
Finance Stoch (2012) 16:477–511
DOI 10.1007/s00780-011-0169-5

Optimal dividend policies for a class
of growth-restricted diffusion processes
under transaction costs and solvency constraints

Lihua Bai · Martin Hunting · Jostein Paulsen

Received: 12 February 2010 / Accepted: 26 October 2010 / Published online: 19 January 2012
© Springer-Verlag 2012

Abstract In this paper, we consider a company whose surplus follows a rather gen-
eral diffusion process and whose objective is to maximize expected discounted div-
idend payments. With each dividend payment, there are transaction costs and taxes,
and it is shown in Paulsen (Adv. Appl. Probab. 39:669–689, 2007) that under some
reasonable assumptions, optimality is achieved by using a lump sum dividend barrier
strategy, i.e., there is an upper barrier ū∗ and a lower barrier u∗ so that whenever the
surplus reaches ū∗, it is reduced to u∗ through a dividend payment. However, these
optimal barriers may be unacceptably low from a solvency point of view. It is argued
that, in that case, one should still look for a barrier strategy, but with barriers that
satisfy a given constraint. We propose a solvency constraint similar to that in Paulsen
(Finance Stoch. 4:457–474, 2003); whenever dividends are paid out, the probability
of ruin within a fixed time T and with the same strategy in the future should not ex-
ceed a predetermined level ε. It is shown how optimality can be achieved under this
constraint, and numerical examples are given.
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1 Introduction

Finding optimal dividend strategies is a classical problem in the financial and ac-
tuarial literature. The idea is that the company wants to pay some of its surplus as
dividends, and the problem is to find a dividend strategy that maximizes the expected
total discounted dividends received by the shareholders. The typical time horizon is
until ruin occurs, i.e., until the surplus is negative for the first time.

However, left to their own, financial institutions may make decisions that can jeop-
ardize their solvency, and those with a claim on the company, e.g. account holders of
a bank or customers of an insurance company, have an unacceptably high probability
of losing all or part of their claims. As a consequence, most countries impose some
regulation on financial companies, and in addition the companies themselves will
usually have their own, albeit sometimes lax, capital requirements.

The task for the management is therefore not to maximize expected discounted
dividends as such, but to do it under proper solvency constraints. One such constraint
was suggested in [6], and we shall apply the same idea in this paper. We also let
the capital of the company follow the same diffusion process as in [6], originally
presented in [11]. To explain this, in [11] it was proved that with their model, and
provided there are no costs or taxes associated with dividend payments, an optimal
policy, if it exists, is of barrier type, i.e., there is a barrier u∗ so that whenever cap-
ital reaches u∗, dividends are paid with infinitesimal amounts so that capital never
exceeds u∗. The resulting accumulated dividend process is a singular process, hence
the name singular control. With the same setup, it was proved in [6] that when sol-
vency requirements prohibit dividend payments unless capital is at least u0 > u∗,
then it is optimal to use a singular control at u0. Therefore, it is natural to use u0
as a barrier, and it was suggested that u0 could be determined as follows: whenever
capital is at u0, ruin within a fixed time T by following the same policy should not ex-
ceed a small, predetermined number ε. We denote the corresponding u0 by uε . Thus
the problem of optimal dividend payments was linked to the problem of calculating
ruin probabilities, the latter being a key concept in risk theory. Clearly, increasing
u0 implies that the ruin probability is decreased, so the problem can be reduced to
a one-dimensional search problem for uε . Although in both [11] and [6] there were
no transaction costs or taxes, proportional costs or taxes will not change the problem
significantly. However, when each dividend payment carries a fixed cost, the prob-
lem changes from a singular control problem to an impulse control problem. It was
shown in [7], using the same diffusion model as in [11], that if there is an optimal
dividend strategy, it will be of a two-barrier type. To explain this, there is a lower
barrier u∗ ≥ 0 and an upper barrier ū∗ so that whenever capital reaches ū∗, dividends
are paid bringing the capital down to u∗.

In this paper, we make the same assumptions as in [7], but slightly differently
formulated. With each dividend payment, there is a fixed cost K and a tax rate 1 − k
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with 0 < k < 1. We shall argue that if the optimal policy is too risky, one should look
for a lower barrier uε > 0 and an upper barrier ūε to maximize expected discounted
dividends and at the same time satisfy the solvency constraint as presented in the
above paragraph. This problem is more difficult than that in [6] since we must look
for a pair (uε, ūε), not just a number uε . One issue is to find a fast method to calculate
the ruin probability for a given lower and upper barrier, and we shall show how we
can adapt the Thomas algorithm for solving tridiagonal systems together with the
Crank–Nicolson algorithm to solve the relevant partial differential equations. The
paper ends with numerical examples.

2 The model and a general optimality result

Let (Ω, F , {Ft }t≥0,P ) be a probability space satisfying the usual conditions, i.e., the
filtration {Ft }t≥0 is right-continuous and P -complete. Assume that the uncontrolled
surplus process follows the stochastic differential equation

dXt = μ(Xt) dt + σ(Xt ) dWt , X0 = x, (2.1)

where W is a Brownian motion on the probability space and μ(x) and σ(x) are
Lipschitz-continuous. Let the company pay dividends to its shareholders, but at a
fixed transaction cost K > 0 and a tax rate 0 < 1 − k < 1. This means that if ξ > 0
is the amount by which the capital is reduced, then the net amount of money the
shareholders receive is kξ −K . Since every dividend payment results in a transaction
cost K > 0, the company should not pay out dividends continuously, but only at
discrete time epochs. Therefore, a strategy can be described by

π = (
τπ

1 , τπ
2 , . . . , τπ

n , . . . , ξπ
1 , ξπ

2 , . . . , ξπ
n , . . .

)
,

where τπ
n and ξπ

n denote the times and amounts of dividends. For each π , we define
the corresponding ruin time as

τπ := inf
{
t ≥ 0 : Xπ

t < 0
}
.

Thus, when applying the strategy π , the resulting surplus process Xπ is given by

Xπ
t = x +

∫ t∧τπ

0
μ

(
Xπ

s

)
ds +

∫ t∧τπ

0
σ
(
Xπ

s

)
dWs −

∞∑

n=1

1{τπ
n <t∧τπ }ξπ

n . (2.2)

The process Xπ is left-continuous with right limits, so when applying e.g. Itô’s for-
mula, it will be on the right-continuous version with left limits {Xt+}. Also, we define
ΔXt = Xt+ − Xt .

Sufficient conditions for existence and uniqueness of (2.2) are assumptions A1
and A2 below.

Definition 2.1 A strategy π is said to be admissible if we have the following.

(i) 0 ≤ τπ
1 and for n ≥ 1, τπ

n+1 > τπ
n on {τπ

n < ∞}.
(ii) τπ

n is a stopping time with respect to {Ft }t≥0, n = 1,2, . . . .



480 L. Bai et al.

(iii) ξπ
n is measurable with respect to Fτπ

n
, n = 1,2, . . . .

(iv) P(limn→∞ τπ
n ≤ T ) = 0, ∀T ≥ 0.

(v) 0 < ξπ
n ≤ Xπ

τn
.

We denote the set of all admissible strategies by Π .

For each admissible strategy π , we define the performance function Vπ(x) as

Vπ(x) = Ex

[ ∞∑

n=1

e−λτπ
n
(
kξπ

n − K
)
1{τπ

n ≤τπ }

]

,

where Px denotes the probability measure conditioned on X0 = x. The quantity
Vπ(x) represents the expected total discounted dividends received by the sharehold-
ers until ruin when the initial reserve is x. Note that it follows from (2.2) and condition
(v) above that for an admissible policy, Xπ

t ≡ 0 for t > τπ .
Define the optimal return function

V ∗(x) = sup
π∈Π

Vπ(x)

and the optimal strategy, if it exists, by π∗. Then Vπ∗(x) = V ∗(x).

Definition 2.2 A lump sum dividend barrier strategy π = πū,u with parameters ū

and u satisfies for Xπ
0 < ū

τπ
1 = inf

{
t > 0 : Xπ

t = ū
}
, ξπ

1 = ū − u,

and for every n ≥ 2

τπ
n = inf

{
t > τπ

n−1 : Xπ
t = ū

}
, ξπ

n = ū − u.

When Xπ
0 ≥ ū,

τπ
1 = 0, ξπ

1 = Xπ
0 − u,

and for every n ≥ 2, τπ
n is defined as above. For a given lump sum dividend barrier

strategy πū,u, the corresponding value function is denoted by Vū,u(x).

The importance of lump sum dividend barrier strategies is exemplified in e.g. The-
orem 2.3 below, proved in [7]. In order to present the theorem, we make a list of
assumptions.

A1. |μ(x)| + |σ(x)| ≤ C(1 + x) for all x ≥ 0 and some C > 0.
A2. μ(x) and σ(x) are continuously differentiable and Lipschitz-continuous, and the

derivatives μ′(x) and σ ′(x) are Lipschitz-continuous.
A3. σ 2(x) > 0 for all x ≥ 0.
A4. μ′(x) ≤ λ for all x ≥ 0, where λ is the discounting rate.

For g ∈ C2(0,∞), define the operator L by

Lg(x) = 1

2
σ 2(x)g′′(x) + μ(x)g′(x) − λg(x).
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It is well known, see e.g. [5], Theorem 6.5.3, that under the assumptions A1–A3, any
solution of Lg = 0 is in C3(0,∞). Let g1(x) and g2(x) be two independent solutions
of Lg(x) = 0, chosen so that g(x) = g1(0)g2(x) − g2(0)g1(x) has g′(0) > 0. Any
such solution will be called a canonical solution. Then any solution of LV (x) = 0
with V (0) = 0 and V ′(0) > 0 is of the form

V (x) = cg(x), c > 0.

