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Abstract This paper considers the pricing of European options on assets that follow
a stochastic differential equation with a quadratic volatility term. We correct several
errors in the existing literature, extend the pricing formulas to arbitrary root config-
urations, and list alternative representations of option pricing formulas to improve
computational performance. Our exposition is based entirely on probabilistic argu-
ments, adding a fresh perspective and new intuition to the existing PDE-dominated
literature on the subject. Our main tools are martingale methods and shifts of proba-
bility measures; the fact that the underlying process is typically a strict local martin-
gale is carefully considered throughout the paper.
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1 Introduction

Many authors (e.g., Blacher [5], Ingersoll [13], Lipton [19], and Zühlsdorff [29],
to name a few) have suggested derivative pricing models where financial variables
(e.g., foreign exchange rates, equity prices, or forward interest rates) follow diffusion
processes with quadratic volatility. Consider therefore the fundamental problem of
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pricing European put and call options on an asset X that satisfies a stochastic differ-
ential equation (SDE) of the type

dX(t) = (
α + βX(t) + γX(t)2)dW(t), X(0) = x0, (1.1)

where γ �= 0. Rady [22] and Ingersoll [13], among several others, consider the
bounded case where the function A(x) = α + βx + γ x2 has two real roots that strad-
dle the initial value x0. Albanese et al. [1] outline a general strategy that allows a
transformation of the pricing PDE for (1.1) into the heat equation; this strategy is
used in Lipton [19] to compute a call option pricing formula for the case where A(x)

has two negative roots and an absorbing barrier1 has been inserted at X = 0. Other
root configurations have been considered in Zühlsdorff [28], but several of the given
option pricing results contain errors.

In this paper, we carefully analyze the characteristics of the process (1.1), paying
particular attention to the circumstances under which X fails to be a martingale. This
analysis, in turn, serves as the starting point for a probabilistic derivation of Euro-
pean put and call option pricing expressions for all non-trivial2 root configurations
of A(x). In doing so, we take care to appropriately incorporate into the pricing ex-
pressions the strict local martingale property of (1.1), thereby avoiding the issues that
plague existing results in the literature. We also discuss how to modify results if a
range truncation through absorbing boundaries is desired. Our analysis contributes
new intuition to SDEs with quadratic volatility and lists many new formulas for op-
tion pricing.

2 Two real roots left of x0

We start out our analysis with the case where A(x) = α + βx + γ x2 in (1.1) has two
real roots, both of which are located to the left of x0. Subsequent sections extend the
analysis to other root configurations and to the insertion of absorbing barriers.

2.1 Basic setup and results

We consider a semimartingale asset process X adapted to a filtration generated by a
scalar Brownian motion. For simplicity, we also assume that interest rates are zero, an
assumption that can easily be relaxed by the usual numeraire-deflation of the asset.
From results in Delbaen and Schachermayer [8], the absence of a free lunch with
vanishing risk (FLVR) is equivalent to the existence of a “risk-neutral” probability
measure Q in which X is a local martingale. Without going into detail, we recall that

1Reference [19] does not explicitly state that the origin is absorbing, but the form of the given option
pricing solution indicates that this must be the case.
2The bounded case where the roots straddle the initial value x0 is well understood (see Rady [22] and
Ingersoll [13]) so we skip a detailed analysis of this case. For completeness, Appendix A lists the known
option pricing formulas.
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FLVR is a slight strengthening of the usual definition of arbitrage from admissible3

trading strategies; see [8] for the complete account.
Let us proceed to fix a scalar Brownian motion W on the probability space

(�, F ,Q), with the standard filtration (Ft )t≥0 generated by W . We assume that X

satisfies the Q-SDE (1.1); clearly X is a local martingale. As mentioned above, we
first consider the case where the quadratic polynomial in (1.1) has two real roots �

and u, � < u, lying to the left of x0. Without loss of generality, we may then consider
the normalized process

dX(t) = (X(t) − u)(X(t) − �)

u − �
dW(t), x0 > u > �, (2.1)

where W is a Brownian motion in the risk-neutral probability measure Q.
Let p(t) and c(t) denote the time t fair market prices of European put and call op-

tions, respectively. Assuming that the option strike is K > u and the option maturity
is T > 0, by definition of puts and calls we have the terminal payout conditions

p(T ) = (
K − X(T )

)+
,

c(T ) = (
X(T ) − K

)+
.

A problem of fundamental interest in this paper is to establish closed-form expres-
sions for the time 0 prices p(0) and c(0).

Remark 2.1 Instead of (2.1), in applications we often need to consider

dX(t) = σ(t)
(X(t) − u)(X(t) − �)

u − �
dW(t), x0 > u > �,

where σ(t) is a bounded deterministic function of time. By the usual rules for time-
change of Brownian motion, computation of p(0) and c(0) for this process proceeds
by replacing, in the pricing formulas for the case (1.1), the maturity T with the inte-
gral

∫ T

0
σ(s)2 ds.

We start by listing a few straightforward lemmas.

Lemma 2.2 The range for the process (2.1) is X(t) ∈ (u,∞). In particular, the
process for X(t) does not explode in measure Q.

Proof That X(t) cannot go below u is obvious; further, Feller’s boundary criteria
(e.g., Karlin and Taylor [16], Chap. 15.6) establish that u is not accessible when

3While our treatment here is generally informal, the notion of “arbitrage” used in this paper is one that
precludes the use of doubling strategies. More precisely, we require that all trading strategies be admissible,
in the sense that trading gains are not allowed to go below some large (but finite) negative floor.
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x0 > u. As X is described by a time-homogeneous, one-dimensional SDE with zero
drift, it cannot explode (Karatzas and Shreve [15], p. 332). �

Lemma 2.3 The process X in (2.1) is a strict supermartingale in measure Q, i.e.,
EQ(X(T )|Ft ) < X(t), t < T , where EQ(·) denotes expectation in measure Q.

Proof In Appendix B.1. �

Lemma 2.4 Suppose that X is the local martingale (2.1) in measure Q. Then the
no-arbitrage put price at time t ≤ T is

p(t) = EQ

(
p(T )

∣
∣Ft

)
.

Proof A slight adaptation of the proof of Proposition 6.I in [9] shows that the put
price p(t) can be replicated by an admissible trading strategy, the value process of
which is a local martingale in Q. In the absence of arbitrage, p must therefore be
a local martingale in measure Q. As the put price is here bounded between 0 and
K −u, it follows elementarily that, in fact, p must be a true Q-martingale. The result
follows. �

2.2 The call option value

While the put pricing expression in Lemma 2.4 is noncontroversial, the unbounded
payout of the call option introduces a number of complications in properly comput-
ing its value c(t). Several differing opinions can be found in the literature and, as
observed in [21], there is still some controversy about what constitutes the “best”
pricing approach. While a complete account of the matter is beyond the scope of this
paper, let us briefly present the main issues.

First, we observe that there are generally two main candidates for the call price
solution,

cmin(t) := EQ

(
c(T )

∣
∣Ft

)
, (2.2)

cmax(t) := p(t) + X(t) − K. (2.3)

The first of these emerges from the usual risk-neutral valuation machinery, and the
second from enforcing put-call parity. From Lemmas 2.3 and 2.4, we observe that

cmin(t) = EQ

(
p(T ) + X(T ) − K

∣∣Ft

)

= p(t) − K + EQ

(
X(T )

∣∣Ft

)
< cmax(t). (2.4)

Both cmin(t) = cmin(t,X(t)) and cmax(t) = cmax(t,X(t)) satisfy the classical termi-
nal value PDE

∂c

∂t
+ 1

2

(
(x − u)(x − �)

u − �

)2
∂2c

∂x2
= 0,
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subject to c(T , x) = (x − K)+. Indeed, any convex combination of cmin and cmax
would therefore solve this PDE, and could be considered a candidate for the call
price solution.

