the variation
index of ω over [u,v], such that v[u,v]

p (ω) is finite when p > vi[u,v](ω) and infinite
when p < vi[u,v](ω); notice that vi[u,v](ω) /∈ (0,1).

The following result was obtained in [65] (by adapting Bruneau’s [7] proof); in
measure-theoretic probability it was established by Lepingle ([40], Theorem 1 and
Proposition 3) for continuous semimartingales and Lévy [41] for Brownian motion.
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Corollary 4.4 For typical ω ∈ Ω , the following is true: For any interval
[u,v] ⊆ [0,∞) such that u < v, either vi[u,v](ω) = 2 or ω is constant over [u,v].

(The interval [u,v] was assumed fixed in [65], but this assumption is easy to get
rid of.)

Proof Without loss of generality, we restrict our attention to the ω satisfying
ω(0) = 0 (see the proof of Corollary 4.2). Consider the set of ω ∈ Ω such that for
some interval [u,v] ⊆ [0,∞), neither vi[u,v](ω) = 2 nor ω is constant over [u,v].
This set is time-superinvariant (cf. Remark 3.3), and so in conjunction with Theo-
rem 3.1, Lévy’s result implies that it is null. �

Corollary 4.4 says that, for typical ω,

v[u,v]
p (ω)

{
< ∞ if p > 2

= ∞ if p < 2 and ω is not constant.

However, it does not say anything about the situation for p = 2. The following result
completes the picture (solving the problem posed in [65], Sect. 5).

Corollary 4.5 For typical ω ∈ Ω , the following is true: For any interval
[u,v] ⊆ [0,∞) such that u < v, either v[u,v]

2 (ω) = ∞ or ω is constant over [u,v].

Proof Lévy [41] proves for Brownian motion that v[u,v]
2 (ω) = ∞ almost surely (for

fixed [u,v], which implies the statement for all [u,v]). Consider the set of ω ∈ Ω

such that for some interval [u,v] ⊆ [0,∞), neither v[u,v]
2 (ω) = ∞ nor ω is constant

over [u,v]. This set is time-superinvariant, and so in conjunction with Theorem 3.1,
Lévy’s result implies that it is null. �

4.3 More precise results

Theorem 3.1 allows us to deduce much stronger results than Corollaries 4.4 and 4.5
from known results about Brownian motion.

Define ln∗ u := 1 ∨ | lnu|, u > 0, and let ψ : [0,∞) → [0,∞) be Taylor’s [62]
function

ψ(u) := u2

2 ln∗ ln∗ u

(with ψ(0) := 0). For ω ∈ Ω , T ∈ [0,∞) and φ : [0,∞) → [0,∞), set

vφ,T (ω) := sup
κ

nκ∑

i=1

φ
(∣
∣ω(ti) − ω(ti−1)

∣
∣
)
,

where κ ranges over all partitions 0 = t0 ≤ t1 ≤ · · · ≤ tnκ = T of [0, T ]. In the previ-
ous subsection we considered the case φ(u) := up; another interesting case is φ := ψ .
See [6] for a much more explicit expression for vψ,T (ω).
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Corollary 4.6 For typical ω,

∀T ∈ [0,∞) : vψ,T (ω) < ∞.

Suppose φ : [0,∞) → [0,∞) is such that ψ(u) = o(φ(u)) as u → 0. For typical ω,

∀T ∈ [0,∞) : ω is constant on [0, T ] or vφ,T (ω) = ∞.

Corollary 4.6 refines Corollaries 4.4 and 4.5; it will be further strengthened by
Corollary 4.7.

The quantity vψ,T (ω) is not nearly as fundamental as the following quantity intro-
duced by Taylor [62]: for ω ∈ Ω and T ∈ [0,∞), set

wT (ω) := lim
δ→0

sup
κ∈Kδ[0,T ]

nκ∑

i=1

ψ
(∣
∣ω(ti) − ω(ti−1)

∣
∣
)
, (4.3)

where Kδ[0, T ] is the set of all partitions 0 = t0 ≤ · · · ≤ tnκ = T of [0, T ] whose
mesh is less than δ, i.e., maxi (ti − ti−1) < δ. Notice that the expression after limδ→0
in (4.3) is increasing in δ; therefore wT (ω) ≤ vψ,T (ω).

The following corollary contains Corollaries 4.4–4.6 as special cases. It is similar
to Corollary 4.6 but stated in terms of the process w.

Corollary 4.7 For typical ω,

∀T ∈ [0,∞) : ω is constant on [0, T ] or wT (ω) ∈ (0,∞). (4.4)

Proof First let us check that under the Wiener measure (4.4) holds for almost all ω. It
is sufficient to prove that wT = T for all T ∈ [0,∞) a.s. Furthermore, it is sufficient
to consider only rational T ∈ [0,∞). Therefore, it is sufficient to consider a fixed
rational T ∈ [0,∞). And for a fixed T , wT = T a.s. follows from Taylor’s result
([62], Theorem 1).

As usual, let us restrict our attention to the case ω(0) = 0. In view of Theorem 3.1,
it suffices to check that the complement of the event (4.4) is time-superinvariant, i.e.,
to check (3.1), where E is the complement of (4.4). In other words, it suffices to
check that ωf = ω ◦ f satisfies (4.4) whenever ω satisfies (4.4). This follows from
Lemma 4.8 below, which says that wT (ω ◦ f ) = wf (T )(ω). �

Lemma 4.8 Let T ∈ [0,∞), ω ∈ Ω and f be a time transformation. Then we have
wT (ω ◦ f ) = wf (T )(ω).

Proof Fix T ∈ [0,∞), ω ∈ Ω , a time transformation f and c ∈ [0,∞]. Our goal is
to prove

lim
δ→0

sup
κ∈Kδ[0,f (T )]

nκ∑

i=1

ψ
(∣
∣ω(ti) − ω(ti−1)

∣
∣
) = c

=⇒ lim
δ→0

sup
κ∈Kδ[0,T ]

nκ∑

i=1

ψ
(∣
∣ω

(
f (ti)

) − ω
(
f (ti−1)

)∣
∣
) = c, (4.5)
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in the notation of (4.3). Suppose the antecedent in (4.5) holds. Notice that the two
limδ→0 in (4.5) can be replaced by infδ>0.

To prove that the limit on the right-hand side of (4.5) is ≤ c, take any ε > 0. We
assume c < ∞ (the case c = ∞ is trivial). Let δ > 0 be so small that

sup
κ∈Kδ[0,f (T )]

nκ∑

i=1

ψ
(∣
∣ω(ti) − ω(ti−1)

∣
∣
)
< c + ε.

Let δ′ > 0 be so small that |t − t ′| < δ′ implies that |f (t) − f (t ′)| < δ. Since
f (κ) ∈ Kδ[0, f (T )] whenever κ ∈ Kδ′ [0, T ],

sup
κ∈Kδ′ [0,T ]

nκ∑

i=1

ψ
(∣
∣ω

(
f (ti)

) − ω
(
f (ti−1)

)∣
∣
)
< c + ε.

To prove that the limit on the right-hand side of (4.5) is ≥ c, take any ε > 0 and
δ′ > 0. We assume c < ∞ (the case c = ∞ can be considered analogously). Place a fi-
nite number N of points including 0 and T onto the interval [0, T ] so that the distance
between any pair of adjacent points is less than δ′; this set of points will be denoted κ0.
Let δ > 0 be so small that ψ(|ω(t ′′) − ω(t ′)|) < ε/N whenever |t ′′ − t ′| < δ. Choose
a partition κ = {t0, . . . , tn} ∈ Kδ[0, f (T )] satisfying

n∑

i=1

ψ
(∣
∣ω(ti) − ω(ti−1)

∣
∣
)
> c − ε.

Let κ ′ = {t ′0, . . . , t ′n} be a partition of the interval [0, T ] satisfying f (κ ′) = κ . This
partition will satisfy

n∑

i=1

ψ
(∣
∣ω

(
f

(
t ′i
)) − ω

(
f

(
t ′i−1

))∣
∣
)
> c − ε,

and the union κ ′′ = {t ′′0 , . . . , t ′′N+n} (with its elements listed in the increasing order) of
κ0 and κ ′ will satisfy

N+n∑

i=1

ψ
(∣
∣ω

(
f

(
t ′′i

)) − ω
(
f

(
t ′′i−1

))∣
∣
)
> c − 2ε.

Since κ ′′ ∈ Kδ′ [0, T ] and ε and δ′ can be taken arbitrarily small, this completes the
proof. �

The value wT (ω) defined by (4.3) can be interpreted as the quadratic variation of
the price path ω over the time interval [0, T ]. Another non-stochastic definition of
quadratic variation (see (5.2)) will serve us in Sect. 5 as the basis for the proof of
Theorem 3.1. For the equivalence of the two definitions, see Remark 5.6.
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4.4 Limitations of Theorem 3.1

We said earlier that Theorem 3.1 implies the main result of [67] (see Corollary 4.2).
This is true in the sense that the extra game-theoretic argument used in the proof
of Corollary 4.2 was very simple. But this simple argument was essential: in this
subsection, we shall see that Theorem 3.1 per se does not imply the full statement of
Corollary 4.2.

Let c ∈ R and E ⊆ Ω be such that ω(0) = c for all ω ∈ E. Suppose the set E

is null. We can say that the equality P(E) = 0 can be deduced from Theorem 3.1
and the properties of Brownian motion if (and only if) Wc(E) = 0, where E is the
smallest time-superinvariant set containing E (it is clear that such a set exists and
is unique). It would be nice if all equalities P(E) = 0, for all null sets E satisfying
∀ω ∈ E : ω(0) = c, could be deduced from Theorem 3.1 and the properties of Brow-
nian motion. We shall see later (Proposition 4.9) that this is not true even for some
fundamental null events E; an example of such an event will now be given.

Let us say that a closed interval [t1, t2] ⊆ [0,∞) is an interval of local maxi-
mum for ω ∈ Ω if (a) ω is constant on [t1, t2] but not constant on any larger in-
terval containing [t1, t2], and (b) there exists δ > 0 such that ω(s) ≤ ω(t) for all
s ∈ ((t1 − δ)+, t1) ∪ (t2, t2 + δ) and all t ∈ [t1, t2]. In the case where t1 = t2, we say
“point” instead of “interval.” It is shown in [67] (Corollary 3) that for typical ω, all
intervals of local maximum are points; this also follows from Corollary 4.2, and is
very easy to check directly (using the same argument as in the proof of Corollary 4.2).
Let E be the null event that ω(0) = c and not all intervals of local maximum of ω

are points. Proposition 4.9 says that P(E) = 0 cannot be deduced from Theorem 3.1
and the properties of Brownian motion. This implies that Corollary 4.2 also cannot be
deduced from Theorem 3.1 and the properties of Brownian motion, despite the fact
that the deduction is possible with the help of a very easy game-theoretic argument.

Before stating and proving Proposition 4.9, we formally introduce the opera-
tor E �→ E and show that it is a bona fide closure operator. For each E ⊆ Ω , E is
defined to be the union of the trails of all points in E. It can be checked that E �→ E

satisfies the standard properties of closure operators: ∅ = ∅ and E1 ∪ E2 = E1 ∪ E2

are obvious, and E = E and E ⊆ E follow from the fact that the time transforma-
tions constitute a monoid. Therefore ([25], Theorem 1.1.3 and Proposition 1.2.7),
E �→ E is the operator of closure in some topology on Ω , which may be called the
time-superinvariant topology. A set E ⊆ Ω is closed in this topology if and only if it
contains the trail of any of its elements.

Proposition 4.9 Let c ∈ R and E be the set of all ω ∈ Ω such that ω(0) = c and
ω has an interval of local maximum that is not a point. Then E and E are events and

0 = Wc(E) = P(E) < P(E) = Wc(E) = 1. (4.6)

Proof For the equality P(E) = 0, see above. The equality Wc(E) = 0 is a well-
known fact (and follows from P(E) = 0 and Lemma 6.3 below). It suffices to prove
that E ∈ F and Wc(E) = 1; Theorem 3.1 will then imply P(E) = 1. The inclu-
sion E ∈ F and the equality Wc(E) = 1 follow from the following explicit descrip-
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tion of E: this set consists of all ω ∈ Ω with ω(0) = c that are not increasing func-
tions. This can be seen from Remark 3.3 or from the following argument. If ω is
increasing, ωf will also be increasing for any time transformation f . Combining this
with (3.1) we can see that the set of all ω that are not increasing is time-superinvariant;
since this set contains E, it also contains E. In the opposite direction, we are required
to show that any ω ∈ Ω that is not increasing is an element of E, i.e., there exists a
time transformation f such that ωf ∈ E. Fix such ω and find 0 ≤ a < b such that
ω(a) > ω(b). Let m ∈ [0, b] be the smallest element of arg maxt∈[0,b] ω(t). Applying
the time transformation

f (t) :=

⎧
⎪⎨

⎪⎩

t if t < m

m if m ≤ t < m + 1

t − 1 if t ≥ m + 1

to ω, we obtain an element of E. �

Remark 4.10 Another event E that satisfies (4.6) is the set of all ω ∈ Ω such that
ω(0) = c and ω has an interval of local maximum that is not a point, or has an
interval of local minimum that is not a point (with the obvious definition of intervals
and points of local minimum). Then E is the event that consists of all non-constant ω

with ω(0) = c. This is the largest possible E for E satisfying P(E) = 0 (provided we
consider only ω with ω(0) = c): indeed, if the constant c is in E, c will also be in E,
and so P(E) = 1.