Consider the following set of problems.

B1: LV (x) = 0, 0 < x < ū∗,

V (0) = 0,

V (x) = V (ū∗) + k(x − ū∗), x > ū∗,

B2: V (ū∗) = V (u∗) + k(ū∗ − u∗) − K,

V ′(ū∗) = k,

V ′(u∗) = k,

B3: V (ū∗) = kū∗ − K,

V ′(ū∗) = k.

Note that k and K are equivalent to 1
1+d1

and d0
1+d1

in [7].

Theorem 2.3 (Theorem 2.1 in [7]) Assume that A1–A4 hold. Then exactly one of the
following three cases will occur.

(i) B1 + B2 have a unique solution for unknown V (x), ū∗ and u∗, and we have
V ∗(x) = V (x) = Vū∗,u∗(x) for all x ≥ 0. Thus the lump sum dividend barrier
strategy π∗ = πū∗,u∗ is an optimal strategy.

(ii) B1 + B3 have a unique solution for unknown V (x), and it holds that
V ∗(x) = V (x) = Vū∗,0(x) for all x ≥ 0. Thus the lump sum dividend barrier
strategy π∗ = πū∗,0 is an optimal strategy.

(iii) There does not exist an optimal strategy, but

V ∗(x) = lim
ū→∞Vū,u(ū)(x)

and this limit exists and is finite for every x ≥ 0. In terms of a canonical solution,

V ∗(x) = kg(x)

limū→∞ g′(ū)
.

Here Vū,u(ū)(x) = supu∈[0,ū) Vū,u(x).

Remark 2.4 As pointed out in Remark 2.2e in [7], if limx→∞ g′(x) = ∞, then either
B1+B2 or B1+B3 apply, hence a solution exists. That limx→∞ g′(x) = ∞ is almost
a necessary condition for existence of a solution can be shown as in Proposition 2.4
of [8]. Therefore, for simplicity we typically assume that limx→∞ g′(x) = ∞.
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Here is a useful sufficient condition for limx→∞ g′(x) = ∞. The proof is given in
Sect. 7.

Proposition 2.5 Assume A1–A4 and that there exist an x0 ≥ 0 and an ε > 0 so that

μ′(x) ≤ λ − ε, ∀x ≥ x0.

Then for any canonical solution g of Lg(x) = 0,

lim
x→∞g′(x) = ∞.

Remark 2.6 Arguing as in the end of the proof of Theorem 4.1, it follows that if there
exists an x0 ≥ 0 so that

μ′(x) = λ, x ≥ x0,

then limx→∞ g′(x) < ∞. Therefore, Proposition 2.5 is quite sharp.

3 Optimality under payout restrictions

Consider e.g. an insurance company that wants to use the optimal barriers ū∗ and
u∗ for its dividend payments. However, when policyholders pay their premiums in
advance, they expect to have their claims covered. It is therefore reasonable that the
company should not be allowed to pay dividends if that makes the surplus too small.
One natural condition is that the surplus is not allowed to be less than some u0 > 0
after a dividend payment. Mathematically, such a restriction for a policy π can be
written as

∑

0≤τπ
n ≤τπ

1{Xτπ
n +<u0} = 0. (3.1)

Let Π0 denote the set of all admissible strategies satisfying (3.1). Define the new
optimal return function V ∗

0 (x) as

V ∗
0 (x) = sup

π∈Π0

Vπ(x). (3.2)

Our aim is to find the optimal return function V ∗
0 (x) and the optimal strategy π0 ∈ Π0

such that Vπ0(x) = V ∗
0 (x).

Following Remark 2.4, we assume that limx→∞ g′(x) = ∞ so that either B1 + B2
or B1+B3 have a solution. Trivially, if B1+B2 have a solution V (x) for some c∗, ū∗
and u∗ ≥ u0, the optimal strategy in Theorem 2.3(i) is feasible under the constraint
(3.1). Then V ∗

0 (x) = V (x) and the optimal strategy is as in Theorem 2.3(i).
Therefore we consider the cases when B1 + B2 have a solution V (x) for some

c∗, ū∗ and u∗ < u0, or when B1 + B3 have a solution V (x) for some c∗, ū∗ and
u∗ = 0. In these cases, the optimal strategy given by Theorem 2.3 does not satisfy the
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constraint (3.1). Consequently, we need to look for the optimal return function and
the optimal strategy again. To this end, consider the problem for unknown V and ū0:

C: LV (x) = 0, 0 < x < ū0,

V ′(ū0) = k,

V (0) = 0,

V (x) = V (u0) + k(x − u0) − K, x ≥ ū0.

The following result is proved in Sect. 7.

Theorem 3.1 Assume that A1–A4 hold and that limx→∞ g′(x) = ∞. Let u0 > u∗,
where u∗ is given in Theorem 2.3. Then Problem C has a unique solution for unknown
V and ū0 and

V ∗
0 (x) = V (x) = Vū0,u0

(x),

where V ∗
0 (x) is defined in (3.2). Thus the lump sum dividend barrier strategy πū0,u0

is an optimal strategy in Π0. Also, for given u1 so that u∗ < u0 < u1, it holds for the
corresponding optimal upper barriers that ū∗ < ū0 < ū1.

According to Theorems 2.3 and 3.1, for a given lower barrier u0, the optimal
strategy is the lump sum barrier strategy πũ,u1

, where

(ũ, u1) =
{

(ū0, u0), if u0 > u∗,
(ū∗, u∗), if u0 ≤ u∗.

(3.3)

Here (ū∗, u∗) is as in Theorem 2.3, while ū0 is as in Theorem 3.1. This addresses the
problem of not being allowed to pay dividends that bring the capital too far down.
The next result looks at the other end. What if the company cannot make a dividend
payment when it wants, but has to postpone it until capital reaches a higher level? Let
ū1 > ũ and let Π1 be the set of all admissible policies satisfying

∑

0≤τπ
n ≤τπ

1{Xτπ
n +<u1∪Xτπ

n
<ū1} = 0,

i.e., all policies so that paying dividends when capital is less than ū1 as well as re-
ducing it below u1 through a dividend payment are ruled out. Define the new optimal
return function V ∗

1 (x) as

V ∗
1 (x) = sup

π∈Π1

Vπ(x). (3.4)

Consider the problem for unknown V :

D: LV (x) = 0, 0 < x < ū1,

V (0) = 0,

V (x) = V (u1) + k(x − u1), x > ū1.
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We then have the following theorem. It is proved in Sect. 7.

Theorem 3.2 Assume that A1–A4 hold and that limx→∞ g′(x) = ∞. Let u0 and
ū1 > ũ be given, where ũ is defined in (3.3). Then Problem D has a unique solution
for unknown V and

V ∗
1 (x) = V (x) = Vū1,u1

(x),

where V ∗
1 (x) is defined in (3.4) and u1 in (3.3). Thus the lump sum dividend barrier

strategy πū1,u1
is an optimal strategy in Π1.

The message of Theorems 3.1 and 3.2 is that if the optimal barriers are too small,
it is still optimal to use lump sum barrier strategies with the barriers as close to the
optimal ones as possible in some sense. Therefore, we should look for barrier strate-
gies, but with barriers sufficiently large to satisfy solvency requirements. This is the
topic of Sect. 4.

4 Optimality under a solvency constraint

Having argued in Sect. 3 that barrier strategies are optimal also under reasonable
constraints, we show in this section how optimal barriers can be found that satisfy a
natural solvency restriction. To describe this, let T < ∞ be a fixed time horizon and
define the survival probability as

φū,u(T , x) = Px

(
τπū,u > T

)
,

where as before Px means that X0 = x and πū,u is the lump sum dividend strategy
with barriers ū and u. For a given ruin tolerance ε, we say that the strategy πū,u is
solvency admissible if

φū,u(T ,u) ≥ 1 − ε. (4.1)

Note that φū,u(T ,u) = φū,u(T , ū). This means that for a solvency admissible strategy
πū,u, at the time of paying a dividend, the probability of survival during the next time
interval of length T using the same strategy cannot be smaller than 1 − ε.

Also note that even when Theorem 2.3(iii) applies, condition (4.1) in principle
need not hold for any δ-optimal dividend strategy. The reason for this is that u(ū)

may be bounded as ū → ∞. The following result shows that even in case (iii) there
will exist a δ-optimal dividend strategy. It is proved in Sect. 7.

Theorem 4.1 Under the assumptions of Theorem 2.3(iii), for any b > 0 and ū > 0,
there exists a ũ(ū) < ū satisfying ũ(ū) → ∞ as ū → ∞ so that

Vū,ũ(ū)(x) −→ V ∗(x), ∀x ∈ [0, b] as ū → ∞.

By this result we can choose a u so large that for any δ > 0, there is a δ-optimal
lump sum dividend barrier that satisfies the constraint (4.1). Consequently, from now
on it is assumed that limx→∞ g′(x) = ∞ as in Remark 2.4.
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As in [6] it can be proved that if there exists a C1,2((0, T )× (0, ū)) function v that
satisfies

vt (t, x) = 1

2
σ 2(x)vxx(t, x) + μ(x)vx(t, x), (t, x) ∈ (0, T ) × (0, ū), (4.2)

with initial value

v(0, x) = 1, 0 ≤ x ≤ ū, (4.3)

and boundary value for t > 0

v(t,0) = 0 and v(t, ū) = v(t, u), (4.4)

then v(T , x) = φū,u(T , x) is the survival probability. Here vt means the partial deriva-
tive with respect to t and so on. It is well known, see e.g. [12], Theorem 3.4.1,
that if σ 2(x) and μ(x) are in C∞(0, ū), then any weak solution of (4.2) is in
C∞((0, T ) × (0, ū)).

