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Abstract We present an optimal investment theorem for a currency exchange model
with random and possibly discontinuous proportional transaction costs. The in-
vestor’s preferences are represented by a multivariate utility function, allowing for
simultaneous consumption of any prescribed selection of the currencies at a given
terminal date. We prove the existence of an optimal portfolio process under the as-
sumption of asymptotic satiability of the value function. Sufficient conditions for this
include reasonable asymptotic elasticity of the utility function, or a growth condition
on its dual function. We show that the portfolio optimization problem can be refor-
mulated in terms of maximization of a terminal liquidation utility function, and that
both problems have a common optimizer.
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1 Introduction

In this paper we consider a portfolio optimization problem over a finite time hori-
zon [0, T ] in a continuous-time financial market, where an agent can trade finitely
many risky assets with proportional transaction costs. The underlying financial mar-
ket model is very general; the terms of each trade are described by a bid–ask process
(Πt )t∈[0,T ] as in [4], so that transaction costs can be time-dependent, random and
have jumps. In this setting, the portfolio process (Vt )t∈[0,T ] is a vector-valued process
describing at every instant the number of physical units of each asset held by the
agent. The example that the reader should always have in mind is an exchange market
with D currencies, in which Vt = (V 1

t , . . . , V D
t ) represents how many dollars, euros,

pounds, etc. the agent holds at time t . The agent is permitted to dynamically rebal-
ance his portfolio within the set of all admissible self-financing portfolio processes
as in [4]. To avoid arbitrage, we assume the existence of a strictly consistent pricing
system (SCPS) throughout the paper. Precise details and further assumptions about
the modelling of the economy are given in Sect. 2.

We consider an agent who may consume a prescribed selection of the D assets at
time T . Without loss of generality, we assume that the agent wishes to consume the
first d assets, where 1 ≤ d ≤ D. We have two main cases in mind, namely d = D,
where the investor can consume all assets, and d = 1, where the investor must liqui-
date to a reference asset immediately prior to consumption. In the latter case, those
assets which are not consumed play the role of pure investment assets. We model the
agent’s preferences towards terminal consumption by means of a multivariate util-
ity function, U : R

d → [−∞,∞), supported on the non-negative orthant R
d+ (see

Definition 2.9). The utility function is assumed to satisfy the following conditions.

Assumption 1.1

1. U is upper semi-continuous.
2. U is strictly concave on the interior of R

d+.
3. U is essentially smooth, i.e., differentiable in the interior of R

d+, and its gradient
diverges at the boundary of R

d+ (see Definition 2.11).
4. U is asymptotically satiable, i.e., there exist positions in the traded assets for

which the marginal utility of U can be made arbitrarily small (see Definition 2.13).

In the univariate case (d = 1) the assumption of both essential smoothness and
asymptotic satiability is equivalent to the familiar assumption of continuous differ-
entiability together with the Inada conditions U ′(0) = ∞ and U ′(∞) = 0. Precise
details about the above conditions can be found within Sect. 2.

In order to express the investor’s preferences towards consumption of the first
d assets within the setting of the larger economy, we adopt the approach of [19],
extending the utility function U to all D assets. We define Ũ : R

D → [−∞,∞) by

Ũ (x) :=
{

U(x1, . . . , xd), x ∈ R
D+

−∞, otherwise.
(1.1)
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Although the extended utility function Ũ theoretically models the possibility of con-
sumption of all D assets, the investor has no incentive to consume anything other than
the first d assets because the utility is invariant with respect to increased consumption
of the remaining D − d assets.

The investor’s primal optimization problem is formulated in terms of the value
function u : R

D → [−∞,∞] defined1 by

u(x) := sup
{
E[Ũ (X)] : X ∈ Ax

T

}
, (1.2)

where x represents an initial portfolio, and Ax
T denotes the set of all terminal values of

admissible portfolio processes with initial portfolio x. Denote the effective domain of
u by dom(u) := {x ∈ R

D : u(x) > −∞}, and let cl(dom(u)) and int(dom(u)) denote
respectively its closure and interior. The following assumption holds throughout the
paper.

Assumption 1.2 u(x) < ∞ for some x ∈ int(dom(u)).

Our main results are as follows. In Proposition 3.1 we show that (under Assump-
tion 1.2) the value function is also a utility function. We give an explicit characteriza-
tion of cl(dom(u)) in terms of the cone of deterministic terminal portfolios attainable
at zero cost. The set cl(dom(u)) is itself a closed convex cone which strictly contains
R

D+ , reflecting the rather obvious fact that even with an initial short position in some
of the assets, the investor may use other positive initial holdings to trade to a terminal
position in which he holds non-negative amounts of each asset. In Proposition 3.5
we establish a relationship between the primal problem of utility maximization and
an appropriate dual minimization problem (3.2). The domain of the dual problem is
contained in a space of Euclidean vector measures, in contrast to the frictionless case
where real-valued measures suffice. We show that the dual problem has a solution
whenever x ∈ int(dom(u)). Finally, in Theorem 3.12, we prove that the utility max-
imization problem (1.2) admits a unique solution for all x ∈ int(dom(u)), under the
following assumption.

Assumption 1.3 u is asymptotically satiable (see Definition 2.13).

In Corollary 3.7 we provide sufficient conditions on the utility function U for
Assumption 1.3 to hold. Also, to place our optimization problem into the context
of other papers which require liquidation of terminal portfolios into a reference as-
set, we show in Proposition 4.3 that the utility maximization problem (1.2) can be
reformulated in terms of maximization of a liquidation utility functional. In Proposi-
tion 4.4 we show that both formulations of the optimization problem essentially share
a common optimizer.

Utility maximization problems in markets with transaction costs have been inves-
tigated by many authors, typically using either the dynamic programming approach

1Since U is assumed to be upper semi-continuous, it is Borel-measurable. In fact, the assumption that U

is upper semi-continuous can be relaxed to Borel-measurability throughout the paper, with the exception
of Sect. 4. We use the standard convention that E[Ũ (X)] = −∞ whenever E[Ũ(X)−] = ∞.
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or the martingale duality approach. While the dynamic programming approach is par-
ticularly well suited to treating optimization problems with a Markovian state process
(see e.g. [8, 33]), the duality approach has the advantage that it is applicable to very
general models. The first paper to use the duality approach in the setting of propor-
tional transaction costs was [5]. Cvitanić and Karatzas model two assets (a bond and
a stock) as Itô processes, and assume constant proportional transaction costs. At the
close of trading they assume that the investor liquidates his portfolio to the bond in
order to consume his wealth. In this setting they prove the existence of a solution
to the problem of utility maximization, under the assumption that a dual minimiza-
tion problem admits a solution. The existence of a solution to the dual problem was
subsequently proved in [6].

In [15], a much more general formulation of a transaction costs model for a cur-
rency market was introduced, based on the key concept of solvency cone. In the same
paper, Kabanov also considers the problem of expected utility maximization, with
liquidation of the terminal portfolio to a chosen reference currency, which is used
throughout as the numéraire. Similarly to [5], Kabanov proves the existence of an
optimal strategy under the assumption that a dual minimization problem admits a
solution.

Developments in the generality of Kabanov’s transaction costs model in contin-
uous time have since been given in [16], where a square-integrability condition was
replaced by an admissibility condition, followed by [17] which treated the case of
time-dependent, random transaction costs, provided the solvency cones can be gener-
ated by a countable family of continuous processes. More recently, in [4], Kabanov’s
model of currency exchange was further developed to allow discontinuous bid–ask
processes, and our optimization problem is set within this very general framework.

An important issue for utility maximization under transaction costs is the consid-
eration of how an investor measures his wealth, and thus his utility. In the frictionless
case it is normally assumed that there is a single consumption asset, which is used as
a numéraire (there are exceptions, e.g. [25]). However, in the transaction cost setting
it is quite natural to assume that the investor has access to several non-substitutable
consumption assets. This is particularly relevant when one considers a model of cur-
rency exchange, where there may be, for example, one consumption asset denomi-
nated in each currency. Modelling preferences with respect to several consumption
assets clearly requires the use of a multivariate utility function.

In [9], Deelstra et al. investigate a utility maximization problem within the transac-
tion costs framework of [16]. The agent’s preferences are described by a multivariate
utility function U which is supported on a constant solvency cone. The utility func-
tion is not assumed to be smooth so that liquidation can be included as a particular
case. In fact, by assuming that the utility function is supported on the solvency cone,
[9] are implicitly modelling the occurrence of at least one more trade (e.g. liquida-
tion, or an extended trading period) which takes place either on or after the terminal
date, but prior to consumption of wealth.

In [19, 20], Kamizono investigates a utility maximization problem which is also
set within the transaction costs framework of [16]. Kamizono argues convincingly
that a distinction should be drawn between direct utility (i.e., utility derived explic-
itly from consumption) and indirect utility, which depends on further trading, e.g.
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liquidation. He argues that [9] are using a kind of indirect utility function, which is
why they need to consider the case of a non-smooth utility function. We choose to
adopt the approach of Kamizono in the current paper by using a direct utility func-
tion U , which is supported on R

d+, in the formulation of the primal problem. The
value function u defined in (1.2) is then a type of indirect utility, whose support (the
closure of its effective domain) is intimately connected to the transaction costs struc-
ture, as we shall see in Proposition 3.1. In Example 3.2 we demonstrate that the value
function u may fail to be either strictly concave or differentiable on int(dom(u)).

In order to prove the existence of an optimizer in the multivariate setting, most ex-
isting papers make fairly strong technical assumptions on the utility function, which
do not admit easy economic interpretations. For example, in [9, 19, 20] the utility
function is assumed to be bounded below and unbounded above. In addition, in [9]
the dual of the utility function is assumed to explode on the boundary of its effective
domain, or to be extendable to a neighbourhood of its original domain. In the current
paper, Assumption 1.1 is the only assumption we shall make directly on the utility
function U . It is worth noting that, with the exception of Sect. 4, the assumption of
upper semi-continuity is only used to ensure that U is Borel-measurable, and hence
that the primal problem (1.2) is well defined.

A relatively recent development in the theory of utility maximization is the re-
placement of the assumption of reasonable asymptotic elasticity on the utility func-
tion by a weaker condition. In the frictionless setting, [24] showed that finiteness of
the dual of the value function is sufficient for the existence of an optimal portfolio.
Since then [3] have investigated this further for the discrete-time model of transaction
costs given in [32] and [18]. They prove the existence of an optimal consumption-
investment strategy under the assumption of finiteness of the convex dual of the
value function corresponding to an auxiliary univariate primal problem. The rea-
son why [3] have to employ this approach is that the generalization of the methods of
Kramkov and Schachermayer to the multivariate setting seems not possible. Indeed,
Bouchard and Pham comment that “it turns out that the one-dimensional argument
of Kramkov and Schachermayer does not work directly in our multivariate setting”.
One of the important contributions of the current paper is a novel approach to the
variational analysis of the dual problem which allows us to prove, even in a multi-
variate framework, the existence of a solution to the utility maximization problem
under the condition of asymptotic satiability of the value function. The relationship
between asymptotic satiability of the value function and finiteness of the convex dual
of the value function is made clear in Proposition 2.15.

As mentioned above, most optimal investment theorems impose the stronger as-
sumption of reasonable asymptotic elasticity on the utility function U , or a growth
condition on the dual function U∗ (the notable exceptions being [24] and [3]). We
show that these types of assumption are included by our results as follows: In Propo-
sition 2.22 we show that if U is bounded from below on the interior of R

d+, is multi-
variate risk averse (see Definition 2.17) and has reasonable asymptotic elasticity (see
Definition 2.19), then U∗ satisfies a growth condition (see Definition 2.20). In Corol-
lary 3.7, we show that if U is bounded above or if U∗ satisfies the growth condition,
then the value function u is asymptotically satiable (which is the hypothesis of this
paper). We should point out that multivariate risk aversion is not the same as concav-
ity, and we feel that its importance has been overlooked by the existing literature on
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multivariate utility maximization. In particular, it appears to be an essential ingredient
in the proof of Proposition 2.22.

There are three standard ways to formulate a dual optimization problem in the util-
ity maximization literature: in terms of martingale measures, their density processes
or their Radon–Nikodým derivatives. In all three cases, these control sets are not
large enough to contain the dual optimizer, and they need to be enlarged in some
way. For example, [23] enlarge the set of (martingale) density processes by including
supermartingales as the control processes, and they employ an abstract dual problem
which is formulated using random variables which have lost some mass. In [9], the
set of Radon–Nikodým derivatives is enlarged, by including random variables which
have lost some mass. In this paper, we develop further the approach of [7, 21, 28]
by considering the enlarged space of (finitely additive) Euclidean vector measures.
The domain of the dual problem is then complete in the relevant topology, and thus
contains the dual optimizer. In Example 3.13, we show that this enlargement is nec-
essary by providing an example where the dual minimizer has a non-zero singular
component. Our approach makes explicit the “loss of mass” experienced by the dual
minimizer; in previous work on transaction costs, the dual minimizer corresponds to
the countably additive part of our dual minimizer. Our approach is just as powerful as
the approach of using a dual control process. Indeed, each finitely additive measure
in the domain of our dual problem gives rise to a supermartingale control process (see
e.g. [21, Proposition 2.2] for this construction in the univariate case).