Proposition 4.9 shows that Theorem 3.1 does not make all other game-theoretic ar-
guments redundant. What is interesting is that already very simple arguments suffice
to deduce all results in [65, 67].

Remark 4.11 Theorem 3.1 does not make the game-theoretic arguments in [65, 67]
redundant also in another, perhaps even more important, respect. For example, Corol-
lary 4.2 is an existence result: it asserts the existence of a trading strategy whose
capital process is positive and increases from 1 to ∞ when ω has a point t of in-
crease or decrease such that ω is not locally constant to the right of t . In principle,
such a strategy could be extracted from the proof of Theorem 3.1, but it would be
extremely complicated and non-intuitive; the result would remain essentially an ex-
istence result. The proof of Theorem 2 in [67], on the contrary, constructs an explicit
trading strategy exploiting the existence of points of increase or decrease. Similarly,
the proof of Theorem 1 in [65] constructs an explicit trading strategy whose existence
is asserted in Corollary 4.4. The recent paper [63] partially extends Corollary 4.4 to
discontinuous price paths, showing that vi[0,T ](ω) ≤ 2 for all T < ∞ for typical ω.
The trading strategy constructed in [63] for profiting from vi[0,T ](ω) > 2 is especially
intuitive: it just combines (following Stricker’s [58] idea) the strategies for profiting
from lim inft ω(t) < a < b < lim supt ω(t) implicit in the standard proof of Doob’s
martingale convergence theorem.

Remark 4.12 All results discussed in this section are about sets of outer content
zero or inner content one, and one might suspect that the class I is so small that
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Wc(E) ∈ {0,1} for all c ∈ R and all E ∈ I such that ω(0) = c when ω ∈ E; this
would have been another limitation of Theorem 3.1. However, it is easy to check that
for each p ∈ [0,1] and each c ∈ R, there exists E ∈ I satisfying ω(0) = c for all
ω ∈ E and Wc(E) = p. Indeed, without loss of generality we can take c := p, and
we can then define E to be the event that ω(0) = p, ω reaches levels 0 and 1, and ω

reaches level 1 before reaching level 0.

5 Main result: constructive version

For each n ∈ {0,1, . . .}, let Dn := {k2−n | k ∈ Z} and define a sequence of stopping
times T n

k , k = −1,0,1,2, . . . , inductively by T n
−1 := 0,

T n
0 (ω) := inf

{
t ≥ 0

∣
∣ ω(t) ∈ Dn

}
,

T n
k (ω) := inf

{
t ≥ T n

k−1

∣
∣ ω(t) ∈ Dn and ω(t) �= ω

(
T n

k−1

)}
, k = 1,2, . . .

(as usual, inf∅ := ∞). For each t ∈ [0,∞) and ω ∈ Ω , define

An
t (ω) :=

∞∑

k=0

(
ω

(
T n

k ∧ t
) − ω

(
T n

k−1 ∧ t
))2

, n = 0,1,2, . . . , (5.1)

(cf. (4.2) with p = 2) and set

At(ω) := lim sup
n→∞

An
t (ω), At (ω) := lim inf

n→∞ An
t (ω). (5.2)

We shall see later (Theorem 5.1(a)) that the event {∀t ∈ [0,∞) : At = At } is
full and that for typical ω the functions A(ω) : t ∈ [0,∞) �→ At(ω) and
A(ω) : t ∈ [0,∞) �→ At(ω) are elements of Ω (in particular, they are finite). But
in general we can only say that A(ω) and A(ω) are positive increasing functions (not
necessarily strictly increasing) that can even take the value ∞. For each s ∈ [0,∞),
define the stopping time

τs := inf
{
t ≥ 0

∣
∣ A|[0,t) = A|[0,t) ∈ C[0, t) and sup

u<t
Au = sup

u<t
Au ≥ s

}
. (5.3)

(We shall see in Lemma 8.3 that this is indeed a stopping time.) It will be convenient
to use the following convention: an event stated in terms of A∞, such as A∞ = ∞,
happens if and only if A = A ∈ Ω and A∞ := A∞ = A∞ satisfies the given condi-
tion.

Let P be a function defined on the power set of Ω and taking values in [0,1]
(such as P or P), and let f : Ω → Ψ be a mapping from Ω to another set Ψ . The
pushforward Pf −1 of P by f is the function on the power set of Ψ defined by

Pf −1(E) := P
(
f −1(E)

)
, E ⊆ Ψ.

An especially important mapping for this paper is the normalizing time transfor-
mation ntt : Ω → R

[0,∞) defined as follows: for each ω ∈ Ω , ntt(ω) is the time-
changed price path s �→ ω(τs), s ∈ [0,∞), with ω(∞) set to e.g. 0. (We call it “nor-
malizing” since our goal is to ensure At(ntt(ω)) = At(ntt(ω)) = t for all t ≥ 0 for
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typical ω.) For each c ∈ R, let

Qc := P
( · ;ω(0) = c,A∞ = ∞)

ntt−1, (5.4)

Qc := P
( · ;ω(0) = c,A∞ = ∞)

ntt−1 (5.5)

(as before, the commas stand for conjunction in this context) be the pushforwards of
the restricted outer and inner content

E ⊆ Ω �→ P
(
E;ω(0) = c,A∞ = ∞)

,

E ⊆ Ω �→ P
(
E;ω(0) = c,A∞ = ∞)

,

respectively, by the normalizing time transformation ntt.
As mentioned earlier, we use restricted outer and inner content P(E;B)

and P(E;B) only when P(B) = 1. In Sect. 7, (7.2), we shall see that indeed
P(ω(0) = c,A∞ = ∞) = 1.

The next theorem shows that the pushforwards of P and P we have just defined are
closely connected with the Wiener measure. Remember that for each c ∈ R, Wc is the
probability measure on (Ω,F) which is the pushforward of the Wiener measure W0
by the mapping ω ∈ Ω �→ ω+ c (i.e., Wc is the distribution of Brownian motion over
the time period [0,∞) started from c).

Theorem 5.1 (a) For typical ω, the function

A(ω) : t ∈ [0,∞) �→ At(ω) := At(ω) = At(ω)

exists, is an increasing element of Ω with A0(ω) = 0, and has the same intervals of
constancy as ω.

(b) For all c ∈ R, the restriction of both Qc and Qc to F coincides with the mea-
sure Wc on Ω (in particular, Qc(Ω) = 1).

Remark 5.2 The value At(ω) can be interpreted as the total volatility of the price
path ω over the time period [0, t]. Theorem 5.1(b) implies that typical ω satisfy-
ing A∞(ω) = ∞ are unbounded (in particular, divergent). If A∞(ω) < ∞, the total
volatility At+1(ω) − At(ω) of ω over (t, t + 1] tends to 0 as t → ∞, and so the
volatility of ω can be said to die away.

Remark 5.3 Theorem 5.1 continues to hold if the restriction “;ω(0) = c,A∞ = ∞)”
in the definitions (5.4) and (5.5) is replaced by “;ω(0) = c,ω is unbounded)” (in
analogy with [20]).

Remark 5.4 Theorem 5.1 depends on the arbitrary choice (Dn) of the sequence of
grids to define the quadratic variation process A. To make this less arbitrary, we
could consider all grids whose mesh tends to zero fast enough and which are de-
finable in the standard language of set theory (similarly to Wald’s [69] suggested
requirement for von Mises’s collectives). Dudley’s [21] result shows that the rate of
convergence o(1/ logn) of the mesh to zero is sufficient for Brownian motion and
partitions of the horizontal (time) axis, and de la Vega’s [17] result shows that this
rate is slowest possible. It is an open question what the optimal rate of convergence is
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when quadratic variation is defined via partitions of the vertical axis, as in the present
paper.

Remark 5.5 In this paper, we construct the quadratic variation A and define the stop-
ping times τs in terms of A. Dubins and Schwarz [20] construct τs directly (in a
very similar way to our construction of A). An advantage of our construction (the
game-theoretic counterpart of that in [34]) is that the function A(ω) is continuous for
typical ω, whereas the event that the function s �→ τs(ω) is continuous has inner con-
tent zero. (Dubins and Schwarz’s extra assumptions make this function continuous
for almost all ω.)

Remark 5.6 Theorem 3.1 implies that the two notions of quadratic variation that we
have discussed so far, wt (ω) defined by (4.3) and At(ω), coincide for all t for typ-
ical ω. Indeed, since wt = At = t , ∀t ∈ [0,∞), holds almost surely in the case of
Brownian motion (see Lemma 8.4 for At = t), it suffices to check that the comple-
ment of the event {∀t ∈ [0,∞) : wt = At } belongs to I. This follows from Lemma 4.8
and the analogous statement for A: if wt (ω) = At(ω) for all t , we also have

wt (ω ◦ f ) = wf (t)(ω) = Af (t)(ω) = At(ω ◦ f )

for all t .

6 Functional generalizations

Theorems 3.1 and 5.1(b) are about outer content for sets, but the former and part of
the latter can be generalized to cover the following more general notion of outer con-
tent for functionals, i.e., real-valued functions on Ω . The outer content of a positive
functional F restricted to a set B ⊆ Ω is defined by

E(F ;B) := inf
{
S0

∣
∣ ∀ω ∈ B : lim inf

t→∞ St (ω) ≥ F(ω)
}
, (6.1)

where S ranges over the positive capital processes. This is the price of the cheap-
est positive superhedge for F when Reality is restricted to choosing ω ∈ B . Re-
stricted outer content for functionals generalizes restricted outer content for sets:
P(E;B) = E(1E;B) for all E ⊆ Ω . When B = Ω , we abbreviate E(F ;B) to E(F )

and refer to E(F ) as the outer content of F . Notice that E(F ;B) = E(F 1B).
Let us say that a positive functional F : Ω → [0,∞) is I-measurable if for each

constant c ∈ [0,∞), the set {ω | F(ω) ≥ c} is in I. (We need to spell out this definition
since I is not a σ -algebra; cf. Remark 3.2.) Notice that the I-measurability of F

means that F is F-measurable and, for each ω ∈ Ω and each time transformation f ,

F
(
ωf

) ≤ F(ω) (6.2)

(cf. (3.1)).

Remark 6.1 The presence of ≤ in (6.2) is natural as, intuitively, transforming ω

into ωf may involve cutting off part of ω (step (a) at the beginning of Remark 3.3).
It is clear that F(ωf ) = F(ω) when f ∈ G.
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In this paper, we shall in fact prove the following generalization of Theorem 3.1.

Theorem 6.2 Let c ∈ R. Each bounded positive I-measurable functional
F : Ω → [0,∞) satisfies

E
(
F ;ω(0) = c

) =
∫

F dWc. (6.3)

The proof of the inequality ≥ in (6.3) is easy and is accomplished by the following
lemma; it suffices to apply it to Wc in place of P and to F 1{ω(0)=c} in place of F .

Lemma 6.3 Let P be a probability measure on (Ω,F) such that the process
Xt(ω) := ω(t) is a martingale with respect to P and the filtration (Ft ). Then∫

F dP ≤ E(F ) for any positive F-measurable functional F .

Proof Fix a positive F-measurable functional F and let ε > 0. Find a positive capital
process S of the form (2.2) such that S0 < E(F ) + ε and lim inft→∞ St (ω) ≥ F(ω)

for all ω ∈ Ω . It can be checked using the optional sampling theorem (it is here that
the boundedness of Sceptic’s bets is used) that each addend in (2.1) is a martingale,
and so each partial sum in (2.1) is a martingale and (2.1) itself is a local martingale.
Since each addend in (2.2) is a positive local martingale, it is a supermartingale. We
can see that each addend in (2.2) is a positive continuous supermartingale. Using
Fatou’s lemma and the monotone convergence theorem, we now obtain

∫

F dP ≤
∫

lim inf
t→∞ St dP ≤ lim inf

t→∞

∫

St dP

= lim inf
t→∞

∫ ∞∑

n=1

K
Gn,cn
t dP = lim inf

t→∞

∞∑

n=1

∫

K
Gn,cn
t dP

≤ lim inf
t→∞

∞∑

n=1

cn = S0 < E(F ) + ε, (6.4)

where t can be assumed to take only integer values. Since ε can be arbitrarily small,
this implies the statement of the lemma. �

We shall deduce the inequality ≤ in Theorem 6.2 from the following generaliza-
tion of the part of Theorem 5.1(b) concerning Qc.