Cox and Hobson [6] provide strong theoretical justification for cmin(t) by demon-
strating that it equals the minimal cost of dynamically replicating the call payout with
admissible trading strategies. As a consequence, they characterize cmin(t) as the fair
option price.4 On the other hand, in [6], it is also acknowledged that real-life trading
constraints may make actual prices deviate from fair prices. In particular, the authors
demonstrate (in their Corollary 5.3) that if an exchange requires posting of collateral
in the amount of ξ(X(s) − K)+, ξ ∈ (0,1], at all times s < T , then the theoretical
price of the option is (1 − ξ)cmin(t) + ξcmax(t).

It has been observed by a number of authors (e.g., Pal and Protter [21] and Heston
et al. [11]) that the fair value concept in [6] implies certain “pathological” results,
such as the violation of put-call parity, infinite lookback option prices, and counterin-
tuitive term structures of European option prices. Rejecting any violation of put-call
parity, Lewis [18] defines cmax(t) to be the correct price whenever the underlying
asset is a strict local martingale, but his choice must be characterized as ad hoc.
A similar choice is implicit in the pricing formulas of Emmanuel and MacBeth [10],
although it is doubtful that the authors were fully aware of the effects of strict local
martingales. Madan and Yor [20] argue that the most appropriate definition of the call
option price is cmax(t), since

cmax(t) = lim
n→∞EQ

((
X(T ∧ Tn) − K

)+∣
∣Ft

)

where Tn = inf{u ≥ t : X(u) = n} is a sequence of stopping times. According to [20],
the right-hand side of this expression is the most meaningful definition of option
value, as it implies that the option seller will only suffer bounded losses if he closes
his position early.5

While cmax(t) satisfies put-call parity, this value candidate is not without its own
oddities. For instance, the earlier proven inequality cmax(t) > cmin(t) ≥ 0 holds for
arbitrarily large strikes, so (and rather counterintuitively)

lim
K→∞ cmax(t) = X(t) − EQ

(
X(T )

∣∣Ft

)
> 0.

Equivalently, from (2.3),

EQ

(
X(T )

∣∣Ft

) = lim
K→∞

(
K − p(t)

)
, (2.5)

which can be combined with (2.4) to express cmin(t) solely as a function of put prices.
It is not the goal of this paper to settle the highly complex debate outlined above,

so we remain uncommitted and allow the reader to select which of the possible call

4Note that the time t fair value of a forward contract (i.e., a contract paying X(T ) at time T ) will be less
than X(t), as an admissible dynamic strategy exists that will replicate the payout in a cheaper way than
buy-and-hold.
5As pointed out by a referee, it is perhaps not entirely clear why only the option seller’s preferences should
be considered when determining the option value.
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option candidates he or she might prefer. For our purposes, it will suffice to provide
explicit put option pricing expressions; these expressions can be used with the formu-
las (2.3) and (2.4), (2.5) to establish closed-form results for any of the candidates for
the call option price discussed above. As a purely practical remark, we do note that
if the option formulas in this paper are used to approximate call option prices from
SDEs with bounded volatility (see, for instance, (6.1)), it is typically most reason-
able to use cmax(t), as the model being approximated will certainly satisfy put-call
parity. Also, domain truncation and other regularizations implicit in standard numer-
ical methods (e.g., finite difference grids) will tend to result in artificial enforcement
of put-call parity, so if the intent of the call pricing formulas is to replicate numeri-
cal results—something that is particularly useful if the pricing formulas are used for
model calibration to vanilla options—then cmax(t) is again probably the best choice.

2.3 Option pricing formulas

Given the discussion above, we focus our attention on establishing the put price p(0).
For this purpose, let us note the useful equality

x − K = (x − u)(K − �) − (K − u)(x − �)

u − �

which allows us to write6

p(T ) = 1

u − �

(
(K − u)

(
X(T ) − �

) − (
X(T ) − u

)
(K − �)

)+

= (K − u)(X(T ) − �)

u − �
1(K−u)(X(T )−�)−(X(T )−u)(K−�)>0

− (X(T ) − u)(K − �)

u − �
1(K−u)(X(T )−�)−(X(T )−u)(K−�)>0

=: p1(T ) − p2(T ). (2.6)

The payouts p1 and p2 have identical structure, so it suffices to focus our attention
on pricing one of them, e.g., p1.

From Lemma 2.4, we have p1(0) = EQ(p1(T )), which we rewrite as

p1(0) = K − u

u − �
EQ

((
X(T ) − �

)
1(X(T )−u)/(X(T )−�)<(K−u)/(K−�)

)
. (2.7)

At this point, our first instinct would be to perform a measure shift that eliminates the
factor X(T ) − � in the expectation, i.e., we should like to introduce a new measure
P such that P(B) = (x0 − �)−1EQ((X(T ) − �)1B), for any FT -measurable event
B . We recall, however, that X (and, therefore, X − �) is not a martingale in Q, so
such a measure shift cannot be performed outright. To get around this, we follow the

61B is the indicator function for the set B .
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localization argument in Sin [25] and stop the process X at a finite level. Specifically,
let us define a process X(n) as

X(n)(t) = X(t ∧ τn),

where τn is the stopping time

τn = inf
{
t : X(t) − u = n

}
.

The process for L(n)(t) := X(n)(t) − � satisfies (up to τn)

dL(n)(t) = L(n)(t)
X(n)(t) − u

u − �
dW(t), L(n)(0) = x0 − �.

As X(n)(t) − u ≤ n is bounded from above for all t , it follows that L(n) is a true
Q-martingale, so we can define a measure P n by

P n(B) = (x0 − �)−1EQ

((
X(n)(T ) − �

)
1B

)

for any FT -measurable event B . Let E(n) denote expectation in measure P n.

Lemma 2.5 Set

Y (n)(T ) = X(n)(T ) − u

X(n)(T ) − �
= X(n)(T ) − u

L(n)(T )
.

Then

EQ

(
L(n)(T )1Y (n)(T )<(K−u)/(K−�)1τn>T

)

= (x0 − �)E(n)
(
1Y (n)(T )<(K−u)/(K−�)1τn>T

)

where Y (n)(T ) satisfies, up to time τn,

dY (n)(t) = Y (n)(t) dW(n)(t), Y (n)(0) = x0 − u

x0 − �
< 1,

with W(n) being a P n-Brownian motion.

Proof By Girsanov’s theorem applied to the change of measure from Q to P n. �

This lemma leads to the following proposition.

Proposition 2.6 Let

dY (t) = Y(t) dW(t), Y (0) = x0 − u

x0 − �
< 1,

be geometric Brownian motion in Q. Define τ = inf{t : Y(t) = 1}, and let K > u.
Then p1(0) in (2.7) is given by

p1(0) = (K − u)(x0 − �)

u − �
EQ

(
1Y(T )<(K−u)/(K−�)1τ>T

)
. (2.8)



198 L. Andersen

Stated explicitly,

p1(0) = K1Φ

(−ln(x1/K1) + 1
2T√

T

)
− x2Φ

(
ln(x2/K2) + 1

2T√
T

)
, (2.9)

with Φ being the cumulative Gaussian distribution function, and

K1 = (K − u)(x0 − �)

u − �
, x1 = (x0 − u)(K − �)

u − �
,

K2 = (K − �)(x0 − �)

u − �
, x2 = (x0 − u)(K − u)

u − �
.

