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1 Introduction

Coherent risk measures were introduced by Artzner et al. [2] in finite sample spaces
and later by Delbaen [16] and [17] in general probability spaces. The aim of this
financial tool is to quantify the intertemporal riskiness which an investor would face
at a maturity date T in order to decide if this risk could be acceptable for him or
not. The family of coherent risk measures was extended later by Föllmer and Schied
[24, 25] and Frittelli and Rosazza Gianin [26, 27] to the class of convex risk measures.

g-expectations were introduced by Peng [34] as solutions of a class of nonlinear
backward stochastic differential equations (BSDEs for short), a class which was first
studied by Pardoux and Peng [33]. Financial applications and particular cases were
discussed in detail by El Karoui et al. [22].

As shown by Rosazza Gianin [39], the families of static risk measures and of
g-expectations are not disjoint. Indeed, under suitable hypotheses on the functional
g, g-expectations provide examples of coherent and/or convex static risk measures.
Furthermore, by defining a “dynamic risk measure” as a “map” which quantifies, at
any intermediate time t , the riskiness which will be faced at maturity T , a class of
dynamic risk measures can be obtained by means of conditional g-expectations. In
particular, any dynamic risk measure induced by a conditional g-expectation satisfies
a “time-consistency property” (in line with the notion introduced by Koopmans [31]
and Duffie and Epstein [21]) or, in the language of Artzner et al. [3], a “recursivity
property.” Further discussions on dynamic risk measures and on risk measures for
processes can be found in Artzner et al. [3], Barrieu and El Karoui [5], Bion-Nadal
[6, 7], Cheridito et al. [11, 12], Cheridito and Kupper [14], Detlefsen and Scan-
dolo [20], Frittelli and Rosazza Gianin [27], and Klöppel and Schweizer [30], among
many others.

The main aim of this paper is to represent the penalty term of general dynamic
concave utilities (hence of dynamic convex risk measures) in the context of a Brown-
ian filtration, a fixed finite time horizon T , and under the assumption of the existence
of an equivalent probability measure with zero penalty. By applying the theory of
g-expectations, we shall prove that the penalty term is of the form

cs,t (Q) = EQ

[∫ t

s

f (u, qu) du

∣∣∣∣Fs

]

(see the exact statement in Theorem 3.2).
The paper is organised as follows. Some well-known results on BSDEs and on

risk measures are recalled in Sect. 2. Section 3 contains the main result of the paper,
that is, the representation of the penalty term of suitable dynamic concave utilities.
As we shall see later, this representation will be obtained by applying the theory of
g-expectations.

2 Notation and preliminaries

Let (Bt )t≥0 be a standard d-dimensional Brownian motion defined on a probability
space (Ω, F ,P ), and let {Ft }t≥0 the augmented filtration generated by (Bt )t≥0.
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In the sequel, we identify a probability measure Q � P with its Radon–Nikodým
density dQ

dP
. Furthermore, because of the choice of the Brownian setting, we also iden-

tify a probability measure Q equivalent to P with the predictable process (qt )t∈[0,T ]
induced by the stochastic exponential, i.e., such that

EP

[
dQ

dP

∣∣∣∣Ft

]
= E (q.B)t := exp

(
−1

2

∫ t

0
‖qs‖2 ds +

∫ t

0
qs dBs

)

(see Proposition VIII.1.6 of Revuz and Yor [36]).
Consider now a function

g : R
+ × Ω × R × R

d → R,

(t,ω, y, z) �→ g(t,ω, y, z)

satisfying at least the following assumptions (as in Coquet et al. [15], but without
imposing a priori a time horizon T ). To simplify the notation, we often write g(t, y, z)

instead of g(t,ω, y, z).

Basic assumptions on g:

(A) g is Lipschitz in (y, z), i.e., there exists a constant μ > 0 such that we have,
(dt × dP )-a.s., for any (y0, z0), (y1, z1) ∈ R × R

d ,∣∣g(t, y0, z0) − g(t, y1, z1)
∣∣ ≤ μ

(|y0 − y1| + ‖z0 − z1‖
)
.

(B) For all (y, z) ∈ R × R
d , g(·, y, z) is a predictable process such that for any finite

T > 0, we have E[∫ T

0 (g(t,ω, y, z))2 dt] < +∞ for any y ∈ R and z ∈ R
d .

(C) (dt × dP )-a.s., ∀y ∈ R, g(t, y,0) = 0.

Once the time horizon T > 0 is fixed, Pardoux and Peng [33] introduced the back-
ward stochastic differential equation (BSDE, for short)

{−dYt = g(t, Yt ,Zt ) dt − Zt dBt ,

YT = ξ,

where ξ is a random variable in L2(Ω, FT ,P ). Moreover, they showed (see also
El Karoui et al. [22]) that there exists a unique solution (Yt ,Zt )t∈[0,T ] consisting of
predictable stochastic processes (the former R-valued, the latter R

d -valued) such that
E[∫ T

0 Y 2
t dt] < +∞ and E[∫ T

0 ‖Zt‖2 dt] < +∞.
Peng [34] defined the g-expectation of ξ as

Eg(ξ) := Y0

and the conditional g-expectation of ξ at time t as

Eg(ξ |Ft ) := Yt .

When g(t, y, z) = μ‖z‖ (with μ > 0), Eg will be denoted by E μ.
In the sequel, we shall only consider essentially bounded random variables ξ , i.e.,

ξ ∈ L∞(Ω, FT ,P ).
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Further assumptions on g:

(1g) g does not depend on y.
(2g) g is convex in z: ∀α ∈ [0,1],∀z0, z1 ∈ R

d , (dt × dP )-a.s.,
g(t, αz0 + (1 − α)z1) ≤ αg(t, z0) + (1 − α)g(t, z1).

In the sequel, we shall write “g with the usual assumptions” when g satisfies
hypotheses (A)–(C) and (1g)–(2g).

Some sufficient conditions for a functional to be induced by a g-expectation have
been provided by Coquet et al. [15]. Before recalling this result, we introduce what
is needed.

Definition 2.1 (Coquet et al. [15]) A functional E : L2(FT ) → R is called an
F -consistent expectation if it satisfies the following properties:

(i) constancy: E (c) = c for any c ∈ R.
(ii) strict monotonicity: if ξ ≥ η, then E (ξ) ≥ E (η). Moreover, if ξ ≥ η, then ξ = η

if and only if E (ξ) = E (η).
(iii) consistency: for any ξ ∈ L2(FT ) and t ∈ [0, T ], there exists a random variable

E (ξ |Ft ) ∈ L2(Ft ) such that for any A ∈ Ft , it holds

E (ξ1A) = E
(

E (ξ |Ft )1A

)
.

Again in the terminology of [15], E is said to satisfy translation invariance (or to
be monetary) if for any t ∈ [0, T ],

E (ξ + η|Ft ) = E (ξ |Ft ) + η, ∀ξ ∈ L2(FT ), η ∈ L2(Ft ),

while it is said to be E μ-dominated (for some μ > 0) if

E (ξ + η) − E (ξ) ≤ E μ(η), ∀ξ, η ∈ L2(FT ).

Theorem 2.2 (Coquet et al. [15], Theorem 7.1) Let E be an F -consistent expectation.
If E satisfies translation invariance and if it is dominated by some E μ with μ > 0, then
it is induced by a conditional g-expectation, that is, there exists a function g satisfying
(A)–(C) and (1g) such that for any t ∈ [0, T ],

E (ξ |Ft ) = Eg(ξ |Ft ), ∀ξ ∈ L2(FT ).