Theorem 6.4 For any c ∈ R and any bounded positive F-measurable functional
F : Ω → [0,∞),

E
(
F ◦ ntt;ω(0) = c,A∞ = ∞) =

∫

Ω

F dWc (6.5)

(with ◦ standing for composition of two functions and with the convention that
(F ◦ ntt)(ω) := 0 when ω /∈ ntt−1(Ω)).
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We shall check that Theorem 6.4 (namely, the inequality ≤ in (6.5)) indeed implies
Theorem 5.1(b) in Sect. 10. In this section, we only prove the easy inequality ≥
in (6.5). In Lemma 8.4, we shall see that At(ω) = At(ω) = t for all t ∈ [0,∞) for
Wc-almost all ω; therefore, ntt(ω) = ω for Wc-almost all ω. In conjunction with
Lemma 6.3, this implies the inequality ≥ in (6.5), i.e.,

E
(
F ◦ ntt;ω(0) = c,A∞ = ∞) = E

(
(F ◦ ntt)1{ω(0)=c,A∞=∞}

)

≥
∫

Ω

(F ◦ ntt)1{ω(0)=c,A∞=∞} dWc =
∫

Ω

F dWc.

Remark 6.5 Theorem 6.2 gives the price of the cheapest superhedge for the contin-
gent claim F , but it is not applicable to the usual contingent claims traded in financial
markets, which are not I-measurable. The theorem would be applicable to the imag-
inary contingent claim paying f (ω(τS)) at time τS (cf. (5.3); there is no payment if
τS = ∞), where S > 0 is a given constant and f is a given positive, bounded and
measurable payoff function. (If the interest rate r is constant but different from 0,
we can consider the contingent claim paying eτSrf (ω(τS)) at time τS .) The price of
the cheapest superhedge will be

∫
f (ψ(S))Wc(dψ), where c := ω(0), if there are no

restrictions on ω ∈ Ω , but will become
∫

f (ψ(S))1{∀s∈[0,S]:ψ(s)≥0} Wc(dψ) if ω is
restricted to be positive (as in many real financial markets).

Sections 7–11 are mainly devoted to the proof of the remaining statements in The-
orems 5.1, 6.2 and 6.4, whereas Sect. 12 is devoted to the discussion of the financial
meaning of our results and their connections with related probabilistic and financial
literature.

7 Coherence

The following trivial result says that our trading game is coherent, in the sense that
P(Ω) = 1 (i.e., no positive capital process increases its value between time 0 and ∞
by more than a strictly positive constant for all ω ∈ Ω).

Lemma 7.1 P(Ω) = 1. Moreover, for each c ∈ R, P(ω(0) = c) = 1.

Proof No positive capital process can strictly increase its value on a constant
ω ∈ Ω . �

Lemma 7.1, however, does not even guarantee that the set of non-constant ele-
ments of Ω has outer content one. The theory of measure-theoretic probability pro-
vides us with a plethora of non-trivial events of outer content one.

Lemma 7.2 Let E be an event that almost surely contains the sample path of a con-
tinuous martingale with time interval [0,∞). Then P(E) = 1.
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Proof This is a special case of Lemma 6.3 applied to F := 1E . �

In particular, applying Lemma 7.2 to Brownian motion started at c ∈ R gives

P
(
ω(0) = c,ω ∈ DS

) = 1 (7.1)

and

P
(
ω(0) = c,A∞ = ∞) = 1 (7.2)

(for the latter we also need Lemma 8.4 below). Both (7.1) and (7.2) have been used
above.

Lemma 7.3 Let P(B) = 1. For every set E ⊆ Ω , P(E;B) ≤ P(E;B).

Proof Suppose P(E;B) > P(E;B) for some E; by the definition of P, this would
mean that P(E;B) + P(Ec;B) < 1. Since P(·;B) is finitely subadditive (see
Lemma 4.1), this would imply P(Ω;B) < 1, which is equivalent to P(B) < 1 and
therefore contradicts our assumption. �

8 Existence of quadratic variation

In this paper, the set Ω is always equipped with the metric

ρ(ω1,ω2) :=
∞∑

d=1

2−d sup
t∈[0,2d ]

(∣
∣ω1(t) − ω2(t)

∣
∣ ∧ 1

)
(8.1)

(and the corresponding topology and Borel σ -algebra, the latter coinciding with F).
This makes it a complete and separable metric space. The main goal of this section is
to prove that the sequence of continuous functions t ∈ [0,∞) �→ An

t (ω) is convergent
in Ω for typical ω; this is done in Lemma 8.2. This will establish the existence of
A(ω) ∈ Ω for typical ω, which is part of Theorem 5.1(a). It is obvious that when it
exists, A(ω) is increasing and A0(ω) = 0. The last part of Theorem 5.1(a), asserting
that the intervals of constancy of ω and A(ω) coincide for typical ω, will be proved
in the next section (Lemma 9.4).

Lemma 8.1 For each T > 0, for typical ω, t ∈ [0, T ] �→ An
t is a Cauchy sequence of

functions in C[0, T ].

Proof Fix a T > 0 and fix temporarily an n ∈ {1,2, . . .}. Let κ ∈ {0,1} be such that
T n−1

0 = T n
κ , and for each k = 1,2, . . . , let

ξk :=
{

1 if ω(T n
κ+2k) = ω(T n

κ+2k−2)

−1 otherwise

(this is only defined when T n
κ+2k < ∞). If ω were generated by Brownian motion,

ξk would be a random variable taking value j , j ∈ {1,−1}, with probability 1/2; in
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particular, the expected value of ξk would be 0. As the standard backward induction
procedure shows, this remains true in our current framework in the following game-
theoretic sense: there exists a simple trading strategy that, when started with initial
capital 0 at time T n

κ+2k−2, ends with ξk at time T n
κ+2k , provided both times are fi-

nite; moreover, the corresponding simple capital process is always between −1 and
1. (Namely, at time T n

κ+2k−1 bet −2n if ω(T n
κ+2k−1) > ω(T n

κ+2k−2) and bet 2n oth-

erwise.) Notice that the increment of the process An
t − An−1

t over the time interval
[T n

κ+2k−2, T
n
κ+2k] is

ηk :=
{

2(2−n)2 = 2−2n+1 if ξk = 1

2(2−n)2 − (2−n+1)2 = −2−2n+1 if ξk = −1,

i.e., ηk = 2−2n+1ξk .
The game-theoretic version of Hoeffding’s inequality (see Theorem A.1 in the

Appendix below) shows that for any constant λ ∈ R, there exists a simple capital
process Sn with Sn

0 = 1 such that for all K = 0,1,2, . . . ,

S
n
T n

κ+2K
≥

K∏

k=1

exp
(
ληk − 2−4n+1λ2). (8.2)

According to Eq. (A.1) in the Appendix (with xn corresponding to ηk), such an Sn

can be defined as the capital process of the simple trading strategy betting the current
capital times

eλ2−2n+1 − e−λ2−2n+1

2−2n+2
exp

(

−λ2

8

(
2−2n+2)2

)

on An
t − An−1

t at each time T n
κ+2k−2, k ∈ {1,2, . . .}. In terms of the original security,

this simple trading strategy bets 0 on ω at each time T n
κ+2k−2 and bets the current

capital times

2
(
ω

(
T n

κ+2k−2

) − ω
(
T n

κ+2k−1

))eλ2−2n+1 − e−λ2−2n+1

2−2n+2
exp

(

−λ2

8

(
2−2n+2)2

)

on ω at each time T n
κ+2k−1, k ∈ {1,2, . . .}. It is clear that the process Sn is positive: it

is constant in each time interval [T n
κ+2k−2, T

n
κ+2k−1], and is linear in ω(t) in each time

interval [T n
κ+2k−1, T

n
κ+2k]; therefore, its overall positivity follows from its positivity

(cf. (8.2)) at the points T n
κ+2K , K ∈ {0,1,2, . . .}.

Fix temporarily α > 0. It is easy to see that since the sum of the positive capital
processes Sn over n = 1,2, . . . with weights 2−n will also be a positive capital pro-
cess, none of these processes will ever exceed 2n2/α except for a set of ω of outer
content at most α/2. The inequality

K∏

k=1

exp
(
ληk − 2−4n+1λ2) ≤ 2n 2

α
≤ en 2

α
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can be equivalently rewritten as

λ

K∑

k=1

ηk ≤ Kλ22−4n+1 + n + ln
2

α
. (8.3)

Plugging in the identities

K =
An

T n
κ+2K

− An
T n

κ

2−2n+1
,

K∑

k=1

ηk = (
An

T n
κ+2K

− An
T n

κ

) − (
An−1

T n
κ+2K

− An−1
T n

κ

)

and taking λ := 2n, we can transform (8.3) to

(
An

T n
κ+2K

− An
T n

κ

) − (
An−1

T n
κ+2K

− An−1
T n

κ

) ≤ 2−n
(
An

T n
κ+2K

− An
T n

κ

) + n + ln 2
α

2n
, (8.4)

which implies

An
T n

κ+2K
− An−1

T n
κ+2K

≤ 2−nAn
T n

κ+2K
+ 2−2n+1 + n + ln 2

α

2n
. (8.5)

This is true for any K = 0,1,2, . . . ; choosing the largest K such that T n
κ+2K ≤ t , we

obtain

An
t − An−1

t ≤ 2−nAn
t + 2−2n+2 + n + ln 2

α

2n
(8.6)

for any t ∈ [0,∞) (the simple case t < T n
κ has to be considered separately). Proceed-

ing in the same way but taking λ := −2n, we obtain

(
An

T n
κ+2K

− An
T n

κ

) − (
An−1

T n
κ+2K

− An−1
T n

κ

) ≥ −2−n
(
An

T n
κ+2K

− An
T n

κ

) − n + ln 2
α

2n

instead of (8.4) and

An
T n

κ+2K
− An−1

T n
κ+2K

≥ −2−nAn
T n

κ+2K
− 2−2n+1 − n + ln 2

α

2n

instead of (8.5), which gives

An
t − An−1

t ≥ −2−nAn
t − 2−2n+2 − n + ln 2

α

2n
(8.7)

instead of (8.6). We know that (8.6) and (8.7) hold for all t ∈ [0,∞) and all
n = 1,2, . . . except for a set of ω of outer content at most α.

Now we have all ingredients to complete the proof. Suppose there exists α > 0
such that (8.6) and (8.7) hold for all n = 1,2, . . . (this is true for typical ω). First let
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us show that the sequence An
T , n = 1,2, . . . , is bounded. Define a new sequence Bn,

n = 0,1,2, . . . , as follows: B0 := A0
T and Bn, n = 1,2, . . . , are defined inductively

by

Bn := 1

1 − 2−n

(

Bn−1 + 2−2n+2 + n + ln 2
α

2n

)

(8.8)

(notice that this is equivalent to (8.6) with Bn in place of An
t and = in place of ≤).

As An
T ≤ Bn for all n, it suffices to prove that Bn is bounded. If it is not, BN ≥ 1 for

some N . By (8.8), Bn ≥ 1 for all n ≥ N . Therefore, again by (8.8),

Bn ≤ Bn−1 1

1 − 2−n

(

1 + 2−2n+2 + n + ln 2
α

2n

)

, n > N,

and the boundedness of the sequence (Bn) follows from BN < ∞ and

∞∏

n=N+1

1

1 − 2−n

(

1 + 2−2n+2 + n + ln 2
α

2n

)

< ∞.

Now it is obvious that the sequence (An
t ) is Cauchy in C[0, T ]: (8.6) and (8.7) imply

∣
∣An

t − An−1
t

∣
∣ ≤ 2−nAn

T + 2−2n+2 + n + ln 2
α

2n
= O

(
n/2n

)
. �

Lemma 8.1 implies that for typical ω, the sequence t ∈ [0,∞) �→ An
t is Cauchy

in Ω . Therefore, we have the following implication.

Lemma 8.2 The event that the sequence of functions t ∈ [0,∞) �→ An
t converges

in Ω is full.

We can see that the first term in the conjunction in (5.3) holds for typical ω; let us
check that τs itself is a stopping time.

Lemma 8.3 For each s ≥ 0, the function τs defined by (5.3) is a stopping time.