Let us discuss how the optimal solvency admissible strategy can be found. By
definition, for u > 0, clearly

φū2,u(T , x) > φū1,u(T , x), ū2 > ū1,

φū,u2
(T , x) > φū,u1

(T , x), u2 > u1.

Let φ(T , x) = Px(Xt > 0, ∀t ∈ [0, T ]) be the survival probability when there is no
control. If φ(T ,u) ≤ 1 − ε, then u cannot be the lower barrier of a solvency admis-
sible dividend strategy since paying dividends surely increases the ruin probability.
However, if φ(T ,u) > 1 − ε, then for sufficiently large ū, πū,u will be a solvency ad-
missible strategy. The lower bound um for the lower barrier in a solvency admissible
strategy is therefore of interest, and it is given by

φ(T ,um) = 1 − ε.

It is easy to show that if there exists a C1,2((0, T ) × (0,∞)) function w that satisfies

wt(t, x) = 1

2
σ 2(x)wxx(t, x) + μ(x)wx(t, x), (t, x) ∈ (0, T ) × (0,∞), (4.5)

with initial value

w(0, x) = 1, 0 ≤ x ≤ ∞,

and boundary value for t > 0

w(t,0) = 0 and lim
x→∞w(t, x) = 1, (4.6)

then we have w(T ,x) = φ(T , x). Again, by [12], Theorem 3.4.1, if σ 2(x) and μ(x)

are C∞(0,∞), then any weak solution of (4.5) is C∞((0, T ) × (0,∞)).
We are now ready for the optimality algorithm. For that, it is assumed that

limx→∞ g′(x) = ∞.
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1. Calculate the optimal V ∗(x) with corresponding barriers ū∗ and u∗.
2. Calculate φū∗,u∗(T ,u∗). If φū∗,u∗(T ,u∗) ≥ 1 − ε, the optimal strategy satisfies the

solvency constraint and we are done. If not, continue to Step 3.
3. Find um as the unique solution of φ(T ,um) = 1 − ε. This can be done using a

one-dimensional search.
4. Let δ > 0 be a small number, and set ui = um + iδ, i = 1,2, . . . .
5. For each ui , find the corresponding optimal upper barrier by solving Problem C,

and call this ui . Calculate φui,ui
(T ,ui) and if φui,ui

(T ,ui) ≥ 1 − ε, set ūi = ui .
Also let c̄i be the scaling factor so that the solution is V ∗

0 (x) = c̄ig(x) for x ≤ ūi .
On the other hand, if φui,ui

(T ,ui) < 1 − ε, increase ui in steps of δ until the
solvency constraint is satisfied. Let ūi be the corresponding upper barrier and c̄i

the scaling factor found by solving Problem D.
6. Do this until c̄i falls significantly. Then let cε be the highest c̄i and ūε and uε the

corresponding ūi and ui , respectively. The optimal solvency admissible strategy
is then πūε,uε

, and the corresponding value function is

Vε(x) =
{

cεg(x), 0 ≤ x ≤ ūε,

Vε(ūε) + k(x − ūε), x > ūε.

Equations (4.2) and (4.5) together with their respective initial and boundary condi-
tions are not easily solvable, but taking the Laplace transform turns them into ordinary
differential equations. To see how, consider (4.2) and define

ṽ(s, x) = Lv(s) =
∫ ∞

0
e−st v(t, x) dt.

Straightforward calculations, using (4.3), show that ṽ satisfies

1

2
σ 2(x)ṽxx(s, x) + μ(x)ṽx(s, x) − sṽ(s, x) = −1. (4.7)

A particular solution is given by ṽp(s, x) = s−1. Let ṽ1(s, x) and ṽ2(s, x) be inde-
pendent solutions of the homogeneous equation in (4.7). Then

ṽ(s, x) = a1(s)ṽ1(s, x) + a2(s)ṽ2(s, x) + 1

s
,

where a1 and a2 are determined from the initial and boundary conditions. Now
v(t,0) = 0 implies that ṽ(s,0) = 0 as well, and v(t, ū) = v(t, u) implies that
ṽ(s, ū) = ṽ(s, u). Therefore, after some straightforward calculations,

a1(s) = 1

s

ṽ2(s, ū) − ṽ2(s, u)

ṽ2(s,0)(ṽ1(s, ū) − ṽ1(s, u)) − ṽ1(s,0)(ṽ2(s, ū) − ṽ2(s, u))
, (4.8)

a2(s) = −1

s

ṽ1(s, ū) − ṽ1(s, u)

ṽ2(s,0)(ṽ1(s, ū) − ṽ1(s, u)) − ṽ1(s,0)(ṽ2(s, ū) − ṽ2(s, u))
. (4.9)
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Let L−1
h (t) be the inverse Laplace transform. Then Ls−1(t) = 1, and using the Laplace

transform property for integrals, we get

v(T , x) = 1 −
∫ T

0
L−1

h1+h2
(t) dt,

where

hi(s, x) = −sai(s)ṽi(s, x), i = 1,2.

Therefore, P(τπ ∈ dt) = L−1
h1+h2

(t) dt when π = πū,u.
Similarly, the function w̃(s, x) = Lw(s) also satisfies (4.7) with w̃(s,0) = 0 and

limx→∞ w̃(s, x) = s−1. Thus, if we let w̃1(s, x) and w̃2(s, x) be two independent
solutions of the homogeneous equation and assume that ŵi(s) = limx→∞ w̃i(s, x),
i = 1,2 exist, then

w̃(s, x) = b1(s)w̃1(s, x) + b2(s)w̃2(s, x) + 1

s
,

where

b1(s) = 1

s

1

w̃2(s,0)
ŵ1(s)
ŵ2(s)

− w̃1(s,0)
,

b2(s) = 1

s

1

w̃1(s,0)
ŵ2(s)
ŵ1(s)

− w̃2(s,0)
.

Inversion formulas are similar to those above.

Example 4.2 Assume that μ and σ 2 are constants. Then it is easy to see that

ṽi (s, x) = w̃i(s, x) = eci (s)x, i = 1,2,

where

c1(s) = − μ

σ 2
+

√
μ2

σ 4
+ 2s

σ 2
> 0 and c2(s) = − μ

σ 2
−

√
μ2

σ 4
+ 2s

σ 2
< 0.

Plugging this into (4.8) and (4.9) gives ṽ(s, x). Inverting this Laplace transform is
unfortunately not straightforward.

Also ŵ1(s) = ∞ and ŵ2(s) = 0, hence b1(s) = 0 and b2(s) = −s−1. Therefore,

w̃(s, x) = 1

s
− 1

s
ec2(s)x .

This can be inverted using standard tables for the Laplace transform. However, the
solution can also be obtained by other methods, see e.g. [3, p. 196], and is given by

w(T ,x) = 1 − 1√
2π

x

σ

∫ T

0
t−

3
2 e

− (x+μt)2

2σ2 t dt.
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Therefore, um is given as the unique solution (in x) of

x =
√

2πσε

∫ T

0 t− 3
2 e

− (x+μt)2

2σ2 t dt

.

5 Numerical solutions

In order to provide a complete numerical solution to the problem, several differential
equations, both ordinary and partial, have to be solved.

For problems B, C and D, it is necessary to find a canonical solution g, either
analytically, or if that is not possible or practical, numerically. In the latter case, the
Runge–Kutta method can be used, together with linear interpolation between the grid
points, this for g, g′ and g′′. In case the assumption of Proposition 2.5 does not hold,
the numerical solution can be helpful to assess whether limx→∞ g′(x) = ∞ or not.

Problems B1 + B2 or B1 + B3 In [7], it is shown how this can be reduced to a one-
dimensional search problem, but for completeness and since the notation is somewhat
different, we include it here. This method will also reveal whether an optimum solu-
tion exists.

1. Find x∗ ∈ (0,∞), if it exists, so that g′′(x∗) = 0. If g is convex, we set x∗ = 0,
and if it is concave we set x∗ = ∞. In the second case there is no solution, and by
Lemma 7.2(b), x∗ = 0 is equivalent to μ(0) ≤ 0, so this case is easy to establish.

2. Choose x < x∗ and let c = k
g′(x)

so that cg′(x) = k.

3. Find (if possible) y > x∗ so that g′(y) = k
c
. If this is not possible, try with a larger

x until it is satisfied.
4. Calculate k(y −x)−c(g(y)−g(x)). If this is larger than K , increase x. Otherwise

decrease x.
5. Repeat the process until a solution is obtained, or until it is clear that there is

no solution. In case there is a solution, upon convergence u∗ = x, ū∗ = y and
V ∗(x) = cg(x) for x ≤ ū∗.

Problem C Assume it is clear that limx→∞ g′(x) = ∞. Then the following easy
recipe works.

1. Choose x > u0 and let c = k
g′(x)

so that cg′(x) = k.
2. Calculate k(x − u0) − c(g(x) − g(u0)). If this is larger than K , decrease x, other-

wise increase x.
3. Repeat the process until convergence is obtained. Upon convergence, ū0 = x and

V (x) = cg(x) for x ≤ ū0.