Some relevant extensions of such a result can be found in Peng [35] and in
Hu et al. [28], while some applications to risk measures can be found in Rosazza
Gianin [39]. The last author, in particular, showed that g-expectations (respectively,
conditional g-expectations) provide static (respectively, dynamic) risk measures.
More precisely, the following result holds true. For definitions, representations, and
details on (static) risk measures, interested readers can see Artzner et al. [2], Delbaen
[16, 17], Föllmer and Schied [24, 25], and Frittelli and Rosazza Gianin [26], among
many others.
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Proposition 2.3 (Rosazza Gianin [39], Proposition 11) If g satisfies the usual as-
sumptions (including convexity in z), then the risk measure ρg defined as

ρg(X) := Eg(−X)

is a convex risk measure satisfying monotonicity, constancy, and translation invari-
ance.

Moreover, if g also satisfies positive homogeneity in z, then ρg is coherent.

In view of the result above, some sufficient conditions for a risk measure to be
induced by a g-expectation have been found in [39] as an application of Theorem 2.2.

Note that, at least in the sublinear case and under some suitable assumptions, one
can prove a one-to-one correspondence between the functional g and the m-stable set
of generalized scenarios S of a suitable risk measure. Hence, one may find (as an ap-
plication of the results of Delbaen [18] on m-stable sets) a one-to-one correspondence
between time-consistent coherent risk measures and conditional g-expectations. See
also Chen and Epstein [9].

In the sequel, we prefer to work with concave utilities instead of convex risk mea-
sures. Note that, given a risk measure ρ, the associated monetary utility functional
(or, shortly, utility) is defined as u := −ρ.

3 Representation of the penalty term of dynamic concave utilities

In the sequel, we still work in a Brownian setting, and hence F0 is trivial. Let T be a
fixed finite time horizon. Given two stopping times σ and τ such that 0 ≤ σ ≤ τ ≤ T ,
consider a concave monetary utility functional uσ,τ : L∞(Fτ ) → L∞(Fσ ), i.e., a
functional satisfying

(a) monotonicity: if ξ, η ∈ L∞(Fτ ) and ξ ≤ η, then uσ,τ (ξ) ≤ uσ,τ (η).
(b) translation invariance: uσ,τ (ξ + η) = uσ,τ (ξ) + η for any ξ ∈ L∞(Fτ ) and

η ∈ L∞(Fσ ).
(c) concavity: uσ,τ (αξ + (1 − α)η) ≥ αuσ,τ (ξ) + (1 − α)uσ,τ (η) for any α ∈ [0,1]

and ξ, η ∈ L∞(Fτ ).
(d) uσ,τ (0) = 0.

The family (uσ,τ )0≤σ≤τ≤T is called a dynamic concave utility. In particular, we
have u0,T : L∞(FT ) → R. The acceptance set Aσ,τ induced by uσ,τ is defined as

Aσ,τ := {ξ ∈ L∞(Fτ ) : uσ,τ (ξ) ≥ 0}. To simplify the notation, we often write ut in-
stead of ut,T .

On (uσ,τ )0≤σ≤τ≤T we impose the following:

Assumption (e): (uσ,τ )0≤σ≤τ≤T is continuous from above (or satisfies the Fatou
property), i.e., for any decreasing sequence (ξn)n∈N in L∞(Fτ ) such that limn ξn = ξ ,
it holds true that limn uσ,τ (ξn) = uσ,τ (ξ).

Assumption (f): (uσ,τ )σ,τ is time-consistent, i.e., for all stopping times σ, τ,υ with
0 ≤ σ ≤ τ ≤ υ ≤ T ,

uσ,υ(ξ) = uσ,τ

(
uτ,υ(ξ)

)
, ∀ξ ∈ L∞(Fυ).
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Assumption (g): (uσ,τ )σ,τ satisfies

uσ,τ (ξ1A + η1Ac) = uσ,τ (ξ)1A + uσ,τ (η)1Ac , ∀ξ, η ∈ L∞(Fτ ),∀A ∈ Fσ . (3.1)

Assumption (h): ct (P ) := ess.supξ∈L∞(FT ){EP [−ξ |Ft ] + ut (ξ)} = 0 for any
t ∈ [0, T ].

It is straightforward to check that the last condition is equivalent to EP [ξ |Ft ] ≥ 0
for any ξ ∈ At,T . Furthermore, c0(P ) = 0 can be replaced by the hypothesis that
there is a probability measure Q equivalent to P satisfying c0(Q) = 0.

Note that up to a sign, dynamic concave utilities satisfying the assumptions above
correspond to normalized time-consistent dynamic risk measures (ρσ,τ )0≤σ≤τ≤T

studied, for instance, in Bion-Nadal [7] in a general setting. More precisely, it holds
uσ,τ = −ρσ,τ .

By Bion-Nadal [7] and Detlefsen and Scandolo [20], it is known that under the
assumptions above and in the setting of a general filtration,

us,t (ξ) = ess.inf
Q∼P,Q=P on Fs

{
EQ[ξ |Fs] + cs,t (Q)

}

= ess.inf
Q∈Ps,t

{
EQ[ξ |Fs] + cs,t (Q)

}
(3.2)

for any 0 ≤ s ≤ t ≤ T , where

cs,t (Q) = ess.sup
ξ∈L∞(Ft )

{
EQ[−ξ |Fs] + us,t (ξ)

}

is the minimal penalty term associated to us,t , and

Ps,t = {
Q on (Ω, Ft ) : Q ∼ P,Q = P on Fs

}
.

In particular,

ut (ξ) = ess.inf
Q∼P,Q=P on Ft

{
EQ[ξ |Ft ] + ct,T (Q)

}
,

u0(ξ) = inf
Q∼P

{
EQ[ξ ] + c0,T (Q)

}
,

where ct (Q) := ct,T (Q) = ess.supξ∈At
EQ[−ξ |Ft ] ≥ 0, and At = At,T denotes the

acceptance set induced by ut = ut,T . Note that

c0,T (Q) = sup
ξ∈L∞(FT )

{
EQ[−ξ ] + u0,T (ξ)

}
,

hence c0,T is lower semi-continuous and is the Fenchel–Legendre transform of u0,T .
Furthermore, Bion-Nadal (see Theorem 3 in [7]) proved that (ρt,T )t∈[0,T ] (and

hence (ut,T )t∈[0,T ]) admits a càdlàg modification. We shall prove in the Appendix
that the same is true for (ct,T )t∈[0,T ].

Note that in [7] and [20] the representation (3.2) was shown with Q � P instead of
Q ∼ P . However, assumption (h) guarantees that the representation (3.2) also holds
true (for a proof, see Klöppel and Schweizer [30] and, in discrete time, Cheridito
et al. [13] and Föllmer and Penner [23]).
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Remark 3.1 It is evident that if (ut )t≥0 is time-consistent if ut (0) = 0 and if it satisfies
condition (3.1), then

u0(ξ1A) = u0
(
ut (ξ1A)

) = u0
(
ut (ξ)1A

)
for any t ∈ [0, T ], ξ ∈ L∞(FT ), and A ∈ Ft . It is therefore clear that if (uσ,τ )σ,τ is
time-consistent, then everything is defined by u0. The relevance of time-consistency
of the dynamic concave utility is also underlined by the following results. On one
hand, as shown by Delbaen [18] and Cheridito et al. [13], time-consistency is equiv-
alent to the decomposition property of acceptable sets, that is,

Aσ,υ = Aσ,τ + Aτ,υ

for all stopping times σ, τ,υ such that 0 ≤ σ ≤ τ ≤ υ ≤ T . On the other hand, both
the properties above are equivalent to the cocycle property of the minimal penalty
term c, that is,

cσ,υ(Q) = cσ,τ (Q) + EQ

[
cτ,υ(Q)|Fσ

]
for all stopping times σ, τ,υ such that 0 ≤ σ ≤ τ ≤ υ ≤ T (see Bion-Nadal [7] for
the definition and the proof).