Proof It suffices to check that the condition τs ≤ t can be written as

∀(q1, q2) ⊆ (0, s) ∃q ∈ (0, t) ∩ Q : Aq = Aq ∈ (q1, q2), (8.9)

where (q1, q2) ranges over the non-empty intervals with rational end-points. Let T

be the largest number in [0,∞] such that the functions A|[0,T ) and A|[0,T ) coincide
and are continuous; we use A′ as the common notation for A|[0,T ) = A|[0,T ). The
condition τs ≤ t means that for some t ′ ∈ [0, t], the domain of A′ includes [0, t ′) and
supu<t ′ A

′
u = s. Now it is clear that the condition (8.9) is satisfied if τs ≤ t . In the

opposite direction, suppose (8.9) is satisfied. Then Au = Au whenever u ∈ (0, t) satis-
fies Au < s. Indeed, if we had Au < Au for such u, we could choose (q1, q2) ⊆ (0, s)

satisfying Au < q1 < q2 < Au and there would be no q satisfying the required prop-
erties in (8.9): if q ≤ u, Aq ≤ Au < q1, and if q ≥ u, Aq ≥ Au > q2. Combining this
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result with (8.9), we can see that there is a function A′′ with a domain [0, t ′′) ⊆ [0, t)

such that A′′
u = Au = Au for all u ∈ [0, t ′′) and supA′′ = s. The function A′′ is in-

creasing and, by (8.9), continuous; this implies τs ≤ t . �

Let us now consider the case of Brownian motion.

Lemma 8.4 For any c ∈ R, Wc(∀t ∈ [0,∞) : At = At = t) = 1.

Proof It suffices to consider only rational values of t and, therefore, a fixed value
of t . The convergence An

t → t (see (5.1)) in Wc-probability can be deduced from the
law of large numbers applied to T n

k :

– the law of large numbers implies that An
t → t in Wc-probability because∫

(T n
k − T n

k−1) dWc = 2−2n (this is a combination of the second statement of The-
orem 2.49 in [45], which is a corollary of Wald’s second lemma, with the strong
Markov property of Brownian motion);

– the law of large numbers is applicable because
∫
(T n

k − T n
k−1)

2 dWc < ∞ (see the
proof of the second statement of Theorem 2.49 in [45]).

It remains to apply Lemma 8.2, which, in combination with Lemma 6.3 (applied to
the indicator functions of events), implies that the sequence (An) converges in Ω

Wc-almost surely. �

Remark 8.5 This section is about the quadratic variation of the price path, but in
finance the quadratic variation of the stochastic logarithm (see e.g. [33], p. 134) of a
price process is usually even more important than the quadratic variation of the price
process itself. A pathwise version of the stochastic logarithm has been studied by
Norvaiša in [48, 49]. Consider an ω ∈ Ω such that A(ω) exists, belongs to Ω , and
has the same intervals of constancy as ω; Theorem 5.1(a) says that these conditions
are satisfied for typical ω. Fix a time horizon T > 0 and suppose additionally that
inft∈[0,T ] ω(t) > 0. The limit

Rt(ω) := lim
n→∞

∞∑

k=0

ω(T n
k ∧ t) − ω(T n

k−1 ∧ t)

ω(T n
k−1 ∧ t)

(where we use the same notation as in (5.1)) exists for all t ∈ [0, T ], and the function
R(ω) : t ∈ [0, T ] �→ Rt(ω) satisfies ([49], Proposition 56)

Rt(ω) = ln
ω(t)

ω(0)
+ 1

2

∫ t

0

dAs(ω)

ω2(s)
, t ∈ [0, T ].

In financial terms, the value Rt(ω) is the cumulative return of the security ω over
[0, t] ([48], Sect. 2); in probabilistic terms, R(ω) is the pathwise stochastic logarithm
of ω. The quadratic variation of R(ω) can be defined as

lim
n→∞

∞∑

k=0

(
RT n

k ∧t (ω) − RT n
k−1∧t (ω)

)2 =
∫ t

0

dAs(ω)

ω2(s)

(the existence of the limit and the equality are also parts of Proposition 56 in [49]).
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9 Tightness

In this section, we do some groundwork for the proof of Theorems 5.1(b) and 6.4,
and also finish the proof of Theorem 5.1(a). We start from the results that show (see
the next section) that Qc is tight in the topology induced by the metric (8.1).

Lemma 9.1 For each α > 0 and S ∈ {1,2,4 . . .},

P
(∀δ ∈ (0,1) ∀s1, s2 ∈ [0, S] : (0 ≤ s2 − s1 ≤ δ and τs2 < ∞)

=⇒ ∣
∣ω(τs2) − ω(τs1)

∣
∣ ≤ 230α−1/2S1/4δ1/8) ≥ 1 − α. (9.1)

Proof Let S = 2d , where d ∈ {0,1,2, . . .}. For each m = 1,2, . . . , divide the interval
[0, S] into 2d+m equal subintervals of length 2−m. Fix for a moment such an m, and
set β = βm := (21/4 −1)2−m/4α (where 21/4 −1 is the normalizing constant ensuring
that the βm sum to α) and

ti := τi2−m, ωi := ω(ti), i = 0,1, . . . ,2d+m (9.2)

(we shall be careful to use ωi only when ti < ∞).
We first replace the quadratic variation process A (in terms of which the stopping

times τs are defined) by a version of A� for a large enough �. If τ is any stopping
time (we are interested in τ = ti for various i), set, in the notation of (5.1),

A
n,τ
t (ω) :=

∞∑

k=0

(
ω

(
τ ∨ T n

k ∧ t
) − ω

(
τ ∨ T n

k−1 ∧ t
))2

, t ≥ τ, n = 1,2, . . .

(we omit parentheses in expressions of the form x ∨ y ∧ z since we have
(x ∨ y) ∧ z = x ∨ (y ∧ z), provided x ≤ z). The intuition is that A

n,τ
t (ω) is the ver-

sion of An
t (ω) that starts at time τ rather than 0.

For i = 0,1, . . . ,2d+m − 1, let Ei be the event that ti < ∞ implies that (8.7),
with α replaced by γ > 0 and An

t replaced by A
n,ti
t , holds for all n = 1,2, . . . and

t ∈ [ti ,∞). Applying a trading strategy similar to that used in the proof of Lemma 8.1
but starting at time ti rather than 0, we can see that the inner content of Ei is at least
1 − γ . The inequality

A
n,ti
t − A

n−1,ti
t ≥ −2−nA

n,ti
t − 2−2n+2 − n + ln 2

γ

2n

holds for all t ∈ [ti , ti+1] and all n on the event {ti < ∞}∩Ei . For the value t := ti+1,
this inequality implies

A
n,ti
ti+1

≥ 1

1 + 2−n

(

A
n−1,ti
ti+1

− 2−2n+2 − n + ln 2
γ

2n

)
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(including the case ti+1 = ∞). Applying the last inequality to n = � + 1, � + 2, . . .

(where � will be chosen later), we obtain that

A
∞,ti
ti+1

≥
( ∞∏

n=�+1

1

1 + 2−n

)

A
�,ti
ti+1

−
∞∑

n=�+1

(

2−2n+2 + n + ln 2
γ

2n

)

(9.3)

holds on the whole of {ti < ∞} ∩ Ei except perhaps a null set. The qualification
“except a null set” allows us not only to assume that A

∞,ti
ti+1

exists in (9.3), but also to

assume that A
∞,ti
ti+1

= Ati+1 − Ati = 2−m. Let γ := 1
3 2−d−mβ and choose � = �(m) so

large that (9.3) implies A
�,ti
ti+1

≤ 2−m+1/2 (this can be done as both the product and the
sum in (9.3) are convergent, and so the product can be made arbitrarily close to 1 and
the sum can be made arbitrarily close to 0). Doing this for all i = 0,1, . . . ,2d+m − 1
will ensure that the inner content of

{
ti < ∞ =⇒ A

�,ti
ti+1

≤ 2−m+1/2, i = 0,1, . . . ,2d+m − 1
}

(9.4)

is at least 1 − β/3.
An important observation for what follows is that the process defined as

0 for t < ti and as (ω(t) − ω(ti))
2 − A

�,ti
t for t ≥ ti is a simple capital process (cor-

responding to betting 2(ω(T �
k ) − ω(ti)) at each time T �

k > ti ). Now we can see that

∑

i=1,...,2d+m:ti<∞
(ωi − ωi−1)

2 ≤ 21/2 3

β
S (9.5)

will hold on the event (9.4), except for a set of ω of outer content at most β/3:
indeed, there is a positive simple capital process taking value at least
21/2S + ∑j

i=1(ωi − ωi−1)
2 − j2−m+1/2 at time tj on the conjunction of the

events (9.4) and {tj < ∞} for all j = 0,1, . . . ,2d+m, and this simple capital pro-
cess will make at least 21/2 3

β
S at time τS (in the sense of lim inf if τS = ∞) out of

initial capital 21/2S, if (9.4) happens but (9.5) fails to happen.
For each ω ∈ Ω , define

J (ω) := {
i = 1, . . . ,2d+m : ti < ∞ and |ωi − ωi−1| ≥ ε

}
,

where ε = εm will be chosen later. It is clear that |J (ω)| ≤ 21/23S/βε2 on
the set (9.5). Consider the simple trading strategy whose capital increases by
(ω(ti) − ω(τ))2 − A

�,τ
ti

between each time τ ∈ [ti−1, ti] ∩ [0,∞) when
|ω(τ) − ωi−1| = ε for the first time during [ti−1, ti] ∩ [0,∞) (this is guaranteed to
happen when i ∈ J (ω)) and the corresponding time ti , i = 1, . . . ,2d+m, and which is
not active (i.e., sets the bet to 0) otherwise. (Such a strategy exists, as explained in the
previous paragraph.) This strategy will make at least ε2 out of (21/23S/βε2)2−m+1/2,
provided all three of the events (9.4), (9.5) and

{∃i ∈ {
1, . . . ,2d+m

} : ti < ∞ and |ωi − ωi−1| ≥ 2ε
}

happen. (And we can make the corresponding simple capital process positive by
being active for at most 21/23S/βε2 values of i and setting the bet to 0 as
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soon as (9.4) becomes violated.) This corresponds to making at least 1 out of
(21/23S/βε4)2−m+1/2. Solving the equation (21/23S/βε4)2−m+1/2 = β/3 for ε

gives ε = (2 × 32S2−m/β2)1/4. Therefore,

max
i=1,...,2d+m:ti<∞

|ωi − ωi−1| ≤ 2ε = 2
(
2 × 32S2−m/β2)1/4

= 25/431/2(21/4 − 1
)−1/2

α−1/2S1/42−m/8 (9.6)

except for a set of ω of outer content β . By the countable subadditivity of outer
content (Lemma 4.1), (9.6) holds for all m = 1,2, . . . except for a set of ω of outer
content at most

∑
m βm = α.

We have now allowed m to vary and so write tmi instead of ti defined by (9.2).
Fix an ω ∈ Ω satisfying A(ω) ∈ Ω and (9.6) for m = 1,2, . . . . Intervals of the
form [tmi−1(ω), tmi (ω)] ⊆ [0,∞), for m ∈ {1,2, . . .} and i ∈ {1,2,3, . . . ,2d+m}, will
be called predyadic (of order m). Given an interval [s1, s2] ⊆ [0, S] of length at
most δ ∈ (0,1) and with τs2 < ∞, we can cover (τs1(ω), τs2(ω)) (without cover-
ing any points in the complement of [τs1(ω), τs2(ω)]) by adjacent predyadic intervals
with disjoint interiors such that, for some m ∈ {1,2, . . .}; there are between one and
two predyadic intervals of order m; for i = m + 1,m + 2, . . . , there are at most two
predyadic intervals of order i (start from finding the point in [s1, s2] of the form
j2−k with integer j and k and the smallest possible k, and cover (τs1(ω), τj2−k ] and
[τj2−k , τs2(ω)) by predyadic intervals in the greedy manner). Combining (9.6) and
2−m ≤ δ, we obtain

∣
∣ω(τs2) − ω(τs1)

∣
∣ ≤ 29/431/2(21/4 − 1

)−1/2
α−1/2S1/4

× (
2−m/8 + 2−(m+1)/8 + 2−(m+2)/8 + · · · )

= 29/431/2(21/4 − 1
)−1/2(1 − 2−1/8)−1

α−1/2S1/42−m/8

≤ 29/431/2(21/4 − 1
)−1/2(1 − 2−1/8)−1

α−1/2S1/4δ1/8,

which is stronger than (9.1) as 29/431/2(21/4 − 1)−1/2(1 − 2−1/8)−1 ≈ 228.22. �

Now we can prove the following elaboration of Lemma 9.1, which will be used in
the next two sections.

Lemma 9.2 For each α > 0,

P
(∀S ∈ {1,2,4, . . .} ∀δ ∈ (0,1) ∀s1, s2 ∈ [0, S] : (0 ≤ s2 − s1 ≤ δ and τs2 < ∞)

=⇒ ∣
∣ω(τs2) − ω(τs1)

∣
∣ ≤ 430α−1/2S1/2δ1/8) ≥ 1 − α. (9.7)

Proof Replacing α in (9.1) by αS := (1 − 2−1/2)S−1/2α for S = 1,2,4, . . . (where
1 − 2−1/2 is the normalizing constant ensuring that the αS sum to α over S), we
obtain
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P
(∀δ ∈ (0,1) ∀s1, s2 ∈ [0, S] : (0 ≤ s2 − s1 ≤ δ and τs2 < ∞)

=⇒ ∣
∣ω(τs2) − ω(τs1)

∣
∣ ≤ 230

(
1 − 2−1/2)−1/2

α−1/2S1/2δ1/8)

≥ 1 − (
1 − 2−1/2)S−1/2α.