Problem D The unique solution is given in (7.14) in Sect. 7.
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The function v(t, x) of (4.2)–(4.4) This is a standard PDE, but with nonstandard
boundary conditions. It turns out that the Crank–Nicolson algorithm together with an
adaptation of the Thomas algorithm to solve tridiagonal systems is well suited for
this problem. For more details on the Crank–Nicolson and the Thomas algorithms,
the reader can consult [1], Chaps. 2.3 and 2.9.

To explain how this adaptation works, let h be the grid length and ih, with
i = 0,1, . . . ,m, the gridpoints so that mh = ū. Similarly, let k be the grid length
and jk, with j = 0,1, . . . , n, the gridpoints so that nk = T . Previously k was defined
as the tax rate, but there should be no ambiguity so we follow the standard nota-
tion. Let σ 2

i = σ 2(ih) and μi = μ(ih), i = 0,1, . . . ,m. With v
j
i an approximation to

v(ih, jk), the Crank–Nicolson finite difference scheme is

1

k

(
v

j+1
i − v

j
i

) = 1

4h2

[
σ 2

i

(
v

j+1
i+1 − 2v

j+1
i + v

j+1
i−1 + v

j

i+1 − 2v
j
i + v

j

i−1

)

+ μih
(
v

j+1
i+1 − v

j+1
i−1 + v

j

i+1 − v
j

i−1

)]
.

Collecting terms, this can be written as

αiv
j+1
i−1 + βiv

j+1
i + γiv

j+1
i+1 = d

j
i , (5.1)

where, with r = k/h2,

αi = − r

4

(
σ 2

i − μih
)
,

βi = 1 + 1

2
rσ 2

i ,

γi = − r

4

(
σ 2

i + μih
)
,

d
j
i = −αiv

j

i−1 +
(

1 − 1

2
rσ 2

i

)
v

j
i − γiv

j

i+1.

To start the iterations, we use the initial value v(0, x) = 1, giving v0
i = 1 as well, and

so the d0
i , i = 0,1, . . . ,m, can be calculated.

Now to the Thomas algorithm. To use it, for numerical stability we should have

|αi | + |γi | < |βi |, i = 0,1, . . . ,m. (5.2)

Let us check this condition:

1. σ 2
i ≥ μih. Then |αi | + |γi | = 1

2 rσ 2
i < βi , so this case is unproblematic.

2. σ 2
i < μih. Then |αi | + |γi | = 1

2 rμih < βi if and only if r < 2
μih−σ 2

i

.

In order to have case 1 at all gridpoints, we can let

h ≤ max
i

σ 2
i

μi

,

and then for good convergence, a typical choice of r is r = 1
2 .
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Assume that (5.2) is satisfied, and for simplicity write vi = v
j+1
i and di = d

j
i in

(5.1). The idea of the Thomas algorithm is to write

vi = pi+1vi+1 + qi+1 (5.3)

for unknown pi+1 and qi+1. Using this in (5.1) with i − 1 instead of i, we get

αi(pivi + qi) + βivi + γivi+1 = di. (5.4)

Comparing (5.3) and (5.4) gives

pi+1 = − γi

αipi + βi

and qi+1 = di − αiqi

αipi + βi

. (5.5)

The boundary condition v(t,0) = 0 implies that 0 = v0 = p1v1 + q1, which is
satisfied if p1 = q1 = 0. We can now use (5.5) to recursively calculate (pi, qi),
i = 2, . . . ,m. Then using (5.3) backwards yields

vm = vm−1 − qm

pm

1

pm

(
vm−2 − qm−1

pm−1
− qm

)
= · · · = 1

P m
�+1

v� −
m∑

i=�+1

qi

P m
i

,

where

P m
i =

m∏

j=i

pj .

The boundary condition v(t, ū) = v(t, u) implies that vm = v�, where h� = u. There-
fore,

vm = −
∑m

i=�+1
qi

Pm
i

1 − 1
Pm

�+1

= q�+1 + ∑m
i=�+2 P i−1

�+1qi

1 − P m
�+1

.

We can now go backwards using (5.3) again.

Remark 5.1 Since k = rh2 in the Crank–Nicolson method, the space grid is typically
much coarser than the time grid. In our problem, we are searching for optimal points
in the space variable, and therefore a fully implicit scheme with k = rh for some r

may be more suitable, since this allows for a finer space grid with the same computa-
tion time. The relation (5.1) will still apply, but with different coefficients, and so the
Thomas algorithm is again applicable. However, we have not tried this method.

The function w(t, x) of (4.5)–(4.6) This is basically the same problem as that dis-
cussed above, except that we impose instead of the nonstandard boundary condition
v(t, ū) = v(t, u) the standard boundary condition w(t, ū) = 1 for some large ū. This
will result in a slight overestimate of the survival probability, but if ū is chosen large
enough, it should not be a real problem. Deciding when ū is large enough is not an
obvious task, but one way may be to keep x fixed at a moderate value, and then try
with increasing ū until the solution w(0, x) stabilizes. Given ū, the Crank–Nicolson
algorithm together with the standard Thomas algorithm should work well. Also, to
find w analytically is easier than to find v, as we saw in Example 4.2.
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6 Numerical examples

In this section, we give two numerical examples where optimal strategies with and
without the solvency constraint are compared. In all plots, solid lines are for the case
with the solvency constraint, while dashed lines are without solvency constraints.
Each figure is split into three panels, where the first panel shows the optimal upper
and lower barriers, both without and with the solvency constraint. The second panel
shows the amount of dividends paid each time, i.e., ūε − uε and ū∗ − u∗. The third
panel shows the constants cε and c∗ so that the value functions equal Vε(x) = cεg(x),
x ≤ ūε and V ∗(x) = c∗g(x), x ≤ ū∗, where g is a canonical solution to be specified
in each example. This means that for x ≤ ū∗, 1 − cε

c∗ is the percentage loss of value
due to the solvency constraint.

Before we give the examples, a few words on the numerics. All programs were
written in R, but with subprograms in C for the number crunching. The simple algo-
rithm described in Sect. 4 had to be modified. The reason is that the finite difference
scheme (5.1) for solving (4.2) is accurate of order 2. However, a perturbation of size
h in the boundary condition of a PDE will in general induce a change in the solution
of order O(h). Experimentally, this seems to be the case here also for perturbations
of ū and u, i.e., the most accurate numerical evaluations of the survival probability
φū,u for a given lump sum strategy πū,u seem to come when u and ū both are nodes
on the PDE grid. This is especially true for u. The general idea behind the program
is therefore to minimize the calculations of off-grid u and ū by defining the grids so
that u is on the grid. To find the smallest solvency admissible ū for a fixed u > um,
the program iterates as follows:

1. Start with a fairly coarse grid and find two adjacent points v̄1 < w̄1 so that accord-
ing to the numerical solution, πw̄1,u is solvency admissible, while πv̄1,u is not.
Then use one iteration of the secant method to find ū1 between v̄1 and w̄1.

2. Repeat the procedure with a finer grid, and find adjacent points v̄2 < w̄2 with the
same properties as v̄1 and w̄1. Since the grid has changed, so has the numerical
solution of the ruin probability, and frequently this results in v̄2 > w̄1.

3. Repeat the process a certain number of times. We repeated it until there were about
100 million nodes, where we used k = 1

2h2.

Although a bit circumstantial, this routine was in fact quite efficient in terms of to-
tal running time. As is seen from several of the figures below, the upper estimated
values of ū are sometimes quite erratic. However, this does not matter much since
the corresponding values of cε do not vary much. When comparing different plots, it
is important to note that the y-axis varies, and when the span on the y-axis is very
small, the results may look more erratic than they actually are.

Example 6.1 Let μ(x) = μ and σ(x) = σ be constants, so that (2.1) becomes

Xt = x + μt + σWt .

By Proposition 2.5, limx→∞ g′(x) = ∞, hence an optimal strategy always exists.
In Figs. 1–5, μ = σ = 1 and the canonical solution chosen is

g(x) = αe−θx sinh(βx)
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Fig. 1 Values for varying λ in Example 6.1. The other values are kept fixed at T = 10, k = 0.95, K = 0.05,
ε = 0.01

Fig. 2 Values for varying T in Example 6.1. The other values are kept fixed at λ = 0.1, k = 0.95,
K = 0.05, ε = 0.01

with α = 0.9636 (a bit arbitrary, admittedly) and

θ = μ

σ 2
and β = 1

σ 2

√
2λσ 2 + μ2.

The other parameter values used are

λ = 0.1, T = 10, k = 0.95, K = 0.05, ε = 0.01.

In the figures, four of these are kept fixed, while one is varying. In the discussion
below, ū is generic for both the unconstrained upper barrier ū∗ and the constrained
ūε , and similarly with u.

In Fig. 1, the discounting factor λ is varied. When there is no solvency constraint,
we see from the first panel that both upper and lower barriers decrease as λ increases,
which reflects the fact that with large values of λ, early payments are important, since
later payments are heavily discounted. When λ is small, the solvency constraint is not
binding due to the long term perspective, and hence the necessity to avoid early ruin
provides sufficiently large barriers. As λ increases, the constraint becomes binding,
and the lower barrier even increases. The reason for this is that with a given constraint,
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Fig. 3 Values for varying k in Example 6.1. The other values are kept fixed at λ = 0.1, T = 10,
K = 0.05, ε = 0.01

Fig. 4 Values for varying K in Example 6.1. The other values are kept fixed at λ = 0.1, T = 10, k = 0.95,
ε = 0.01

Fig. 5 Values for varying ε in Example 6.1. The other values are kept fixed at λ = 0.1, T = 10, k = 0.95,
K = 0.05

there is more to gain by decreasing the upper barrier ūε a lot, even if that means a
small increase in the lower barrier uε . However, it is interesting to see from the middle
panel that the actual payout ū − u is not much affected by the solvency constraint.
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From the right panel, we see that the relative impact of the solvency constraint on
the values c∗ and cε increases quite a lot with λ, but for moderate values of λ it only
causes small reductions in the value of the company.