In the sequel, we use the terminology of Rockafellar [37, 38] on convex functions.
Our aim is now to prove the following result.

Theorem 3.2 Let (uσ,τ )0≤σ≤τ≤T be a dynamic concave utility satisfying assump-
tions (a)–(h).

(i) For all stopping times σ, τ such that 0 ≤ σ ≤ τ ≤ T and for any probability
measure Q equivalent to P ,

cσ,τ (Q) = EQ

[∫ τ

σ

f (u, qu) du

∣∣∣∣Fσ

]

for some suitable function f : [0, T ] × Ω × R
d → [0,+∞] such that f (t,ω, ·)

is proper, convex, and lower semi-continuous.
(ii) For all stopping times σ, τ such that 0 ≤ σ ≤ τ ≤ T and ξ ∈ L∞(FT ), the dy-

namic concave utility in (3.2) can be represented as

uσ,τ (ξ) = ess.inf
Q∈Pσ,τ

EQ

[
ξ +

∫ τ

σ

f (u, qu) du

∣∣∣∣Fσ

]
.

Remark 3.3 For dynamic concave utilities satisfying assumptions (e), (g), (h), it fol-
lows from Theorem 1 of Bion-Nadal [7] that Theorem 3.2(i) is equivalent to time-
consistency (assumption (f)) of (uσ,τ )0≤σ≤τ≤T .

Remark 3.4 In an incomplete market, the lower price infQ∈M EQ[ξ ] (where M de-
notes the set of all risk-neutral probability measures) defines a utility satisfying all
our properties, but it is not given by a g-expectation. See Delbaen [18] for details
about how to get f .
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The proof of Theorem 3.2 will be decomposed into several steps as outlined below.
Set

un
s,t (ξ) = ess.inf

Q∼P,‖q‖≤n

{
EQ[ξ |Fs] + cs,t (Q)

}
. (3.3)

Note that by definition of un and by assumption (h), for any ξ ∈ L∞(FT ), it holds
u0

t (ξ ) = EP [ξ |Ft ] and un
t (ξ) ≤ EP [ξ |Ft ].

Remark 3.5 The reason why the truncated utility un has been defined as above is due
to the fact that the set {Q ∼ P : ‖q‖ ≤ n} is weakly compact. This property will be
useful in the proof of Proposition 3.6.

Proposition 3.6 Suppose that the dynamic concave utility (uσ,τ )0≤σ≤τ≤T satisfies
assumptions (a)–(h). Then:

(i) un is a dynamic concave utility satisfying assumptions (e)–(g). Moreover, the
acceptance sets induced by un satisfy the decomposition property and

cn
s,t (Q) =

{
cs,t (Q) if ‖q‖ ≤ n,

+∞ otherwise

satisfies the cocycle property and cn
s,t (P ) = 0.

(ii) un is induced by a conditional gn-expectation, i.e.,

un
t (ξ) = −Egn(−ξ |Ft )

for some convex function gn satisfying the usual assumptions and such that
gn(·, ·, z) is predictable for any z ∈ R

d . In other words, un satisfies the BSDE
{

dun
t (ξ) = gn(t,Z

n
t ) dt − Zn

t dBt ,

un
T (ξ) = ξ.

(3.4)

(iii) For any probability measure Q ∼ P such that ‖q‖ ≤ n, it holds for any
0 ≤ s ≤ t ≤ T that

cn
0,t (Q) = EQ

[∫ t

0
fn(u, qu) du

]
,

cn
s,t (Q) = EQ

[∫ t

s

fn(u, qu) du

∣∣∣∣Fs

]
,

where fn : [0, T ] × Ω × R
d → [0,+∞] is induced (by duality) by gn, and

fn(t,ω, ·) is proper, convex, and lower semi-continuous.
(iv) The sequence of convex functions gn is increasing in n.
(v) The sequence of fn is decreasing in n and, for any n ≥ 0, fn(t,ω, q) = +∞ for

‖q‖ > n. Furthermore, once (t,ω) is fixed, for any q , either there exists n ≥ 0
such that

fn(t,ω, q) = fm(t,ω, q) = f (t,ω, q) < +∞, m ≥ n,
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or for all n ≥ 0,

fn(t,ω, q) = +∞ = f (t,ω, q)

for some function f : [0, T ] × Ω × R
d → [0,+∞]. Hence the function f

is given by f (t,ω, x) = infn fn(t,ω, x), and f (t,ω, ·) is proper, convex, and
lower semi-continuous.

Remark 3.7 Notice that cn is indeed the minimal penalty term associated to un since
it is lower semi-continuous, convex, and such that infQ cn(Q) = 0.

Proof of Proposition 3.6 (i) From the representation (3.3) it follows that un is a
dynamic concave utility which is continuous from above (see Detlefsen and Scan-
dolo [20] and Klöppel and Schweizer [30]). Still from (3.3) one deduces that
un

σ,τ (ξ1A) = un
σ,τ (ξ)1A for any ξ ∈ L∞(FT ), 0 ≤ σ ≤ τ ≤ T , and A ∈ Fσ . Hence,

by Proposition 2.9 of Detlefsen and Scandolo [20], also assumption (g) is satisfied.
The cocycle property of cn is guaranteed by

cn
s,t (Q) =

{
cs,t (Q) if ‖q‖ ≤ n,

+∞ otherwise.

Since for the probability measure P it holds qP ≡ 0, cn
s,t (P ) = cs,t (P ) = 0. The

time-consistency of un follows from the stability of the set {Q ∼ P : ‖q‖ ≤ n} (in the
sense of [6] and [18]), from the properties satisfied by c, and from Theorem 4.4 of
Bion-Nadal [6]. The decomposition property of acceptance sets is due to Theorem 4.6
of Cheridito et al. [13] and, later, to Theorem 1 of Bion-Nadal [7].

(ii) Set πn
t (ξ) := −un

t (−ξ) = ess.supQ∼P,‖q‖≤n{EQ[ξ |Ft ] − ct (Q)}. From (i),
(πn

σ,τ )0≤σ≤τ≤T is time-consistent. Furthermore, it is easy to check that it satisfies
monotonicity, translation invariance, and constancy (this last follows from the as-
sumption ct (P ) = 0). Moreover, πn

0 satisfies strict monotonicity. This property fol-
lows from the weak compactness of the set {Q ∼ P : ‖q‖ ≤ n} (see Remark 3.5).
In order to verify strict monotonicity, consider η ≥ ξ such that P(η > ξ) > 0. Since
πn

0 (ξ) = EQ[ξ ] − c0(Q) for some Q ∼ P such that ‖q‖ ≤ n, we have

πn
0 (η) ≥ EQ[η] − c0(Q) > EQ[ξ ] − c0(Q) = πn

0 (ξ).

Finally, we show that πn
0 is dominated by some E μ. For any ξ, η ∈ L∞(FT ),

πn
0 (ξ + η) − πn

0 (ξ)

= sup
Q:‖q‖≤n

{
EQ[ξ + η] − c0(Q)

} − sup
Q:‖q‖≤n

{
EQ[ξ ] − c0(Q)

}

≤ sup
Q:‖q‖≤n

EQ[η] = E n(η).