Proof In Appendix B.2. �

Following similar steps leads to an expression for p2(0), which in turn leads to the
following result for p(0) = p1(0) − p2(0).

Proposition 2.7 Let Ki, xi , i = 1,2, be given as in Proposition 2.6. Assuming K > u,
the put price p(0) for the model (2.1) has the explicit representation

p(0) = K1Φ
(−d

(1)
−

) − x2Φ
(
d

(2)
+

) − x1Φ
(−d

(1)
+

) + K2Φ
(
d

(2)
−

)
,

d
(i)
± = ln(xi/Ki) ± 1

2T√
T

, i = 1,2.

Remark 2.8 Proposition 2.7 corrects an erroneous result7 in Zühlsdorff [28].

Turning briefly to call option pricing formulas, we note that cmax(0) in (2.3) can
be established directly by put-call parity. To find cmin(0) in (2.2), we can use Propo-
sition 2.7 to establish that

EQ

(
X(T )

) = lim
K→∞

(
K − p(0)

) = x0 − (x0 − �)Φ(d−) − (x0 − u)Φ(d+) < x0,

where

d± = ln x0−u
x0−�

± 1
2T√

T
.

Application of (2.4), (2.5) then returns cmin(0).

7The formulas in [28] for option pricing with absorption at zero are also incorrect; see Sect. 3.2 for the
correct expressions.
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3 Extensions and other real root configurations

3.1 Roots to the right of x0

Now, let the roots �,u, � < u, both be to the right of x0, and

dX(t) = (u − X(t))(� − X(t))

u − �
dW(t), x0 < � < u. (3.1)

As X(t) < � for all t , the call option payout

c(T ) = (
X(T ) − K

)+
, K < �,

is now bounded8 so we concentrate on finding c(0). Define the process
H(t) = � + u − X(t) such that dH(t) = −dX(t), or

dH(t) = (H(t) − u)(H(t) − �)

u − �
dW(t), H(0) = � + u − x0 > u.

Written in terms of H(T ) the call option payout is

c(T ) = (
KH − H(T )

)+
, KH := � + u − K, (3.2)

where KH > u. We recognize (3.2) as being of the form (2.1), with the call pay-
out (3.2) being equivalent to a put payout on H(T ). Staying within the assumptions
of Lemma 2.4, Proposition 2.7 then immediately gives us a pricing result for the call
option c(0).

Lemma 3.1 Assume K < �, and define

K1 = (� − K)(u − x0)

u − �
, x1 = (� − x0)(u − K)

u − �
,

K2 = (u − K)(u − x0)

u − �
, x2 = (� − x0)(� − K)

u − �
.

For the process (3.1), the call option price is

c(0) = K1Φ
(−d

(1)
−

) − x2Φ
(
d

(2)
+

) − x1Φ
(−d

(1)
+

) + K2Φ
(
d

(2)
−

)
,

d
(i)
± = ln(xi/Ki) ± 1

2T√
T

, i = 1,2.

The put option price is here equivalent to a call option in the root configuration of
Sect. 2.1, and (candidates for) its price can be computed accordingly.

Remark 3.2 For the process (3.1), it is clear from Lemma 2.3 that X is a strict sub-
martingale.

8The issues we discussed in Sect. 2.2 will now instead apply to the put option.
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3.2 Absorption at zero

If X is supposed to model a nonnegative asset price, in some cases it may be desir-
able to insert an absorbing boundary at X = 0. In a probabilistic framework, this is
generally straightforward. To demonstrate, let the process for X be as in (2.1), with
both roots to the left of x0. Also, assume that � < u < 0, such that the unrestricted
process X may go below zero. Finally, set

dY�(t) = Y�(t) dW(t), Y�(0) = x0 − u

x0 − �
< 1,

dYu(t) = Yu(t) dW(t), Yu(0) = x0 − �

x0 − u
> 1.

Lemma 3.3 Let p1(0) and p2(0) be as defined in (2.6), and assume that X satisfies
(2.1), with � < u < 0 and an absorbing barrier at zero. Define

τ� = inf
{
t : Y�(t) = 1 or Y�(t) = u/�

}
,

τu = inf
{
t : Yu(t) = 1 or Yu(t) = �/u

}
.

Then

p1(0) = (K − u)(x0 − �)

u − �
EQ

(
1Y�(T ∧τ�)<(K−u)/(K−�)

)
,

p2(0) = (K − �)(x0 − u)

u − �
EQ

(
1Yu(T ∧τu)>(K−�)/(K−u)

)
.

Proof An obvious extension of the argument in Appendix B.2, to insert an absorbing
barrier in X = 0. �

Computation of p1(0) and p2(0) can be done by classical means, using known
expressions for the density of Brownian motion in the presence of two absorbing
boundaries; for the relevant results, see, e.g., Cox and Miller [7], Chap. 5, and Bhat-
tacharya and Waymire [4], Chap. 7.2. We notice that two different representations of
the density are possible, either a Fourier sine-series or a series obtained by the method
of images. Propositions 3.4 and 3.5 explore both possibilities.

Proposition 3.4 (Method of images) For the process (1.1), assume � < u < 0 < x0
and insert an absorbing boundary at X = 0. With K > 0, define

F±(x, z) = Φ

(
x − z ± 1

2T√
T

)
, κ = ln

(K − u)(x0 − �)

(K − �)(x0 − u)
,

zu = ln
x0 − �

x0 − u
, z� = zu − ln(�/u).

The put price is

p(0) = (K − u)(x0 − �)

u − �

{
e+

1 (κ) + e+
2

} − (K − �)(x0 − u)

u − �

{
e−

1 (κ) + e−
2

}
,
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where, with z′
n = 2n(zu − z�) and z′′

n = 2zu − z′
n,

e±
1 (κ) =

∞∑

n=−∞

(
e∓ 1

2 z′
n
(
F±(κ, z′

n) − F±(z�, z
′
n)

)

− e∓ 1
2 z′′

n
(
F±(κ, z′′

n) − F±(z�, z
′′
n)

))
,

e±
2 = ψ± ∓ e±

1 (zu)

D± ± (
x0−u
x0−�

)±1e∓
1 (zu)

D±
and

ψ+ = �

� − x0
, ψ− = u

u − x0
, D+ = 1 − u/�, D− = �/u − 1.

Proof In Appendix B.3. �

Proposition 3.5 (Fourier series) For the process (1.1), assume � < u < 0 < x0 and
insert an absorbing boundary at X = 0. Define

λn = 1

2

(
1

4
+ n2π2

(zu − z�)2

)
, an = nπz�

zu − z�

, kn = nπ(κ − z�)

zu − z�

,

and let κ , zu, z� and ψ± be as in Proposition 3.4. Then the put price is

p(0) = (K − u)(x0 − �)

u − �

{
e+

1 + e+
2

} − (K − �)(x0 − u)

u − �

{
e−

1 + e−
2

}
,

where

e±
1 = 1

zu − z�

∞∑

n=1

sin(an)
e−λnT

λn

×
[
an

z�

(
e∓ 1

2 κ cos(kn) − e∓ 1
2 z�

) ± 1

2
e∓ 1

2 κ sin(kn)

]
,

e±
2 = ψ± + e∓ 1

2 z�

(zu − z�)2

∞∑

n=1

e−λnT

λn

nπ sin(an).

Proof In Appendix B.4. �

Remark 3.6 Lipton [19] uses classical PDE methods to list an alternative (but equiv-
alent) form for the Fourier series in Proposition 3.5. Note that the series in [19] has a
small typo: the constant ξ should be θ .