In Fig. 2, the time horizon T varies. Without the solvency constraint, the optimum
is independent of T , which is also seen from the figure. For small T , the optimiser
gives sufficiently high survival probability, hence the solvency constraint is not bind-
ing. As T increases, the solvency constraint kicks in and both the lower and upper
barriers increase, but it is seen from the middle panel that the actual dividend payout
is again not much affected by the constraint. Why the payout first goes down and then
increases, we cannot explain. The ruggednes of the graph in the middle panel is due
to numerical issues as discussed above. However, looking at the scale on the y-axis,
we see that the variations are not severe. From the right panel, it is seen that although
the barriers are much influenced by the solvency constraint, the actual values cε are
far less so.

In Fig. 3, the retention rate k varies. As k increases, the amount received,
k(ū − u) − K , gets positive for lower amounts ū − u paid, and so both barriers de-
crease with k, both in the unconstrained and the constrained case. The effect of the
solvency constraint is just to increase the barriers, but from the middle panel we see
that again the payout ū − u is not much affected. From the right panel, it is seen that
the actual value of the company is not much affected neither.

In Fig. 4, the fixed cost K is varied. Since for K large, the payout ū − u must
be large in order for the dividend received, k(ū − u) − K , to be positive, the optimal
payout must increase with K , which is confirmed in the middle panel. For the rest, the
picture is much the same as before, with the solvency constrained barriers lying above
those without the solvency constraint, but with the payout ū − u rather unaffected.
Also, as seen from the right panel, the solvency constraint does not reduce the value
of the company by very much.

Finally, in Fig. 5 the ruin tolerance ε varies. For sufficiently large values of ε,
the solvency constraint is not binding, but as soon as the constraint becomes binding
(read the x-axis from right to left), the picture is much the same as before, with both
lower and upper barriers increased due to the solvency constraint, but with payouts
ū − u almost the same, and values cε moderately lower than the optimal c∗. When
the solvency constraint is binding, the somewhat rugged behavior of the curves in the
first two panels is again due to numerical issues, but it is seen from the right panel
that the optimal value cε is not much influenced. Hence these numerical issues are
rather unproblematic.

The tentative conclusion we can draw from this example is that the solvency con-
straint can have a quite large impact on the optimal barriers, but except in rather
extreme cases, the impact on the actual payout ū−u as well as on the value cε versus
c∗ is much more modest. This is good news for the shareholders, since what counts
for them is how much smaller cε is than c∗, i.e., their “loss” due to the solvency
constraint.

Figure 6 shows the values of Vε(x) and V ∗(x) for the standard parameter choice.
This gave (ūε, uε) = (4.65,3.13) and (ū∗, u∗) = (3.81,2.22). Although this is not
so easy to see from the figure, V ∗(x) is concave up to x = 2.82 and then convex.
As to Vε(x), it is also concave up to x = 2.82, and then convex up to ūε . However,



Optimal dividends with solvency constraints 495

Fig. 6 Values of Vε(x) and V ∗(x) for varying x in Example 6.1. The parameters are λ = 0.1, T = 10,
k = 0.95, K = 0.05, ε = 0.01

V ′
ε(ūε−) = 0.978 > V ′

ε(ūε+) = k = 0.95, and so Vε is not convex from x = 2.82.
That V ′

ε(ūε−) ≥ V ′
ε(ūε+) is a general fact, proved in Lemma 7.6 in Sect. 7.

Example 6.2 Let the basic income process follow the linear Brownian motion

Pt = x + μt + σP WP,t ,

and assume that assets are invested in a risky investment so that the dynamics of the
noncontrolled process is

dXt = dPt + Xt dRt .

We assume that R is a Black–Scholes investment generating process, meaning that
Rt = (λ − α)t + σRWR,t , and that WP and WR are independent. Here λ can be seen
as the market rate, also used for discounting, while α is a proportional cost associated
with the investment.

Letting

Wt =
∫ t

0

1
√

σ 2
P + σ 2

RX2
s

(σP dWP,s + σRXs dWR,s),

it follows easily from Lévy’s theorem, see e.g. [3], Theorem 3.3.16, that W is a Brow-
nian motion. This gives the representation

dXt = (
μ + (λ − α)Xt

) +
√

σ 2
P + σ 2

RX2
t dWt .

By Proposition 2.5, when α > 0, we have limx→∞ g′(x) = ∞, hence an optimal strat-
egy exists. Actually, using arguments similar to those in Sect. 3 in [7], together with
the solutions given in the Appendix in [9], it can be proved that an optimal strategy
exists if and only if α > 0. Again using the solutions in that Appendix, a canonical
solution can be found, but it is complicated; so we used the more convenient Runge–
Kutta method to obtain a numerical solution of g(x), scaled so that g′(0) = 1.

In Figs. 7–12, we have μ = σP = 1, σR = 0.25 and α = 0.02. The other param-
eters used are the same as in Example 6.1, and in the figures five of these are kept
fixed, while one is varying.



496 L. Bai et al.

Fig. 7 Values for varying λ in Example 6.2. The other values are kept fixed at T = 10, k = 0.95, K = 0.05,
ε = 0.01

Fig. 8 Values for varying T in Example 6.2. The other values are kept fixed at λ = 0.1, k = 0.95,
K = 0.05, ε = 0.01

In Fig. 7, the discounting factor λ is varied. This is a somewhat different situation
from that in Fig. 1. Ignoring the random elements, in Example 6.1, the only income is
the linear μ, which is heavily deflated with an increasing λ. In the present example,
there is in addition an investment income λ − α, which is exponential in nature and
therefore partially offsets an increase in λ. When λ is small, the linear income μ

dominates, but as λ increases, the exponential investment income takes over. This
can explain the middle panel in Fig. 7 where for small λ, the payout decreases with λ

as in Fig. 1, but as λ increases, it starts to increase again. From the left panel, we see
that the upper barrier starts to increase when λ gets large, both in the unconstrained
and in the constrained case. However, from the right panel, it is seen that the overall
effect of increasing λ is somewhat smaller in Fig. 7 than in Fig. 1, which is to be
expected.

Figures 8, 9, 10, 11 do not differ very much from Figs. 2–5, except that the effect
of the solvency constraint seems even less serious here. In Figs. 8 and 11 (as well as in
Fig. 7), the solvency constraint caused some ruggedness due to numerical issues, but
again looking at the corresponding right panels shows that this is of no importance.

In Fig. 12, the effect of varying the cost factor α is shown. With small α, the invest-
ment return λ−α is almost as large as the discounting factor λ, and therefore there is
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Fig. 9 Values for varying k in Example 6.2. The other values are kept fixed at λ = 0.1, T = 10, K = 0.05,
ε = 0.01

Fig. 10 Values for varying K in Example 6.2. The other values are kept fixed at λ = 0.1, T = 10, k = 0.95,
ε = 0.01

Fig. 11 Values for varying ε in Example 6.2. The other values are kept fixed at λ = 0.1, T = 10, k = 0.95,
K = 0.05

no urgency to pay out dividends; hence the barriers can be set high, and the solvency
constraint is not binding. As α increases, it is more urgent to pay dividends, and
therefore the optimal unconstrained barriers will not satisfy the solvency constraint.
Again the payouts ū − u are almost unaffected by the solvency constraint, and from
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Fig. 12 Values for varying α in Example 6.2. The other values are kept fixed at λ = 0.1, T = 10, k = 0.95,
K = 0.05

the right panel, we see that the reduction in value due to the solvency constraint is not
very large.

The conclusion here is much the same as in Example 6.1; the solvency constraint
can have a fairly large impact on the optimal policy, but the actual payout as well as
the value of the company are only moderately affected.

We also tried with an “investment risk free” version, i.e., with σR = 0 so that

dXt = (
μ + (λ − α)Xt

)
dt + σ dWt .

However, this gave much the same results, indicating that the results are quite robust.

7 Proofs

In this section, we prove Proposition 2.5, Theorems 3.1 and 3.2 and Theorem 4.1. To
do so, we need the following lemmas, which are the same as Lemmas 2.1 and 2.2
in [7].

Lemma 7.1 Let μ(x) and σ(x) satisfy A2–A4 and let f be a solution of Lf (x) = 0.
Consider the interval [0,∞).

(a) If f has a zero on [0,∞), then f ′ has no zero on [0,∞).
(b) If f ′(x̃) > 0 and f ′′(x̃) ≤ 0 for some x̃ ∈ [0,∞), then f is a concave function on

[0, x̃).

Lemma 7.2 Let μ(x) and σ(x) satisfy A2–A4 and let f satisfy Lf (x) = 0, f (0) = 0
and f (x̂) > 0 for some x̂ > 0. Then:

(a) f is strongly increasing.
(b) There is an x∗ ≥ 0 (possibly taking the value +∞) so that f is concave on (0, x∗)

and convex on (x∗,∞). In particular, x∗ = 0 if and only if μ(0) ≤ 0, and trivially
f ′′(x∗) = 0 when 0 < x∗ < ∞.