The last equality follows from Lemma 3 of Chen and Peng [10] (R case), which may
be extended to R

d . By the arguments above and Remark 3.1, (πn
t )t≥0 satisfies the

hypothesis of Theorem 2.2. Hence there exists a functional gn : [0, T ]×Ω ×R
d → R

satisfying assumptions (A)–(C) and (1g) and such that πn
t (ξ) = Egn(ξ |Ft ).
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It can be checked that gn(·, ·, z) is predictable for any z ∈ R
d (see also Theo-

rem 3.1 of Peng [35]). Furthermore, since πn
t is a convex functional, by Theorem 3.2

of Jiang [29] it follows that gn(t,ω, ·) has to be convex. Hence,

un
t (ξ) = −Egn(−ξ |Ft ),

un
0(ξ) = −Egn(−ξ)

for some function gn satisfying the usual assumptions. It is therefore immediate to
check that un satisfies the BSDE in (3.4). Moreover, for almost all (t,ω), it holds that
the set {z ∈ R

d : gn(t,ω, z) ≤ α} is closed for any α ∈ R. The closedness of such a
set (or, equivalently, the lower semi-continuity of gn(t,ω, ·)) is due to the fact that
gn is Lipschitz with constant n (see the arguments above and Theorem 2.2). Hence
gn(t,ω, ·) is convex, proper, and lower semi-continuous.

(iii) Set now

fn(t,ω, q) := sup
z∈Rd

{
q · z − gn(t,ω, z)

}
. (3.5)

Note that fn(t,ω, q) ≥ 0 (take, for instance, z = 0 in the definition of fn) and, be-
cause of the assumption c0(P ) = 0, fn(t,0) = 0. Since gn(t,ω, z) is predictable
by (ii),

fn(t,ω, q) = sup
z∈Rd

{
q · z − gn(t,ω, z)

} = sup
z∈Qd

{
q · z − gn(t,ω, z)

}

is predictable for any q ∈ R
d as supremum of countably many predictable elements.

Note that ‖q‖ > n implies fn(t,ω, q) = +∞ by (3.5). Since gn(t,ω, ·) is con-
vex, proper, and lower semi-continuous and fn(t,ω, ·) is the convex conjugate of
gn(t,ω, ·), i.e., fn(q) = g∗

n(q), also fn is convex, proper, and lower semi-continuous;
see Rockafellar [37].

As a consequence of the dual representation of a g-expectation in Theorem 7.4 of
Barrieu and El Karoui [5], we get

cn
0,T (Q) = EQ

[∫ T

0
fn(u, qu) du

]

for any probability measure Q ∼ P such that ‖q‖ ≤ n. It remains to show that
cn
s,t (Q) = EQ[∫ t

s
fn(u, qu) du|Fs] for any 0 ≤ s ≤ t ≤ T and for any probability

measure Q ∼ P such that ‖q‖ ≤ n. Also this result can be deduced by Theorem 7.4
of Barrieu and El Karoui [5]. Nevertheless, since the proof will be useful later, we
postpone it to Lemma 3.8.

(iv) It is easy to check that the sequences un
0 and cn

0 are decreasing in n ∈ N.
By applying the converse comparison theorem on BSDEs (see Briand et al. [8]) and
Lemma 2.1 of Jiang [29], we shall show that the sequence of convex functions gn

(which induce un) is increasing in n.
In order to prove the above assertion, we proceed in a similar way as in

Jiang [29]. By the definition of un, un
0,T (ξ) ≥ un+1

0,T (ξ) and un
s,T (ξ) ≥ un+1

s,T (ξ) for any
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ξ ∈ L∞(FT ). By (ii), we deduce therefore that, for any ξ ∈ L∞(FT ),

Egn(ξ) ≤ Egn+1(ξ),

Egn(ξ |Fs) ≤ Egn+1(ξ |Fs).
(3.6)

Denote now by E s,t
g the conditional g-expectation at time s with final time t . To apply

Lemma 2.1 of Jiang [29], we need to verify that

E s,t
gn

(ξ) ≤ E s,t
gn+1

(ξ), ∀s, t ∈ [0, T ] with s ≤ t,∀ξ ∈ L∞(Ft ). (3.7)

Condition (3.7) has already been established for (s, t) = (0, T ) and (s, t) = (s, T ).
Consider now the case (s, t) = (0, t). Since E s,t

g (η) = E s,T
g (η) for any η ∈ L∞(Ft )

(see Peng [34] for details), from (3.6) we deduce that E 0,t
gn

(ξ) ≤ E 0,t
gn+1(ξ) for any

0 ≤ t ≤ T and ξ ∈ L∞(Ft ). For general (s, t), inequality (3.6) can be checked as
above. Indeed, for any ξ ∈ L∞(Ft ), we have E s,t

gn
(ξ) = E s,T

gn
(ξ) ≤ E s,T

gn+1(ξ) = E s,t
gn+1(ξ).

Set now

S z(g) :=
{
t ∈ [0, T ) : g(t, z) = L1- lim

ε→0+
1

ε
E t,t+ε

g

(
z(Bt+ε − Bt)

)}
.

From Lemma 2.1 of Jiang [29] it follows that

m
([0, T ) \ S z(gi)

) = 0, ∀z ∈ R
d ,

for i = n,n+ 1, where m denotes the Lebesgue measure on [0, T ]. By the arguments
above it follows that, for any z ∈ R

d ,

if t ∈ S z(gn) ∩ S z(gn+1) �= ∅, then gn(t, z) ≤ gn+1(t, z) P -a.s.

and

m
([0, T ) \ (

S z(gn) ∩ S z(gn+1)
)) = m

(([0, T ) \ S z(gn)
) ∪ ([0, T ) \ S z(gn+1)

)) = 0.

Hence, by proceeding as in Jiang [29] it can be checked that, for any z ∈ R
d ,

gn(t, z) ≤ gn+1(t, z) (dt × dP )-a.s.

The positivity of any gn is due to the fact that u0
t (ξ ) = EP [ξ |Ft ] = −Eg0(−ξ |Ft )

where g0 ≡ 0. By the same arguments as above, therefore, gn ≥ g0 ≡ 0.
(v) From (iii) and (iv) it follows that the sequence of fn is decreasing in n. Con-

sider again the measurable space ([0, T ] × Ω, P ,m × P), where P denotes the pre-
dictable σ -algebra, and m denotes Lebesgue measure on [0, T ]. Denote by P the
completion of P . Take N > 0 and, for any ε > 0, set

E = EN,ε

:= {
(t,ω, q) ∈ [0, T ] × Ω × R

d : ‖q‖ ≤ n,fn+1(t,ω, q) + ε < fn(t,ω, q) ≤ N
}
,
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and denote by π(E) its projection on [0, T ] × Ω . Note that E ∈ P ⊗ B(Rd). By
the measurable selection theorem (see Aumann [4] and Aliprantis and Border [1],
Sect. 17.4), π(E) ∈ P , and there exists a P -measurable q : π(E) → R

d such that
(t,ω, q(t,ω)) ∈ E for (m×P)-a.e. (t,ω) ∈ π(E). Set now q = 0 on π(E)c. To such
a q , it is therefore possible to associate a q : [0, T ]×Ω → R

d which is P -measurable
and equal to q (m × P)-almost everywhere.