For the case where u/� is large relative to the variance of logY�(T ), the represen-
tation in Proposition 3.4 will typically require substantially fewer terms to converge
than will the Fourier series representation in Proposition 3.5. On the other hand, the
latter will be more convenient for the case where u/� is small, i.e., when the roots
are close together or the option maturity is large. An intelligent implementation will
branch between the two solutions, in the manner discussed in, say, Andersen [2].
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Remark 3.7 Insertion of an absorbing boundary at a non-zero level above u is a trivial
extension of the results above, as is the insertion of an additional absorbing boundary
above x0 (see Sect. 4). If such an absorbing boundary is inserted, the process X is
bounded both from above and below and will be a true martingale, hence put-call
parity can be used to uniquely determine the call price.

We leave to the reader the case where zero is an absorbing boundary and the two
real roots are to the right of x0.

3.3 A single real root

Consider now the case where there is only a single root, i.e., � = u. Let us assume
that x0 > u; the case x0 < u can be solved by the symmetry arguments in Sect. 3.1.
We write

dX(t) = (
X(t) − u

)2
dW(t), x0 > u, (3.3)

and note that the range of X(t) is (u,∞). It follows from the proof of Lemma 2.3
that X remains a strict supermartingale.

If we make the variable transformation U(t) = X(t) − u, then

dU(t) = U(t)2 dW(t), U(0) > 0, (3.4)

with the put option payout being

p(T ) = (
K − u − U(T )

)+
, K > u.

U is a constant elasticity of variance (CEV) process with a power of 2 and, as such,
p(0) can, in principle, be computed from the general CEV option pricing formulas in
Schroder [24] (see also Andersen and Andreasen [3]). However, these involve infinite
series of chi-square distributions and are unnecessarily complicated for the special
case of (3.4). Instead, the simple formula below should be used.

Proposition 3.8 For the process (3.3), the put option price is

p(0) = (x0 − u)(K − u)
√

T
{
d+Φ(d+) + φ(d+) − d−Φ(d−) − φ(d−)

}
,

where φ(x) = (2π)−1/2e−x2/2 is the Gaussian density, and

d± = ± 1
x0−u

− 1
K−u√

T
.

Proof Let us write

p(0) = EQ

(
(K − u)1X(T )−u<K−u

) − EQ

((
X(T ) − u

)
1X(T )−u<K−u

)

= EQ

(
(K − u)11/(X(T )−u)>1/(K−u)

)

− EQ

((
X(T ) − u

)
11/(X(T )−u)>1/(K−u)

)
.
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We notice that the process (X(t) − u)−1 satisfies

d
((

X(t) − u
)−1) = −dW(t) + (

X(t) − u
)
dt.

Let us therefore define dZ(t) = −dW(t), with Z(0) = (x0 − u)−1 > 0, and set
τ = inf{t : Z(t) = 0}. Following the route of arguments that lead to Proposition 2.6,
we can show that

EQ

(
(K − u)11/{X(T )−u}>1/(K−u)

) = Z(0)−1(K − u)

× EQ

(
Z(T )1Z(T )>1/(K−u)1τ>T

)
,

EQ

((
X(T ) − u

)
11/{X(T )−u}>1/(K−u)

) = Z(0)−1EQ

(
1Z(T )>1/(K−u)1τ>T

)
.

Standard results for Brownian motion with an absorbing barrier (Cox and Miller [7],
Chap. 5) allow us to easily evaluate these expressions in closed form. �

Remark 3.9 An alternative proof of Proposition 3.8 observes that for the process

dX(t) = (
X(t) − u

)(
X(t) − �

)
dW(t), � < u < x0,

the put price can be computed from the result in Proposition 2.7, after a time-change,
from T to T (u − �)2; see Remark 2.1. Taking the limit of the put price as � ↑ u

then establishes the result. For a pure PDE proof of the result in Proposition 3.8, see
Zühlsdorff [28].

Remark 3.10 The process U in (3.4) is the canonical example of a strict supermartin-
gale (see Johnson and Helms [14]) and can be represented as the inverse of a Bessel
process of dimension three. As the transition density of a Bessel process of dimen-
sion three is known explicitly (see, e.g., Revuz and Yor [23]), the result of Proposition
3.8 can also be established directly by integrating the (suitably transformed) payout
against this density. See also Pal and Protter [21] and Yen and Yor [27].

We leave the case where the lone real root lies to the right of x0 to the reader.

3.4 A single real root: absorption at zero

Assume that X satisfies (3.3) with u < 0 and assume now that an absorbing barrier
has been inserted at the origin, ensuring that X never goes negative. We can easily
show the following result.

Lemma 3.11 Assume that X satisfies (2.1), with u < 0 and an absorbing barrier at
zero. Let

dZ(t) = −dW(t), Z(0) = 1

x0 − u
> 0,

and define

τ = inf
{
t : Z(t) = 0 or Z(t) = −1/u

}
.
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Then the put price is given by

p(0) = (x0 − u)(K − u)EQ

(
Z(T ∧ τ)1Z(T ∧τ)>1/(K−u)

)

− (x0 − u)EQ

(
1Z(T ∧τ)>1/(K−u)

)
. (3.5)

Proof A simple extension of the argument in the proof of Proposition 3.8, to insert
an absorbing barrier at X = 0. �

Evaluation of the two expectations in (3.5) is straightforward, and can proceed
along the lines of the proofs of Propositions 3.4 and 3.5. In the interest of brevity,
we omit the results, since they can be found by simply taking the limits u ↑ � in
Propositions 3.4 and 3.5; see Remark 3.9.

When u is close to zero—that is, when the range [−1/u,0] is large—a series
solution based on the method of images will require fewer terms to converge than a
sine-solution. The opposite holds when u is far away from zero.

Remark 3.12 In Zühlsdorff [28], the expression for the single-root case with absorp-
tion is incorrect.

4 No real roots

We now consider the case where the polynomial A(x) in (1.1) has no real roots. After
suitable normalization,9 our Q-SDE has the form

dX(t) = b

(
1 +

(
X(t) − a

b

)2)
dW(t)

= 1

b

((
X(t) − a

)2 + b2)dW(t)

= 1

b

(
X(t) − c+

)(
X(t) − c−

)
dW(t), (4.1)

where c± are two complex-valued roots,

c± = a ± ib, b > 0,

with i being the imaginary unit, i2 = −1.
Without further restrictions, the range for X is now the entire real line. Following

the argument in the proof for Lemma 2.3, it can be demonstrated that X is a strict
local martingale, but in the absence of lower and upper bounds on X, we cannot
characterize X as either a supermartingale or a submartingale. Absence of FLVR
dictates that put and call prices be local martingales in measure Q; as neither the put

9Our normalization follows that of Zühlsdorff [28].
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nor the call have bounded payouts for the case of (4.1), neither can be argued to be
martingales in measure Q. (We can, however, argue that both are supermartingales,
as they are local martingales bounded from below at zero.)

To get firmer ground under our feet, we proceed to introduce explicit bounds on
the process X, through the insertion10 of absorbing boundaries xL and xU , with
xL < x0 < xU . X is thus a bounded local martingale, and hence a martingale. The
same argument applies to put and call prices, therefore, we have the following re-
sult.

Lemma 4.1 Assume that the process X is equipped with finite-valued absorbing
boundaries xL and xU , with xL < x0 < xU . Define

τ = inf
{
t : X(t) = xL or X(t) = xU

}
.

Then, with xL < K < xU ,

c(0) = EQ

((
X(T ∧ τ) − K

)+)
,

p(0) = EQ

((
K − X(T ∧ τ)

)+)
.

Looking at the form of the diffusion term in (4.1) suggests, as in previous sections,
to focus on the (complex-valued) ratio

Y(t) = X(t) − c+
X(t) − c−

(4.2)

as well as its logarithm. To gain some intuition, the following result is useful.