There have also been several approaches in the literature to show the absence of
a gap between the optimal primal and dual values. These approaches include using
minimax, the Fenchel duality theorem, and the Lagrange duality theorem. In a recent
paper [22], Klein and Rogers propose a flexible approach which identifies the dual
problem for financial markets with frictions. They guarantee the absence of a duality
gap by using minimax, under the assumption of a duality condition which they call
(XY). We have chosen to follow instead the approach of [28], using the perfectly
suited and equally powerful Lagrange duality theorem as our weapon of choice (see
Proposition 3.5 and Theorem A.1). Of course, the minimax, Fenchel duality, and
Lagrange duality theorems on non-separable vector spaces are all based upon the
Hahn–Banach theorem in its geometric form, the separating hyperplane theorem.

The rest of the paper is structured as follows. In Sect. 2 we introduce some pre-
liminaries, including the transaction costs framework, and some theory of convex
analysis, multivariate utility functions and Euclidean vector measures. In Sect. 3 we
prove our main theorems, as described above. In Sect. 4, we explain how to relate the
formulation of our optimization problem to the liquidation case. In the Appendix, we
present the Lagrange duality theorem, which is used to show that there is no dual-
ity gap. The Appendix also contains the proofs of some of the auxiliary results from
Sect. 2, which are postponed in order to improve the presentation.

2 Preliminaries

In this section we present all the preliminary concepts and notation which are required
for the analysis of the optimization problem. The reader may wish to skip these pre-
liminaries at first, and refer back when necessary. The structure of this section is as
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follows. In Sect. 2.1 we recall the transaction costs framework of [4]. In Sect. 2.2
we introduce some terminology from convex analysis, including dual functionals and
their properties. In Sect. 2.3 we introduce multivariate utility functions and discuss
various properties such as asymptotic satiability, reasonable asymptotic elasticity, and
multivariate risk aversion. Finally, in Sect. 2.4 we collect some facts about Euclidean
vector measures, which we use for our formulation of the dual problem.

2.1 Bid–ask matrix formalism of transaction costs

Let us recall the basic features of the transaction costs model as formalized in [4] (see
also [32]). In such a model, all agents can trade in D assets according to a random
and time-varying bid–ask matrix. A D ×D matrix Π = (πij )1≤i,j≤D is called a bid–
ask matrix if (i) πij > 0 for every 1 ≤ i, j ≤ D, (ii) πii = 1 for every 1 ≤ i ≤ D,
and (iii) πij ≤ πikπkj for every 1 ≤ i, j, k ≤ D. The entry πij denotes the number of
units of asset i required to purchase one unit of asset j . In other words, 1/πji and πij

denote, respectively, the bid and ask prices of asset j denominated in asset i.
Given a bid–ask matrix Π , the solvency cone K(Π) is defined as the convex poly-

hedral cone in R
D generated by the canonical basis vectors ei , 1 ≤ i ≤ D, of R

D , and
the vectors πij ei − ej , 1 ≤ i, j ≤ D. The cone −K(Π) should be interpreted as the
portfolios available at price zero. The (positive) polar cone of K(Π) is defined by

K∗(Π) = {
w ∈ R

D : 〈v,w〉 ≥ 0,∀v ∈ K(Π)
}
.

Next, we introduce randomness and time in our model. Let (�, (Ft )t∈[0,T ],P)

be a filtered probability space satisfying the usual conditions and supporting all
processes appearing in this paper. An adapted, càdlàg process (Πt )t∈[0,T ] taking val-
ues in the set of bid–ask matrices will be called a bid–ask process. A bid–ask process
(Πt )t∈[0,T ] will now be fixed, and we drop it from the notation by writing Kτ instead
of K(Πτ ) for a stopping time τ .

In accordance with the framework developed in [4] we make the following tech-
nical assumption throughout the paper. The assumption is equivalent to disallowing
a final trade at time T , but it can be relaxed via a slight modification of the model
(see [4, Remark 4.2]). For this reason, we shall not explicitly mention the assumption
anywhere.

Assumption 2.1 FT − = FT and ΠT − = ΠT a.s.

Definition 2.2 An adapted, R
D+ \ {0}-valued, càdlàg martingale Z = (Zt )t∈[0,T ] is

called a consistent price process for the bid–ask process (Πt )t∈[0,T ] if Zt ∈ K∗
t a.s.

for every t ∈ [0, T ]. Moreover, Z will be called a strictly consistent price process if it
satisfies the following additional condition: For every [0, T ] ∪ {∞}-valued stopping
time τ , Zτ ∈ int(K∗

τ ) a.s. on {τ < ∞}, and for every predictable [0, T ] ∪ {∞}-valued
stopping time σ , Zσ− ∈ int(K∗

σ−) a.s. on {σ < ∞}. The set of all (strictly) consistent
price processes will be denoted by Z (Z s ).

The following assumption, which is used extensively in [4], will also hold through-
out the paper.
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Assumption 2.3 (SCPS) Existence of a strictly consistent price system: Z s 
= ∅.

This assumption is intimately related to the absence of arbitrage (see also [12–14]).

Definition 2.4 Suppose that (Πt )t∈[0,T ] is a bid–ask process such that Assump-
tion 2.3 holds true. An R

D-valued process V = (Vt )t∈[0,T ] is called a self-financing
portfolio process for the bid–ask process (Πt )t∈[0,T ] if it satisfies the following prop-
erties:

(i) It is predictable and a.e. path has finite variation (but is not necessarily right-
continuous).

(ii) For every pair of stopping times 0 ≤ σ ≤ τ ≤ T , we have

Vτ − Vσ ∈ −conv

( ⋃
σ≤t<τ

Kt ,0

)
a.s.

A self-financing portfolio process V is called admissible if it satisfies the additional
property:

(iii) There is a constant a > 0 such that VT + a1 ∈ KT a.s. and 〈Vτ + a1,Zs
τ 〉 ≥ 0

a.s. for all [0, T ]-valued stopping times τ and for every strictly consistent price
process Zs ∈ Z s . Here, 1 ∈ R

D denotes the vector whose entries are all equal
to 1.

Let Ax denote the set of all admissible, self-financing portfolio processes with initial
endowment x ∈ R

D , and let

Ax
T := {

VT : V ∈ Ax
}

be the set of all contingent claims attainable at time T with initial endowment x. Note
that Ax

T = x + A0
T for all x ∈ R

D .

Remark 2.5 A few observations about the above definition of admissible self-
financing strategy are in order. We recall that for any portfolio process
V = (V 1, . . . , V D), the quantity V i

t (for 1 ≤ i ≤ D) represents the number of units of
asset i held by the agent at time t . The condition of a.s. finite variation in (i) is justi-
fied by the fact that, since the agent must pay a proportional transaction cost for each
change in the portfolio, the transaction costs would add up to infinity for trajectories
with infinite variation. It has been shown in [12, 13] that in a one-dimensional setting
this property is a consequence of the assumption of No-Free-Lunch. Therefore it is
economically meaningful to restrict to portfolio processes with a.e. trajectory of finite
variation.

Condition (ii) can be translated in the following terms: Fixing stopping times
σ ≤ τ , the portfolio’s change Vτ − Vσ should be a.s. in the closure of the union of
the cones (−Kt)t∈[σ,τ) of contingent claims available (at time t) at price zero. This
is the analogue of the self-financing condition usually considered in the frictionless
case.
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For a more detailed discussion of the content of Definition 2.4, especially the
very delicate admissibility condition (iii) and the reasons why portfolio processes are
allowed to have jumps from the right, we refer to [4].

For the convenience of the reader we present a reformulation of [4, Theorem 4.1],
which will be an essential ingredient in the proof of Theorem 3.12.

Theorem 2.6 (Super-replication) Let x ∈ R
D and let X be an FT -measurable,

R
D+ -valued random variable. Under Assumption 2.3 we have

X ∈ Ax
T if and only if E

[〈
X,Zs

T

〉] ≤ 〈
x,Zs

0

〉
for all Zs ∈ Z s .

2.2 Convex analysis

Let (X , τ ) be a locally convex topological vector space, and let X ∗ denote its dual
space. On the first reading of this section, X should simply be thought of as Euclid-
ean space R

d , and τ the associated Euclidean topology. However, from Sect. 3 on-
wards we need the full generality of topological vector spaces. Given a set S ⊆ X ,
we let cl(S), int(S), ri(S) and aff(S) denote respectively the closure, interior, rel-
ative interior and affine hull of S. We say that a set C ⊆ X is a convex cone if
λC + μC ⊆ C for all λ,μ ≥ 0. Given a set S ⊆ X , we denote its polar cone by

S∗ := {
x∗ ∈ X ∗ : 〈x, x∗〉 ≥ 0 ∀x ∈ S

}
.

Note that S∗ is weak∗ closed. A convex cone C ⊆ X induces a preorder �C on X :
We say that x, x′ ∈ X satisfy x′ �C x if and only if x′ − x ∈ C.

Let U : X → [−∞,∞] be a concave functional on X , that is, the hypograph

hypo(U) := {
(x,μ) : x ∈ X , μ ∈ R, μ ≤ U(x)

}
is convex as a subset of X × R. The effective domain dom(U) of U is the projection
of hypo(U) onto X , i.e., dom(U) := {x ∈ X : U(x) > −∞}. The functional U is
said to be proper concave if its effective domain is nonempty, and if it never assumes
the value +∞.

The closure cl(U) of the functional U is the unique functional whose hypograph is
the closure of hypo(U) in X × R. The functional U is said to be closed if cl(U) = U.

The functional U is said to be upper semi-continuous if for each c ∈ R the set
{x ∈ X : U(x) ≥ c} is closed. Equivalently, U is upper semi-continuous if we have
lim supα U(xα) ≤ U(x), whenever (xα)α∈A ⊆ X is a net tending to some x ∈ X . It
is an elementary result that a concave functional is closed if and only if it is upper
semi-continuous (see e.g. [34, Theorem 2.2.1] or [1, Corollary 2.60]).

Let ∂U(x) denote the superdifferential of U at x. That is, ∂U(x) is the collection
of all x∗ ∈ X ∗ such that

U(z) ≤ U(x) + 〈z − x, x∗〉 ∀z ∈ X .

A functional V : X → [−∞,∞] is said to be convex if −V is concave. The
corresponding definitions of the effective domain, proper convexity, the lower semi-
continuity, closure and subdifferential for a convex functional are made in the obvious
way.
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Definition 2.7 (Dual functionals)

1. If U : X → [−∞,∞) is proper concave then we define its dual functional
U∗ : X ∗ → (−∞,∞] by

U
∗(x∗) := sup

x∈X

{
U(x) − 〈x, x∗〉}. (2.1)

The dual functional U∗ is a weak∗ lower semi-continuous, proper convex func-
tional on X ∗. Note that U∗ = (cl(U))∗ (see e.g. [34, Theorem 2.3.1]).

2. If V : X ∗ → (−∞,∞] is proper convex then we define the pre-dual functional
∗V : X → [−∞,∞) by

∗
V(x) := inf

x∗∈X ∗
{
V(x∗) + 〈x, x∗〉}.

Similarly, ∗V is a weakly2 upper semi-continuous, proper concave functional. By
applying [34, Theorem 2.3.3] we see that (∗V)∗ = clV.

The reader should be aware that the dual functional is not the same object as the
conjugate functional commonly used in texts on convex analysis. Nevertheless, the
only discrepancies are in the sign convention; any property of conjugate functions
can, with a little care, be re-expressed as a property of the dual function.

The next lemma will be used several times throughout the paper. Its proof is sim-
ple, and is therefore omitted. We say that U is increasing with respect to a preorder
� on X if U(x′) ≥ U(x) for all x, x′ ∈ X such that x′ � x.

Lemma 2.8 Let U : X → [−∞,∞) be proper concave. Then U∗ is decreasing with
respect to the preorder induced by (dom(U))∗. Suppose furthermore that U is increas-
ing with respect to the preorder induced by some cone C. Then dom(U∗) ⊆ C∗.

2.3 Multivariate utility functions

Definition 2.9 We say that a proper concave function U : R
d → [−∞,∞) is a

(multivariate) utility function if

1. CU := cl(dom(U)) is a convex cone such that R
d+ ⊆ CU 
= R

d ; and
2. U is increasing with respect to the preorder induced by CU .

We call CU the support (or support cone) of U and say that U is supported on CU .
The dual function U∗ of a utility function U : R

d → R is defined by (2.1) with
X = R

d .

We focus on three particular utility functions in this paper. The agent’s utility
function U is assumed to be supported on R

d+, the extended utility function Ũ defined
by (1.1) is therefore supported on R

D+ , and we shall show in Proposition 3.1 that under
Assumption 1.2 the value function u defined by (1.2) is a utility function which is
supported on a cone which is strictly larger than R

D+ .

2A concave functional is weakly upper semi-continuous if and only if it is upper semi-continuous with
respect to the original topology τ .
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Example 2.10

1. The canonical univariate utility functions on R+ are constant relative risk aversion
(CRRA) utility functions. These are defined, for x ∈ R+, by

Uγ (x) =
{

xγ /γ, γ < 1, γ 
= 0,

lnx + 1/2, γ = 0,

with Uγ (x) = −∞ otherwise. The dual functions are U∗
γ = −Uγ ∗ where γ ∗ is the

conjugate of the elasticity γ (that is, 1/γ + 1/γ ∗ = 1, unless γ = 0, in which case
γ ∗ = 0).