Let Q be the probability measure associated to q as above. By definition, ‖q‖ ≤ n.
Hence, cn

0,T (Q) = cn+1
0,T (Q) = c0,T (Q) < +∞. Furthermore, by the definition of E it

follows that

cn
0,T (Q) = EQ

[∫ T

0
fn(u, qu) du

]

= EQ

[∫ T

0
fn(u, qu)1π(E) du

]
+ EQ

[∫ T

0
fn(u, qu)1π(E)c du

]

= EQ

[∫ T

0
fn(u, qu)1π(E) du

]

≥ EQ

[∫ T

0

[
fn+1(u, qu) + ε

]
1π(E) du

]

= EQ

[∫ T

0
fn+1(u, qu)1π(E) du

]
+ ε(m × Q)

(
π(E)

)

= cn+1
0,T (Q) + ε(m × Q)

(
π(E)

)
.

If (m×Q)(π(E)) > 0, then cn+1
0,T (Q)+ ε̃ < cn

0,T (Q) < +∞, which is a contradiction.
Hence, (m × Q)(π(E)) = 0, i.e.,

(m × Q)
({

(t,ω) : N ≥ fn(t,ω, qt ) > fn+1(t,ω, qt ) + ε
}) = 0.

By letting N tend to +∞, from the arguments above and since Q ∼ P , it follows
that if fn < +∞ on {x : ‖x‖ ≤ n}, then fn = fn+1 (m × dP )-a.s., and hence
fn = fn+1 = f (m × dP )-a.s. for some functional f . In other words,

fn(t,ω, x) = fn+1(t,ω, x) = f (t,ω, x) (m × dP )-a.s. for ‖x‖ ≤ n.

Furthermore, we may conclude that, once (t,ω) is fixed, for any q , either (1) there
exists n ≥ 0 such that fn(t,ω, q) < +∞ (hence fm(t,ω, q) = f (t,ω, q) < +∞ for
any m ≥ n and m ≥ ‖q‖) or (2) for all n ≥ 0, it holds fn(t,ω, q) = +∞ = f (t,ω, q).
Hence,

f (t,ω, x) = inf
n≥0

fn(t,ω, x).

By the properties of the sequence fn, it follows that f (·, ·,0) = 0.
It remains to prove that f(t,ω,·) is proper, convex, and lower semi-continuous. The

properness of f (t,ω, ·) is trivial. As f (t,ω, x) = limn fn(t,ω, x) = infn fn(t,ω, x)

for almost all (t,ω) and any fn is predictable and convex in x, it is easy to check
that f also is predictable and convex in x. Furthermore, for almost all (t,ω), the set
{q ∈ R

d : f (t,ω, q) ≤ α} is closed for any α ∈ R. Indeed, take a sequence {qk}k≥0
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such that qk → q and f (t,ω, qk) ≤ α. There exists N ∈ N such that ‖qk‖ ≤ N

for all k. Hence f (t,ω, qk) = fN(t,ω, qk) ≤ α. Since fN(t,ω, ·) is lower semi-
continuous,

f (t,ω, q) = fN(t,ω, q) ≤ lim kfN

(
t,ω, qk

) ≤ α.

Hence f (t,ω, ·) also is lower semi-continuous. �

Lemma 3.8 If cn
0,T (Q) = EQ[∫ T

0 fn(u, qu) du] holds for any probability measure

Q ∼ P such that ‖q‖ ≤ n, then cn
s,t (Q) = EQ[∫ t

s
fn(u, qu) du|Fs] also holds for any

0 ≤ s ≤ t ≤ T and for any probability measure Q ∼ P such that ‖q‖ ≤ n.

Proof Let Q be a probability measure equivalent to P and such that ‖q‖ ≤ n. Con-
sider the case where s = 0 and take the probability measure Q corresponding to q

given by

qu =
{

qu if 0 ≤ u ≤ t,

0 if t < u ≤ T ,

obtained by pasting Q and P . It is clear that ‖q‖ ≤ n. From the cocycle property of
cn established in Proposition 3.6(i) it follows that

cn
0,T (Q) = cn

0,t (Q) + EQ

[
cn
t,T (Q)

] = cn
0,t (Q) + EQ

[
cn
t,T (P )

] = cn
0,t (Q).

From the arguments above it follows that

cn
0,t (Q) = cn

0,t (Q) = cn
0,T (Q) = EQ

[∫ T

0
fn(u, qu) du

]

= EQ

[∫ t

0
fn(u, qu) du

]
= EQ

[∫ t

0
fn(u, qu) du

]
.

We now come back to the general case. Consider the probability measure Q∗
obtained by pasting Q and P via

q∗
u =

{
0 if 0 ≤ u ≤ s,

qu1A + 0 1Ac if s < u ≤ T ,

with A ∈ Fs . On the one hand, we deduce that cn
0,s(Q

∗) = cn
0,s(P ) = 0, while for any

s < t ≤ T ,

cn
0,t (Q

∗) = EQ∗
[∫ t

0
fn(u, q∗

u) du

]

= EQ∗
[

1A

∫ t

s

fn(u, qu) du

]

= EP

[
EQ

[
1A

∫ t

s

fn(u, qu) du

∣∣∣∣Fs

]]

= EP

[
1AEQ

[∫ t

s

fn(u, qu) du

∣∣∣∣Fs

]]
.
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On the other hand, from the cocycle property, EQ∗ [cn
s,t (Q

∗)] = cn
0,t (Q

∗) − cn
0,s(Q

∗),
and hence

cn
0,t (Q

∗) = cn
0,t (Q

∗) − cn
0,s(Q

∗) = EQ∗
[
cn
s,t (Q

∗)
]

= EQ∗
[
EQ∗

[
cn
s,t (Q

∗)
∣∣Fs

]]
= EP

[
1AEQ

[
cn
s,t (Q)

∣∣Fs

]]
.

Since the set A is arbitrary, we deduce that for any A ∈ Fs ,

EP

[
1AEQ

[∫ t

s

fn(u, qu) du

∣∣∣∣Fs

]]
= EP

[
1AEQ

[
cn
s,t (Q)|Fs

]]
,

and hence

cn
s,t (Q) = EQ

[
cn
s,t (Q)|Fs

] = EQ

[∫ t

s

fn(u, qu) du

∣∣∣∣Fs

]
. �

Lemma 3.9 For any probability measure Q equivalent to P , it holds true that

c0,T (Q) ≤ EQ

[∫ T

0
f (u, qu) du

]
,

ct,T (Q) ≤ EQ

[∫ T

t

f (u, qu) du

∣∣∣∣Ft

]
.

Proof We start by proving the inequality for c0,T (Q).
(1) If

∫ T

0 f (u, qu) du is bounded, we consider the probability measure Qn cor-

responding to qn := q1‖q‖≤n. Since
∫ T

0 f (u, qu) du is bounded, from Proposi-
tion 3.6(iii) it follows that

lim
n→+∞ c0,T

(
Qn

) = lim
n

EQn

[∫ T

0
fn

(
u,qn

u

)
du

]

= lim
n

EQn

[∫ T

0
f (u, qu)1‖q‖≤n du

]

= lim
n

EQ

[
dQn

dQ

∫ T

0
f (u, qu)1‖q‖≤n du

]

= EQ

[∫ T

0
f (u, qu) du

]
< +∞.

Since dQn

dP
→ dQ

dP
in L1, the lower semi-continuity of c0,T (Q) implies that

c0,T (Q) ≤ lim inf
n

c0,T

(
Qn

) ≤ EQ

[∫ T

0
f (u, qu) du

]
.
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(2) If
∫ T

0 f (u, qu) du ∈ L1(Q), we set σn := inf{t ≥ 0 : ∫ t

0 f (u, qu) du ≥ n} for
any n ∈ N. Then σn is a stopping time, and σn ↑ T . Denote by Qσn the probability

measure corresponding to dQσn

dP
= E (q · B)σn . It is easy to check that dQσn

dP
→ dQ

dP

in L1. Furthermore,

EQσn

[∫ σn

0
f

(
u,qσn

u

)
du

]
= EQ

[∫ σn

0
f (u, qu) du

]
→ EQ

[∫ T

0
f (u, qu) du

]
,

where the equality above is due to the fact that q and qσn coincide on the stochastic
interval [[0, σn]]. By applying the arguments above, we obtain

c0,T (Q) ≤ lim inf
n

c0,T

(
Qσn

) ≤ lim inf
n

EQσn

[∫ σn

0
f

(
u,qσn

u

)
du

]

≤ EQ

[∫ T

0
f (u, qu) du

]
.