The countable subadditivity of outer content now gives

P
(∀S ∈ {1,2,4, . . .} ∀δ ∈ (0,1) ∀s1, s2 ∈ [0, S] : (0 ≤ s2 − s1 ≤ δ and τs2 < ∞)

=⇒ ∣
∣ω(τs2) − ω(τs1)

∣
∣ ≤ 230

(
1 − 2−1/2)−1/2

α−1/2S1/2δ1/8)

≥ 1 − α,

which is stronger than (9.7) as 230 (1 − 2−1/2)−1/2 ≈ 424.98. �

The following lemma develops inequality (9.5) and will be useful in the proof of
Theorem 5.1.

Lemma 9.3 For each α > 0,

P

(

∀S ∈ {1,2,4, . . .} ∀m ∈ {1,2, . . .} :
∑

i=1,...,S2m:ti<∞

(
ω(ti) − ω(ti−1)

)2 ≤ 64α−1S22m/16
)

≥ 1 − α, (9.8)

in the notation of (9.2).

Proof Replacing β/3 in (9.5) with 2−1(21/16 − 1)S−12−m/16α, where S ranges over
{1,2,4, . . .} and m over {1,2, . . .}, we obtain

P

( ∑

i=1,...,S2m:ti<∞

(
ω(ti) − ω(ti−1)

)2 ≤ 23/2(21/16 − 1
)−1

α−1S22m/16
)

≥ 1 − 2−1(21/16 − 1
)
S−12−m/16α. (9.9)

By the countable subadditivity of outer content this implies

P

(

∀S ∈ {1,2,4, . . .} ∀m ∈ {1,2, . . .} :
∑

i=1,...,S2m:ti<∞

(
ω(ti) − ω(ti−1)

)2 ≤ 23/2(21/16 − 1
)−1

α−1S22m/16
)

≥ 1 − α,

which is stronger than (9.8) as 23/2(21/16 − 1)−1 ≈ 63.88. �

The following lemma completes the proof of Theorem 5.1(a).

Lemma 9.4 For typical ω, A(ω) has the same intervals of constancy as ω.
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Proof The definition of A immediately implies that A(ω) is always constant on every
interval of constancy of ω (provided A(ω) exists). Therefore, we are only required to
prove that typical ω are constant on every interval of constancy of A(ω).

The proof can be extracted from the proof of Lemma 9.1. It suffices to prove that
for any α > 0, S ∈ {1,2,4, . . .}, rational c > 0, and interval [a, b] with rational end-
points a and b such that a < b, the outer content of the following event is at most
α: ω changes by at least c over [a, b], A is constant over [a, b], and [a, b] ⊆ [0, τS].
Fix such α, S, c and [a, b], and let E stand for the event described in the previous
sentence. Choose m ∈ {1,2, . . .} such that 2−m+1/2/c2 ≤ α/2 and choose the corre-
sponding � = �(m) as in the proof of Lemma 9.1 but with 1−β/3 replaced by 1−α/2
(cf. (9.4)). The positive simple capital process 2−m+1/2 + (ω(t) − ω(a))2 − A

�,a
t ,

started at time a and stopped when t reaches b ∧ τS , when A
�,a
t reaches 2−m+1/2, or

when |ω(t) − ω(a)| reaches c, whichever happens first, makes c2 out of 2−m+1/2 on
the conjunction of (9.4) and the event E. Therefore, the outer content of the conjunc-
tion is at most α/2, and the outer content of E is at most α. �

In view of Lemma 9.4, we can strengthen (9.7) to

P
(∀S ∈ {1,2,4, . . .} ∀δ ∈ (0,1) ∀t1, t2 ∈ [0,∞) :

(|At2 − At1 | ≤ δ and At1 ∈ [0, S] and At2 ∈ [0, S])

=⇒ ∣
∣ω(t2) − ω(t1)

∣
∣ ≤ 430α−1/2S1/2δ1/8) ≥ 1 − α.

10 Proof of the remaining parts of Theorems 5.1(b) and 6.4

Let c ∈ R be a fixed constant. The results of the previous section imply the tightness
of Qc (for details, see below).

Lemma 10.1 For each α > 0 there exists a compact set K ⊆ Ω such that
Qc(K) ≥ 1 − α.

In particular, Lemma 10.1 asserts that Qc(Ω) = 1. This fact and the results of
Sect. 7 allow us to check that Theorem 6.4 implies Theorem 5.1(b). First, the in-
equality ≤ in (6.5) implies

Qc(E) = P
(
ntt−1(E);ω(0) = c,A∞ = ∞)

= E
(
1E ◦ntt;ω(0) = c,A∞ = ∞) ≤

∫

Ω

1E dWc = Wc(E)

for all E ∈ F. Therefore,

Qc(E) = P
(
ntt−1(E);ω(0) = c,A∞ = ∞)

= 1 − P
(
ntt−1(Ec

) ∪ (
ntt−1(Ω)

)c;ω(0) = c,A∞ = ∞)

= 1 − P
(
ntt−1(Ec

);ω(0) = c,A∞ = ∞)
(10.1)

≥ 1 − Wc

(
Ec

) = Wc(E)
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and so, by Lemma 7.3 and (7.2),

Qc(E) = Qc(E) = Wc(E)

for all E ∈ F. The equality in line (10.1) follows from

P
(
ntt−1(Ω);ω(0) = c,A∞ = ∞) = 1,

which in turn follows from (and is in fact equivalent to) Qc(Ω) = 1. Therefore, we
only need to finish the proof of Theorem 6.4.

More precise results than Lemma 10.1 can be stated in terms of the modulus of
continuity of a function ψ ∈ R

[0,∞) on an interval [0, S] ⊆ [0,∞), defined by

mS
δ (ψ) := sup

s1,s2∈[0,S]:|s1−s2|≤δ

∣
∣ψ(s1) − ψ(s2)

∣
∣, δ > 0;

it is clear that limδ→0 mS
δ (ψ) = 0 if and only if ψ is continuous (equivalently, uni-

formly continuous) on [0, S].

Lemma 10.2 For each α > 0,

Qc

(∀S ∈ {1,2,4, . . .} ∀δ ∈ (0,1) : mS
δ ≤ 430α−1/2S1/2δ1/8) ≥ 1 − α.

Lemma 10.2 immediately follows from Lemma 9.2, and Lemma 10.1 immedi-
ately follows from Lemma 10.2 and the Arzelà–Ascoli theorem (as stated in [35],
Theorem 2.4.9).

We start the proof of the remaining part of Theorem 6.4 from a series of reductions.
To establish the inequality ≤ in (6.5) we only need to establish

E
(
F ◦ ntt;ω(0) = c,A∞ = ∞)

<

∫

F dWc + ε

for each positive constant ε.
(a) We can assume that F in (6.5) is lower semicontinuous on Ω . Indeed, if

it is not, the Vitali–Carathéodory theorem (see e.g. [52], Theorem 2.25) gives for
any compact K ⊆ Ω (assumed non-empty) the existence of a lower semicontinu-
ous function G on K such that G ≥ F on K and

∫
K

GdWc ≤ ∫
K

F dWc + ε. With-
out loss of generality we assume supG ≤ supF , and we extend G to all of Ω by
setting G := supF outside K. Choosing K with large enough Wc(K) (which can
be done since the probability measure Wc is tight: see e.g. [5], Theorem 1.4), we
have G ≥ F and

∫
GdWc ≤ ∫

F dWc + 2ε. Achieving S0 ≤ ∫
GdWc + ε and

lim inft→∞ St (ω) ≥ (G ◦ ntt)(ω), where S is a positive capital process, will auto-
matically achieve S0 ≤ ∫

F dWc + 3ε and lim inft→∞ St (ω) ≥ (F ◦ ntt)(ω).
(b) We can further assume that F is continuous on Ω . Indeed, since each

lower semicontinuous function on a metric space is the limit of an increasing se-
quence of continuous functions (see e.g. [25], Problem 1.7.15(c)), given a lower
semicontinuous positive function F on Ω we can find a series of positive con-
tinuous functions Gn on Ω , n = 1,2, . . . , such that

∑∞
n=1 Gn = F . The sum S
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of positive capital processes S1,S2, . . . achieving Sn
0 ≤ ∫

Gn dWc + 2−nε and
lim inft→∞ Sn

t (ω) ≥ (Gn ◦ ntt)(ω), n = 1,2, . . . , will achieve S0 ≤ ∫
F dWc + ε

and lim inft→∞ St (ω) ≥ (F ◦ ntt)(ω).
(c) We can further assume that F depends on ψ ∈ Ω only via ψ |[0,S] for some

S ∈ (0,∞). Indeed, let us fix ε > 0 and prove

E
(
F ◦ ntt;ω(0) = c,A∞ = ∞) ≤

∫

F dWc + Cε

for some positive constant C assuming

E
(
G ◦ ntt;ω(0) = c,A∞ = ∞) ≤

∫

GdWc

for all continuous positive G that depend on ψ ∈ Ω only via ψ |[0,S] for some
S ∈ (0,∞). Choose a compact set K ⊆ Ω with Wc(K) > 1 − ε and Qc(K) > 1 − ε

(cf. Lemma 10.1). Set FS(ψ) := F(ψS), where ψS is defined by ψS(s) := ψ(s ∧ S)

and S is sufficiently large in the following sense. Since F is uniformly continuous
on K and the metric is defined by (8.1), F and FS can be made arbitrarily close
in C(K); in particular, let ‖F − FS‖C(K) < ε. Choose positive capital processes S0

and S1 such that

S
0
0 ≤

∫

FS dWc + ε, lim inf
t→∞ S

0
t (ω) ≥ (

FS ◦ ntt
)
(ω),

S
1
0 ≤ ε, lim inf

t→∞ S
1
t (ω) ≥ (1Kc ◦ntt)(ω),

for all ω ∈ Ω with ω(0) = c and A∞(ω) = ∞. The sum S := S0 + (supF)S1 + ε

will satisfy

S0 ≤
∫

FS dWc + (supF + 2)ε ≤
∫

K

FS dWc + (2 supF + 2)ε

≤
∫

K

F dWc + (2 supF + 3)ε ≤
∫

F dWc + (2 supF + 3)ε

and

lim inf
t→∞ St (ω) ≥ (

FS ◦ ntt
)
(ω) + (supF)(1Kc ◦ntt)(ω) + ε ≥ (F ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞. We assume S ∈ {1,2,4, . . .} without loss of
generality.

(d) We can further assume that F(ψ) depends on ψ ∈ Ω only via the values
ψ(iS/N), i = 1, . . . ,N (remember that we are interested in the case ψ(0) = c), for
some N ∈ {1,2, . . .}. Indeed, let us fix ε > 0 and prove

E
(
F ◦ ntt;ω(0) = c,A∞ = ∞) ≤

∫

F dWc + Cε
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for some positive constant C assuming

E
(
G ◦ ntt;ω(0) = c,A∞ = ∞) ≤

∫

GdWc

for all continuous positive G that depend on ψ ∈ Ω only via ψ(iS/N), i = 1, . . . ,N ,
for some N . Let K ⊆ Ω be the compact set in Ω defined as

K := {
ψ ∈ Ω

∣
∣ ψ(0) = c and ∀δ > 0 : mS

δ (ψ) ≤ f (δ)
}

for some f : (0,∞) → (0,∞) satisfying limδ→0 f (δ) = 0 (cf. the Arzelà–Ascoli
theorem) and chosen in such a way that Wc(K) > 1 − ε and Qc(K) > 1 − ε. Let
g(δ) := supψ1,ψ2∈K:ρ(ψ1,ψ2)≤δ|F(ψ1) − F(ψ2)| be the modulus of continuity of F

on K; we know that limδ→0 g(δ) = 0. Set FN(ψ) := F(ψN), where ψN is the piece-
wise linear function whose graph is obtained by joining the points (iS/N,ψ(iS/N)),
i = 0,1, . . . ,N , and (∞,ψ(S)), and N is so large that g(f (S/N)) ≤ ε. Since

ψ ∈ K =⇒ ‖ψ − ψN‖C[0,S] ≤ f (S/N) =⇒ ρ(ψ,ψN) ≤ f (S/N)

(we assume, without loss of generality, that the graph of ψ is horizontal over [S,∞)),
we have ‖F − FN‖C(K) ≤ ε. Choose positive capital processes S0 and S1 such that