Lemma 4.2 Let Y(t) be as given in (4.2), and define the processes11 R(t) =
1
2 ln(−Y(t)), Z(t) = Im(R(t)). Define τ as in Lemma 4.1. Then, for t < τ ,

dY (t) = i2Y(t)

(
dW(t) − 1

b

(
X(t) − a − ib

)
dt

)
,

dR(t) = i

(
dW(t) − 1

b

(
X(t) − a

)
dt

)
,

dZ(t) = dW(t) − 1

b

(
X(t) − a

)
dt = dW(t) − tanZ(t) dt.

Proof The dynamics for Y and R follows from Itô’s lemma, as does the first equation
for dZ(t). To show the second equality for dZ(t), we only need to notice that, by the

10As should be obvious from previous results, it actually suffices to insert a single absorbing boundary to
make either the put or the call payout bounded. For generality, we use two boundaries, with the under-
standing that one of them may, in fact, be set at either ∞ or −∞. Indeed, a natural configuration of our
bounds is to have xU = ∞ and xL = 0.
11We use Im(·) to denote the imaginary part of a complex number.
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definition of Z(t),

Z(t) = arctan

(
X(t) − a

b

)
,

which is evident from the basic relation arctan(x) = 1
2 i(ln(1 − ix) − ln(1 + ix)). �

The quantity Z(t) in Lemma 4.2 is of particular interest, as (i) it is monotonic in
X(t); and (ii) it can be reduced to a Brownian motion by a change of measure. Acting
on (ii), we introduce a probability measure P in which dW̃(t) = dW(t) − tanZ(t) dt

defines a Brownian motion. To characterize the measure P , let E(·) denote expecta-
tion in measure P and introduce the P -martingale

η(t) = E

(
dQ

dP

∣∣∣∣Ft

)
.

For t < τ , Girsanov’s theorem shows that then, in measure P ,

dη(t)/η(t) = −tanZ(t) dW̃ (t), η(0) = 1,

dZ(t) = dW̃(t), Z(0) = arctan

(
x0 − a

b

)
.

(4.3)

From this, we can derive the following result.

Proposition 4.3 Define zL = arctan( xL−a
b

), zU = arctan(
xU −a

b
), where we choose

zL, zU ∈ (−π/2,π/2). Set

τ = inf
{
t : Z(t) = zL or Z(t) = zU

}
,

where Z is a Brownian motion in P , started at level arctan(
x0−a

b
). With T̃ := T ∧ τ

we have, for K ∈ (xL, xU ),

p(0) = b

√

1 +
(

x0 − a

b

)2

E
(
e

1
2 T̃

(
K̃ cosZ(T̃ ) − sinZ(T̃ )

)+)
, K̃ = K − a

b
.

Proof In Appendix B.5. �

Writing 1 = 1{τ>T } + 1{τ≤T ,Z(τ)=zL} + 1{τ≤T ,Z(τ)=zU } allows us to decompose
the result in Proposition 4.3 as

p(0) = √
bA(x0)e

1
2 T E

((
K̃ cosZ(T ) − sinZ(T )

)+1{τ>T }
)

+ √
bA(x0)(K̃ cos zL − sin zL)E

(
e

1
2 τ1{τ≤T ,Z(τ)=zL}

)

= √
bA(x0)e

1
2 T E

((
K̃ cosZ(T ) − sinZ(T )

)+1{τ>T }
)

+
√

A(x0)

A(xL)
(K − xL)E

(
e

1
2 τ1{τ≤T ,Z(τ)=zL}

)
, (4.4)
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where A(x) = b[1 + ((x − a)/b)2]. We have used the fact that the payout of the put
is zero whenever Z(τ) = zU (since we assume that xL < K < xU ). The expectations
involved in the expression above can be computed analytically, using results similar
to those used to prove Propositions 3.4 and 3.5. Again, we have at least two repre-
sentations, either as a sine-series or as a series based on the method of images. The
sine-series result is listed in Proposition 4.4 below.

Proposition 4.4 (Fourier series) Consider the model (4.1) with absorbing barriers
at xL and xU . Let zL, zU , and K̃ be as in Proposition 4.3, and define

z0 = arctan

(
x0 − a

b

)
, αn = n2π2

2(zU − zL)2
, an = nπ(zL − z0)

zU − zL

.

Then p(0) is given by (4.4), with

E
((

K̃ cosZ(T ) − sinZ(T )
)+1{τ>T }

)

= 2

zU − zL

∞∑

n=1

e−αnT sin(−an)
(
K̃I (c)

n − I (s)
n

)
,

E
(
e

1
2 τ1{τ≤T ,Z(τ)=zL}

) = sin(zU − z0)

sin(zU − zL)
−

∑∞
n=1 nπ sin(−an)

e
−(αn− 1

2 )T

αn− 1
2

(zU − zL)2
.

Here, the terms I
(c)
n and I

(s)
n are given in closed form in (B.2) and (B.1) in Appen-

dix B.6.

Proof In Appendix B.6. �

Zühlsdorff [28] lists an alternative representation of the Fourier sine-series in
Proposition 4.4. As written, the series in [28] suffers from overflow issues12 and,
additionally, will typically require the computation of many 100’s of terms (the au-
thor lists 200–300 terms as an average number). In contrast, the series representation
above will, on average, converge with 5–10 terms or less.

Application of the method of images here does not lead to a closed form solution
(or so we believe), but the put price can still be computed by one-dimensional numer-
ical integration. In cases where the sine-series in Proposition 4.4 is slow to converge
(xL and xU far apart, small value of T ), the method of images result may still be
worthwhile pursuing. We list it below.

Proposition 4.5 (Method of images) Consider the model (4.1) with absorbing bar-
riers at xL and xU . Let zL, zU , and K̃ be as in Proposition 4.3, and define

z0 = arctan

(
x0 − a

b

)
, z′

n = 2n(zU − zL), z′′
n = 2(zU − z0) − z′

n.

12The series in [28] involves rapidly growing terms of the form exp((const n2π2 − 1)T /2) where
const > 0. We should also note that there are several typos in the result in [28].
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Also, set k = arctan(K̃) − z0 and

Ic(y) = 1√
2πT

∫ k

zL−z0

exp

{
− (z − y)2

2T

}
cos(z + z0) dz, (4.5)

Is(y) = 1√
2πT

∫ k

zL−z0

exp

{
− (z − y)2

2T

}
sin(z + z0) dz, (4.6)

and

F(t) =
∞∑

n=−∞

zU − z0 − z′
n

zU − zL

[
Φ

(
zU − z0 − z′

n√
t

)
− Φ

(
zL − z0 − z′

n√
t

)]

−
∞∑

n=−∞

zU − z0 − z′′
n

zU − zL

[
Φ

(
zU − z0 − z′′

n√
t

)
− Φ

(
zL − z0 − z′′

n√
t

)]

+
√

t

zU − zL

∞∑

n=−∞

[
φ

(
zU − z0 − z′

n√
t

)
− φ

(
zU − z0 − z′′

n√
t

)

− φ

(
zL − z0 − z′

n√
t

)
+ φ

(
zL − z0 − z′′

n√
t

)]
.

Then p(0) is given by (4.4), with

E
((

K̃ cosZ(T ) − sinZ(T )
)+1{τ>T }

)

=
n=∞∑

n=−∞

(
K̃

(
Ic(z

′
n) − Ic(z

′′
n)

) − (
Is(z

′
n) − Is(z

′′
n)

))
,

E
(
e

1
2 τ1{τ≤T ,Z(τ)=zL}

) = −
∫ T

0

∂F (t)

∂t
e

1
2 t dt.