2. The simplest class of utility functions which are supported on R
d+ is the class of

additive utility functions,

U(x1, . . . , xd) :=
d∑

i=1

Ui(xi),

where U1, . . . ,Ud : R → [−∞,∞) are univariate utility functions on R+. In this
case the dual function also takes the additive form U∗(x∗) = ∑d

i=1 U∗
i (x∗

i ).
3. The Cobb–Douglas utility functions form another class of utility functions sup-

ported on R
d+. Define

U(x1, . . . , xd) :=
{∏d

i=1 x
αi

i , x ∈ R
d+,

−∞, otherwise,

where αi ≥ 0 are such that
∑d

i=1 αi < 1.

Note that the dual of the extended function Ũ : R
D → R is given by

Ũ∗(x∗) =
{

U∗(x∗
1 , . . . , x∗

d ), x∗ ∈ R
D+

+∞, otherwise.

In the following subsections we investigate a number of conditions which can be
imposed on multivariate utility functions.

2.3.1 Multivariate Inada conditions: essential smoothness and asymptotic
satiability

In this subsection we investigate analogues of the well-known “Inada conditions” for
the case of a smooth multivariate utility function. The first condition, which we recall
from [31], is well known within the field of convex analysis.

Definition 2.11 A proper concave function U : R
d → [−∞,∞) is said to be essen-

tially smooth if

1. int(dom(U)) is nonempty;
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2. U is differentiable throughout int(dom(U));
3. limi→∞ |∇U(xi)| = +∞ whenever x1, x2, . . . is a sequence in int(dom(U)) con-

verging to a boundary point of int(dom(U)).

A proper convex function V is said to be essentially smooth if −V is essentially
smooth.

The next result is well known, and can be deduced by a standard application of
[31, Theorems 7.4, 12.2, 26.1, 26.3 and Corollary 23.5.1].

Lemma 2.12 Let U be a proper concave function which is essentially smooth and
strictly concave on int(dom(U)). Then U∗ is strictly convex on int(dom(U∗)) and
essentially smooth. Moreover, the maps ∇U : int(dom(U)) → int(dom(U∗)) and
∇U∗ : int(dom(U∗)) → − int(dom(U)) are bijective and (∇U)−1 = −∇U∗.

The next condition appears to be less well known.

Definition 2.13 We say that a utility function U is asymptotically satiable if for all
ε > 0 there exists an x ∈ R

d such that ∂(cl(U))(x) ∩ [0, ε)d 
= ∅.

The proof of the next lemma can be found in the Appendix.

Lemma 2.14 A sufficient condition for asymptotic satiability of U is that for all
ε > 0 there exists an x ∈ int(dom(U)) such that ∂U(x) ∩ [0, ε)d 
= ∅. If U is either
upper semi-continuous or essentially smooth, then this condition is both necessary
and sufficient for asymptotic satiability.

Asymptotic satiability means that one can find positions for which the utility func-
tion is almost horizontal. The economic interpretation of this condition is even clearer
if U is multivariate risk averse (see Sect. 2.3.3). In this case, the marginals of U de-
crease with increasing wealth, which means that an asymptotically satiable utility
function approaches horizontality in the limit as the quantities of assets consumed
increase to infinity.

Let us now consider the effect of asymptotic satiability on the dual function. Recall
that for a utility function U we define the closed, convex cone CU := cl(dom(U)).
Since the dual function U∗ of a utility function is convex, it follows that cl(dom(U∗))
is convex. Furthermore, as an immediate consequence of Lemma 2.8, we have that
cl(dom(U∗)) ⊆ (CU)∗ ⊆ R

d+, and U∗ is decreasing with respect to �(CU )∗ . However,
it can happen that cl(dom(U∗)) fails to be a convex cone, in which case it is strictly
contained in (CU)∗. In Proposition 2.15 we give a simple condition under which
cl(dom(U∗)) = (CU)∗. Its proof can be found in the Appendix.

Proposition 2.15 Let U be a utility function. The following conditions are equiva-
lent:

1. U is asymptotically satiable.
2. 0 ∈ cl(dom(U∗)).
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3. cl(dom(U∗)) = (CU)∗.
4. cl(dom(U∗)) is a convex cone.

If U is asymptotically satiable, we define the closed convex cone CU∗ := cl(dom(U∗)),
so that condition 3 can be written more succinctly as CU∗ = (CU)∗.

One should think of essential smoothness and asymptotic satiability as the mul-
tivariate analogues of the univariate Inada conditions U ′(0) = ∞ and U ′(∞) = 0
respectively. Indeed, an additive utility function (see part 2 of Example 2.10) with
continuously differentiable components Ui (i = 1, . . . , d) is essentially smooth if and
only if each component satisfies U ′

i (0) = ∞, and asymptotically satiable if and only
if each component satisfies U ′

i (∞) = 0. Clearly these conditions reduce to the usual
Inada conditions in the univariate case.

The proof of the following corollary of Lemma 2.12 and Proposition 2.15 is
straightforward, and is therefore omitted.

Corollary 2.16 Let U : R
d → [−∞,∞) be a utility function which is supported on

R
d+ and which satisfies Assumption 1.1. Recall that by definition of the dual function

we have

U∗(x∗) ≥ U(x) − 〈x, x∗〉 (2.2)

for all x, x∗ ∈ R
d . If x∗ ∈ int(Rd+) then we have equality in (2.2) if and only if

x = I (x∗) := −∇U∗(x∗).
Given D ≥ d , define Ũ : R

D → [−∞,∞) by (1.1). Again, by definition of the dual
function we have

Ũ∗(x∗) ≥ Ũ (x) − 〈x, x∗〉 (2.3)

for all x, x∗ ∈ R
D . Define P : R

D → R
d by

P(x1, . . . , xd, xd+1, . . . , xD) := (x1, . . . , xd) (2.4)

and Ĩ : int(Rd+) × R
D−d+ → int(Rd+) × R

D−d+ by

Ĩ (x∗) := (−∇U∗(P (x∗)),0), (2.5)

where 0 denotes the zero vector in R
D−d . Then, (i) if x∗ ∈ int(Rd+) × R

D−d+ then
we have equality in (2.3) whenever x = Ĩ (x∗) and (ii) if x∗ ∈ int(RD+) then there is
equality in (2.3) if and only if x = Ĩ (x∗).

2.3.2 Multivariate risk aversion

In this subsection we present the multivariate analogue of risk aversion. Generaliz-
ing the concept of risk aversion to the multivariate case was first considered in [30].
The idea is that a risk-averse investor should prefer a lottery in which he has an even
chance of winning x + z or x + z′ (with z, z′ positive), to a lottery in which he has
an even chance of winning x or x + z + z′. Put differently, the investor prefers lot-
teries where the outcomes are less extreme. Some further, mathematically equivalent
conditions for multivariate risk aversion can be found in [27, Theorem 3.12.2].
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In one dimension, multivariate risk aversion is equivalent to concavity of the utility
function; but in higher dimensions this is no longer the case.

Definition 2.17

1. Let U be a utility function which is supported on R
d+. We say that U is multivari-

ate risk averse if for any x ∈ R
d and any z, z′ ∈ R

d+, we have

U(x) + U(x + z + z′) ≤ U(x + z) + U(x + z′).

2. Let U be a utility function which is supported on R
d+. We say that U has decreas-

ing marginals if for any x ∈ dom(U), any x′ ∈ R
d satisfying x′ �

R
d+ x, and any

z ∈ R
d+, we have

U(x + z) − U(x) ≥ U(x′ + z) − U(x′).

The proof of the following result is simple, and is therefore omitted.

Lemma 2.18 Let U be a utility function which is supported on R
d+. Then U is multi-

variate risk averse if and only if it has decreasing marginals. If U is differentiable on
int(Rd+) and multivariate risk averse, then given x, x′ ∈ int(Rd+) such that x′ �

R
d+ x,

we have ∇U(x) �
R

d+ ∇U(x′).

If U is an additive utility function (see part 2 of Example 2.10) then the concavity
of each component Ui is enough to imply that U is multivariate risk averse. How-
ever, not all utility functions are multivariate risk averse; the Cobb–Douglas utility
functions (see part 3 of Example 2.10) provide examples of such utility functions.
To get a better feel for why, in the general case, multivariate risk aversion is not the
same as concavity, it helps to consider the Hessian of a (twice differentiable) utility
function. The utility function exhibits multivariate risk aversion if at every point the
Hessian contains only non-positive entries; in other words, all second-order partial
derivatives are non-positive. In contrast, the Hessian of a concave function at every
point is negative semi-definite.

2.3.3 Reasonable asymptotic elasticity and the growth condition

We begin by presenting a multivariate analogue of the well-known condition of rea-
sonable asymptotic elasticity.

Definition 2.19 Let U be an essentially smooth utility function which is supported
on R

d+ and bounded from below on int(Rd+). We say that U has reasonable asymptotic
elasticity if

sup
c∈R

lim inf
x∈int(Rd+),

|x|→∞

U(x) + c

〈x,∇U(x)〉 > 1, (2.6)

where |x| := max{|x1|, . . . , |xd |}.
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As an example, the additive utility function U(x) = ∑d
i=1 Ui(xi) with

Ui(xi) := x
γi

i /γi , xi > 0, where 0 < γi < 1 for each i = 1, . . . , d (see part 2 of Ex-
ample 2.10), has reasonable asymptotic elasticity.

The definition of asymptotic elasticity in the univariate setting is due to [23]. In the
multivariate setting, one can define the asymptotic elasticity of an essentially smooth
utility function supported on R

d+ by

AE(U) := lim sup
{〈

x,∇U(x)
〉
/U(x) : x ∈ int

(
R

d+
)
, |x| → ∞}

, (2.7)

provided the utility function U is strictly positive on int(Rd+). In this case, it is trivial
that if AE(U) < 1 then (2.6) holds. We prefer to formulate the condition of reasonable
asymptotic elasticity in terms of the reciprocal of the ratio used in (2.7), since the term
〈x,∇U(x)〉 in the denominator of (2.6) is guaranteed to be strictly positive for all
x ∈ int(Rd+). Note that the assumption in (2.7) that U is strictly positive on int(Rd+) is
relaxed in Definition 2.19 to allow U which is bounded below on int(Rd+), effectively
by adding the constant c. Note also that the supremum in (2.6) can be replaced by the
limit as c → ∞.

Unfortunately, it makes no sense to extend Definition 2.19 to the case where U

is unbounded below on int(Rd+) unless d = 1. Indeed, by inspection of (2.6), it is
clear that a necessary condition for a utility function to have reasonable asymptotic
elasticity is the existence of a sublevel set {x ∈ int(Rd+) : U(x) ≤ −c} which is ei-
ther bounded or empty, a condition which fails whenever d ≥ 2 for additive utility
functions which are unbounded from below on int(Rd+).

Variations of Definition 2.19 have already appeared in the literature for the case
where U(0) = 0 and U(∞) = ∞ (see e.g. [9, 19, 20]). At a first glance, the differ-
ences between the definitions of reasonable asymptotic elasticity in these three papers
appear to be slight; however, more thought reveals that this is in fact a rather delicate
issue.

In each of the three mentioned papers, the assumption of reasonable asymptotic
elasticity is used in order to prove a growth condition on the dual function U∗ (see
Definition 2.20). In turn, the growth condition can be used as an ingredient in the
proof of existence of the optimizer in the primal problem. However, it appears that
the definitions of reasonable asymptotic elasticity in [9] and [19] are not quite strong
enough to imply the growth condition. To compensate for this, Kamizono uses, for
instance, an additional assumption (4.22b) which unfortunately excludes all additive
utility functions.

Our definition of reasonable asymptotic elasticity is essentially equivalent to the
one used in [20]. However, in order to prove the growth condition, we believe the ad-
ditional assumption of multivariate risk aversion is an essential ingredient (see Propo-
sition 2.22).

Definition 2.20 Let U : R
d → [−∞,∞) be a utility function which is supported on

R
d+ and asymptotically satiable. We say that the dual function U∗ satisfies the growth

condition if there exists a function ζ : (0,1] → [0,∞) such that for all ε ∈ (0,1] and
all x∗ ∈ int(Rd+),

U∗(εx∗) ≤ ζ(ε)
(
U∗(x∗)+ + 1

)
. (2.8)
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Remark 2.21 If U is bounded from above, then U∗ trivially satisfies the growth con-
dition with ζ(ε) := supx∗∈R

d+ U∗(x∗) = U∗(0) = supx∈Rd U(x) < ∞. As an exam-

ple, if U(x) = ∑d
i=1 Ui(xi) is an additive utility function with Ui(xi) = αix

γi

i /γi ,
where αi > 0 and γi < 0 for each i = 1, . . . , d (see part 2 of Example 2.10), then U∗
trivially satisfies the growth condition.

The following two results shed further light on the relationship between the con-
dition of reasonable asymptotic elasticity and the growth condition. Their proofs are
provided in the Appendix.

Proposition 2.22 Let U be a utility function which is supported on R
d+ and satisfies

Assumption 1.1. If U is bounded from below on int(Rd+), multivariate risk averse and
reasonably asymptotically elastic, then U∗ satisfies the growth condition.