(3) In general, if
∫ T

0 f (u, qu) du /∈ L1(Q), then EQ[∫ T

0 f (u, qu) du] = +∞.

Hence c0,T (Q) ≤ EQ[∫ T

0 f (u, qu) du].
The inequality ct,T (Q) ≤ EQ[∫ T

t
f (u, qu) du|Ft ] can be checked by proceeding

as in the proof of Lemma 3.8. �

Lemma 3.10 Let Q be a probability measure equivalent to P with c0,T (Q) < +∞. If
{τn}n≥0 is a sequence of stopping times with P(τn < T ) → 0, then c0(Q

τn) ↑ c0(Q),
where Qτn is defined by dQτn

dP
= EP [ dQ

dP
|Fτn ].

Proof On the one hand, by the cocycle property and by the definition of Qτn it fol-
lows that

c0,T (Q) = c0,τn(Q) + EQ

[
cτn,T (Q)

] ≥ c0,τn(Q) = c0,T

(
Qτn

)
.

On the other hand, by the lower semi-continuity of c0 and by dQτn

dP
→ dQ

dP
in L1, it

holds c0,T (Q) ≤ lim infn c0,T (Qτn). So limn c0,T (Qτn) = c0,T (Q). �

Lemma 3.11 Consider a general setting where the filtration satisfies the usual hy-
potheses but is not necessarily a Brownian filtration. Let Q be a probability measure
equivalent to P such that c0,T (Q) < +∞ and (ct (Q))t∈[0,T ] is right-continuous.
Then there exists a unique increasing, predictable process (At )t∈[0,T ] (depending
on Q) such that A0 = 0 and

ct (Q) = EQ[AT − At |Ft ], ∀t ∈ [0, T ], (3.8)

i.e., c(Q) is a Q-potential.

Proof By Theorem VII.8 of Dellacherie and Meyer [19], (3.8) holds true if
(ct (Q))t∈[0,T ] is a positive Q-supermartingale of class (D), i.e., if (cσ (Q))σ∈S is
uniformly integrable, where S is the family of all stopping times smaller than or
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equal to T . The process (ct (Q))t∈[0,T ] is clearly adapted and positive and, by hy-
pothesis and the cocycle property, ct (Q) ∈ L1(Q) for any t ∈ [0, T ]. By the cocycle
property we deduce that for any 0 ≤ s ≤ t ≤ T ,

EQ

[
ct,T (Q)

∣∣Fs

] = cs,T (Q) − cs,t (Q) ≤ cs,T (Q),

i.e., (ct (Q))t∈[0,T ] is a Q-supermartingale. Furthermore, cT (Q) = 0. It remains to
show that (ct (Q))t∈[0,T ] is of class (D). This proof is postponed to the Appendix. �

Remark 3.12 Since in our setting (ct (Q))t∈[0,T ] is càdlàg (see the Appendix for the
proof), as a particular case of the previous lemma, it follows that (3.8) holds for a
càdlàg (At )t∈[0,T ].

Note that (3.8) implies that ct,u(Q) = EQ[Au − At |Ft ] for 0 ≤ t ≤ u ≤ T . Fur-
thermore, the assumption ct (P ) = 0 implies that for Q = P , we have A = AP = 0.

Lemma 3.13 Let σ, τ be two stopping times such that 0 ≤ σ ≤ τ ≤ T , and Q1,Q2

two probability measures equivalent to P . Denote by A1,A2 the corresponding in-
creasing processes as in (3.8). Let Q be the probability measure induced by

q =
{

q1 on H 1 = ]]0, σ ]] ∪ ]]τ, T ]],
q2 on H 2 = ]]σ, τ ]],

and denote by A the corresponding process as in (3.8). Then

dA = dA1|H 1 + dA2|H 2 = 1H 1 dA1 + 1H 2 dA2.

Proof Fix t ∈ [0, T ]. For t ≥ τ , we have ct (Q) = ct (Q
1) = EQ1[A1

T − A1
t |Ft ]. For

σ ≤ t < τ , we deduce from the cocycle property that

ct (Q) = ct,τ (Q) + EQ

[
cτ,T (Q)

∣∣Ft

]
= EQ2

[
A2

τ − A2
t

∣∣Ft

] + EQ2

[
EQ1

[
A1

T − A1
τ

∣∣Fτ

]∣∣Ft

]

= EQ

[
A2

τ − A2
t + A1

T − A1
τ

∣∣Ft

]

= EQ

[∫
(t,T ]

(
1H 1 dA1 + 1H 2 dA2)∣∣∣∣Ft

]
.

For t ≤ σ , we deduce from the cocycle property and the case above that

ct (Q) = ct,σ (Q) + EQ

[
cσ,T (Q)

∣∣Ft

]

= EQ1

[
A1

σ − A1
t

∣∣Ft

] + EQ1

[
EQ

[∫
]]σ,T ]]

(
1H 1 dA1 + 1H 2 dA2)∣∣∣∣Fσ

]∣∣∣∣Ft

]

= EQ

[∫
(t,T ]

(
1H 1 dA1 + 1H 2 dA2)∣∣∣∣Ft

]
.
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Since At := ∫
(0,t](1H 1 dA1 + 1H 2 dA2) is càdlàg, predictable, and increasing, we see

that (At )t∈[0,T ] is the process associated to Q in the sense of (3.8). �

Corollary 3.14 Let σ1, σ2, . . . , σn, τ1, τ2, . . . , τn be stopping times such that
0 ≤ σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤ · · · ≤ σn ≤ τn ≤ T , and let Q be a probability measure
equivalent to P and whose corresponding increasing process is denoted by A. Set

H := ]]σ1, τ1]] ∪ ]]σ2, τ2]] ∪ · · ·∪ ]]σn, τn]]. (3.9)

Let QH be the probability measure induced by qH = q1H and denote by AH the
corresponding process as in (3.8). Then

dAH = 1H dA.

Proof The proof of this result is a repeated application of Lemma 3.13 (with Q1 = P

and Q2 = Q). �

Lemma 3.15 Let Q be a probability measure equivalent to P , and A the associated
increasing process. Then there exists a sequence (τn)n∈N of stopping times such that

(i) dQ]]0,τn]]
dP

→ dQ
dP

in L1, where Q]]0,τn]] denotes the probability measure induced

by q]]0,τn]] = q1]]0,τn]].
(ii) c0,T (Q]]0,τn]]) ↑ c0,T (Q).

(iii) Aτn is bounded for each n.