Proof In Appendix B.7. �

Remark 4.6 While the topic is somewhat outside the scope of this paper, we note that
several computational tricks can be used to optimize the computation of the integrals
in Proposition 4.5. For instance, using Euler’s formulas for sin(·) and cos(·), the inte-
grals Ic and Is in (4.5), (4.6) can be rewritten in terms of the complex error function,
allowing for quick computation using well-known techniques (e.g., Weideman [26]).

5 Parametrization and numerical example

In practical applications, the quadratic volatility model may be parametrized through
the intuitive form

dX(t) = σ

(
qX(t) + (1 − q)x0 + 1

2
s
(X(t) − x0)

2

x0

)
dW(t), (5.1)
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Fig. 1 Implied volatility smile
for quadratic model. The model
setup was as in (5.1), with
σ = 20%, q = 0.5, and
x0 = 100. The option maturity is
T = 1 and the convexity
parameter s varies as indicated
in the graph. We assumed
absorption in zero, the effect of
which is minimal for the strike
range in the figure

where σ > 0 is a proxy for the at-the-money volatility level,13 q is a volatility slope
or “skew” parameter, and s is a measure of the convexity of the quadratic volatility
function. The three new parameters σ,q, s map to the parameters α,β, γ in (1.1) in
an obvious fashion. The roots of the quadratic function in (5.1) are

(
s − q ±

√
q2 − 2s

)x0

s
,

and there will be two real roots if q2 > 2s, one real root if q2 = 2s, and no real roots
if q2 < 2s.

Figure 1 shows an example of the types of implied Black–Scholes volatility14

smile that can be produced by the model (5.1). In computing the smile, we used the
option formulas in this paper with appropriate scaling on the maturity T , as outlined
in Remark 2.1.

Let us pick the case in the figure with s = 10 for further numerical scrutiny. As
here q2 < 2s, the quadratic polynomial has no real roots for this case, so pricing must
be done through one of the infinite series in Propositions 4.4 or 4.5. As mentioned
earlier, the former proposition is typically the most useful when σ 2T is relatively
large, whereas the latter is most useful when this quantity is small. To illustrate, we
compute the two series solutions, assuming that we truncate sums running to ∞ and
−∞ to sums running to N and −N , with N being some positive integer. Table 1
below shows the convergence behavior of the two series solutions, as a function of N .
While both series here perform reasonably well for both scenarios in the table, in the
scenario with high volatility and long maturity, the Fourier series clearly does best
and essentially converges in a single step (N = 1). When volatility and maturity are
low, however, the situation is reversed and the series based on the method of images
converges immediately. If intelligent branching between the two series solutions is
used, numerical effort will always be low.

13Notice that the volatility function reduces to σx0 whenever X(t) = x0. As discussed in Remark 2.1, we
can easily allow σ to be a function of time.
14See any finance textbook (e.g., [12]) for the definition of “implied” Black–Scholes volatility.
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Table 1 Convergence of series
solutions from Propositions 4.4
or 4.5. Table shows put option
prices for a strike of K = 100
(at-the-money), as a function of
truncation level N . The model
setup was as in (5.1), with
s = 10, q = 0.5, and x0 = 100.
Absorption bounds were xL = 0
and xU = 1010. “Scenario I”:
σ = 40% and T = 30. “Scenario
II”: σ = 20% and T = 0.5

N Scenario I Scenario II

Fourier Method
of images

Fourier Method
of images

1 98.51573 103696.9 7.901845 5.725993

2 98.51573 8846.244 7.534609 5.725993

3 98.51573 294.7279 6.037472 5.725993

4 98.51573 99.75636 5.904599 5.725993

5 98.51573 98.51775 5.770191 5.725993

6 98.51573 98.51573 5.739344 5.725993

7 98.51573 98.51574 5.730691 5.725993

8 98.51573 98.51573 5.726600 5.725993

9 98.51573 98.51573 5.726314 5.725993

10 98.51573 98.51573 5.726009 5.725993

11 98.51573 98.51573 5.726006 5.725993

12 98.51573 98.51573 5.725993 5.725993

13 98.51573 98.51573 5.725993 5.725993

6 Conclusion

As should be obvious at this point, call and put option pricing in the quadratic volatil-
ity model is a rather delicate problem that scrapes against the limits of no-arbitrage
theory. We have here provided a careful analysis which we hope clarifies some confu-
sion in the existing literature and solves the problem once and for all. The numerous
pricing formulas listed in the paper should be of use to practitioners who are inter-
ested in quick calibration of quadratic volatility models to quoted put and call prices.
Due to their tractability, quadratic volatility models may serve as a convenient back-
bone to more complicated models, such as the “universal” local-stochastic volatility
model in Lipton [19] and others.

As a final comment, we note that we should expect practitioners to find it conve-
nient in numerical work to “regularize” the quadratic volatility model to something
like

dX(t) = max
(
σminX(t),min

(
σmaxX(t),A(X(t)t)

))
dW(t), (6.1)

in effect stitching on linear tails to the quadratic form A(x). See Andersen and An-
dreasen [3] for similar ideas in a CEV setting. Option computations for such a model
would necessarily require numerical methods, but if σmin and σmax are small and
large, respectively, the formulas in this paper will typically give an excellent approx-
imation of European put and call prices for the model (6.1).

Acknowledgements I am indebted to Alexander Antonov, Dominique Bang, Peter Carr, Darrell Duffie,
and Alex Lipton for their comments. I would especially like to express my gratitude to the referees for
several very helpful suggestions and pointers to the literature, and to Victor Piterbarg for his assistance
in implementing and testing the option pricing formulas listed in this paper. All remaining errors are, of
course, my own.
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Appendix A: Option pricing solution for bounded case

In this Appendix, we list known option pricing formulas for the case where the
quadratic polynomial A(x) has two real roots that straddle the initial condition x0.
Normalizing in the same fashion as in (2.1), we consider the Q-measure SDE

dX(t) = (u − X(t))(X(t) − �)

u − �
dW(t), u > x0 > �.

Clearly this process is bounded to the interval (�,u) for all t , so X is a here a true
martingale. For a call option on X, it has been shown by Ingersoll [13] (by PDE
methods) and Rady [22] (by probabilistic arguments) that, for K ∈ (�,u),

c(0) = EQ

((
X(T ) − K

)+) = x∗Φ(d+) − K∗Φ(d−),

d± = ln(x∗/K∗) ± 1
2T√

T
,

where Φ(·) is the Gaussian CDF and where we have defined

K∗ = (K − �)(u − x0)

u − �
, x∗ = (x0 − �)(u − K)

u − �
.

The put option price may be computed by put-call parity.15

Appendix B: Proofs

B.1 Proof of Lemma 2.3

There are several ways of proving Lemma 2.3; we show two of them. For the first
approach, set U(t) = X(t) − u, such that

dU(t) = U(t)(U(t) + u − �)

u − �
dW(t) = U(t)V (t) dW(t), V (t) := U(t) + u − �

u − �
.

The process for V is therefore

dV (t) = 1

u − �
U(t)V (t) dW(t) = (

V (t) − 1
)
V (t) dW(t).

According to the arguments of Sin [25], U—and, therefore, X = U + u—will be a
strict local martingale provided that the “augmented” process

dV̂ (t) = (
V̂ (t) − 1

)
V̂ (t)2 dt + (

V̂ (t) − 1
)
V̂ (t) dW(t)

15As both the put and call payouts are here bounded, the complications surrounding put-call parity dis-
cussed in Sect. 2.2 do not appear.
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explodes in finite time. Application of the standard Feller boundary criteria for SDEs
(e.g., Karlin and Taylor [16], Chap. 15.6) shows that ∞ is accessible by V̂ , proving
that X is a strict local martingale. As a strict local martingale bounded from below is
a strict supermartingale, the lemma follows.