Lemma 2.23 Let U(x) = ∑d
i=1 Ui(xi) be an additive utility function (supported

on R
d+) which is bounded from below on int(Rd+). If each of the components Ui has

reasonable asymptotic elasticity, then U∗ satisfies the growth condition.

If a utility function is unbounded below on int(Rd+), the previous two results do
not apply. It seems therefore that if the utility function is unbounded above and below
(on int(Rd+)), the growth condition has to be verified on a case-by-case basis. For
example, if U(x1, x2) := lnx1 + lnx2 + 1, then U∗ satisfies the growth condition,
while if U(x1, x2) = 2x

1/2
1 − x−1

2 , then U∗ fails to satisfy the growth condition.

2.4 Euclidean vector measures

A function m from a field F of subsets of a set � to a Banach space X is called a
finitely additive vector measure or vector measure if m(A1 ∪ A2) = m(A1) + m(A2),
whenever A1 and A2 are disjoint members of F . The theory of vector measures was
heavily developed in the late 1960s and early 1970s, and a survey of this theory can
be found in [10]. In this paper, we shall be concerned with the special case where
X = R

D ; we refer to the associated vector measure as a “Euclidean vector mea-
sure” or simply a “Euclidean measure”. In this setting, many of the subtleties of the
general Banach space theory do not appear. For instance, there is no distinction be-
tween the properties of boundedness, boundedness in (total) variation, boundedness
in semivariation and strong boundedness. In fact, we can obtain all the results that
we need about Euclidean measures by decomposing them into their one-dimensional
components. For this reason, we appeal exclusively to results of [29], which covers
the one-dimensional case very thoroughly.

Let us recall a few definitions from the classical one-dimensional setting.
The total variation of a (finitely additive) measure m : F → R is the function
|m| : F → [0,∞] defined by

|m|(A) := sup
n∑

j=1

∣∣m(Aj )
∣∣,
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where the supremum is taken over all finite sequences (Aj )
n
j=1 of disjoint sets in F

with Aj ⊆ A. A measure m is said to have bounded total variation if |m|(�) < ∞.
A measure m is said to be bounded if sup{|m(A)| : A ∈ F } < ∞. It is straightfor-
ward to show that

sup
{∣∣m(A)

∣∣ : A ∈ F
} ≤ |m|(�) ≤ 2 sup

{∣∣m(A)
∣∣ : A ∈ F

};
hence a measure is bounded if and only if it has bounded total variation. A measure
m is said to be purely finitely additive if 0 ≤ μ ≤ |m| and μ is countably additive,
implying that μ = 0. A measure m is said to be weakly absolutely continuous with
respect to P if m(A) = 0 whenever A ∈ F and P(A) = 0.

We now turn to the D-dimensional case. A Euclidean measure m can be de-
composed into its one-dimensional coordinate measures mi : F → R by defining
mi(A) := 〈ei,m(A)〉, where ei is the ith canonical basis vector of R

D . In this way,
m(A) = (m1(A), . . . ,mD(A)) for every A ∈ F . We say that a Euclidean measure m

is bounded, purely finitely additive or weakly absolutely continuous with respect to P

if each of its coordinate measures has the corresponding property.
Let ba(RD) = ba(�,FT ,P;R

D) denote the vector space of bounded Euclidean
measures m : FT → R

D which are weakly absolutely continuous with respect to P.
Let ca(RD) be the subspace of countably additive members of ba(RD). Equipped
with the norm

‖m‖ba(RD) :=
D∑

i=1

|mi |(�),

the spaces ba(RD) and ca(RD) are Banach spaces.
Let ba(RD+) denote the convex cone of R

D+ -valued measures within ba(RD). The
next proposition can be easily deduced from its one-dimensional version (see e.g.
[29, Theorem 10.2.1]) via a coordinate-wise reasoning. Its proof, which also involves
a simple application of [29, Theorems 2.2.1(5), 2.2.2, 10.2.2 and Corollary 10.1.4],
is therefore omitted.

Proposition 2.24 Given any m ∈ ba(RD), there exists a unique Yosida–Hewitt de-
composition m = mc + mp , where mc ∈ ca(RD) and mp is purely finitely additive. If
m ∈ ba(RD+), then mc,mp ∈ ba(RD+).

We shall see next that elements of ba(RD) play a natural role as linear functionals
on spaces of (essentially) bounded R

D-valued random variables. First we need some
more notation. Let L0(RD) = L0(�,FT ,P;R

D) denote the space of R
D-valued

random variables (identified under the equivalence relation of a.s. equality). Given
X ∈ L0(RD), we define the coordinate random variables Xi ∈ L0(R) for i = 1, . . . ,D

by Xi := 〈X,ei〉, so that X = (X1, . . . ,XD). Let L1(RD) denote the subspace of
L0(RD) consisting of those random variables X for which ‖X‖1 := E[∑i |Xi |] < ∞.
Let L∞(RD) denote the subspace of L0(RD) consisting of those random variables X

for which ‖X‖∞ := ess sup
{

maxi |Xi |
}

< ∞. Finally, let L∞(RD)∗ denote the dual
space of (L∞(RD),‖ · ‖∞).
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We now define the map Ψ : ba(RD) → L∞(RD)∗ by

(
Ψ (m)

)
(X) :=

∫
�

〈X,dm〉 :=
D∑

i=1

∫
�

Xi dmi, (2.9)

where (m1, . . . ,mD) is the coordinate-wise representation of m. For details con-
cerning the construction of the one-dimensional integrals in (2.9), see [29, Chap-
ter 4], where the integral is referred to as the D-integral. We also define the map
Φ : ca(RD) → L1(RD) by Φ(m) := ( dm1

dP
, . . . , dmD

dP
), where dmi

dP
is the Radon–

Nikodým derivative of the ith coordinate measure. Finally, we define the isometric
embedding ι : L1(RD) → L∞(RD)∗ by

(
ι(Y )

)
(X) := E[〈X,Y 〉]. The next proposi-

tion can be easily deduced from its one-dimensional version (see, e.g., [29, Theo-
rem 4.7.10]) via a coordinate-wise reasoning. Its proof is therefore omitted.

Proposition 2.25 The maps Ψ and Φ are isometric isomorphisms. Furthermore,
ι ◦ Φ = Ψ |ca(RD).

Corollary 2.26 (ba(RD),‖ · ‖ba(RD)) has a σ(ba(RD),L∞(RD))-compact unit ball.

For the remainder of the paper, we shall overload our notation as follows. Given
m ∈ ba(RD) and X ∈ L∞(RD), we write m(X) as an abbreviation of (Ψ (m))(X),
and we define dm

dP
:= ( dm1

dP
, . . . , dmD

dP
) = Φ(m).

Given x ∈ R
D and A ∈ FT , it follows from (2.9) that m(xχA) = 〈x,m(A)〉,

where χA denotes the indicator random variable of A. In the special case where
A = �, we have m(x) = 〈x,m(�)〉.

Let L0(RD+) and L∞(RD+) denote respectively the convex cones of random vari-
ables in L0(RD) and L∞(RD) which are R

D+ -valued a.s. Note that if m ∈ ba(RD+)

and X ∈ L∞(RD+), then m(X) ≥ 0 (see [29, Theorem 4.4.13]). This observation al-
lows us to extend the definition of m(X) to cover the case where m ∈ ba(RD+) and
X ∈ L0(RD+) by setting

m(X) := sup
n∈N

m
(
X ∧

R
D+ (n1)

)
, (2.10)

where 1 ∈ R
D denotes the vector whose entries are all equal to 1, and

(x1, . . . , xD) ∧
R

D+ (y1, . . . , yD) := (x1 ∧ y1, . . . , xD ∧ yD).

It is trivial that (2.10) is consistent with the definition of m(X) for X ∈ L∞(RD).
Furthermore, the supremum in (2.10) can be replaced by a limit because the sequence
of numbers is increasing. It follows that given m1,m2 ∈ ba(RD+), λ1, λ2,μ1,μ2 ≥ 0
and X1,X2 ∈ L0(RD+), we have

(λ1m1 + λ2m2)(μ1X1 + μ2X2)

= λ1μ1m1(X1) + λ1μ2m1(X2) + λ2μ1m2(X1) + λ2μ2m2(X2).
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Note that the final statement of Proposition 2.25 means that given m ∈ ca(RD) and
X ∈ L∞(RD), we have m(X) = E[〈X, dm

dP
〉]. It is easy to show that this property is

also true under the extended definition (2.10).

3 Main results

Throughout this section, U denotes a utility function which is supported on R
d+. The

extension Ũ of U to a utility function supported on R
D+ is defined by (1.1). The value

function u is defined by (1.2). We shall indicate explicitly where assumptions on the
investor’s preferences (i.e., Assumptions 1.1, 1.2 and 1.3) are used.

Regarding our model of the economy, Assumptions 2.1 and 2.3 will be taken as
standing assumptions throughout this section. As noted in Sect. 2.1, Assumption 2.1
is a technical assumption which can be relaxed, so we shall not mention this assump-
tion anywhere. To avoid mentioning Assumption 2.3 in the statement of every result,
we shall only indicate in the proofs where the assumption is used. As an exception,
however, we do mention Assumption 2.3 explicitly in the statement of our main re-
sult, Theorem 3.12.

The following result shows that if u is finite anywhere in the interior of its effective
domain, then it is a utility function, and we give a characterization of the closure of
the effective domain of u.

Proposition 3.1 Under Assumption 1.2 the value function u is a utility function with
support cone Cu := cl(dom(u)) = −{x ∈ R

D : x ∈ A0
T }.

Proof Note first that u is both concave and increasing with respect to R
D+ , because

A0
T is convex and Ũ is both concave and increasing with respect to R

D+ . We break
the proof into the following four steps. We show that (i) u(x) < ∞ for all x ∈ R

D ,
(ii) Cu = −{x ∈ R

D : x ∈ A0
T }, (iii) Cu 
= R

D , and (iv) u is increasing with respect
to �Cu .

(i) Suppose, for a contradiction, that there exists some x̃ ∈ R
D such that u(x̃) = ∞.

By Assumption 1.2 there exists an x ∈ int(dom(u)) such that u(x) < ∞. Let a > 0 be
large enough so that x1 := x + a1 �

R
D+ x̃. Since u is increasing with respect to R

D+ ,

this implies that u(x1) ≥ u(x̃) = ∞.
Since x ∈ int(dom(u)), there is an ε > 0 with x0 := x − ε1 ∈ int(dom(u)). We

claim that u(x0) ∈ R. Indeed, since x0 ∈ dom(u), we have that u(x0) > −∞, and
since u is increasing with respect to R

D+ , we have u(x0) ≤ u(x) < ∞.
Since u(x0) ∈ R, we may find an X0 ∈ Ax0

T such that E[Ũ (X0)] ∈ R. Since
u(x1) = ∞, given any R ∈ R we may find an X1 ∈ Ax1

T such that E[Ũ (X1)] ≥ R. De-

fine now λ := ε/(a + ε) ∈ (0,1) and X := (1 − λ)X0 + λX1 ∈ A(1−λ)x0+λx1
T = Ax

T .
Since Ũ is concave,

u(x) ≥ E
[
Ũ (X)

] = E
[
Ũ

(
(1 − λ)X0 + λX1

)]
≥ (1 − λ)E

[
Ũ (X0)

] + λE
[
Ũ (X1)

] ≥ (1 − λ)E
[
Ũ (X0)

] + λR.
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Since R can be chosen arbitrarily large, this implies that u(x) = ∞, which is the
required contradiction.

(ii) The set C := {x ∈ R
D : x ∈ A0

T } is a convex cone in R
D . It follows immedi-

ately from [4, Theorem 3.5] (which requires Assumption 2.3) that C is closed in R
D .

Take x ∈ int(C). There exists ε > 0 such that x + ε1 ∈ C and hence ε1 ∈ A−x
T . Now

u(−x) ≥ E[Ũ (ε1)] = Ũ (ε1) > −∞, so −x ∈ dom(u).
Suppose now that x ∈ dom(u). Then Ax

T ∩ L0(RD+) 
= ∅, since otherwise this
would contradict u(x) > −∞. Pick any X ∈ Ax

T ∩ L0(RD+). Because we may write
0 = X − X ∈ Ax

T − L0(RD+), it follows that 0 ∈ Ax
T , and hence x ∈ −C. Since C is

closed and − int(C) ⊆ dom(u) ⊆ −C, we get Cu = cl(dom(u)) = −C.
(iii) By part (ii), it suffices to show that {x ∈ R

D+ : x ∈ A0
T } = {0}. To show this,

suppose that x ∈ R
D+ satisfies x ∈ A0

T . Then there exists an admissible portfolio V

such that V0 = 0 and VT = x. Let Zs be a strictly consistent price process (such a
process exists by Assumption 2.3). By [4, Lemma 2.8], 〈V,Zs〉 is a supermartingale.
Hence 0 ≤ E[〈x,Zs

T 〉] = E[〈VT ,Zs
T 〉] ≤ E[〈V0,Z

s
0〉] = 0, and so x = 0.

(iv) Take x ∈ R
D and w ∈ Cu. Since, by step (i), u(x) < ∞, given any ε > 0 there

exists an X ∈ Ax
T such that E[Ũ(X)] ≥ u(x)− ε. By step (ii), 0 ∈ Aw

T , so X ∈ Ax+w
T .