Proof of Proposition 2.5 To keep fixed initial conditions, we restrict the definition
of a canonical solution to mean that g(0) = 0 and g′(0) = 1. First note that for any
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δ > 0,

μ(x) < μ(0) + λx0 + δ + (λ − ε)x,

and therefore it follows from Lemma 2.3 in [7] that it is sufficient to prove that for
any a, a canonical solution of

1

2
σ 2(x)f ′′(x) + (

a + (λ − ε)x
)
f ′(x) − λf (x) = 0

satisfies limx→∞ f ′(x) = ∞. By Lemma 7.2(b), such a canonical solution f is either
ultimately convex or ultimately concave. In either case, there exists c ≤ ∞ so that

lim
x→∞f ′(x) = c and lim

x→∞
f (x)

x
= c.

Assume that c < ∞. Then, since

f ′(x) = 1 +
∫ x

0
f ′′(y) dy,

there must exist a sequence {xn} with xn → ∞ and f ′′(xn) = o(x−1
n ). Also

1

2

σ 2(x)

x
f ′′(x) = −a + (λ − ε)x

x
f ′(x) + λ

f (x)

x
−→ εc as x → ∞.

Then, considering only the leading terms,

σ 2(xn)

x2
n

∼ 2εc

xno(x−1
n )

−→ ∞ as n → ∞.

But this contradicts A1, hence c = ∞, and we are done. �

The next step is to prove that Problem C really has a solution.

Lemma 7.3 Under the assumptions of Theorem 3.1, Problem C has exactly one so-
lution and ū0 > x∗, where x∗ is given in Lemma 7.2.

Proof We are looking for a solution (c̄, ū0) of

c̄g′(ū0) = k, (7.1)

c̄g(ū0) = c̄g(u0) + k(ū0 − u0) − K. (7.2)

Let

ĉ =
⎧
⎨

⎩

k
g′(x∗) , u0 ≤ x∗,

k
g′(u0)

, u0 > x∗.

For given c > 0, consider the equation

cg′(uc) = k for some uc ≥ max{u0, x
∗}. (7.3)
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If u0 ≤ x∗, since g′(x) is increasing on [x∗,∞), it is easy to see that (7.3) has a
solution if and only if c ≤ ĉ. A similar argument shows that this holds when u0 > x∗
as well. We can therefore define the function

I (c) =
∫ uc

u0

(
k − cg′(y)

)
dy, 0 < c ≤ ĉ.

Then (7.1) and (7.2) are equivalent to the existence of a c with I (c) = K . By the
implicit function theorem, uc is continuously differentiable with respect to c and
I ′(c) = − ∫ uc

u0
g′(y) dy < 0, i.e., I is continuous and strictly decreasing in c ∈ (0, ĉ).

Also, limc→0 uc = ∞, hence limc→0 I (c) = ∞ as well. Therefore, if we can prove
that I (ĉ) ≤ 0, there must exist a unique c̄ ∈ (0, ĉ) so that I (c̄) = K .

To prove that I (ĉ) ≤ 0, assume first that u0 ≤ x∗. Then since g′ has a minimum
at x∗,

ĉg′(x) = g′(x)

g′(x∗)
k ≥ k

and consequently I (ĉ) ≤ 0. If u0 > x∗, then g′ is increasing on [u0,∞), hence
ĉg′(x) ≥ k for x ∈ [u0,∞), and so I (ĉ) ≤ 0 again.

Denoting the corresponding uc̄ by ū0 so that c̄g′(ū0) = k, we thus obtain

V (x) =
{

c̄g(x), 0 ≤ x ≤ ū0,

V (ū0) + k(x − ū0), x > ū0. �

Lemma 7.4 Under the assumptions of Theorem 3.1, let V be as in Lemma 7.3. Then
V ′(x) < k for x ∈ [u0, ū0).

Proof By Lemma 7.2, it is sufficient to prove that V ′(u0) < k. If u0 ≥ x∗, the result
is trivially true by convexity of g on [x∗,∞). Assume therefore that u0 < x∗ and let
V ∗(x) = c∗g(x) be the optimal value from Theorem 2.3. Assume that c̄ ≥ c∗. Then,
since c∗g′(ū∗) = c̄g′(ū0), it is necessary that ū0 ≤ ū∗. But then

K =
∫ ū0

u0

(
k − c̄g′(x)

)
dx ≤

∫ ū0

u0

(
k − c∗g′(x)

)
dx <

∫ ū∗

u∗

(
k − c∗g′(x)

)
dx = K,

a contradiction. Therefore c̄ < c∗ and by concavity of g on [u∗, x∗],
V ′(u0) = c̄g′(u0) < c∗g′(u0) < c∗g′(u∗) = k. �

For a function φ : [0,∞) �→ [0,∞), define the maximum utility operator M by

Mφ(x) :=
{

sup{φ(x − η) − K + kη : 0 ≤ η ≤ x − u0}, if x ∈ [u0,∞),

−∞, if x ∈ [0, u0).
(7.4)

Lemma 7.5 Let V be as in Lemma 7.3. Then V satisfies the quasi-variational
inequalities
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LV (x) ≤ 0, (7.5)

V (x) ≥ MV (x), (7.6)
(
V (x) − MV (x)

)
LV (x) = 0, (7.7)

V (0) = 0. (7.8)

Furthermore, MV (x) < V (x) for x ∈ [0, ū0) and MV (x) = V (x) for x ∈ [ū0,∞).

Proof We first prove (7.5). Since LV (x) = 0 when x ≤ ū0, assume that x > ū0.
Since ū0 > x∗ by Lemma 7.3, V ′′(ū0−) > 0 while trivially V ′′(ū0+) = 0. Using that
V (x) = V (ū0) + k(x − ū0), we get by assumption A4 that

LV (x) = μ(x)k − λ
(
V (ū0) + k(x − ū0)

)

= k

∫ x

ū0

(
μ′(y) − λ

)
dy + kμ(ū0) − λV (ū0)

≤ kμ(ū0) − λV (ū0)

≤ 1

2
σ 2(ū0−)V ′′(ū0−) + μ(ū0−)V ′(ū0−) − λV (ū0−) = 0.

We proceed to prove (7.6). For x ∈ [0, u0], MV (x) = −∞, hence the inequality is
trivially satisfied. When x > u0 by Lemma 7.4 and the definition of V (x), we have
V ′(x) < k when x ∈ [u0, ū0) and V ′(x) = k when x ∈ [ū0,∞). Therefore the func-
tion V (x − η) + kη − K is increasing in η for nonnegative η and takes its maximum
when η = x − u0. Hence, for x ∈ [u0, ū0),

MV (x) − V (x) = V (u0) + k(x − u0) − K − V (x)

=
∫ x

u0

(
k − V ′(y)

)
dy − K

<

∫ ū0

u0

(
k − V ′(y)

)
dy − K = 0.

For x ≥ ū0, we have

MV (x) = V (u0) + k(x − u0) − K = V (x).

This also proves (7.7) since LV (x) = 0 for x ∈ (0, ū0) and MV (x) = V (x) for
x ∈ [ū0,∞). Finally (7.8) follows by the definition of V . �

Proof of Theorem 3.1 Let π ∈ Π0 be an arbitrary strategy. By definition, V is con-
tinuously differentiable on (0,∞) and twice continuously differentiable on the set
(0, ū0)∪ (ū0,∞). However, for x = ū0, the continuity of V ′′ might fail. Since the set
{0 ≤ t < τπ : Xπ

t = ū0} has Lebesgue measure zero under each Px , we can use Itô’s
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formula, see e.g. [2, p. 460], together with (7.5) to get

e−λ(t∧τπ )V
(
Xπ

t∧τπ+
) = V (x) +

∫ t∧τπ

0
e−λs L

(
Xπ

s

)
ds

+
∫ t∧τπ

0
e−λsσ

(
Xπ

s

)
V ′(Xπ

s

)
dWs

+
∑

0≤τπ
n ≤t∧τπ

e−λτπ
n
(
V

(
Xπ

τπ
n +

) − V
(
Xπ

τπ
n

))

≤ V (x) +
∫ t∧τπ

0
e−λsσ

(
Xπ

s

)
V ′(Xπ

s

)
dWs

+
∑

0≤τπ
n ≤t∧τπ

e−λτπ
n
(
V

(
Xπ

τπ
n +

) − V
(
Xπ

τπ
n

))
. (7.9)

Here we can let V ′′(ū0) = V ′′(ū0−). Another argument for this formula would be to
use Lemma 7.8 below, where now k = k1.

Since V ′ is bounded and the process satisfies assumptions A1–A4, it is fairly
straightforward to show that

∫ t∧τπ

0
e−λsσ

(
Xπ

s

)
V ′(Xπ

s

)
dWs

is a martingale. Taking expectations on both sides of (7.9) therefore yields

Ex

[
e−λ(t∧τπ )V

(
Xπ

t∧τπ+
)]

≤ V (x) + Ex

[ ∑

0≤τπ
n ≤t∧τπ

e−λτπ
n
(
V

(
Xπ

τπ
n +

) − V
(
Xπ

τπ
n

))]
. (7.10)

From (7.6) and the fact that Xπ
τπ
n

> Xπ
τπ
n + ≥ u0, it follows that

e−λτπ
n
(
V

(
Xπ

τπ
n +

) − V
(
Xπ

τπ
n

)) ≤ −e−λτπ
n
(
kξπ

n − K
)
, n = 1,2, . . . (7.11)

on {τπ
n ≤ t ∧ τπ }. Then (7.10) and (7.11) together give

0 ≤ V (x) − Ex

[ ∞∑

n=1

e−λτπ
n
(
kξπ

n − K
)
1{τπ

n ≤t∧τπ }

]

− Ex

[
e−λ(t∧τπ )V

(
Xπ

t∧τπ+
)]

. (7.12)

Letting t → ∞ in (7.12), we have by nonnegativity of V that

V (x) ≥ Ex

[ ∞∑

n=1

e−λτπ
n
(
kξπ

n − K
)
1{τπ

n ≤τπ }

]

= Vπ(x),

which implies that V (x) ≥ V ∗
0 (x).
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Now consider the lump sum dividend barrier strategy πū0,u0
given in Theorem 3.1.