S
0
0 ≤

∫

FN dWc + ε, lim inf
t→∞ S

0
t (ω) ≥ (FN ◦ ntt)(ω),

S
1
0 ≤ ε, lim inf

t→∞ S
1
t (ω) ≥ (1Kc ◦ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞. The sum S := S0 + (supF)S1 + ε will satisfy

S0 ≤
∫

FN dWc + (supF + 2)ε ≤
∫

K

FN dWc + (2 supF + 2)ε

≤
∫

K

F dWc + (2 supF + 3)ε ≤
∫

F dWc + (2 supF + 3)ε

and

lim inf
t→∞ St (ω) ≥ (FN ◦ ntt)(ω) + (supF)(1Kc ◦ntt)(ω) + ε ≥ (F ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞.
(e) We can further assume that

F(ψ) = U
(
ψ(S/N),ψ(2S/N), . . . ,ψ(S)

)
(10.2)

where the function U : R
N → [0,∞) is not only continuous but also has compact

support. (We sometimes say that U is the generator of F .) Indeed, let us fix ε > 0
and prove

E
(
F ◦ ntt;ω(0) = c,A∞ = ∞) ≤

∫

F dWc + Cε



594 V. Vovk

for some positive constant C assuming

E
(
G ◦ ntt;ω(0) = c,A∞ = ∞) ≤

∫

GdWc

for all G whose generator has compact support. Let BR be the open ball of ra-
dius R and centered at the origin in the space R

N with the �∞ norm. We can
rewrite (10.2) as F(ψ) = U(σ(ψ)), where σ : Ω → R

N reduces each ψ ∈ Ω

to σ(ψ) := (ψ(S/N),ψ(2S/N), . . . ,ψ(S)). Choose R > 0 so large that
Wc(σ

−1(BR)) > 1 − ε and Qc(σ
−1(BR)) > 1 − ε (the existence of such R follows

from the Arzelà–Ascoli theorem and Lemma 10.1). Alongside F , whose generator is
denoted U , we also consider F ∗ with generator

U∗(z) :=
{

U(z) if z ∈ BR

0 if z ∈ Bc
2R

(where BR is the closure of BR in R
N ); in the remaining region B2R \ BR , U∗ is de-

fined arbitrarily (but making sure that U∗ is continuous and takes values in [0, supU ];
this can be done by the Tietze–Urysohn theorem, [25], Theorem 2.1.8). Choose pos-
itive capital processes S0 and S1 such that

S
0
0 ≤

∫

F ∗ dWc + ε, lim inf
t→∞ S

0
t (ω) ≥ (

F ∗ ◦ ntt
)
(ω),

S
1
0 ≤ ε, lim inf

t→∞ S
1
t (ω) ≥ (1(σ−1(BR))c ◦ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞. The sum S := S0 + (supF)S1 will satisfy

S0 ≤
∫

F ∗ dWc + (supF + 1)ε ≤
∫

σ−1(BR)

F ∗ dWc + (2 supF + 1)ε

=
∫

σ−1(BR)

F dWc + (2 supF + 1)ε ≤
∫

F dWc + (2 supF + 1)ε

and

lim inf
t→∞ St (ω) ≥ (

F ∗ ◦ ntt
)
(ω) + (supF)(1(σ−1(BR))c ◦ntt)(ω) ≥ (F ◦ ntt)(ω),

provided ω(0) = c and A∞(ω) = ∞.
(f) Since every continuous U : R

N → [0,∞) with compact support can be arbi-
trarily well approximated in C(RN) by an infinitely differentiable (positive) function
with compact support (see e.g. [1], Theorem 2.29), we can further assume that the
generator U of F is an infinitely differentiable function with compact support.

(g) By Lemma 10.1, it suffices to prove that, given ε > 0 and a compact
set K in Ω , some positive capital process S with S0 ≤ ∫

F dWc + ε achieves
lim inft→∞ St (ω) ≥ (F ◦ ntt)(ω) for all ω ∈ ntt−1(K) such that ω(0) = c and
A∞(ω) = ∞. Indeed, we can choose K with Qc(K) so close to 1 that the sum of
S and a positive capital process eventually attaining supF on (ntt−1(K))c will give a
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positive capital process starting from at most
∫

F dWc +2ε and attaining (F ◦ntt)(ω)

in the limit, provided ω(0) = c and A∞(ω) = ∞.
From now on we fix a compact K ⊆ Ω , assuming without loss of generality that

the statements inside the outer parentheses in (9.7) and (9.8) are satisfied for some
α > 0 when ntt(ω) ∈ K.

In the rest of the proof, we use, often following [55], Sect. 6.2, the stan-
dard method going back to Lindeberg [42]. For i = N − 1, define a function
Ui : R × [0,∞) × R

i → R by

Ui(x,D;x1, . . . , xi) :=
∫ ∞

−∞
Ui+1(x1, . . . , xi, x + z)N0,D(dz), (10.3)

where UN stands for U and N0,D is the Gaussian probability measure on R with
mean 0 and variance D ≥ 0. Next define, for i = N − 1,

Ui(x1, . . . , xi) := Ui(xi, S/N;x1, . . . , xi). (10.4)

Finally, we can alternately use (10.3) and (10.4) for i = N − 2, . . . ,1,0 to define in-
ductively other Ui and Ui (with (10.4) interpreted as U0 := U0(c, S/N) when i = 0).
Notice that U0 = ∫

F dWc.
Informally, the functions (10.3) and (10.4) constitute Sceptic’s goal: assuming

ntt(ω) ∈ K, ω(0) = c, and A∞(ω) = ∞, he will keep his capital at time τiS/N ,
i = 0,1, . . . ,N , close to Ui(ω(τS/N),ω(τ2S/N ), . . . ,ω(τiS/N )) and his capital at any
other time t ∈ [0, τS] close to Ui(ω(t),D;ω(τS/N),ω(τ2S/N ), . . . ,ω(τiS/N)), where
i := �NAt/S� and D := (i + 1)S/N −At . This will ensure that his capital at time τS

is close to or exceeds (F ◦ntt)(ω) when his initial capital is U0 = ∫
F dWc, ω(0) = c,

and A∞(ω) = ∞.
The proof is based on the fact that each function Ui(x,D;x1, . . . , xi) satisfies the

heat equation in the variables x and D, i.e.,

∂Ui

∂D
(x,D;x1, . . . , xi) = 1

2

∂2Ui

∂x2
(x,D;x1, . . . , xi) (10.5)

for all x ∈ R, all D > 0, and all x1, . . . , xi ∈ R. This can be checked by direct differ-
entiation.

Sceptic will only bet at the times of the form τkS/LN , where L ∈ {1,2, . . .} is
a constant that will later be chosen large and k is integer. For i = 0, . . . ,N and
j = 0, . . . ,L, let us set

ti,j := τiS/N+jS/LN , Xi,j := ω(ti,j ), Di,j := S/N − jS/LN.

For any array Yi,j , we set dYi,j := Yi,j+1 − Yi,j .
Using Taylor’s formula and omitting the arguments ω(τS/N), . . . ,ω(τiS/N), we

obtain, for i = 0, . . . ,N − 1 and j = 0, . . . ,L − 1,
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dUi(Xi,j ,Di,j ) = ∂Ui

∂x
(Xi,j ,Di,j ) dXi,j + ∂Ui

∂D
(Xi,j ,Di,j )dDi,j

+ 1

2

∂2Ui

∂x2

(
X′

i,j ,D
′
i,j

)
(dXi,j )

2 + ∂2Ui

∂x∂D

(
X′

i,j ,D
′
i,j

)
dXi,j dDi,j

+ 1

2

∂2Ui

∂D2

(
X′

i,j ,D
′
i,j

)
(dDi,j )

2, (10.6)

where (X′
i,j ,D

′
i,j ) is a point strictly between (Xi,j ,Di,j ) and (Xi,j+1,Di,j+1). Ap-

plying Taylor’s formula to ∂2Ui/∂x2, we find

∂2Ui

∂x2

(
X′

i,j ,D
′
i,j

) = ∂2Ui

∂x2
(Xi,j ,Di,j )

+ ∂3Ui

∂x3

(
X′′

i,j ,D
′′
i,j

)
�Xi,j + ∂3Ui

∂D∂x2

(
X′′

i,j ,D
′′
i,j

)
�Di,j ,

where (X′′
i,j ,D

′′
i,j ) is a point strictly between (Xi,j ,Di,j ) and (X′

i,j ,D
′
i,j ), and �Xi,j

and �Di,j satisfy |�Xi,j | ≤ |dXi,j |, |�Di,j | ≤ |dDi,j |. Plugging this equation and
the heat equation (10.5) into (10.6), we obtain

dUi(Xi,j ,Di,j ) = ∂Ui

∂x
(Xi,j ,Di,j ) dXi,j + 1

2

∂2Ui

∂x2
(Xi,j ,Di,j )

(
(dXi,j )

2 + dDi,j

)
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∂3Ui
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′′
i,j
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�Xi,j (dXi,j )
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(
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′′
i,j
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�Di,j (dXi,j )

2

+ ∂2U
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′
i,j
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dXi,j dDi,j

+ 1

2

∂2U

∂D2

(
X′

i,j ,D
′
i,j

)
(dDi,j )

2. (10.7)

To show that Sceptic can achieve his goal, we describe a simple trading strategy
that results in an increase of his capital of approximately (10.7) during the time inter-
val [ti,j , ti,j+1] (we shall make sure that the cumulative error of our approximation is
small with high probability, which will imply the statement of the theorem). We shall
see that there is a trading strategy resulting in the capital increase equal to the first
addend on the right-hand side of (10.7), that there is another trading strategy result-
ing in the capital increase approximately equal to the second addend, and that the last
four addends are negligible. The sum of the two trading strategies will achieve our
goal.

The trading strategy whose capital increase over [ti,j , ti,j+1] is the first addend is
obvious: it bets ∂Ui/∂x at time ti,j . The bet is bounded as average of ∂Ui+1/∂xi+1,
the boundedness of which can be seen from the recursive formula
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Uk(x1, . . . , xk) =
∫ ∞

−∞
Uk+1(x1, . . . , xk, xk + z)N0,S/N (dz),

k = i + 1, . . . ,N − 1,

and UN = U being an infinitely differentiable function with compact support.
The second addend involves the expression

(dXi,j )
2 + dDi,j = (ωi,j+1 − ωi,j )

2 − S/LN.

To analyze it, we need the following lemma.

Lemma 10.3 For all δ > 0 and β > 0, there exists a positive integer � such that

ti,j+1 < ∞ =⇒
∣
∣
∣
∣
A

�,ti,j
ti,j+1

S/LN
− 1

∣
∣
∣
∣ < δ

holds for all i = 0, . . . ,N − 1 and j = 0, . . . ,L − 1 except for a set of ω of outer
content at most β .

Lemma 10.3 can be proved similarly to (9.4). (The inequality in (9.4) is one-sided,
so it was sufficient to use only (8.7); for Lemma 10.3, both (8.7) and (8.6) should be
used.)

We know that (ω(t) − ω(ti,j ))
2 − A

�,ti,j
t is a simple capital process (see the proof

of Lemma 9.1). Therefore, there is indeed a simple trading strategy resulting in a
capital increase approximately equal to the second addend on the right-hand side of
(10.7), with a cumulative approximation error that can be made arbitrarily small on
a set of ω of inner content arbitrarily close to 1. (Analogously to the analysis of the
first addend, ∂2Ui/∂x2 is bounded as average of ∂2Ui+1/∂x2

i+1.)
Let us show that the last four terms on the right-hand side of (10.7) are negligible

when L is sufficiently large (assuming S, N , and U fixed). All the partial derivatives
involved in those terms are bounded: the heat equation implies

∂3Ui

∂D∂x2
= ∂3Ui

∂x2∂D
= 1

2

∂4Ui

∂x4
,

∂2Ui

∂x∂D
= 1

2

∂3Ui

∂x3
,

∂2Ui

∂D2
= 1

2

∂3Ui

∂D∂x2
= 1

4

∂4Ui

∂x4
,

and ∂3Ui/∂x3 and ∂4Ui/∂x4, being averages of ∂3Ui+1/∂x3
i+1 and ∂4Ui+1/∂x4

i+1,
respectively, are bounded. We can assume that

|dXi,j | ≤ C1L
−1/8,

N−1∑

i=0

L−1∑

j=0

(dXi,j )
2 ≤ C2L

1/16
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(cf. (9.7) and (9.8), respectively) for ntt(ω) ∈ K and some constants C1 and C2 (re-
member that S, N , U and, of course, α are fixed; without loss of generality we can
assume that N and L are powers of 2). This makes the cumulative contribution of the
four terms have at most the order of magnitude O(L−1/16); therefore, Sceptic can
achieve his goal for ntt(ω) ∈ K by making L sufficiently large.

To ensure that his capital is always positive, Sceptic stops playing as soon as his
capital hits 0. Increasing his initial capital by a small amount, we can make sure that
this will never happen when ntt(ω) ∈ K (for L sufficiently large).