Thus

u(x + w) ≥ E
[
Ũ (X)

] ≥ u(x) − ε.

Since ε > 0 is arbitrary, this implies that u(x + w) ≥ u(x). �

The following simple example shows that the value function u can fail to be strictly
concave on int(dom(u)), and may even fail to be differentiable on int(dom(u)).

Example 3.2 Consider the case with D = 2, where the bid–ask process is given by
the deterministic, constant matrix

Πt :=
(

1 2
2 1

)
.

In this case, the solvency cones Kt ≡ K are constant, and generated by the vectors
2e1 − e2 and 2e2 − e1.

1. With d = 2, we define U(x1, x2) := lnx1 + lnx2. It is easy to verify that the value
function in this case is

u(x) := max
c∈K

U(x − c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 ln(2x1 + x2) − 3 ln 2, x2 > 2|x1|,
lnx1 + lnx2, x1 > 0, x1 ≤ 2x2 ≤ 4x1,

2 ln(x1 + 2x2) − 3 ln 2, x1 > 0,−x1 < 2x2 < x1,

−∞, otherwise,

which fails to be strictly concave on int(K) but which is differentiable throughout
int(K).
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2. With d = 1, we define U(x) := lnx, and define Ũ : R
2 → [−∞,∞) by (1.1). It is

easy to verify that the value function in this case is

u(x) := max
c∈K

Ũ(x − c) =

⎧⎪⎨
⎪⎩

ln(x1 + 1
2x2), x2 > max{0,−2x1},

ln(x1 + 2x2), x1 > 0,−x1 < 2x2 ≤ 0,

−∞, otherwise,

which fails to be strictly concave on int(K) and fails to be differentiable anywhere
along the half-line x1 > 0, x2 = 0.

Given any initial portfolio x ∈ R
D , we define the proper concave functional

Ux : L∞(RD) → [−∞,∞) by

Ux(X) = E
[
Ũ (x + X)

]
.

Since Ũ is a utility function which is supported on R
D+ , Ux is increasing with respect

to the preorder induced by the convex cone L∞(RD+), and dom(U0) ⊆ L∞(RD+). Let
U

∗
x : ba(RD) → (−∞,∞] denote the dual functional defined by (2.1). The dual func-

tional is used directly in our formulation of a dual optimization problem (see (3.2)
and Proposition 3.5). The following lemma provides a representation of U

∗
x in terms

of the dual function Ũ∗.

Lemma 3.3 For any x ∈ R
D , we have

U
∗
x(m) =

{
E[Ũ∗( dmc

dP
)] + m(x), m ∈ ba(RD+),

∞, otherwise.

Proof It suffices to consider the case x = 0 because, setting X̃ := X + x,

U
∗
x(m) = sup

X∈L∞(RD)

{
Ux(X) − m(X)

} = sup
X̃∈L∞(RD)

{
U0(X̃) − m(X̃) + m(x)

}
= U

∗
0(m) + m(x).

Since U0 is increasing with respect to the preorder induced by L∞(RD+), an appli-
cation of Lemma 2.8 gives that dom(U∗

0) ⊆ L∞(RD+)∗ = ba(RD+). Take m ∈ ca(RD).
Then by Proposition 2.25,

U
∗
0(m) = sup

X∈L∞(RD)

{
U0(X) − m(X)

} = sup
X∈L∞(RD)

{
E

[
Ũ (X) −

〈
X,

dm

dP

〉]}

≤ E

[
Ũ∗

(
dm

dP

)]
.

We show that the last inequality also holds in reverse. For each n ≥ 1 define the
functions Ũ∗

n : R
D → R and In : R

D � [0, n]D by

Ũ∗
n (x∗) := max

{
Ũ (x) − 〈x, x∗〉x �

R
D+ n1

}
,

In(x
∗) := argmax

{
Ũ (x) − 〈x, x∗〉x �

R
D+ n1

}
.
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For fixed x∗ ∈ R
D , the sequence (Ũ∗

n (x∗))n≥1 is monotone increasing to Ũ∗(x∗),
and the random variable Ũ∗

1 ( dm
dP

) is integrable. Using the definition of U
∗
0 and the

monotone convergence theorem, we have

U
∗
0(m) ≥ sup

n
E

[
Ũ

(
In

(
dm

dP

))
−

〈
In

(
dm

dP

)
,

dm

dP

〉]

= sup
n

E

[
Ũ∗

n

(
dm

dP

)]
= E

[
Ũ∗

(
dm

dP

)]
.

To finish the proof, it suffices to show that for m ∈ ba(RD+) we have U
∗
0(m) = U

∗
0(m

c).
An application of Lemma 2.8 shows that U

∗
0 is decreasing with respect to the preorder

induced by ba(RD+). By Proposition 2.24, mp ∈ ba(RD+), thus m �ba(RD+) mc , and
hence U

∗
0(m) ≤ U

∗
0(m

c).
To prove this inequality in the other direction, take any u ∈ R with u < U

∗
0(m

c)

and any ε > 0. There exists an X ∈ L∞(RD+) such that U0(X) − mc(X) ≥ u. An
application of [29, Theorem 10.3.2] and the monotone convergence theorem give the
existence of an A ∈ FT such that mp(� \ A) = 0 and E[(Ũ(X) − Ũ (ε1))χA] < ε.
An application of [29, Theorem 4.4.13(ix)] shows that mp(Xχ�\A) = 0. Define now

X̃ = Xχ�\A + ε1χA. Then

U0(X) − mc(X) − U0(X̃) + m(X̃)

= E
[(

Ũ (X) − Ũ(ε1)
)
χA

] + mp(Xχ�\A) − mc(XχA) + εm(1χA)

≤ ε + 0 + 0 + εm(1).

Thus

U
∗
0(m) ≥ U0(X̃) − m(X̃) ≥ U0(X) − mc(X) − ε − εm(1) ≥ u − ε

(
1 + m(1)

)
.

Since u < U
∗
0(m

c) and ε > 0 are arbitrary, we have U
∗
0(m) ≥ U

∗
0(m

c). �

Remark 3.4 Measures in dom(U∗
0) are commonly said to have finite generalized en-

tropy. Due to the above characterization of U
∗
x , it is clear that dom(U∗

x) = dom(U∗
0)

for any x ∈ R
D .

Define C := A0
T ∩ L∞(RD). The dual cone to C is defined by

D := (−C)∗ = {
m ∈ ba

(
R

D
) : m(X) ≤ 0 for all X ∈ C

}
.

Note that since −L∞(RD+) ⊆ C , we have D ⊆ ba(RD+).
Given any x ∈ R

D it follows from the definitions of D and U
∗
x that

sup
X∈C

Ux(X) ≤ sup
X∈L∞(RD)

inf
m∈D

Lx(X,m)

≤ inf
m∈D

sup
X∈L∞(RD)

Lx(X,m) = inf
m∈D

U
∗
x(m), (3.1)
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where Lx(X,m) := Ux(X) − m(X) is a Lagrangian. Inequality (3.1) is known as
Fenchel’s inequality, and it identifies

inf
{
U

∗
x(m) : m ∈ D

}
(3.2)

as a potential dual optimization problem.
In our next result, we show that there is no duality gap in (3.1), provided the

initial portfolio x does not lie on the boundary of dom(u). We also show that the dual
problem has a solution whenever x lies in the interior of dom(u).

Proposition 3.5 (Duality) Suppose that Assumption 1.2 holds.

1. For any x ∈ R
D , we have

sup
X∈C

Ux(X) ≤ u(x) ≤ inf
m∈D

U
∗
x(m). (3.3)

2. If x ∈ int(dom(u)) = int(Cu), then

sup
X∈C

Ux(X) = u(x) = min
m∈D

U
∗
x(m) ∈ R.

3. If x 
∈ cl(dom(u)) = Cu, then

sup
X∈C

Ux(X) = u(x) = inf
m∈D

U
∗
x(m) = −∞.

Proof 1. The left-hand inequality in (3.3) follows trivially from the definitions of Ux ,
C and u. To prove the right-hand inequality we need to show that E[Ũ (X)] ≤ U

∗
x(m)

for all X ∈ Ax
T and m ∈ D. We may assume without loss of generality that

X ∈ L0(RD+), otherwise there is nothing to prove. In this case, we have
X ∧

R
D+ (n1) − x ∈ C for each n ∈ N, and hence

m(X) = sup
n∈N

m
(
X ∧

R
D+ (n1)

) = m(x) + sup
n∈N

m
(
X ∧

R
D+ (n1) − x

) ≤ m(x). (3.4)

Furthermore, since m ∈ ba(RD+), it follows from Propositions 2.24 and 2.25 that

m(X) = mc(X) + mp(X) ≥ E

[〈
X,

dmc

dP

〉]
+ 0. (3.5)

Using the definition of Ũ∗ combined with (3.5), (3.4) and Lemma 3.3 gives

E
[
Ũ (X)

] ≤ E

[
Ũ∗

(
dmc

dP

)
+

〈
X,

dmc

dP

〉]

≤ E

[
Ũ∗

(
dmc

dP

)]
+ m(x) = U

∗
x(m).

2. Suppose that x ∈ int(Cu). In order to apply the Lagrange duality theorem,
we set X = L∞(RD) and define the concave functional U : X → [−∞,∞) by
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U = Ux . We must first verify that the hypotheses of part 1 of Theorem A.1 hold.
Since x ∈ int(Cu), there exists an ε > 0 such that x − 2ε1 ∈ Cu. The deterministic
random variable p := −ε1 lies in the interior of −L∞(RD+) and hence in the interior
of C . By Proposition 3.1, we see that z := 2ε1 − x ∈ A0

T ∩ L∞(RD) = C . Hence
U(p + z) = Ux(ε1 − x) = Ũ(ε1) > −∞. Since x ∈ int(Cu) ⊆ dom(u), part 1 of
Proposition 3.5 gives

sup
X∈C

U(X) = sup
X∈C

Ux(X) ≤ u(x) < ∞.

This verifies the hypotheses of part 1 of Theorem A.1; hence we may assert that

sup
X∈C

Ux(X) = min
m∈D

U
∗
x(m) ∈ R.

3. Suppose that x 
∈ Cu. We set X = L∞(RD) and define the concave functional
U : X → [−∞,∞) by U = Ux . We must verify that the hypotheses of part 2 of
Theorem A.1 hold. Since Cu is closed and x 
∈ Cu, there exists an ε > 0 such that
x + ε1 
∈ Cu. The deterministic random variable p := −ε1 lies in the interior of C .
By definition of Cu we have x − p 
∈ dom(u). Using part 1 of Proposition 3.5, we
see that for any X ∈ C , U(X − p) = Ux(X − p) = Ux−p(X) ≤ u(x − p) = −∞. By
taking any x′ in the nonempty set int(Cu) and applying part 2 of Proposition 3.5,
we find the existence of an m̂ ∈ D such that u(x′) = U

∗
x′(m̂). Thus by Lemma 3.3,

U∗(m̂) = U
∗
x(m̂) = U

∗
x′(m̂) + m̂(x − x′) = u(x′) + m̂(x − x′) < ∞. This verifies the

hypotheses of part 2 of Theorem A.1, and hence we may assert that

sup
X∈C

Ux(X) = inf
m∈D

U
∗
x(m) = −∞. �

The following result will be used in the proofs of Corollaries 3.7, 3.8 and Propo-
sition 3.11.

Proposition 3.6 Suppose that Assumption 1.2 holds. For all x∗ ∈ R
D , we have

u∗(x∗) = min
{
U

∗
0(m) : m ∈ D and m(�) = x∗},

in the sense that the minimum is attained whenever u∗(x∗) < ∞.

Proof Let v : R
D → (−∞,∞] be defined by

v(x∗) := inf
{
U

∗
0(m) : m ∈ D ∩ S(x∗)

}
,

where S(x∗) := {m ∈ ba(RD+) : m(�) = x∗} and we use the convention that
v(x∗) = ∞ whenever D ∩ S(x∗) = ∅.

We begin by showing that the infimum in the definition of v(x∗) is attained when-
ever v(x∗) < ∞. We may assume without loss of generality that x∗ ∈ R

D+ , otherwise
S(x∗) = ∅. It is straightforward to verify that S(x∗) is a weak∗ closed subset of the
ball in ba(RD) of radius |x∗|1 := ∑D

i=1 |x∗
i |, and therefore, by Corollary 2.26, S(x∗)

is weak∗ compact. Since the polar cone D is weak∗ closed, this implies that D ∩S(x∗)
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is weak∗ compact. Since the dual functional U
∗
0 is weak∗ lower semi-continuous, the

infimum of U
∗
0 over D ∩ S(x∗) is attained whenever v(x∗) < ∞.