A second approach16 to proving the strict local martingale property is to note that
the speed measure for (2.1) is

m(dx) = 2(u − �)2

(x − u)2(x − �)2
dx,

whereby
∫ ∞

u+1
x m(dx) < ∞.

From Theorem 1 in Kotani [17], it follows that the process (2.1) is a strict local
martingale. �

B.2 Proof of Proposition 2.6

Adopting the notation of Lemma 2.5, the fact that X does not explode in Q (see
Lemma 2.2) shows that

p1(T ) = lim
n→∞L(n)(T )1Y (n)(T )<(K−u)/(K−�)1τn>T .

By dominated convergence, we then have from Lemma 2.5 that

p1(0) = EQ

(
p1(T )

) = lim
n→∞EQ

(
L(n)(T )1Y (n)(T )<(K−u)/(K−�)1τn>T

)

= (x0 − �) lim
n→∞E(n)

(
1Y (n)(T )<(K−u)/(K−�)1τn>T

)
.

The event X(n)(T ) − u = n translates to Y (n)(T ) = n
n+u−�

, the limit of which is 1

for n → ∞. As Y (n) is a geometric Brownian motion in measure P n up to the hitting
time τn, the result (2.8) follows.

To prove (2.9), we write Z(t) = lnY(t), such that

dZ(t) = −1

2
dt + dW(t), Z(0) = lnY(0) < 0.

The absorbing barrier at Y� = 1 becomes an absorbing barrier at the origin of Z. The
expectation in the expression

p1(0) = (K − u)(x0 − �)

u − �
EQ

(
1Z(T )<ln k1τ>T

)
, k := (K − u)/(K − �),

16We thank one of the referees for pointing our attention to the convenient results for time-homogeneous
SDEs in Kotani [17].
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can be evaluated from standard methods for absorbed Brownian motion with drift;
see Cox and Miller [7], Chap. 5. The result is

EQ

(
1Z(T )<ln k1τ>T

) = Φ

(
lnk − Z(0) + 1

2T√
T

)
− eZ(0)Φ

(
lnk + Z(0) + 1

2T√
T

)
.

A few simplifications lead to (2.9). �

B.3 Proof of Proposition 3.4

Let us focus on the evaluation of p1(0). For this, set Z�(t) = lnY�(t)− lnY�(0), such
that

p1(0) = (K − u)(x0 − �)

u − �
EQ

(
1Y�(T ∧τ�)<(K−u)/(K−�)

)

= (K − u)(x0 − �)

u − �
EQ

(
1Z�(T ∧τ�)<κ

)
, κ := ln

K − u

K − �
− ln

x0 − u

x0 − �
.

Clearly Z� is a drifting Brownian motion, started at zero, i.e.,

dZ�(t) = −1

2
dt + dW(t), Z�(0) = 0.

If Y� hits 1, Z� hits zu = − lnY�(0); if Y� hits u/�, Z� hits z� = ln(u/�) + zu. Note
that 1 = 1τ�>T + 1{τ�≤T ,Z�(τ�)=z�} + 1{τ�≤T ,Z�(τ�)=zu}, such that

p1(0) = (K − u)(x0 − �)

u − �

{
EQ

(
1Z�(T ∧τ�)<κ1τ�>T

) + EQ

(
1{τ�≤T ,Z�(τ�)=z�}

)}

=: (K − u)(x0 − �)

u − �

{
e+

1 (κ) + e+
2

}
,

where we have used the fact that 1Z�(T ∧τ�)<κ = 0 whenever 1{τ�≤T ,Z�(τ�)=zu} = 1.
The two expectations e+

1 (κ) and e+
2 can be found by standard means. First, from the

interior density given in Cox and Miller [7], Example 5.1,

e+
1 (κ) = EQ

(
1Z�(T ∧τ�)<κ1τ�>T

)

=
∫ κ

z�

1√
2πT

∞∑

n=−∞

(
exp

{
−z′

n

2
− (z − z′

n + 1
2T )2

2T

}

− exp

{
−z′′

n

2
− (z − z′′

n + 1
2T )2

2T

})
dz,

where z′
n = 2n(zu − z�), z′′

n = 2zu − z′′
n. Evaluating this integral leads to the expres-

sion for e+
1 (κ) given in Proposition 3.4.

The expectation e+
2 is the probability of Z� hitting the barrier z� (i) before time

T , and (ii) before zu is hit. To compute this probability, we first compute ψ(x), the
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outright probability that z� will be hit before zu, conditional on Z�(0) = x. From
standard results (e.g., [16], Chap. 15.3) we have, for x ∈ (z�, zu),

ψ(x) =
∫ zu

x
exp(z − z�) dz

∫ zu

z�
exp(z − z�) dz

= 1 − exp(x − zu)

1 − exp(z� − zu)
.

According to Bhattacharya and Waymire [4], pp. 406–407, we can now compute e+
2

as

e+
2 = ψ(0) −

∫ zu

z�

ψ(z)√
2πT

∞∑

n=−∞

(
exp

{
−z′

n

2
− (z − z′

n + 1
2T )2

2T

}

− exp

{
−z′′

n

2
− (z − z′′

n + 1
2T )2

2T

})
dz.

Computing the integral leads to the expression for e+
2 given in the proposition.

As for p2(0), we have

p2(0) = (K − �)(x0 − u)

u − �
EQ

(
1Yu(T ∧τu)>(K−�)/(K−u)

)

= (K − �)(x0 − u)

u − �
EQ

(
1Zu(T ∧τu)≤κ

)
,

where κ is as defined earlier and Zu(t) = − lnYu(T ∧ τu) + lnYu(0); Zu is a Brown-
ian motion with drift + 1

2 (rather than − 1
2 , as above) and starting point Zu(0) = 0.

The expectation EQ(1Zu(T ∧τu)≤κ) can consequently be computed easily from the
expressions above (essentially by changing sign on all terms that involve 1

2T ). We
omit the details. �

B.4 Proof of Proposition 3.5

The proof proceeds as for Proposition 3.4 (see Appendix B.3 above), but now we
use Fourier series representations for survival and absorption probabilities. Adopting
the notation of Appendix B.3 everywhere, we first notice, from Cox and Miller [7],
Example 5.1,

e+
1 = EQ

(
1Z�(T ∧τ�)<κ1τ�>T

)

= 2

zu − z�

∫ κ

z�

e− 1
2 z

∞∑

n=1

e−λnT sin

(
nπ

−z�

zu − z�

)
sin

(
nπ

z − z�

zu − z�

)
dz

=
∞∑

n=1

2 sin(nπ
−z�

zu−z�
)e−λnT

zu − z�

∫ κ

z�

e− 1
2 z sin

(
nπ

z − z�

zu − z�

)
dz,

where

λn = 1

2

(
1

4
+ n2π2

(zu − z�)2

)
.
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Setting an = nπz�

zu−z�
and kn = nπ(κ−z�)

zu−z�
, it is easy to demonstrate that

∫ κ

z�

e− 1
2 z sin

(
nπ

z − z�

zu − z�

)
dz = an

2z�λn

(
e− 1

2 z� − e− 1
2 κ cos(kn)

) − e− 1
2 κ

4λn

sin(kn).

So,

e+
1 = 1

zu − z�

∞∑

n=1

sin(−an)e
−λnT

×
[

an

λnz�

(
e− 1

2 z� − e− 1
2 κ cos(kn)

) − e− 1
2 κ

2λn

sin(kn)

]
.