11 Proof of the inequality ≤ in Theorem 6.2

Fix a bounded positive I-measurable functional F . Let a := ∫
F dWc; our goal

is to show that E(F ;ω(0) = c) ≤ a. Define Ω ′ to be the set of all ω ∈ Ω such
that ω(0) = c and ∀t ∈ [0,∞) : At(ω) = At(ω) = t . We know (Lemma 8.4) that
Wc(Ω

′) = 1. It is clear that τs(ω) = s for all ω ∈ Ω ′, and so ntt(ω) = ω for all
ω ∈ Ω ′. By Theorem 6.4,

E(F 1Ω ′) = E
(
F ;Ω ′) = E

(
F ◦ ntt;Ω ′) ≤ E

(
F ◦ ntt;ω(0) = c,A∞ = ∞) = a

(we do not need the opposite inequality in that theorem). Thus, for any ε > 0 there
is a positive capital process S such that S0 ≤ a + ε and lim inft→∞ St ≥ F 1Ω ′ .
We assume without loss of generality that S is bounded. Moreover, the proof
of Theorem 6.4 shows that S can be chosen time-invariant, in the sense that
Sf (t)(ω) = St (ω ◦ f ) for all time transformations f and all t ∈ [0,∞). This prop-
erty will also be assumed to be satisfied until the end of this section. In conjunc-
tion with the time-superinvariance of F (which is equivalent to (6.2)) and the last
statement of Theorem 5.1(a), it implies, for typical ω ∈ Ω satisfying ω(0) = c and
A∞(ω) = ∞,

lim inf
t→∞ St (ω) = lim inf

t→∞ St

(
ψf

) = lim inf
t→∞ Sf (t)(ψ) (11.1)

≥ (F 1Ω ′)(ψ) = F(ψ) ≥ F(ω), (11.2)

where ψ is any element of Ω ′ that satisfies ψf = ω for some time transforma-
tion f , necessarily satisfying limt→∞ f (t) = ∞ (we can always take ψ := ntt(ω)

and f := A(ω); ω = ntt(ω) ◦ A(ω) follows from ω(t) = ω(τAt (ω))). It is easy to
modify S so that S0 is increased by at most ε and the inequality between the two
extreme terms in (11.1) becomes true for all, rather than for typical, ω ∈ Ω satisfying
ω(0) = c and A∞(ω) = ∞.

Let us now consider ω ∈ Ω such that ω(0) = c but A∞(ω) = ∞ is not satis-
fied. Without loss of generality, we assume that A(ω) exists and is an element of
Ω with the same intervals of constancy as ω and that the statement in the outer-
most parentheses in (9.7) holds for some α > 0. Set b := A∞(ω) < ∞. Suppose
lim inft→∞ St (ω) ≤ F(ω) − δ for some δ > 0; to complete the proof, it suffices to
arrive at a contradiction. By the statement in the outermost parentheses in (9.7), the
function ntt(ω)|[0,b) can be continued to the closed interval [0, b] so that it becomes



Continuous-time trading and the emergence of probability 599

an element g of C[0, b]. Let Γ (g) be the set of all extensions of g that are elements
of Ω . By the time-superinvariance of F , all ψ ∈ Γ (g) satisfy F(ψ) ≥ F(ω). Since
lim inft→b− St (ψ) ≤ F(ω) − δ (remember that S is time-invariant) and the function
t �→ St is lower semicontinuous (see (2.2)), Sb(ψ) ≤ F(ω)−δ ≤ F(ψ)−δ, for each
ψ ∈ Γ (g). Continue g, which is now fixed, by measure-theoretic Brownian motion
starting from g(b), so that the extension is an element of Ω ′ with probability one. Let
us represent S in the form (2.2) and use the argument in the proof of Lemma 6.3.
We can see that St (ξ ), t ≥ b, where ξ is g extended by the trajectory of Brownian
motion starting from g(b), is a measure-theoretic stochastic process which is the sum
of a sequence of positive continuous supermartingales on the time interval [b,∞).
Now we have the following analog of (6.4) that

∫

Γ (g)

lim inf
t→∞ St dP ≤ lim inf

t→∞

∫

Γ (g)

St dP = lim inf
t→∞

∫

Γ (g)

∞∑

n=1

K
Gn,cn
t (ψ)P (dψ)

= lim inf
t→∞

∞∑

n=1

∫

Γ (g)

K
Gn,cn
t (ψ)P (dψ)

≤ lim inf
t→∞

∞∑

n=1

∫

Γ (g)

K
Gn,cn

b (ψ)P (dψ)

=
∫

Γ (g)

∞∑

n=1

K
Gn,cn

b (ψ)P (dψ)

=
∫

Γ (g)

Sb(ψ)P (dψ) ≤
∫

Γ (g)

F (ψ)P (dψ) − δ,

P referring to the underlying probability measure of the Brownian motion (con-
centrated on Γ (g)). However,

∫
Γ (g)

lim inft→∞ St dP <
∫
Γ (g)

F dP contradicts the
choice of S: cf. (11.1) and Lemma 8.4.

12 Other connections with the literature

This section discusses several areas of stochastics (in Sect. 12.1) and mathematical
finance (in Sects. 12.2 and 12.3) which are especially closely connected with the
present paper’s approach.

12.1 Stochastic integration

The natural financial interpretation of the stochastic integral is that
∫ t

0 πs dXs is the
trader’s profit at time t from holding πs units at time s of a financial security with
price path X (see e.g. [57], Remark III.5a.2). It is widely believed that

∫ t

0 πs dXs can-
not in general be defined pathwise; since our picture does not involve a probability
measure on Ω , we restricted ourselves to countable combinations (see (2.2)) of inte-
grals of simple integrands (see (2.1)). This definition served our purposes well, but in
this subsection, we discuss other possible definitions, always assuming that Xs is a
continuous function of s.
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The pathwise definition of
∫ t

0 πs dXs is straightforward when the total variation
(i.e., strong 1-variation in the terminology of Sect. 4.2) of X over [0, t] is finite; it can
be defined as e.g. the Lebesgue–Stieltjes integral. It has been known for a long time
that the Riemann–Stieltjes definition also works in the case 1/vi(π) + 1/vi(X) > 1
(Youngs’ theory; see e.g. [22], Sect. 2.2). Unfortunately, in the most interesting case
vi(π) = vi(X) = 2, this condition is not satisfied.

Another pathwise definition of stochastic integrals is due to Föllmer [26]. Föllmer
considers a sequence of partitions of the interval [0,∞) and assumes that the
quadratic variation of X exists, in a suitable sense, along this sequence. Our defi-
nition of quadratic variation given in Sect. 5 resembles Föllmer’s definition; in par-
ticular, our Theorem 5.1(a) implies that Föllmer’s quadratic variation exists for typ-
ical ω along the sequence of partitions T n (as defined at the beginning of Sect. 5).
In the statement of his theorem ([26], p. 144), Föllmer defines the pathwise integral∫ t

0 f (Xs) dXs for a C1 function f assuming that the quadratic variation of X exists
and proves Itô’s formula for his integral. In particular, Föllmer’s pathwise integral∫ t

0 f (ω(s)) dω(s) along T n exists for typical ω and satisfies Itô’s formula. There are
two obstacles to using Föllmer’s definition in this paper: in order to prove the ex-
istence of the quadratic variation, we already need our simple notion of integration
(which defines the notion of “typical” in Theorem 5.1(a)); and the class of integrals∫ t

0 f (ω(s)) dω(s) with f ∈ C1 is too restrictive for our purposes, and using it would
complicate the proofs.

An interesting development of Youngs’ theory is Lyons’s [44] theory of rough
paths. In Lyons’s theory, we can deal directly only with the rough paths X satisfy-
ing vi(X) < 2 (by means of Youngs’ theory). In order to treat rough paths satisfying
vi(X) ∈ [n,n + 1), where n = 2,3, . . . , we need to postulate the values of the it-
erated integrals Xi

s,t := ∫
s<u1<···<ui<t

dXu1 · · ·dXui
for i = 2, . . . , n (satisfying the

so-called Chen’s consistency condition). According to Corollary 4.4, only the case
n = 2 is relevant for our idealized market, and in this case Lyons’s theory is much
simpler than in general (but to establish Corollary 4.4 we already used our simple
integral). Even in the case n = 2 there are different natural choices of X2

s,t (e.g.,
those leading to Itô-type and to Stratonovich-type integrals); and in the case n > 2
the choice would inevitably become even more ad hoc.

Another obstacle to using Lyons’s theory in this paper is that the smoothness re-
strictions that it imposes are too strong for our purposes. In principle, we could use
the integral

∫ t

0 Gdω to define the capital brought by a strategy G for trading in ω by
time t . However, similarly to Föllmer’s, Lyons’s theory requires that G should take
a position of the form f (ω(t)) at time t , where f is a differentiable function whose
derivative f ′ is a Lipschitz function ([12], Theorems 3.2 and 3.6). This restriction
would again complicate the proofs.

12.2 Fundamental theorems of asset pricing

The first and second fundamental theorems of asset pricing (FTAPs, for brevity)
are families of mathematical statements; e.g., we have different statements for one-
period, multi-period, discrete-time, and continuous-time markets. A very special case
of the second FTAP, the one covering binomial models, was already discussed briefly
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in Sect. 1. In the informal comparisons of our results and the FTAPs in this subsec-
tion, we only consider the case of one security whose price path X is assumed to
be continuous. (In the background, there is also an implicit security, such as cash or
bond, serving as our numéraire.)

The first FTAP says that a stochastic model for the security price path X admits no
arbitrage (or satisfies a suitable modification of this condition, such as no free lunch
with vanishing risk) if and only if there is an equivalent martingale measure (or a
suitable modification thereof, such as an equivalent sigma-martingale measure). The
second FTAP says that the market is complete if and only if there is only one equiv-
alent martingale measure (as e.g. in the case of the classical Black–Scholes model).
The completeness of the market means that each contingent claim has a unique fair
price defined in terms of hedging.

Theorems 3.1 and 6.2 are connected (admittedly, somewhat loosely) with the sec-
ond FTAP, namely its part saying that each contingent claim has a unique fair price
provided there is a unique equivalent martingale measure. For example, Theorem 3.1
and Corollary 3.7 essentially say that each contingent claim of the form 1E , where
E ∈ I and ω(0) = c for all ω ∈ E, has a fair price and its fair price is equal to the
Wiener measure Wc(E) of E. The scarcity of contingent claims that we can show
to have a fair price is not surprising: it is intuitively clear that our market is heavily
incomplete. According to Remark 3.4, we can replace the Wiener measure by many
other measures. The proofs of both the second FTAP and our Theorems 3.1 and 6.2
construct fair prices of contingent claims using hedging arguments. Extending this
paper’s results to a wider class of contingent claims is an interesting direction of
further research.

Theorems 3.1 and 6.2 are much more closely connected with a generalized version
of the second FTAP (see [27], Theorem 5.32, for a discrete-time version) which says,
in the first approximation, that the range of arbitrage-free prices of a contingent claim
coincides with the range of the expectations of its payoff function with respect to the
equivalent martingale measures. We can even say (completely disregarding mathe-
matical rigour for a moment) that Theorem 6.2 is a special case of the generalized
second FTAP: by the Dubins–Schwarz result, ω is a time-changed Brownian mo-
tion under the martingale measures, and so the I-measurability of F implies that the
unique fair price of the contingent claim with the payoff function F is

∫
F dWω(0).

The conditions of the first, second and generalized second FTAP include a given
probability measure on the sample space (our stochastic model of the market). In the
case of continuous time, it is this postulated probability measure that allows one to
use Itô’s notion of stochastic integral for defining basic financial notions such as the
resulting capital of a trading strategy. No such condition is needed in the case of our
results.

The notion of arbitrage is pivotal in mathematical finance; in particular, it enters
both the first FTAP and the generalized second FTAP. This paper’s results and discus-
sions were not couched in terms of arbitrage, although there were two places where
arbitrage-type notions did enter the picture.

First, we used the notion of coherence in Sect. 7. The most standard notion of
arbitrage is that no trading strategy can start from zero capital and end up with positive
capital that is strictly positive with a strictly positive probability. Our condition of
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coherence is similar but much weaker; and of course, it does not involve probabilities.
We show that this condition is satisfied automatically in our framework.

The second place where we need arbitrage-type notions is in the interpretation of
results such as Corollaries 4.2 and 4.4–4.7. For example, Corollary 4.4 implies that
vi[0,1](ω) ∈ {0,2} for typical ω. Remembering our definitions, this means that either
vi[0,1](ω) ∈ {0,2} or a predefined trading strategy makes infinite capital (at time 1)
starting from one monetary unit and never risking going into debt. If we do not believe
that making infinite capital risking only one monetary unit is possible for a predefined
trading strategy (i.e., that the market is “efficient,” in a very weak sense), we should
expect vi[0,1](ω) ∈ {0,2}. This looks like an arbitrage-type argument, but there are
two important differences:

– Our condition of market efficiency is only needed for the interpretation of our re-
sults; their mathematical statements do not depend on it. The standard no-arbitrage
conditions are used directly in mathematical theorems (such as the first FTAP and
the generalized second FTAP).