We claim that v is proper convex. Convexity follows easily from convexity of U
∗
0

and D. That v is proper convex follows from Assumption 1.2, part 2 of Proposi-
tion 3.5, Lemma 3.3, the fact that U

∗
0 is proper convex, and that the minimum in the

definition of v(x∗) is attained whenever v(x∗) < ∞.
We claim that v is lower semi-continuous. Indeed, suppose that (x∗

n)n∈N ⊆ R
D

is such that x∗
n → x∗. Since otherwise there is nothing to show, we may assume

without loss of generality that lim infn→∞ v(x∗
n) < ∞. There exists a subsequence

(xnk
)k∈N such that v(x∗

nk
) < ∞ for all k and limk→∞ v(x∗

nk
) = lim infn→∞ v(x∗

n).
Let (m̂k)k∈N ⊆ D be such that m̂k ∈ S(x∗

nk
) and U

∗
0(m̂k) = v(x∗

nk
) for each k. The

sequence (m̂k)k∈N is bounded in ba(RD) because for each k ∈ N,

‖m̂k‖ba(RD) = ∣∣m̂k(�)
∣∣
1 = |x∗

nk
|1 ≤ sup

n∈N

|x∗
n |1 < ∞.

By Corollary 2.26, the sequence (m̂k)k∈N has a cluster point. There exist, therefore, a
directed set A, an m̂ ∈ D and a subnet (m̂α)α∈A of (m̂k)k∈N which weak∗ converges
to m̂. Define x∗

α := m̂α(�). The net (x∗
α)α∈A converges to x∗. Note that m̂ ∈ S(x∗)

because for each i = 1, . . . , d , we have

〈
ei, m̂(�)

〉 = m̂
(
ei

) = lim
α

m̂α

(
ei

) = lim
α

〈
ei, m̂α(�)

〉 = lim
α

〈
ei, x∗

α

〉 = 〈
ei, x∗〉.

Since m̂ ∈ D ∩ S(x∗) and U
∗
0 is weak∗ lower semi-continuous, we have

v(x∗) ≤ U
∗
0(m̂) ≤ lim inf

α
U

∗
0(m̂α) = lim inf

α
v(x∗

α)

= lim
α

v(x∗
α) = lim

k→∞v(x∗
nk

) = lim inf
n→∞ v(x∗

n).

By part 2 of Proposition 3.5 and Lemma 3.3 we have, for any x ∈ int(Cu),

u(x) = min
m∈D

U
∗
x(m) = min

m∈D

{
U

∗
0(m) + m(x)

}
= min

x∗∈RD
min
m∈D

m(�)=x∗

{
U

∗
0(m) + 〈x, x∗〉}

= min
x∗∈RD

{
v(x∗) + 〈x, x∗〉} = (∗v)(x).

Similarly, by part 3 of Proposition 3.5 we have, for any x 
∈ Cu,

−∞ = u(x) = inf
{
U

∗
x(m) : m ∈ D

} = (∗v)(x).

Since u and ∗v agree everywhere, except possibly on the boundary of Cu, it follows
that clu = cl(∗v) = ∗v. Since u is proper concave and v is lower semi-continuous
and proper convex, it follows that u∗ = (cl(u))∗ = (∗v)∗ = cl(v) = v (cf. Defini-
tion 2.7). �
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Corollary 3.7 Suppose that Assumption 1.2 holds. If either U is bounded from above
or U∗ satisfies the growth condition (2.8), then both U and the value function u are
asymptotically satiable.

Proof If U is bounded from above, then U∗(0) = supx∈R
d+ U(x) < ∞; therefore

0 ∈ dom(U∗) and hence U is asymptotically satiable by Proposition 2.15. Similarly,
u must also bounded from above in this case, and hence also asymptotically satiable.

Suppose that U∗ satisfies the growth condition. By Lemma 2.8 and the proper
convexity of U∗, there exists an x∗ ∈ int(Rd+) such that U∗(x∗) < ∞. It follows im-
mediately from the growth condition that εx∗ ∈ dom(U∗). Taking the limit as ε → 0
shows that 0 ∈ cl(dom(U∗)), and hence U is asymptotically satiable by Proposi-
tion 2.15. We argue similarly to show that u is asymptotically satiable. From part
2 of Proposition 3.5, and Lemma 3.3 we may choose any m in the nonempty set
D ∩ dom(U∗

0) 
= ∅ (any minimizer in a dual problem with x ∈ int(Cu) will do). Let
x∗ := m(�) and ε ∈ (0,1). Recall that P : R

D → R
d is defined by (2.4). By Propo-

sition 3.6, Lemma 3.3 and (2.8),

u∗(εx∗) ≤ U
∗
0(εm) = E

[
Ũ∗

(
ε

dmc

dP

)]
= E

[
U∗

(
εP

(
dmc

dP

))]

≤ ζ(ε)

(
E

[
U∗

(
P

(
dmc

dP

))+]
+ 1

)

= ζ(ε)

(
E

[
Ũ∗

(
dmc

dP

)+]
+ 1

)
< ∞.

We have shown that εx∗ ∈ dom(u∗). Taking the limit as ε → 0 shows that 0 is in
cl(dom(u∗)), and hence u is asymptotically satiable by Proposition 2.15.

Note that if U is bounded from above, then U∗ satisfies the growth condition (see
Remark 2.21), and we could have used this to prove that U and u are asymptotically
satiable. However, arguing this way would have been unduly complicated. �

Recall that if x ∈ int(dom(u)) = int(Cu), then the existence of a minimizer
m̂x ∈ D ∩ dom(U∗

x) in the dual problem (3.2) is guaranteed by part 2 of Proposi-
tion 3.5. We now collect some of the properties of the minimizer.

Corollary 3.8 Suppose that Assumptions 1.1 and 1.2 hold. Given any x∈int(dom(u))

and a minimizer m̂x for the dual problem, we have m̂x(�) ∈ ∂u(x).

Proof Define x∗ = m̂x(�). Then by Proposition 3.5, Lemma 3.3 and Proposition 3.6,

u(x) = U
∗
x(m̂x) = U

∗
0(m̂x) + 〈x, x∗〉

≥ min
{
U

∗
0(m) : m ∈ D,m(�) = x∗} + 〈x, x∗〉

= u∗(x∗) + 〈x, x∗〉.
It now follows from [31, Theorem 23.5] that x∗ ∈ ∂u(x). �
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In the next result we shall see that (although the minimizer itself may not be
unique) the first d coordinate measures of the countably additive part of the mini-
mizer are unique, and equivalent to P. The equivalence to P is an essential ingredient
in the paper, as it ensures that the random variable X̂x in Proposition 3.11 is well
defined.

Proposition 3.9 Suppose that Assumptions 1.1 and 1.2 hold. For any x∈ int(dom(u)),
any minimizer m̂x for the dual problem lies in the set

P :=
{
m ∈ ba

(
R

D+
) : P

(
dmc

dP

)
is int

(
R

d+
)
-valued a.s.

}
,

where P : R
D → R

d is defined by (2.4). If m̃x is another minimizer in the dual prob-

lem, then P(
dm̂c

x

dP
) = P(

dm̃c
x

dP
) a.s. and m̂x(x) = m̃x(x).

Remark 3.10 In the proofs of Proposition 3.9 and Theorem 3.12, it will be useful
to embed Z s in D as follows. Given any Zs ∈ Z s , we can construct a correspond-
ing ms ∈ ba(RD+) ∩ ca(RD) by setting ms(A) := E[Zs

T χA] for each A ∈ FT . It fol-
lows from [4, Lemma 2.8] (which requires Assumption 2.3) that ms ∈ D. Note that
dms

dP
= Zs

T is int(RD+)-valued a.s. because Zs is a strictly consistent price process.

Proof of Proposition 3.9 Let ∂R
d+ denote the boundary of R

d+. Take a ∈ ∂R
d+ and

b ∈ int(Rd+). Recall from Lemma 2.12 and Proposition 2.15 that U∗ is strictly convex
on int(Rd+), essentially smooth, and ∇U∗ maps int(Rd+) into − int(Rd+). Since U∗ is
essentially smooth, |∇U∗(a + λb)| → ∞ as λ → 0. Thus, by convexity of U∗,

lim
λ↘0

U∗(a + λb) − U∗(a)

λ
≤ lim

λ↘0

〈∇U∗(a + λb), b
〉 = −∞. (3.6)

From Lemma 3.3, m̂x ∈ ba(RD+) and dm̂c
x

dP
is R

D+ -valued a.s. Suppose, for a contra-

diction, that m̂x 
∈ P . Then the event A := {P(
dm̂c

x

dP
) ∈ ∂R

d+} is non-null under P.
Choose any Zs ∈ Z s (which is nonempty by Assumption 2.3), and let ms ∈ D ∩ P
be the corresponding Euclidean vector measure (see Remark 3.10). For λ > 0, define

mλ := m̂x + λms ∈ D and νλ := Ũ∗( dmc
λ

dP
). Since, by Lemma 2.8, U

∗
0 is decreasing

with respect to the preorder induced by ba(RD+), we see that mλ ∈ dom(U∗
0). Since Ũ∗

is convex, the integrable random variables (νλ − ν0)/λ are monotonically increasing
in λ. By the monotone convergence theorem and (3.6),

lim
λ↘0

E

[
χA

νλ − ν0

λ

]
= E

[
χA lim

λ↘0

νλ − ν0

λ

]

= E

[
χA lim

λ↘0

Ũ∗( dm̂c
x

dP
+ λ dms

dP
) − Ũ∗( dm̂c

x

dP
)

λ

]

= E

[
χA lim

λ↘0

U∗(P(
dm̂c

x

dP
) + λP ( dms

dP
)
) − U∗(P(

dm̂c
x

dP
)
)

λ

]
= −∞.
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Hence limλ↘0
1
λ

E[νλ − ν0] = −∞. However, Lemma 3.3 and optimality of m̂x yield

E[νλ − ν0] = E

[
Ũ∗

(
dmc

λ

dP

)]
− E

[
Ũ∗

(
dm̂c

x

dP

)]

= U
∗
x(mλ) − mλ(x) − U

∗
x(m̂x) + m̂x(x) ≥ −λms(x).

Therefore, for all λ > 0, 1
λ

E[νλ − ν0] ≥ −ms(x). This is the required contradiction.
Suppose for a contradiction that there exist solutions m̂x, m̃x to the dual problem

such that P(P (
dm̂c

x

dP
) 
= P(

dm̃c
x

dP
)) > 0. Defining m̄ := (m̂x + m̃x)/2 ∈ D ∩ P , strict

convexity of U∗ on int(Rd+) implies that

E

[
Ũ∗

(
dm̄c

dP

)]
+ m̄(x)

= E

[
U∗

(
P

(
dm̄c

dP

))]
+ m̄(x)

<
1

2

{
E

[
U∗

(
P

(
dm̂c

x

dP

))]
+ m̂x(x)

}
+ 1

2

{
E

[
U∗

(
P

(
dm̃c

x

dP

))]
+ m̃x(x)

}

= 1

2

{
E

[
Ũ∗

(
dm̂c

x

dP

)]
+ m̂x(x)

}
+ 1

2

{
E

[
Ũ∗

(
dm̃c

x

dP

)]
+ m̃x(x)

}
= min

m∈D
U

∗
x(m),

which is the required contradiction. It follows immediately from Lemma 3.3 that
m̂x(x) = m̃x(x). �

Proposition 3.11 (Variational analysis) Suppose that Assumptions 1.1–1.3 hold.
Given any x ∈ int(dom(u)), let m̂x ∈ D ∩ dom(U∗

0) ∩ P denote an optimal dual mea-

sure, and define X̂x := Ĩ (
dm̂c

x

dP
), where Ĩ is defined by (2.5). Then E[〈X̂x,

dmc

dP
〉]≤m(x)

for all m ∈ D, with equality for m = m̂x .

Proof Take any m̃ ∈ D ∩ dom(U∗
0). Because D and U

∗
0 are convex, the measure

mλ := λm̃ + (1 − λ)m̂x is again an element of D ∩ dom(U∗
0) for any λ ∈ [0,1]. The

map f : [0,1] → R defined by f (λ) := U
∗
x(mλ) is convex, and has a minimum at 0.

Therefore, by Lemma 3.3 and the monotone convergence theorem,

0 ≤ f ′+(0) = lim
λ↘0

f (λ) − f (0)

λ

= lim
λ↘0

{
E

[
Ũ∗( dmc

λ

dP
) − Ũ∗( dm̂c

x

dP
)

λ

]
+ mλ(x) − m̂x(x)

λ

}

= E

[
lim
λ↘0

Ũ∗( dmc
λ

dP
) − Ũ∗( dm̂c

x

dP
)

λ

]
+ m̃(x) − m̂x(x)

= E

[〈
−Ĩ

(
dm̂c

x

dP

)
,

dm̃c

dP
− dm̂c

x

dP

〉]
+ m̃(x) − m̂x(x).
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Therefore

E

[〈
X̂x,

dm̃c

dP

〉]
− m̃(x) ≤ E

[〈
X̂x,

dm̂c
x

dP

〉]
− m̂x(x). (3.7)

Assume now that m ∈ D. It follows from Lemma 2.8 that U
∗
0 is decreasing with

respect to the preorder induced by ba(RD+), and hence m̃ := m̂x +m ∈ D ∩ dom(U∗
0).

It follows from (3.7) that

E

[〈
X̂x,

dmc

dP

〉]
≤ m(x). (3.8)

By Proposition 2.15, for any ε > 0 there exists an x∗ ∈ dom(u∗) with 〈x, x∗〉 ≤ ε.
Since u∗(x∗) < ∞, Proposition 3.6 implies the existence of an m̃ ∈ D ∩ dom(U∗

0)

with m̃(�) = x∗. By Lemma 3.3, dm̃c

dP
is R

D+ -valued a.s. Since X̂x is also R
D+ -valued

a.s., we have (using also (3.7) and (3.8))

−ε ≤ −〈x, x∗〉 = −m̃(x) ≤ E

[〈
X̂x,

dm̃c

dP

〉]
− m̃(x)

≤ E

[〈
X̂x,

dm̂c
x

dP

〉]
− m̂x(x) ≤ 0.