Proof For any n ∈ N, set σn := inf{t ≥ 0 : At ≥ n}. Hence σn is a predictable stop-
ping time. For any fixed n, take now a sequence (τn,m)m∈N such that τn,m is increas-
ing (in m), τn,m < σn on {σn > 0}, and τn,m ↑ σn. By the definition of σn, from
τn,m < σn it follows that Aτn,m ≤ n. For any ε > 0 small enough, take now n and

consequently m big enough to have ‖ dQ]]0,τn,m]]
dP

− dQ
dP

‖1 ≤ ε. For such indices, set
τ (n) := τn,m. Take now τn := maxk≤n τ (k). It can be checked that (τn)n∈N is an in-
creasing sequence of stopping times and that Aτn ≤ n (since also τn < σn). Further-
more, since σn = T for sufficiently big n and τn ↑ T , property (i) follows. Property
(ii) can be checked as usual (see, for instance, the proof of Lemma 3.10). �

Lemma 3.16 Let Q be a probability measure equivalent to P , and A the associated
increasing process. Suppose that A is bounded. Let H be a predictable set. Suppose

that E (q1H · B) is a uniformly integrable martingale. Set dQH

dP
:= E (q1H · B)T and

denote by AH the associated increasing process. Then

dAH ≤ dA,

and hence AH
T ≤ AT .

Proof First of all, we recall that the sets of the form (3.9) form an algebra A and that
the σ -algebra P of predictable sets is generated by A. Consider now any predictable
set H ∈ P satisfying the hypothesis. If H ∈ A, we already know that dAH = 1H dA
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from Corollary 3.14. For the general case, consider two stopping times σ, τ such that
0 ≤ σ ≤ τ ≤ T and take a sequence (Hn)n∈N ⊆ A such that

EQ

[∫ T

0
|1Hn − 1H |dA

]
→ 0,

E

[∫ T

0
|1Hn − 1H |dt

]
→ 0.

(3.10)

Denote by QHn
the probability measure induced by qn = q1Hn and by AHn

the asso-
ciated increasing process. Again from Corollary 3.14 it follows that dAHn = 1Hn dA

since Hn ∈ A. By (3.10) we have that dQHn

dP
→ dQH

dP
in L1. By the lower semi-

continuity of c and by (3.8), we get

EQH

[
AH

τ − AH
σ

∣∣Fσ

] = cσ,τ

(
QH

)
≤ lim inf

n
cσ,τ

(
QHn)

= lim inf
n

EQHn

[
AHn

τ − AHn

σ

∣∣Fσ

]
.

Because
∫
]]σ,τ ]] 1Hn dA → ∫

]]σ,τ ]] 1H dA,
∫
]]σ,τ ]] 1Hn dA is uniformly bounded, and

E (1]]σ,τ ]]∩Hnq · B) → E (1]]σ,τ ]]∩H q · B) in L1, we obtain

EQHn

[∫
]]σ,τ ]]

1Hn dA

∣∣∣∣Fσ

]
→ EQH

[∫
]]σ,τ ]]

1H dA

∣∣∣∣Fσ

]
. (3.11)

From (3.10) and (3.11) it follows that

EQH

[
AH

τ − AH
σ

∣∣Fσ

] = EQH

[∫
]]σ,τ ]]

dAH

∣∣∣∣Fσ

]

≤ lim inf
n

EQHn

[
AHn

τ − AHn

σ

∣∣Fσ

]

= EQH

[∫
]]σ,τ ]]

1H dA

∣∣∣∣Fσ

]
,

and hence EQH [∫]]σ,τ ]] dAH |Fσ ] ≤ EQH [∫]]σ,τ ]] 1H dA|Fσ ]. The same inequality
holds if we replace ]]σ, τ ]] with any element K ∈ A (it is sufficient to sum over inter-
vals of the same form as in (3.9)), that is,

EQH

[∫ T

0
1K dAH

∣∣∣∣Fσ

]
≤ EQH

[∫ T

0
1K1H dA

∣∣∣∣Fσ

]
. (3.12)

Moreover, by passing to the limit we obtain that inequality (3.12) holds true for
any K ∈ P . So we get dAH ≤ 1H dA as stochastic measures on (0, T ], and hence
AH

T ≤ AT . �
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Lemma 3.17 Let Q be a probability measure equivalent to P and suppose that the
corresponding increasing process A is bounded. If Hn is predictable, Hn ↑ 1(0,T ]×Ω ,
and QHn

is the probability measure induced by qHn = q1Hn , then

c0,T

(
QHn) → c0,T (Q).

Proof We already know by Lemma 3.16 that

dAHn ≤ 1Hn dA. (3.13)

From dQHn

dP
→ dQ

dP
in L1, inequality (3.13), and the lower semi-continuity of c0,T we

get

c0,T (Q) ≤ lim inf
n

c0,T

(
QHn) = lim inf

n
EQHn

[
AHn

T

]

≤ lim inf
n

EQHn

[∫
(0,T ]

1Hn dA

]
.

Since
∫
(0,T ] 1HndA is bounded and dQHn

dP
→ dQ

dP
in L1, we have that

c0,T (Q) ≤ lim inf
n

c0,T

(
QHn) ≤ lim inf

n
EQHn

[∫
(0,T ]

1Hn dA

]

= EQ

[∫
(0,T ]

dA

]
= c0,T (Q),

and hence c0,T (QHn
) → c0,T (Q). �

Theorem 3.18 Let Q be a probability measure equivalent to P , and A the associated
increasing process. Then there exists a sequence (Qn)n∈N of probability measures
with qn bounded such that dQn

dP
→ dQ

dP
in L1 and c0,T (Qn) → c0,T (Q).

Proof From the arguments above and by stopping arguments, we may suppose that A

is bounded. For any n ∈ N, take Hn := 1‖q‖≤n and as Qn the probability measure in-
duced by qn = q1Hn . Hence Hn is predictable, and Hn ↑ 1(0,T ]×Ω , so that it satisfies
the hypothesis of Lemma 3.17. It follows that dQn

dP
→ dQ

dP
in L1 and by Lemma 3.17

that c0,T (Qn) → c0,T (Q). �

We are now ready to prove the representation of the penalty term c in terms of f

in Theorem 3.2.

Proof of Theorem 3.2 Since (ii) is a straightforward consequence of (i) and of the
representation in (3.2), it remains to show that

c0,T (Q) = EQ

[∫ T

0
f (t, qt ) dt

]
. (3.14)
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By Lemma 3.9, we already know that c0,T (Q) ≤ EQ[∫ T

0 f (u, qu) du] for any proba-
bility measure Q ∼ P .

Suppose first that
∫ T

0 f (t,ω, qt ) dt ∈ L1(Q). For any n ∈ N, define

σn := inf

{
t ≥ 0 :

∫ t

0
f (u, qu) ≥ n

}
.

Then (σn)n≥0 is a sequence of stopping times such that σn ↑ T . Take now a sequence
(Qm)m∈N of probability measures as in Theorem 3.18. Then

c0,T (Q) ≤ EQ

[∫ T

0
f (u, qu) du

]

= lim
n

EQ

[∫ σn

0
f (u, qu) du

]

≤ sup
n

lim
m

EQm

[∫ σn

0
f (u, qu)1‖q‖≤m du

]

≤ lim
m

sup
n

EQm

[∫ σn

0
f (u, qu)1‖q‖≤m du

]

= lim
m

EQm

[∫ T

0
f (u, qu)1‖q‖≤m du

]

= lim
m

cm
0,T

(
Qm

) = lim
m

c0,T

(
Qm

) = c0,T (Q),

where the last equality is due to Theorem 3.18. Equality (3.14) has therefore been
established for

∫ T

0 f (t, qt ) dt ∈ L1(Q).