– The usual no-arbitrage conditions are conditions on the currently observed prices
or our stochastic model of the market (or both). On the contrary, our condition of
market efficiency describes what we expect to happen, or not to happen, on the
actual price path.

It should be noted that our condition of market efficiency (a predefined trading
strategy is not expected to make infinite capital risking only one monetary unit) is
much closer to Delbaen and Schachermayer’s [18] version of the no-arbitrage con-
dition, which is known as NFLVR (no free lunch with vanishing risk), than to the
classical no-arbitrage condition. The classical no-arbitrage condition only considers
trading strategies that start from 0 and never go into debt, whereas the NFLVR condi-
tion allows trading strategies that start from 0 and are permitted to go into slight debt.
Our condition of market efficiency allows risking one monetary unit, but this can be
rescaled so that the trading strategies considered start from zero and are only allowed
to go into debt limited by an arbitrarily small ε > 0.

Remark 12.1 Mathematical statements of the first FTAP sometimes involve the con-
dition that X should be a semimartingale: see e.g. Delbaen and Schachermayer’s
version in [18], Theorem 1.1. However, this condition is not a big restriction: in the
same paper, Delbaen and Schachermayer show that the NFLVR condition already im-
plies that X is a semimartingale under some additional conditions, such as X being
locally bounded; see [18], Theorem 7.2. A direct proof of the last result, using finan-
cial arguments and not depending on the Bichteler–Dellacherie theorem, is given in
the recent paper [3].

We could have used the notion of arbitrage to restate part of Theorem 6.2: if the
contingent claim with a bounded and I-measurable payoff function F : Ω → [0,∞)

is worth strictly more than
∫

F dWω(0) at time 0, we can turn capital 0 at time 0
into capital 1 at time ∞. Indeed, we can short such a contingent claim and divide the
proceeds

∫
F dWω(0) + ε, where ε > 0, into two parts: investing

∫
F dWω(0) + ε/2

into a trading strategy bringing capital F(ω) at time ∞ allows us to meet our obli-
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gation; we keep the remaining ε/2 (and we can scale up our portfolio to replace ε/2
by 1). We did not introduce the corresponding notion of arbitrage formally since this
restatement does not seem to add much to the theorem.

12.3 Model uncertainty and robust results

In this subsection, we discuss some known approaches to mathematical finance that
do not assume from the outset a given probability model.

One natural relaxation of the standard framework replaces the probability model
with a family, more or less extensive, of probability models (there is a “model
uncertainty”). Results proved under model uncertainty may be called robust. We
get some robustness for free already in the standard Black–Scholes framework:
option prices do not depend on the drift parameter μ in the probability model
dXt/Xt = μdt + σ dWt , W being Brownian motion. “Volatility uncertainty,” i.e.,
uncertainty about the value of σ , is much more serious. A natural assumption, some-
times called the “uncertain volatility model,” is that σ can change dynamically be-
tween known limits σ and σ , σ < σ . The study of volatility uncertainty under this
assumption was originated by Avellaneda et al. [2] and Lyons [43] and has been the
object of intensive study recently; whereas older paper concentrated on robust pric-
ing of contingent claims whose payoff depends on the underlying security’s value at
one maturity date, recent work treats the much more difficult case of general path-
dependent contingent claims. This research has given rise to two important develop-
ments: Denis and Martini’s [19] “almost pathwise” theory of stochastic calculus and
Peng’s [50, 51] G-stochastic calculus (in our current context, G refers to the function
G(y) := supσ∈[σ,σ ] σ 2y).

Definitions similar to our (2.3) and (6.1) are standard in the literature on model un-
certainty: see e.g. Mykland [46], (3.3), Denis and Martini [19] (the definition of Λ(f )

on p. 834), or Cassese [9], (4.4). Different terms corresponding to our “outer con-
tent” have been used, such as “conservative ask price” (Mykland) and “cheapest risk-
less superreplication price” (Denis and Martini); we use Mykland’s “conservative ask
price” as a generic notion. A major difficulty for such definitions lies in defining the
class of capital processes; it is here that pre-specifying a family of probability models
proves to be particularly useful.

Finally, we discuss approaches that are completely model-free. Bick and Will-
inger [4] use Föllmer’s construction of stochastic integrals discussed in Sect. 12.1
to define capital processes of trading strategies. Even though their framework is not
stochastic, the conditions that they impose on the price paths in order for dynamic
hedging to be successful are not so different from the standard conditions. The as-
sumption used in their Proposition 1 is, in their notation, [Y,Y ]t = Y 0 + σ 2t , where
S(t) = exp(Y (t)) is the price path and [Y,Y ]t is the pathwise quadratic variation of its
logarithm; this is similar to the Black–Scholes model. They also consider (in Propo-
sition 3) a more general case d[S,S]t = β2(S(t), t), but β has to be a continuous
function that is known in advance.

Section 4 of Dawid et al.’s [14] can be recast as a study of the conservative ask
price of the American option paying f (X∗

t ), where f is a fixed positive and increas-
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ing function, t is the exercise time (chosen by the option’s owner), X∗
t := maxs≤t Xs

(time is discrete in [14]), and Xs ≥ 0 is the price of the underlying security at
time s. Corollary 2 in [14] implies that the conservative ask price of this option is
X0

∫ ∞
X0

f (x)

x2 dx. This is compatible with Theorem 6.2 since X0/x
2, x ∈ [X0,∞), is

the density of the maximum of Brownian motion started at X0 and stopped when it
hits 0 (cf. the first statement of Theorem 2.49 in [45]).

Let us assume for simplicity that X0 = 1 (as in [28]). The simplest American
option with payoff f (X∗

t ) is the one corresponding to the identity function f (x) = x;
it is a kind of a perpetual lookback option (as discussed in e.g. [23], Sect. 5). The
conservative ask price of this option is, of course, infinite:

∫ ∞
1 (1/x)dx = ∞. To get

a finite price, we can fix a finite maturity date T and consider a European option
with payoff X∗

T := supt≤T Xt (we no longer assume that time is discrete). To find
a non-trivial conservative ask price of this European lookback option, Hobson [28]
considers trading strategies that trade not only in the underlying security X but also
in call options on X with maturity date T and all possible strike prices (making some
regularity assumptions about the call prices); he also finds the conservative ask prices
for some modifications of European lookback options. In order to avoid the use of the
stochastic integral, the dynamic part of the trading strategies that he considers is very
simple; there is only finite trading activity in each security. Hobson’s paper has been
developed in various directions: see e.g. the recent review [29] and references therein.
One important issue that arises when we specify the prices of vanilla options at the
outset is whether these prices lead to arbitrage opportunities; it has been investigated,
for various notions of arbitrage, in [13] and [10].

An advantage of the present paper’s main results is that the prices they provide are
“almost” two-sided (serve as both ask and bid prices): cf. Corollary 3.7. Their disad-
vantage is that they allow us only to price such a narrow class of contingent claims:
their payoff functions are required to be I-measurable. In principle, Hobson’s idea of
using vanilla options for pricing exotic options may lead to interesting developments
of the present paper’s approach. One could consider a whole spectrum of trading
frameworks, even in the case of one underlying security X. One extreme is the frame-
work of the present paper and, in the case of a discontinuous price path, ref. [63]. The
security is not supported by any derivatives, which leads to the paucity of contingent
claims that can be priced. The other extreme is where, alongside X, we are allowed
to trade in call or put options of all possible strikes and maturity dates. Perhaps the
most interesting research questions arise in between the two extremes, where only
some call or put options are available for use in hedging.
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Appendix: Hoeffding’s process

In this appendix, we check that Hoeffding’s original proof of his inequality ([30],
Theorem 2) remains valid in the game-theoretic framework. This observation is fairly
obvious, but all details will be spelled out for convenience of reference. This appendix
is concerned with the case of discrete time, and it will be convenient to redefine some
notions (such as “process”).

Perhaps the most useful product of Hoeffding’s method is a positive supermartin-
gale starting from 1 and attaining large values when the sum of bounded martingale
differences is large. Hoeffding’s inequality can be obtained by applying the maximal
inequality to this supermartingale. However, we do not need Hoeffding’s inequality
in this paper, and instead of Hoeffding’s positive supermartingale, we have a positive
“supercapital process,” to be defined below.

Here is a version of the basic forecasting protocol from [55]:

Game of forecasting bounded variables

Players: Sceptic, Forecaster, Reality

Protocol:
Sceptic announces K0 ∈ R.
FOR n = 1,2, . . . :

Forecaster announces interval [an, bn] ⊆ R and number μn ∈ (an, bn).
Sceptic announces Mn ∈ R.
Reality announces xn ∈ [an, bn].
Sceptic announces Kn ≤ Kn−1 + Mn(xn − μn).

On each round n of the game Forecaster outputs an interval [an, bn] which, in his
opinion, will cover the actual observation xn to be chosen by Reality, and also out-
puts his expectation μn for xn. The forecasts are being tested by Sceptic, who is
allowed to gamble against them. The expectation μn is interpreted as the price of
a ticket which pays xn after Reality’s move becomes known; Sceptic is allowed to
buy any number Mn, positive or negative (perhaps zero), of such tickets. When xn

falls outside [an, bn], Sceptic becomes infinitely rich; without loss of generality we
include the requirement xn ∈ [an, bn] in the protocol; furthermore, we always assume
that μn ∈ (an, bn). Sceptic is allowed to choose his initial capital K0 and is allowed
to throw away part of his money at the end of each round.

It is important that the game of forecasting bounded variables is a perfect-
information game: each player can see the other players’ moves before making his
or her (Forecaster and Sceptic are male and Reality is female) own move; there is no
randomness in the protocol.

A process is a real-valued function defined on all finite sequences

(a1, b1,μ1, x1, . . . , aN , bN ,μN,xN), N = 0,1, . . . ,

of Forecaster’s and Reality’s moves in the game of forecasting bounded variables. If
we fix a strategy for Sceptic, Sceptic’s capital KN , N = 0,1, . . . , becomes a function
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of Forecaster’s and Reality’s previous moves; in other words, Sceptic’s capital be-
comes a process. The processes that can be obtained this way are called supercapital
processes.

The following theorem is essentially inequality (4.16) in [30].

Theorem A.1 For any h ∈ R, the process

N∏

n=1

exp

(

h(xn − μn) − h2

8
(bn − an)

2
)

is a supercapital process.

Proof Assume without loss of generality that Forecaster is additionally required to
always set μn := 0. (Adding the same number to an, bn and μn on each round will
not change anything for Sceptic.) Now we have an < 0 < bn.

It suffices to prove that on round n Sceptic can turn a capital of K into a capital of
at least

K exp

(

hxn − h2

8
(bn − an)

2
)

;

in other words, that he can obtain a payoff of at least

exp

(

hxn − h2

8
(bn − an)

2
)

− 1

using the available tickets (paying xn and costing 0). This will follow from the in-
equality

exp

(

hxn − h2

8
(bn − an)

2
)

− 1 ≤ xn

ehbn − ehan

bn − an

exp

(

−h2

8
(bn − an)

2
)

, (A.1)

which can be rewritten as

exp(hxn) ≤ exp

(
h2

8
(bn − an)

2
)

+ xn

ehbn − ehan

bn − an

. (A.2)

Our goal is to prove (A.2). By the convexity of the function exp, it suffices to prove

xn − an

bn − an

ehbn + bn − xn

bn − an

ehan ≤ exp

(
h2

8
(bn − an)

2
)

+ xn

ehbn − ehan

bn − an

, (A.3)

i.e.,

bne
han − ane

hbn

bn − an

≤ exp

(
h2

8
(bn − an)

2
)

, (A.4)

i.e.,

ln
(
bne

han − ane
hbn

) ≤ h2

8
(bn − an)

2 + ln(bn − an). (A.5)
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(The logarithm on the left-hand side of (A.5) is well defined since the numerator of
the left-hand side of (A.4) is strictly positive, which follows from the left-hand side
of (A.4) being the value at xn = 0 of the left-hand side of (A.3), linear in xn and
strictly positive for both xn = an and xn = bn.) The derivative of the left-hand side
of (A.5) in h is

anbne
han − anbne

hbn

bnehan − anehbn

and the second derivative, after cancellations and regrouping, is

(bn − an)
2 (bne

han)(−ane
hbn)

(bnehan − anehbn)2
.

The last ratio is of the form u(1 −u) where 0 < u < 1. Hence it does not exceed 1/4,
and the second derivative itself does not exceed (bn − an)

2/4. Inequality (A.5) now
follows from the second-order Taylor expansion of the left-hand side around h = 0. �
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