Since ε > 0 is arbitrary, we have E[〈X̂x,
dm̂c

x

dP
〉] = m̂x(x). �

We now present our main theorem.

Theorem 3.12 Let U : R
d → [−∞,∞) be a utility function supported on R

d+ which
satisfies Assumption 1.1. Suppose in addition that Assumptions 1.2 and 1.3 hold, and
that the economy satisfies Assumption 2.3. Given any x ∈ int(dom(u)), the optimal

investment problem (1.2) has a unique solution X̂x := Ĩ (
dm̂c

x

dP
), where Ĩ is defined

by (2.5), and where m̂x is any dual optimizer from part 2 of Proposition 3.5.

Proof Choose any Zs ∈ Z s (which is nonempty by Assumption 2.3), and let
ms ∈ D be the corresponding Euclidean vector measure (see Remark 3.10). It follows
from Proposition 3.11 that E[〈X̂x,Z

s
T 〉] = E[〈X̂x,

dms

dP
〉] ≤ ms(x) = 〈x,Zs

0〉. Theo-
rem 2.6 implies that X̂x ∈ Ax

T . Furthermore, by Corollary 2.16, Proposition 3.11 and
Lemma 3.3, we have

E
[
Ũ (X̂x)

] = EŨ∗
(

dm̂c
x

dP

)
+

〈
X̂x,

dm̂c
x

dP

〉
= E

[
Ũ∗

(
dm̂c

x

dP

)]
+ m̂x(x) = U

∗
x(m̂x).

It follows from part 1 of Proposition 3.5 that X̂x is an optimizer in the primal problem.
To show uniqueness, suppose for a contradiction that X̃x ∈ Ax

T is an optimizer
in the primal problem such that P(X̃x 
= X̂x) > 0. Since Ũ has support cone R

D+ ,
X̃x must be R

D+ -valued a.s. By definition, X̂x is int(Rd+) × R
D−d+ -valued a.s. We

may assume without loss of generality that X̃x is also int(Rd+) × R
D−d+ -valued a.s.,

otherwise we can simply replace X̃x with the random variable (X̃x + X̂x)/2 ∈ Ax
T ,
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which is int(Rd+) × R
D−d+ -valued a.s., and which is also an optimizer in the primal

problem, due to concavity of Ũ . Recall that P : R
D → R

d is defined by (2.4). There
are two cases: Either (i) P(P (X̃x) 
= P(X̂x)) > 0, or (ii) P(〈X̃x, e

j 〉 > 0) > 0 for
some j ∈ {d + 1, . . . ,D}.

(i) Define X̄ := (X̃x + X̂x)/2 ∈ Ax
T . Since U is strictly concave on int(Rd+),

E
[
Ũ (X̄x)

] = E
[
U

(
P(X̄x)

)]
>

1

2

{
E
[
U

(
P(X̃x)

)] + E
[
U

(
P(X̂x)

)]}
= 1

2

{
E
[
Ũ (X̃x)

] + E
[
Ũ(X̂x)

]} = u(x),

which is the required contradiction.
(ii) Let j ∈ {d + 1, . . . ,D} be such that P(〈X̃x, e

j 〉 > 0) > 0. Set X̄x := X̃x − Y

where Y := 〈X̃x ,ej 〉
π

j,1
T

(π
j,1
T ej − e1) is KT -valued. Since 〈X̄x, e

1〉 ≥ 0 a.s. and

〈X̄x, e
j 〉 = 0 a.s., X̄x is R

D+ -valued a.s. Hence X̄x ∈ Ax
T . Since U is increasing with

respect to �
R

d+ and strictly concave on int(Rd+), it must be strictly increasing on

int(Rd+) with respect to �
R

d+ . Hence

E
[
Ũ (X̄x)

] = E
[
U

(
P(X̃x) − P(Y )

)] = E

[
U

(
P(X̃x) + 〈X̃x, e

j 〉
π

j,1
T

e1
)]

> E
[
U

(
P(X̃x)

)] = E
[
Ũ (X̃x)

] = u(x),

which is the required contradiction. �

We finish this section by giving an example where the singular part m̂
p
x of the dual

minimizer is non-zero.

Example 3.13 Let S := (S0, S1) be as defined in [23, Example 5.1′]. That is, S0 ≡ 1
and S1 takes the values (sn)

∞
n=0 with probabilities (pn)

∞
n=0, where s0 = 2, sn = 1/n

for n ≥ 1, p0 = 1 −α and pn = α2−n, with α sufficiently small. This example can be
modified to include frictions as follows. With D = 2, we define the bid–ask process

Π0 :=
(

1 S0
2/S0 1

)
=

(
1 1
2 1

)
and Π1 :=

(
1 2S1

1/S1 1

)
,

and let A0
T denote the corresponding cone of admissible terminal portfolios with zero

initial portfolio.
Note that under this model the R

2-valued price process (1, St ), t = 0,1, is now a
shadow price for the bond and stock. In relation to this shadow price process, at time
t = 0, trading from the bond to the stock is frictionless, while trading in the opposite
direction incurs costs. At time t = 1, however, trading from the stock to the bond is
now frictionless, while trading from bond to stock incurs costs.

With d = 1, we set U(x) := lnx. We define the extended utility function
Ũ : R

2 → [−∞,∞) by (1.1), and the value function u : R
2 → [−∞,∞) by (1.2).

Since 1 = d < D = 2, the extended utility function effectively forces the investor
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to close out his position in the stock at maturity, in order to derive the maximum
possible utility from his terminal portfolio.

Suppose we are given an initial portfolio x = (x0, x1). In the frictionless case,
since S0 ≡ 1, we may immediately trade at time 0 to the portfolio (x0 + x1,0),
and hence the maximum expected utility is given by ũ(x) := uKS(x1 + x2), where
uKS(x) := lnx + E[lnS1] is the value function obtained in [23, Example 5.1′]. How-
ever, if we introduce frictions as described above, this only serves to decrease the
terminal wealth, and hence the associated utility. Thus u(x) ≤ ũ(x).

We shall now see that u and ũ are equal whenever x1 > 0 and x2 ≥ −x1. We claim
that Xx := ((x1 + x2)S1,0) ∈ Ax

T . Indeed, to reach this terminal portfolio from the
initial portfolio x = (x1, x2), one can trade to (0, x1 + x2) at time 0 and then at time
1, Xx can be reached by liquidating to the bond. Thus

E
[
Ũ (Xx)

] = E
[
U

(
(x1 + x2)S1

)] = ln(x1 + x2) + E[lnS1] = uKS(x1 + x2)

= ũ(x) ≥ u(x).

Hence Xx = X̂x is optimal and u(x) = ln(x1 + x2) + E[lnS1].
Now fix x = (1,0). Let m̂ = m̂x denote the minimizer in the dual problem. By

Corollary 3.8, m̂(�) ∈ ∂u(1,0) = {(1,1)}. In particular, the first coordinate measure
m̂1 := 〈e1, m̂〉 satisfies m̂1(�) = 1. By Theorem 3.12,

(S1,0) = X(1,0) = X̂(1,0) =
(

−(U∗)′
(

dm̂c
1

dP

)
,0

)
.

Hence

dm̂c
1

dP
= U ′(S1) = 1

S1
.

Referring back to [23, Example 5.1′], we see that

m̂c
1(�) = E

[
dm̂c

1

dP

]
= E

[
1

S1

]
< 1.

Since m̂1(�) = 1 and m̂c
1(�) < 1, it must be the case that m̂

p

1 (�) 
= 0.

4 The liquidation case

In many papers dealing with optimal investment under transaction costs, it is assumed
that the agent liquidates his assets at the close of trading to a given reference asset,
which is chosen as a numéraire at time t = 0. The reader is referred especially to
[2, 9, 15] and the references therein. In this section, we show that our optimal in-
vestment problem is equivalent to maximizing expected utility from liquidation of
the terminal portfolio, thus avoiding the delicate issue of using a non-smooth utility
function as in [9].
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Definition 4.1 Let U be a utility function supported on R
d+ (see Definition 2.9) which

satisfies Assumption 1.1. The terminal liquidation utility functional corresponding to
U is defined3 by

Ū (W) := max
{
U(ξ) : ξ ∈ R

d+, (ξ,0) − W ∈ −KT

}
, W ∈ L0(KT ,FT −), (4.1)

where 0 denotes the zero vector in R
D−d .

Given W ∈ L0(KT ,FT −), the random quantity Ū (W) models the best an agent
can do if, at time T , he decides to liquidate his portfolio at time T − to the d consump-
tion goods according to the terminal solvency cone KT . Observe that it is natural to
consider only those random variables W that belong to KT a.s., since W represents
the agent’s portfolio at time T − resulting from an admissible portfolio V ∈ Ax for
some initial endowment x. Indeed, VT − = (VT − − VT ) + VT where VT − − VT ∈ KT

and without loss of generality VT ∈ R
D+ , so that VT − belongs a.s. to KT + R

D+ = KT .

Remark 4.2 Before stating the main results of this section, we observe that for any
W ∈ L0(KT ,FT −) the liquidation functional Ū (W) defined by (4.1) admits a mea-
surable maximum ξ̂ (i.e., the set of maximizers admits a measurable selector). To
prove this, note that we can reformulate the terminal liquidation functional Ū (W) as

m(ω) := max
{
f (ω, ξ) : ξ ∈ φ(ω)

}
,

where f : � × R
d+ → R is defined by f (ω, ξ) := U(ξ), and φ : � � R

d+ is defined
by φ(ω) := {ξ ∈ dom(U) : (ξ,0) − W(ω) ∈ −KT (ω)}. Since W ∈ KT a.s., φ has
nonempty and compact values a.s. It follows from [1, Lemmas 18.3 and 18.7] that φ

is weakly measurable. Since U is upper semi-continuous, f is Carathéodory. Thus φ

and f satisfy the conditions of the measurable maximum theorem [1, Theorem 18.19]
except for the fact that f can take the value −∞. Nonetheless [1, Theorem 18.19]
can be applied4 so that, in particular, the argmax correspondence of maximizers
μ : � � R

d+ defined by μ(ω) := {ξ ∈ φ(ω) : f (ω, ξ) = m(ω)} admits a measurable
selector ξ̂ : � → R

d+.

The following propositions are the two main results of this section. In Proposi-
tion 4.3, we show that the value function of the original problem coincides with the
supremum of the expected liquidation utility functional. In Proposition 4.4, we go on
to show that both problems essentially have a common optimizer.

3Clearly, the set over which we are optimizing in (4.1) is a.s. nonempty (the zero vector belongs to it)

and compact in R
d+ . Since U is upper semi-continuous, this justifies the use of the maximum for almost

every ω.
4For the sake of clarity, we notice that even though [1, Theorem 18.19] is stated only for finite-valued
functions f , it can be applied to functions taking possibly the value −∞ as follows: Let ψ be an order-
preserving homeomorphism mapping [−∞,∞) into [0,1). One can apply [1, Theorem 18.19] to the
function ψ ◦ f to get a measurable maximizer. Since ψ is order-preserving, such a maximizer coincides
with that of our original maximization problem.
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Proposition 4.3 Let x ∈ R
D be a given initial endowment. Then

u(x) = sup
W∈Ax

T −
E
[
Ū (W)

]
, (4.2)

where Ax
T − := {VT − : V ∈ Ax}.

Proof First, we prove the inequality ‘≤’. Let V be a given admissible portfolio
process such that V0 = x. We assume without loss of generality that VT ∈ R

D+ a.s.
It follows from [4, Lemma 2.8] and Assumption 2.1 that (P (VT ),0) − VT − ∈ −KT

a.s., where P : R
D → R

d is defined by (2.4). Hence, by definition of Ũ and Ū , we
have

Ũ (VT ) = U
(
P(VT )

) ≤ sup
{
U(ξ) : ξ ∈ R

d, (ξ,0) − VT − ∈ −KT

} = Ū (VT −).

Hence the desired inequality follows.
For the opposite inequality ‘≥’, let V ∈ Ax . By Remark 4.2 there exists an

FT -measurable solution ξ̂ to the optimization problem (4.1) when W = VT −. In-
deed, as we have already noticed, VT − belongs to KT and thus the maximizer ξ̂ is
well defined. Moreover, the strict concavity of U implies that such a maximizer is
a.s. unique.

We claim that (̂ξ ,0) belongs to Ax
T . Indeed, (̂ξ ,0) is the terminal value of the

portfolio process V ′ defined as V ′
t = Vt + ((̂ξ ,0)−VT )χ{t=T }, which clearly belongs

to Ax because over [0, T ) it coincides with V which is admissible, and at T the last
trade equals �V ′

T = V ′
T − V ′

T − = (̂ξ ,0) − VT − ∈ −KT a.s. As a consequence, one
has

u(x) ≥ E
[
U(̂ξ)

] = E
[
Ū (VT −)

]
which gives the result. �

Proposition 4.4 The supremum in (4.2) is attained. Moreover, given any maximizer
Ŵ in (4.2), let ξ̂ = ξ̂ (Ŵ ) be any maximizer in the optimization problem Ū(Ŵ ) and let
X̂x be the unique maximizer in the primal problem (1.2). Then (̂ξ (Ŵ ),0) = X̂x a.s.