As for the lower-boundary absorption probability e+
2 , using the same technique as

in Appendix B.3,

e+
2 = EQ

(
1{τ�≤T ,Z�(τ�)=z�}

)

= ψ(0) −
∫ zu

z�

ψ(z)

∞∑

n=1

2 sin(−an)e
−λnT

zu − z�

∫ zu

z�

e− 1
2 z sin

(
nπ

z − z�

zu − z�

)
dz,

where ψ(x) = (1 − exp(x − zu))/(1 − exp(z� − zu)). Evaluating the integral gives

e+
2 = ψ+ + e− 1

2 z�

(zu − z�)2

∞∑

n=1

e−λnT

λn

nπ sin(an),

with ψ+ as given in the proposition. Computation of e−
1 and e−

2 proceeds in the same
way, after a shift of drift of Z� from − 1

2 to + 1
2 . �

B.5 Proof of Proposition 4.3

The form of (4.3) suggests that, for t ≤ τ ,

η(t) = q(t) cosZ(t)

for some deterministic function q . Applying Itô’s lemma, we get

dη(t) = −q(t) sinZ(t) dW̃ (t) − 1

2
q(t) cosZ(t) dt + dq(t)

dt
cosZ(t) dt

= −η(t) tanZ(t) dW̃ (t) + cosZ(t)

(
dq(t)

dt
− 1

2
q(t)

)
dt.

From (4.3), it follows that the function q(t) must satisfy

dq(t)

dt
= 1

2
q(t), q(0) cosZ(0) = 1,
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i.e.,

q(t) = q(0)e
1
2 t , q(0) = 1

cos(arctan(
x0−a

b
))

=
√

1 +
(

x0 − a

b

)2

.

By Lemma 4.1 and the usual rules of measure change,

p(0) = EQ

((
K − X(T̃ )

)+)
= E

(
η(T̃ )

(
K − X(T̃ )

)+)

= q(0E
(
e

1
2 T̃ cosZ(T̃ )

(
K − a − b tanZ(T̃ )

)+)

= q(0)bE
(
e

1
2 T̃

(
K̃ cosZ(T̃ ) − sinZ(T̃ )

)+)
, K̃ = K − a

b
. �

B.6 Proof of Proposition 4.4

Let us first turn to the computation of e1 = E((K̃ cosZ(T ) − sinZ(T ))+1τ>T ),
where we recall that τ is the first time that the Brownian motion Z hits either zU or
zL. We define z0 = arctan(

x0−a
b

), such that M = Z − z0 is a regular Brownian motion

started at zero. We first notice that K̃ cosZ(T )− sinZ(T ) > 0 if and only if M(T ) <

arctan(K̃) − z0 =: k, such that, from results similar to those in Appendix B.4,

e1 =
∫ k

mL

n(z;mL,mU,T )
(
K̃ cos(z + z0) − sin(z + z0)

)
dz,

where mL = zL − z0, mU = zU − z0, and

n(z;mL,mU,T ) = 2

mU − mL

∞∑

n=1

e−αnT sin

(
nπ

−mL

mU − mL

)
sin

(
nπ

z − mL

mU − mL

)
,

with

αn = n2π2

2(mU − mL)2
.

It follows that

e1 = 2

mU − mL

∞∑

n=1

e−αnT sin(−an)
(
K̃I (c)

n − I (s)
n

)
,

where with an = nπ mL

mU −mL
,

I (c)
n =

∫ k

mL

sin

(
an

z

mL

− an

)
cos(z + z0) dz,

I (s)
n =

∫ k

mL

sin

(
an

z

mL

− an

)
sin(z + z0) dz.

Defining b±
n = 1 ± an/mL and c±

n = b±
n k ∓ an + z0, it is easily shown that

I (c)
n = mL

2

[
cos(c−

n )

mL − an

− cos(c+
n )

mL + an

+ 2 cos(mL)an

a2
n − m2

L

]
, (B.1)
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where we have used that b±
n mL = mL ± an = zL − z0 ± an. Similarly, we get

I (s)
n = mL

2

[
sin(c−

n )

mL − an

− sin(c+
n )

mL + an

+ 2 sin(mL)an

a2
n − m2

L

]
. (B.2)

As an aside, notice that

cos(zL) = cos

(
arctan

(
xL − a

b

))
= 1√

A(xL)/b
,

sin(zL) = sin

(
arctan

(
xL − a

b

))
= xL − a√

bA(xL)
.

Having now computed an explicit expression for e1, we turn to the computation

of e2 = E(e
1
2 τ1{τ≤T ,Z(τ)=zL}). First, from a standard result, the likelihood that the

Brownian motion M will hit mL before mU , given M(0) = x, is

ψ(x) = mU − x

mU − mL

.

Proceeding as in Appendix B.3, it then follows that

E
(
1{τ≤T ,M(τ)=mL}

) = E
(
1{τ≤T ,Z(τ)=zL}

)

= ψ(0) −
∫ mU

mL

ψ(z)n(z;mL,mU,T )dz.

The (defective) density of the random time τL at which M gets absorbed at mL is
therefore (employing somewhat loose notation)

ϕ(t) := P
(
τL ∈ [t, t + dt])/dt = −

∫ mU

mL

ψ(z)
∂

∂t
n(z;mL,mU, t) dz

= 1

(mU − mL)2

∞∑

n=1

e−αntnπ sin(−an).

Consequently,

e2 = E
(
e

1
2 τ1{τ≤T ,Z(τ)=zL}

) =
∫ T

0
ϕ(t)e

1
2 t dt

= 1

(mU − mL)2

∞∑

n=1

nπ sin(−an)

∫ T

0
e−(αn− 1

2 )t dt

= 1

(mU − mL)2

∞∑

n=1

nπ sin(−an)
1 − e−(αn− 1

2 )T

αn − 1
2

= sin(mU)

sin(mU − mL)
− 1

(mU − mL)2

∞∑

n=1

nπ sin(−an)
e−(αn− 1

2 )T

αn − 1
2

. �
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B.7 Proof of Proposition 4.5

We borrow all notation from Appendix B.6 above. As before, we have

e1 =
∫ k

mL

n(z;mL,mU,T )
(
K̃ cos(z + z0) − sin(z + z0)

)
dz,

where we now use a method of images representation for n(z;mL,mU,T ), namely

n(z;mL,mU,T ) = 1√
2πT

n=∞∑

n=−∞

[
exp

{
− (z − z′

n)
2

2T

}
− exp

{
− (z − z′′

n)
2

2T

}]
,

with z′
n = 2n(mU − mL), z′′

n = 2mU − z′
n. Defining Ic(·) and Is(·) as in (4.5), (4.6)

we get

e1 =
n=∞∑

n=−∞

(
K̃

(
Ic(z

′
n) − Ic(z

′′
n)

) − (
Is(z

′
n) − Is(z

′′
n)

))
.

As for the computation of e2 = E(e
1
2 τ1{τ≤T ,Z(τ)=zL}), we first define τL to be

the time at which the Brownian motion M gets absorbed at mL. Proceeding as in
Appendix B.6, the (defective) density of τL can be computed as

ϕ(t) := P
(
τL ∈ [t, t + dt])/dt = − ∂

∂t

∫ mU

mL

ψ(z)n(z;mL,mU, t) dz,

where ψ(z) = (mU − z)/(mU − mL). Evaluating the integral shows that
∫ mU

mL

ψ(z)n(z;mL,mU, t) dz = F(t)

where F(t) is as given in Proposition 4.5. Finally, from the definition of e2,

e2 =
∫ T

0
ϕ(t)e

1
2 t dt. �
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