If
∫ T

0 f (t,ω, qt ) dt /∈ L1(Q), Fatou’s lemma gives

c0,T (Q) ≤ EQ

[∫ T

0
f (t, qt ) dt

]

≤ lim inf
m

EQm

[∫ T

0
f (t, qt )1‖q‖≤m dt

]

= lim inf
m

cm
0,T

(
Qm

)

= lim inf
m

c0,T

(
Qm

) = c0,T (Q),

and hence c0,T (Q) = EQ[∫ T

0 f (t, qt ) dt] = +∞. The representation of cs,t (Q) (and
hence of cσ,τ (Q)) can be deduced as usual. �
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Appendix

Let Q be a probability measure equivalent to P and such that c0,T (Q) < +∞. In the
following, we prove that (ct,T (Q))t∈[0,T ] is of class (D) and that it admits a càdlàg
modification.

The following corollary of Lemma 3.10 will be useful later.

Corollary A.1 sup{EQ[cτ,T (Q)] : τ stopping time with P(τ < T ) ≤ 1
n
} → 0 as

n → ∞.

The next result is a straightforward consequence of the cocycle property of c.

Lemma A.2 Denote by S the family of all stopping times smaller than or equal to T .
The family (cσ,T (Q))σ∈S satisfies the following property: Given any pair of stopping
times σ, τ such that 0 ≤ σ ≤ τ ≤ T , we have cσ,T (Q) ≥ EQ[cτ,T (Q)|Fσ ].

Lemma A.3 The family (cσ,T (Q))σ∈S is Q-uniformly integrable.

Proof We have to prove that

lim
n→+∞ sup

σ∈S

∫
cσ,T (Q)>n

cσ,T (Q)dQ = 0. (A.1)

Consider an arbitrary stopping time σ ∈ S and set

σ (n) =
{

σ if cσ,T (Q) > n,

T if cσ,T (Q) ≤ n.

By the cocycle property we get

c0(Q) = c0
(
Qσ(n)) + EQ

[
cσ (n),T (Q)

]
≥ EQ

[
cσ (n),T (Q)

]

=
∫

cσ,T (Q)>n

cσ,T (Q)dQ ≥ nP
(
cσ,T (Q) > n

)
.

Hence P(cσ,T (Q) > n) ≤ c0(Q)
n

uniformly in σ , so that we get

0 ≤ sup
σ∈S

∫
cσ,T (Q)>n

cσ,T (Q)dQ

≤ sup

{
EQ

[
cτ,T (Q)

] : τ stopping time with P(τ < T ) ≤ c0(Q)

n

}
.

Since the last term tends to 0 as n → +∞ by Corollary A.1, (A.1) follows. �
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Lemma A.4 Let ε > 0 be such that EQ[−ξ ] > c0(Q) − ε with ξ ∈ A0,T . Then for
any pair of stopping times σ, τ such that 0 ≤ σ ≤ τ ≤ T , it holds that

EQ

[
cσ,τ (Q)

] ≤ EQ

[
uσ (ξ) − uτ (ξ)

] + ε.

Proof By the translation invariance of (ut,T )t∈[0,T ] it follows that
uτ,T (ξ−uτ,T (ξ))=0, and hence ξ−uτ (ξ)∈Aτ,T . Furthermore, the time-consistency
and translation invariance of u and ξ ∈ A0,T imply that uτ (ξ) − uσ (ξ) ∈ Aσ,T and
that uσ (ξ) ∈ A0,σ . The cocycle property or, equivalently, the decomposition property

A0,T = A0,σ + Aσ,τ + Aτ,T implies that

c0(Q) = EQ

[
c0,σ (Q)

] + EQ

[
cσ,τ (Q)

] + EQ

[
cτ,T (Q)

]
≥ EQ

[−uσ (ξ)
] + EQ

[
uσ (ξ) − uτ (ξ)

] + EQ

[
uτ (ξ) − ξ

]
≥ EQ[−ξ ] ≥ c0(Q) − ε,

where the first inequality follows from ct,T (Q) = ess.supξ∈At,T
EQ[−ξ |Ft ]. By pro-

ceeding as above we get

c0(Q) ≥ EQ

[−uσ (ξ)
] + EQ

[
uσ (ξ) − uτ (ξ)

] + EQ

[
uτ (ξ) − ξ

]
≥ c0(Q) − ε

≥ EQ

[−uσ (ξ)
] + EQ

[
cσ,τ (Q)

] + EQ

[
uτ (ξ) − ξ

] − ε,

and hence EQ[cσ,τ (Q)] ≤ EQ[uσ (ξ) − uτ (ξ)] + ε. �

Lemma A.5 Let σ ∈ S. If {σn}n∈N is a sequence of stopping times such that σn ↓ σ ,
then EQ[cσ,σn(Q)] → 0.

Proof Suppose by contradiction that EQ[cσ,σn(Q)] does not tend to 0 as n → +∞.
Then there exists ε > 0 such that EQ[cσ,σn(Q)] ≥ ε > 0 for any n ∈ N. Take now
ξ ∈ A0,T such that EQ[−ξ ] ≥ c0(Q) − ε

2 . Hence, by Lemma A.4,

EQ

[
uσ (ξ) − uσn(ξ)

] ≥ EQ

[
cσ,σn(Q)

] − ε

2
≥ ε

2

for any n ∈ N. This leads to a contradiction since (ut,T )t∈[0,T ] admits a càdlàg version
with uσn(ξ) → uσ (ξ) in L1(Q); see Lemma 4 of Bion-Nadal [7]. �

By the cocycle property it is easy to deduce the following result from the one
above.

Corollary A.6 Let σ ∈ S. If {σn}n∈N is a sequence of stopping times such that
σn ↓ σ , then EQ[cσn,T (Q)] → EQ[cσ,T (Q)].

Lemma A.7 (ct,T (Q))t∈[0,T ] admits a càdlàg modification. Furthermore, if
(ct )t∈[0,T ] denotes this modification, for any stopping time σ ∈ S, it holds
cσ,T (Q) = cσ a.s.
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We remark that this ends the proof of the statement in the beginning of the Appen-
dix.

Proof of Lemma A.7 We already know that (ct,T (Q))t∈[0,T ] is a positive Q-super-
martingale (see the proof of Lemma 3.11) and that for any sequence {tn}n∈N in [0, T ]
and such that tn ↓ t , it holds EQ[ctn,T (Q)] → EQ[ct,T (Q)] by Corollary A.6. By
Theorem VII.4 of Dellacherie and Meyer [19] it follows that (ct,T (Q))t∈[0,T ] admits
a càdlàg modification. This implies that for any stopping time σ ∈ S taking rational
values, it holds cσ = cσ,T (Q) a.s. For a general stopping time σ ∈ S, there exists a
sequence {σn}n∈N of finite stopping times taking rational values and such that σn ↓ σ .
Hence,

lim
n→+∞ cσn,T (Q) = lim

n→+∞ cσn = cσ a.s., (A.2)

where the last equality follows from the fact that (ct )t∈[0,T ] is càdlàg.
It remains to prove that cσ,T (Q) = limn→+∞ cσn,T (Q). This proof is quite stan-

dard, and we only include it for completeness. By the cocycle property it follows
that (cσn,T (Q), Fσn)n∈N is a positive reverse Q-supermartingale (see Neveu [32]).
By Proposition V-3-11 of Neveu [32], cσn,T (Q) converges as n → +∞ to a pos-
itive Fσ -measurable random variable η, and EQ[cσn,T (Q)|Fσ ] → η a.s. Since
EQ[cσn,T (Q)|Fσ ] ≤ cσ,T (Q), we get η ≤ cσ,T (Q). Furthermore, by the Q-uniform
integrability of (cσn,T (Q))n∈N (see Lemma A.3) we get

EQ

[
cσ,T (Q)

] = lim
n

EQ

[
cσn,T (Q)

] = EQ[η],

where the first equality is due to Corollary A.6. By the arguments above it follows
that η = cσn(Q) a.s., hence the assertion. �
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