Proof Since X̂x ∈ Ax
T , there exists an admissible V such that V0 = x and VT = X̂x .

Define Ŵ := VT − and ξ̂ := P(X̂x). By [4, Lemma 2.8],

(̂ξ ,0) − Ŵ = X̂x − VT − = VT − VT − ∈ −KT a.s.

Now

E
[
Ū(Ŵ )

] ≥ E
[
U(̂ξ)

] = E
[
Ũ (X̂x)

] = u(x).

Therefore by Proposition 4.3, Ŵ is optimal in (4.2). Now suppose that W̃ is any
maximizer in (4.2), and let ξ̃ = ξ̃ (W̃ ) be the corresponding maximizer in Ū (W̃ ).
Define X̃x := (ξ̃ ,0) ∈ Ax

T . Then

E
[
Ũ (X̃x)

] = E
[
U(ξ̃)

] = E
[
Ū (W̃ )

] = u(x).

By Theorem 3.12, (ξ̃ (W̃ ),0) = X̃x = X̂x a.s. �
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Example 4.5 (Liquidation to the first asset) Take d = 1, i.e., at the end the agent is
interested in consuming only the first good. In this case a direct computation leads
for Ū to the expression

Ū (W) = U
(
�(W)

)
,

where � is the liquidation functional expressed in physical units, defined by

�(W) := sup
{
ξ ∈ R+ : (ξ,0) − W ∈ −KT

}
, W ∈ L0(KT ,FT −). (4.3)

Observe that while U is smooth, the corresponding indirect utility function Ū need
not be. The previous proposition can be rewritten as

u(x) = sup
W∈Ax

T −
E
[
U

(
�(W)

)]
.

We note that the function � given in (4.3) is the analogue (in our framework) of
the liquidation function as defined, e.g., in the papers [9] and [2], where all quantities
are expressed in terms of a fixed numéraire.
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Appendix

A.1 Lagrange duality

The Lagrange duality theorem is the central ingredient in the proof of Proposition 3.5.
Part 1 of the theorem below is essentially a reformulation of [26, Theorem 8.6.1] in
terms of concave functionals which may take the value −∞, as opposed to real-
valued convex functionals. We have also added part 2 to cover the case where the
optimization is degenerate.

Theorem A.1 (Lagrange duality theorem) Let X denote a normed5 vector space,
C a nonempty convex cone in X , D := (−C)∗, and U : X → [−∞,∞) a proper
concave functional.

5It is worth noting that the Lagrange duality theorem is also true if X is simply a topological vector space.
We do not need the strengthened version of the result however, so we restrict ourselves to the case where
X is a normed vector space.
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1. Suppose there exists a p ∈ int(C) and an x ∈ C such that U(x + p) > −∞, and
supx∈C U(x) < ∞. Then

sup
x∈C

U(x) = min
x∗∈D

U
∗(x∗) ∈ R.

2. Suppose there exists a p ∈ int(C) such that U(x − p) = −∞ for all x ∈ C and
there exists x∗

1 ∈ D such that U∗(x∗
1 ) < ∞. Then

sup
x∈C

U(x) = inf
x∗∈D

U
∗(x∗) = −∞.

Proof Note first that for any x∗ ∈ D we have

sup
x∈C

U(x) ≤ sup
x∈C

{
U(x) − 〈x, x∗〉} ≤ sup

x∈X

{
U(x) − 〈x, x∗〉} = U

∗(x∗).

1. Following the notation of [26, Chap. 8], we set X = Z = X , � = dom(U), and
let G : X → Z be the identity operator. Let P = −C be the positive cone of Z, so that
the dual, positive cone of Z∗ is D. By the hypothesis of part 1, the point x1 := x + p

lies both in the effective domain of U and in the interior of C ; in the notation of [26,
Chap. 8], x1 ∈ � satisfies G(x1) < θ . Let f be the restriction of −U to �; thus f is
a real-valued convex functional defined on the convex subset � of X. It is easy to
verify that the concave dual of f is φ = −U∗. Applying [26, Theorem 8.6.1] gives

sup
x∈C

U(x) = − inf
{
f (x) : G(x) ≤ θ, x ∈ �

}
= −max

{
φ(x∗) : x∗ ≥ θ

} = min
x∗∈D

U
∗(x∗) ∈ R.

2. First note that

sup
x∈C

U(x) ≤ sup
x∈−p+C

U(x) = sup
x∈C

U(x − p) = −∞.

Furthermore, by the hypothesis of part 2, C and

S := {
x′ ∈ X : U(x′ − p) > −∞}

are disjoint, nonempty, convex sets. Since C is a convex cone which contains an in-
terior point, [11, Theorem V.2.8] implies the existence of a non-zero x∗

0 ∈ X ∗ such
that

〈x, x∗
0 〉 ≤ 0 ≤ 〈x′, x∗

0 〉 (A.1)

for all x ∈ C and all x′ ∈ S. This implies that x∗
0 ∈ D.

Note that since x∗
0 ∈ D and p ∈ C , we have 〈p,x∗

0 〉 ≤ 0. We claim that 〈p,x∗
0 〉 < 0.

Indeed, suppose for a contradiction that 〈p,x∗
0 〉 = 0. Since x∗

0 
= 0, there exists an
x′ ∈ X such that 〈x′, x∗

0 〉 > 0. Since p is an interior point of C , by continuity of
scalar multiplication there exists an ε > 0 such that x′′ := p + εx′ ∈ C . Therefore
〈x′′, x∗

0 〉 = ε〈x′, x∗
0 〉 > 0, which contradicts the fact that x∗

0 ∈ D.
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Given any x ∈ domU, we have x′ := p + x ∈ S. Hence by (A.1) we have

−〈x, x∗
0 〉 = 〈p,x∗

0 〉 − 〈x′, x∗
0 〉 ≤ 〈p,x∗

0 〉. (A.2)

Given any λ > 0, note that x∗
1 + λx∗

0 ∈ D. It follows from the definition of U∗ and
(A.2) that

U
∗(x∗

1 + λx∗
0 ) = sup

x∈dom(U)

{
U(x) − 〈x, x∗

1 〉 − λ〈x, x∗
0 〉} ≤ U

∗(x∗
1 ) + λ〈p,x∗

0 〉.

Since U∗(x∗
1 ) < ∞ and 〈p,x∗

0 〉 < 0, we may make the right-hand side arbitrarily
negative by choosing λ arbitrarily large. Therefore infx∗∈D U∗(x∗) = −∞. �

A.2 Proofs of auxiliary results from Sect. 2

Proof of Lemma 2.14 Take ε > 0 and suppose there exists an x ∈ int(dom(U)) with
∂U(x) ∩ [0, ε)d 
= ∅. By [31, Corollary 23.5.2], ∂(cl(U))(x) = ∂U(x), and hence U

is asymptotically satiable.
Conversely, suppose that U is essentially smooth and asymptotically satiable.

By [31, Theorem 7.4], cl(U) agrees with U except perhaps at boundary points
of dom(U). Therefore cl(U) is essentially smooth. Since U is asymptotically sa-
tiable, given any ε > 0 there exists an x ∈ R

d such that ∂(cl(U))(x) ∩ [0, ε)d 
= ∅.
By [31, Theorem 26.1] we must have x ∈ int(dom(cl(U))) = int(dom(U)), and
∇U(x) = ∇(cl(U)) ∈ [0, ε)d . �

Proof of Proposition 2.15 1 ⇒ 2. For each n ∈ N, there exists an xn ∈ R
d such that

∂(cl(U))(xn) ∩ [0,1/n)d 
= ∅. Choose any x∗
n ∈ ∂(cl(U))(xn) ∩ [0,1/n)d . By [31,

Theorem 12.2 and Corollary 23.5.1] we have −xn ∈ ∂(cl(U)∗)(x∗
n) = ∂U∗(x∗

n) and
hence, by [31, Theorem 23.4], x∗

n ∈ dom(U∗). Since the sequence (x∗
n)n∈N converges

to 0, we obtain 0 ∈ cl(dom(U∗)).
2 ⇒ 3. There exists a sequence (x∗

n)n∈N ⊆ dom(U∗) such that x∗
n → 0 as n → ∞.

By Lemma 2.8, dom(U∗) ⊆ (CU)∗. Take any x∗ ∈ ri((CU)∗). Since x∗
n → 0 as

n → ∞, the sequence (x∗ − x∗
n)n∈N ⊆ aff((CU)∗) is eventually in ri((CU)∗). There-

fore x∗ �(CU )∗ x∗
n eventually, and since, by Lemma 2.8, U∗ is decreasing with re-

spect to �(CU )∗ , this implies that x∗ ∈ dom(U∗). We have therefore shown that
ri((CU)∗) ⊆ dom(U∗). By [31, Corollary 6.3.1], this, together with the fact that
dom(U∗) ⊆ (CU)∗, shows that cl(dom(U∗)) = (CU)∗.

3 ⇒ 4. Obvious.
4 ⇒ 1. By [31, Corollary 6.3.1], we have cl(dom(U∗)) = cl(ri(dom(U∗))).

Since cl(dom(U∗)) is a convex cone, given any ε > 0 we may find an x∗
in ri(dom(U∗)) ∩ [0, ε)d . By [31, Theorem 23.4], ∂U∗(x∗) 
= ∅. Choose any
x ∈ −∂U∗(x∗). By [31, Theorem 12.2 and Corollary 23.5.1], x∗ ∈ ∂(cl(U))(x).
Since x∗ is in ∂(cl(U))(x) ∩ [0, ε)d , we have shown 1. �

Proof of Proposition 2.22 Since U satisfies (2.6), there exist β > 0, c ∈ R and r > 0
such that U(x) ≥ (1 + 1/β)〈x,∇U(x)〉 − c for all x ∈ int(Rd+) satisfying |x| ≥ r .
Let 1 ∈ R

d denote the vector whose entries are all equal to 1. Define xr := r1, and
x∗
r := ∇U(xr).
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Take any x∗ ∈ int(Rd+) and ε ∈ (0,1]. We consider two cases, (i) x∗ �
R

d+ x∗
r and

(ii) x∗ 
�
R

d+ x∗
r .

(i) In this case εx∗ �
R

d+ εx∗
r , so by Lemma 2.8, U∗(εx∗) ≤ U∗(εx∗

r ).

(ii) Since U is asymptotically satiable, Proposition 2.15 yields εx∗∈ int(dom(U∗)).
By Lemma 2.12 we may define xε := −∇U∗(εx∗). We claim that |xε | ≥ r . Indeed,
suppose for a contradiction that |xε | < r . Then xε �

R
d+ xr , so by Lemmas 2.12

and 2.18, x∗ �
R

d+ εx∗ = ∇U(xε) �
R

d+ ∇U(xr) = x∗
r , which is the required con-

tradiction. Therefore, by Corollary 2.16,

U∗(εx∗) = U(xε) − 〈xε, εx
∗〉 ≥ (1 + 1/β)

〈
xε,∇U(xε)

〉 − c − 〈xε, εx
∗〉

= − 1

β

〈∇U∗(εx∗), εx∗〉 − c. (A.3)

Define the function F : (0,1] → R by F(ε) := εβ(U∗(εx∗) + c). Using (A.3), we
see that

F ′(ε) = βεβ−1(U∗(εx∗) + c + 〈∇U∗(εx∗), εx∗〉/β) ≥ 0.

Hence U∗(εx∗) = ε−βF (ε) − c ≤ ε−βF (1) − c = ε−βU∗(x∗) + (ε−β − 1)c.
The result follows by setting ζ(ε) := max{ε−β, (ε−β − 1)c,U∗(εx∗

r ),0}. �

Proof of Lemma 2.23 Applying Proposition 2.22 with d = 1, for each i ∈ {1, . . . , d}
there exists a function ζi : (0,1] → (0,∞) such that for all ε ∈ (0,1] and all x∗

i > 0,

U∗
i (εx∗

i ) ≤ ζi(ε)
(
Ui(x

∗
i )+ + 1

)
.

It follows that for x∗ ∈ int(Rd+),

U∗(εx∗) =
d∑

i=1

U∗
i (εx∗

i ) ≤
d∑

i=1

ζi(ε)
(
U∗

i (x∗
i )+ + 1

)

≤ max
i=1,...,d

ζi(ε)

(
d∑

i=1

U∗
i (x∗

i )+ + d

)
.

Since inf{U(x) : x ∈ int(Rd+)} > −∞, it follows that

ai := inf
{
Ui(xi) : xi ∈ int(R+)

}
> −∞

for each i. Moreover, since U∗
i (x∗

i )+ = U∗
i (x∗

i )+U∗
i (x∗

i )− ≤ U∗
i (x∗

i )+ a−
i , we have

d∑
i=1

U∗
i (x∗

i )+ ≤ U∗(x∗) +
d∑

i=1

a−
i ≤ U∗(x∗)+ +

d∑
i=1

a−
i .

The growth condition follows by setting ζ(ε) = maxi=1,...,d ζi(ε)(
∑d

i=1 a−
i + d). �
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