Since X
π0
s does not exceed ū0, we have L(X

π0
s ) = 0 a.s. for 0 < s < τπ0 . Therefore

the inequality in (7.9) becomes an equality with the strategy π0, i.e.,

e−λ(t∧τπ0 )V
(
X

π0
t∧τπ0 +

) = V (x) +
∫ t∧τπ0

0
e−λsσ

(
Xπ0

s

)
V ′(Xπ0

s

)
dWs

+
∑

0≤τ
π0
n ≤t∧τπ0

e−λτ
π0
n

(
V

(
X

π0

τ
π0
n +

) − V
(
X

π0

τ
π0
n

))
. (7.13)

Assume that x = X0 ≥ ū0. Then

V (x) = MV (x) = V (u0) + k(x − u0) − K, x ≥ ū0,

and

ξ
π0
1 = x − u0, ξπ0

n = ū0 − u0, n = 2,3, . . . .

We can conclude that

V
(
X

π0

τ
π0
1 +

) − V
(
X

π0

τ
π0
1

) = V
(
X

π0

τ
π0
1

− ξ
π0
1

) − V
(
X

π0

τ
π0
1

) = −kξ
π0
1 + K

and

V
(
X

π0

τ
π0
n +

) − V
(
X

π0

τ
π0
n

) = −kξπ0
n + K, n = 2,3, . . . .

Also by boundedness of X
π0
t∧τπ0 + and the fact that P(τπ0 < ∞) = 1 and X

π0
τπ0 + = 0,

it follows from the bounded convergence theorem that

lim
t→∞Ex

[
e−λ(t∧τπ0 )V

(
X

π0
t∧τπ0 +

)] = 0.

Therefore, taking expectations in (7.13) and then letting t → ∞ gives

V (x) = Vū0,u0
(x),

which implies that V (x) ≤ V ∗
0 (x). In summary, we get V (x) = V ∗

0 (x) = Vū0,u0
(x).

When the initial reserve X0 = x < ū0, the result is proved similarly.
To prove the last part of the theorem, let u∗ ≤ u0 < u1, and let Vi(x) = Vūi ,ui

(x)

be the two value functions. Write Vi(x) = c̄ig(x) for x ∈ [0, ūi]. By what we have
just proved, V0(x) > V1(x), hence c̄0 > c̄1. Therefore, for V ′

i (ūi ) = k it is necessary
that ū1 > ū0. �

Now we turn to the proof of Theorem 3.2. To prove that there is exactly one solu-
tion to the equations in Problem D, let V (x) = c̄g(x) so that we get the equation

c̄g(ū1) = c̄g(u1) + k(ū1 − u1) − K.

Solving for c̄ gives

V (x) =
{

k(ū1−u1)−K

g(ū1)−g(u1)
g(x), 0 ≤ x ≤ ū1,

V (ū1) + k(x − ū1), x > ū1.
(7.14)
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Lemma 7.6 Let V be the solution of Problem D. Then there is û ∈ [u1, ū1] so that
V ′(x) ≤ k on [u1, û] and V ′(x) ≥ k on [û, ū1].

Proof Since ũ is an upper optimality point, see (3.3) and what follows there, we know
by the previous analysis that the corresponding value function is

V ∗
0 (x) =

{
k

g(x)
g′(ũ)

, 0 < x ≤ ũ,

V ∗
0 (u1) + k(x − u1) − K, x ≥ ũ.

Since V ∗
0 (ũ) = V ∗

0 (u1) + k(ũ − u1) − K , we conclude that

k

∫ ũ

u1

(
1 − g′(y)

g′(ũ)

)
dy = K.

Define the function G as

G(x) = k

∫ ū1

u1

(
1 − g′(y)

g′(x)

)
dy, ũ ≤ x ≤ ū1.

Since ū1 > ũ > x∗, g′(x) is increasing on [ũ, ū1]. Therefore, G is a continuous and
increasing function. Furthermore,

G(ũ) = k

∫ ū1

u1

(
1 − g′(y)

g′(ũ)

)
dy

= k

∫ ũ

u1

(
1 − g′(y)

g′(ũ)

)
dy + k

∫ ū1

ũ

(
1 − g′(y)

g′(ũ)

)
dy

= K + k

∫ ū1

ũ

(
1 − g′(y)

g′(ũ)

)
dy ≤ K,

and

G(ū1) = k

∫ ū1

u1

(
1 − g′(y)

g′(ū1)

)
dy ≥ k

∫ ũ

u1

(
1 − g′(y)

g′(ū1)

)
dy

≥ k

∫ ũ

u1

(
1 − g′(y)

g′(ũ)

)
dy = K,

so that there must exist û ∈ [ũ, ū1] such that G(û) = K , that is,

k

∫ ū1

u1

(
1 − g′(y)

g′(û)

)
dy = K. (7.15)

Let V̂ be defined as

V̂ (x) =
{

k
g(x)

g′(û)
, 0 < x ≤ ū1,

V̂ (ū1) + k(x − ū1), x > ū1.
(7.16)
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Then LV̂ (x) = 0 for 0 < x < ū1 and by (7.15),

V̂ (ū1) = V̂ (u1) + k(ū1 − u1) − K.

Using this together with (7.16) then gives for x > ū1 that

V̂ (x) = V̂ (u1) + k(x − u1) − K.

Therefore V̂ also solves Problem D, so by uniqueness V̂ = V .
To finish the proof, let first x ∈ [u1, ũ]. We get from [7] when (ũ, u1) = (ū∗, u∗),

and from Lemma 7.4 when (ũ, u1) = (ū0, u0), that V ∗
0

′(x) = k
g′(x)
g′(ũ)

≤ k. Since

û ≥ ũ > x∗ and g′(x) is increasing on (x∗,∞), V ′(x) = k
g′(x)

g′(û)
≤ k

g′(x)
g′(ũ)

≤ k. Fi-

nally, let x ∈ [ũ, ũ1]. Since V ′(ũ) ≤ k, V ′(û) = k and V ′(x) = k
g′(x)

g′(û)
is increasing

on [ũ, ū1), we can conclude that V ′(x) ≤ k on [ũ, û] and V ′(x) ≥ k on [û, ū1). �

Note that V ′(x) and V ′′(x) exist and are continuous except at x = ū1. Let V ′−(ū1)

and V ′+(ū1) be the left and right derivatives of V (x) at ū1. From Lemma 7.6, we can
see that V ′−(ū1) ≥ k = V ′+(ū1). Therefore V (x) may fail to be differentiable at
the point ū1 if V ′−(ū1) > k. Thus, the classical Itô formula cannot be applied, but
its generalization, the Meyer–Itô formula, is applicable. Since we are working with
functions of the form e−λtf (Yt ), the standard Meyer–Itô formula needs a slight but
straightforward modification.

Lemma 7.7 Let f be the difference of two convex functions and f ′− its left deriva-
tive. Let Y be a semimartingale and

La
t =

∫ t

0
e−λt dLa

t,0,

where La
t,0 is the local time of Y at a. Then

e−λtf (Yt ) = f (Y0) +
∫ t

0
e−λsf ′−(Ys−) dYs −

∫ t

0
λe−λsf (Ys−) ds

+
∑

0<s≤t

e−λs
(
f (Ys) − f (Ys−) − f ′−(Ys−)ΔYs

) + 1

2

∫ +∞

−∞
La

t μ(da),

where μ is the signed measure (when restricted to compacts) which is the second
derivative of f in the generalized function sense. Furthermore, for every bounded
Borel measurable function v,

∫ +∞

−∞
La

t v(a) da =
∫ t

0
e−λsv(Ys) d[Y,Y ]cs , (7.17)

where [Y,Y ]cs is the quadratic variation of the continuous martingale part of Y .
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Proof The first part follows from Theorem IV.70 in [10], using that

d
(
e−λtf (Yt )

) = −λe−λtf (Yt ) dt + e−λt df (Yt )

and Fubini’s theorem on the local time term. Formula (7.17) follows from Corol-
lary IV.1 in [10] and an application of Fubini’s theorem. �

Lemma 7.8 Let V be the solution of Problem D. Then we have for π ∈ Π1 the equa-
tion

e−λ(t∧τπ )V
(
Xπ

t∧τπ+
) = V

(
Xπ

0

) +
∫ t∧τπ

0
e−λsV ′−(

Xπ
s

)
dXπ

s

−
∫ t∧τπ

0
λe−λsV

(
Xπ

s

)
ds

+
∑

0<s≤t

e−λs
(
V

(
Xπ

s+
) − V

(
Xπ

s

) − V ′−(
Xπ

s

)
ΔXπ

s

)

− 1

2
L

ū1
t∧τπ (k1 − k) + 1

2

∫ t∧τπ

0
e−λsσ 2(Xπ

s

)
V ′′−(

Xπ
s

)
ds,

where k1 is the left derivative of V (x) at ū1.

Proof Since V ′(x) and V ′′(x) exist and are continuous except at x = ū1, and
V ′±(ū1), V ′′±(ū1) exist and are finite, fairly straightforward calculations show that
V (x) can be written as the difference of the two convex functions

V1(x) = xV ′+(0) +
∫ x

0

∫ y

0

(
V ′′(z)

)+
dzdy,

V2(x) = (k1 − k)(x − ū1)
+ +

∫ x

0

∫ y

0

(
V ′′(z)

)−
dzdy,

where x+ = max(x,0) and x− = −min(x,0). By the property of V (x),

1

2

∫ +∞

−∞
La

t∧τπ μ(da) = 1

2
L

ū1
t∧τπ

(
V ′+(ū1) − V ′−(ū1)

) + 1

2

∫ +∞

−∞
La

t∧τπ V ′′−(a) da

= 1

2
L

ū1
t∧τπ (k − k1) + 1

2

∫ +∞

−∞
La

t∧τπ V ′′−(a) da.

The identity (7.17) shows that

1

2

∫ +∞

−∞
La

t∧τπ V ′′−(a) da = 1

2

∫ t∧τπ

0
e−λsσ 2(Xπ

s

)
V ′′−(

Xπ
s

)
ds.

The result now follows from Lemma 7.7. �



Optimal dividends with solvency constraints 507

Lemma 7.9 Let V be the solution of Problem D and define the operator L− by

L−V (x) = 1

2
σ 2(x)V ′′−(x) + μ(x)V ′−(x) − λV (x).

Then V satisfies the quasi-variational inequalities

L−V (x) = 0, 0 < x ≤ ū1, (7.18)

L−V (x) ≤ 0, x > ū1, (7.19)

V (x) = MV (x), x ≥ ū1. (7.20)

Here the operator M is as in (7.4), but with the lower limit u0 there replaced by u1.

Proof By the construction of V (x), (7.18) holds. To prove (7.19), let x > ū1. Then

L−V (x) = 1

2
σ 2(x)V ′′−(x) + μ(x)V ′−(x) − λV (x) = μ(x)k − λV (x).

Since μ′(x) ≤ λ by assumption A4 and by the fact that V ′(x) = k on (ū1,∞), the
function μ(x)k − λV (x) is decreasing on (ū1,∞). Therefore,

L−V (x) = μ(x)k − λV (x) ≤ μ(ū1)k − λV (ū1).

If μ(ū1) ≤ 0, then clearly L−V (x) ≤ 0. If μ(ū1) > 0, then V ′′−(ū1) = k
g′′(ū1)

g(û)
≥ 0

by ū1 > ū > x∗. Then, since V ′−(ū1) ≥ k and μ(ū1) > 0, we have

μ(ū1)k − λV (ū1) ≤ 1

2
σ 2(ū1)V

′′−(ū1) + μ(ū1)V
′−(ū1) − λV (ū1) = 0, x > ū1.

Finally, we prove (7.20). By Lemma 7.6, for x ≥ ū1,

V ′(x − η) − k

{
≥ 0, 0 < η < x − û,

≤ 0, x − û ≤ η ≤ x − u1,

so optimality is achieved either by remaining at x or by going down all the way to u1.
This gives

MV (x) = max
{
V (x) − K,V (u1) − k(x − u1) − K

}

= max
{
V (u1) − k(x − u1) − 2K,V (u1) − k(x − u1) − K

}

= V (u1) − k(x − u1) − K = V (x). (7.21)

�

Proof of Theorem 3.2 For π ∈ Π1, we easily get from Lemma 7.8 that
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e−λ(t∧τπ )V
(
Xπ

t∧τπ+
) = V (x) +

∫ t∧τπ

0
e−λs L−V

(
Xπ

s

)
ds

+
∫ t∧τπ

0
e−λsσ 2(Xπ

s

)
V ′−(

Xπ
s

)
dWs

+
∑

0≤τπ
n ≤t∧τπ

e−λτπ
n
(
V

(
Xπ

τπ
n +

) − V
(
Xπ

τπ
n

))

− 1

2
Lt∧τπ (ū1)(k1 − k).

Since π ∈ Π1, it is necessary that Xπ
τπ
n

≥ ū1. Then by Lemma 7.9 and the fact that
k1 ≥ k,

e−λ(t∧τπ )V
(
Xπ

t∧τπ+
) ≤ V (x) +

∫ t∧τπ

0
e−λsσ 2(Xπ

s

)
V ′−(

Xπ
s

)
dWs

+
∑

0≤τπ
n ≤t∧τπ

e−λτπ
n
(
K − kξπ

n

)
.

Taking expectations gives

0 ≤ V (x) − Ex

[ ∑

0≤τπ
n ≤t∧τπ

e−λs
(
kξπ

n − K
)] − Ex

[
e−λ(t∧τπ )V

(
Xπ

t∧τπ+
)]

.

Letting t → ∞, we have by nonnegativity of V that

V (x) ≥ Ex

[ ∞∑

n=1

e−λτπ
n
(
kξπ

n − K
)
]

= Vπ(x).

Taking the supremum over all strategies in Π1 gives

V (x) ≥ V ∗
1 (x). (7.22)

Now consider the lump sum dividend barrier strategy π1 = πū1,u1
. By definition

of that strategy, X
π1
s ≤ ū1 for all s > 0. Therefore L−(X

π1
s ) = L

ū1
s = 0 for all s > 0

and so

e−λ(t∧τπ1 )V
(
X

π1
t∧τπ1 +

) = V (x) +
∫ t∧τπ1

0
e−λsσ 2(Xπ1

s

)
V ′−(

Xπ1
s

)
dWs

+
∑

0≤τ
π1
n ≤t∧τπ1

e−λτ
π1
n

(
V

(
X

π1

τ
π1
n +

) − V
(
X

π1

τ
π1
n

))
.

Furthermore, by (7.21),

V (x) = MV (x) = V (u1) + k(x − u1) − K, x ≥ ū1.
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Arguing as at the end of the proof of Theorem 3.1 now gives

e−λ(t∧τπ1 )V
(
X

π1
t∧τπ1 +

) = V (x) +
∫ t∧τπ1

0
e−λsσ 2(Xπ1

s

)
V ′−(

Xπ1
s

)
dWs

+
∑

0≤τ
π1
n ≤t∧τπ1

e−λτ
π1
n

(
K − kξπ1

n

)
.

Taking expectations and then letting t → ∞ results in V (x) = Vū1,u1
(x) which

implies that V (x) ≤ V ∗
1 (x). Together with (7.22), we can therefore conclude that

V ∗
1 (x) = V (x) = Vū1,u1

(x). �

Proof of Theorem 4.1 By Theorem 2.3 and its proof in [7], Vū,u(ū)(x) is increasing
in ū. If u(ū) → ∞ as ū → ∞, there is nothing to prove, so assume that u(ū) ≤ m

for all ū for some positive m. Given δ > 0, choose ū > b so large that we have
Vū,u(ū)(x) > V ∗(x)− δ

2 , ∀x ∈ [0, b], and also so that ln ū > m. Consider the following
two dividend barrier lump sum strategies:

1. The strategy π0 = πū,u(ū).
2. The strategy π1 = πū,ln ū.

The strategy π1 clearly satisfies the conditions of the theorem. Let τ be the first time
the process hits ū (with τ = ∞ if it hits 0 before ū). By definition, τ is the same for
both strategies when x ≤ ū. By the strong Markov property, we have for x ∈ [0, b]

Vπi
(x) = Ex

[
e−λτ

]
Vπi

(ū), i = 0,1.

Now since ln ū > m,

Vπ0(ū) ≤ kū + Vπ0(ln ū) − K,

Vπ1(ū) = k(ū − ln ū) + Vπ1(ln ū) − K.

Therefore

Vπ0(x) − Vπ1(x) ≤ Ex

[
e−λτ

](
k ln ū + Vπ0(ln ū) − Vπ1(ln ū)

)
.

Using this equation with x = ln ū gives

Vπ0(ln ū) − Vπ1(ln ū) ≤ k
Eln ū[e−λτ ]

1 − Eln ū[e−λτ ] ln ū,

and so

Vπ0(x) − Vπ1(x) ≤ kEx

[
e−λτ

] 1

1 − Eln ū[e−λτ ] ln ū. (7.23)

By assumption A4, μ(x) ≤ μ(0) + λx, so by letting τ ′ be the same as τ , but with
the drift μ(x) replaced by μ(0) + λx, it is clear that Ex[e−λτ ] ≤ Ex[e−λτ ′ ]. Define
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hū(x) = Ex[e−λτ ′ ] so that hū(0) = 0 and hū(ū) = 1. Furthermore, by standard re-
sults, see e.g. [4, Chap. 15.3], hū satisfies

1

2
σ 2(x)h′′̄

u(x) + (
λx + μ(0)

)
h′̄

u(x) − λhū(x) = 0.

One solution of this equation is

h1(x) = λx + μ(0).

Another solution is then given as, see e.g. [13, p. 31],

h2(x) = h1(x)

∫ ∞

x

1

h2
1(y)

e
−2

∫ y
0

λt+μ(0)

σ2(t)
dt

dy

≤ h1(x)

∫ ∞

x

1

h2
1(y)

e−c
∫ y

0
1

1+t
dt dy

= h1(x)

∫ ∞

x

1

h2
1(y)

(1 + y)−cdy −→ 0 as x → ∞.

Here we used assumption A1 in the first inequality, where c is a suitable positive
constant. Fitting the boundary conditions, we get

hū(x) = 1

λū + μ(0)(1 − h2(ū)
h2(0)

)

(
λx + μ(0)

(
1 − h2(x)

h2(0)

))
.

Therefore, hū(x) ∼ (λū)−1 as ū gets large and x is fixed. Consequently, in (7.23) we
can choose ū so large that Vπ0(x) − Vπ1(x) ≤ δ

2 for all x ∈ [0, b]. �
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