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Abstract A common problem is to choose a “risk-neutral” measure in an incomplete
market in asset pricing models. We show in this paper that in some circumstances it
is possible to choose a unique “equivalent local martingale measure” by completing
the market with option prices. We do this by modeling the behavior of the stock price
X, together with the behavior of the option prices for a relevant family of options
which are (or can theoretically be) effectively traded. In doing so, we need to ensure
a kind of “compatibility” between X and the prices of our options, and this poses
some significant mathematical difficulties.
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1 Introduction

A common practice for analyzing stock prices and the associated option pricing and
hedging strategies has as a first step the choice of a model for the stock price. The
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Black–Scholes model is usually considered inaccurate, both due to volatility “smile”
effects, and the widespread belief that price processes have “heavy tails” (cf., e.g.,
[4, 14]). This leads researchers to consider more sophisticated models such as diffu-
sions, models with stochastic volatility, and/or models with jumps. In many cases this
destroys the completeness of the model, thus rendering option pricing a perilous task
and hedging imperfect. Moreover, the choice of the model and in particular the values
allocated to the various parameters entering the model are also sometimes suspect.

On the other hand, many options are effectively traded, just as the stock itself is.
The recorded prices of these options are used for determining the parameters of the
model, through the “implied volatility” paradigm for example; and the options are
also used for hedging.

A classical approach is to specify a parameterized form of a price process for a
risky asset, then to estimate the parameters statistically (calibration); one then uses
the calibrated model to determine risk-neutral prices of contingent claims in the case
of a complete market; in the case of an incomplete market, one chooses a risk-neutral
measure based on some criterion determined by the modeler.

Concerning option prices, ideally, one should derive them from the underlying
model, and then enter the recorded prices to provide a check on one’s estimates of the
parameters. This proves impossible for two reasons at least. One is that option prices
are not in general determined by the model when completeness fails, and another
one is that even in the rare cases where option prices are determined by the model,
they are almost never given in closed form, and actual computations are difficult or
impossible.

However, there is also good news: If sufficiently many assets are traded, then the
model becomes complete. This is a heuristic way of stating the following very general
mathematical result. Let (Ω, F ,F,P), where F = (F t )t≥0, be a filtered probability
space with an adapted process X (the stock price process). X represents the nondis-
counted price process. If we take the time value of money into account, then we

should replace X with St = e− ∫ t
0 rs dsXt . However in this paper we assume that the

interest rate r is deterministic, and moreover r ≡ 0. This can be a serious restriction,
but it simplifies the already complicated mathematics of the paper.

Usually there are infinitely many measures Q equivalent to P under which X is a
martingale or local martingale (so completeness fails). But if we introduce a family

Y of additional processes, the set of all measures Q equivalent to P under which X

and all processes Y in Y are martingales, shrinks. It may be empty, but it also may
be a singleton, in which case the “model” (including all Y ∈ Y ) becomes complete.
And it is always possible to find a big enough family Y such that the above set is
a singleton (but typically, of course, Y is infinite, although countable as soon as the
σ -field F is separable).

These considerations lead us to propose a scheme in which one models the behav-
ior of the stock price X, together with the behavior of the option prices for a relevant
family of options which are (or can theoretically be) effectively traded. In doing so,
one should of course ensure a kind of “compatibility” between X and the prices of
our options. This is similar to the modeling of bond prices, where one models the
behavior of the interest rate together with the prices of bonds with various maturi-
ties. Our scheme is closely related to the term structure model of Heath, Jarrow, and
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Morton [17], extended to the discontinuous case by Björk et al. in [1] and [2]. Un-
fortunately, however, an HJM-style model for option prices seems intrinsically much
more complicated than it is for bonds.

The scheme we propose encompasses a lot of different “concrete” models, which
all have in common that completeness holds. For simplicity, we suppose that there
is a single stock price, but an extension to several stocks is straightforward. We
also suppose that we have a single type of option which is traded, namely a Eu-
ropean option with payoff function g (a nonnegative convex function, typically
g(x) = (x − K)+) and arbitrary expiration dates. Again, these ideas would work
as well for other types of options. In fact, if we smooth the standard function
g(x) = (x − K)+ just a bit to make it C2, then we shall see that one obtains a much
more satisfying theory.

Indeed, this paper was originally conceived as an attempt to see if a term structure
type model for option prices (broadly interpreted) could be seen to make sense in a
general way. The problem is hard, due to the requirement in what we call the full
model that the choice of the risk-neutral measure determine the value of the underly-
ing martingale at the maturity time. What we have found is that if we insist that the
standard function g(x) = (x − K)+ be used, then the answer is negative. However if
we are willing to tolerate a bit of smoothing of g, then we can make some sense of
the problem, and it becomes tractable.

The simplicity (or lack thereof) of the problem is tied to when the options mature.
If one is interested in a time interval [0, T�] where the option in question matures
after the time T�, then the problem is much simpler, since it is not necessary to force
the ending value of the martingale representing the option price to agree with the
value of the option, written as a function of the price process X at time T�, precisely
because that time has not yet arrived. We consider this case first, where the ideas
work well, before considering the more general case where the options mature on or
before the time T�.

The idea of completing a market with option prices is not new. For example, there
was a flurry of research appearing in 1997: Dengler and Jarrow [11] consider a sim-
ple model where the price process is pure jump, but with only two distinct jump
sizes. They use two traded call options to complete the market, and the collection of
martingale measures becomes a parameterized family, with only one of them being a
martingale measure for all three securities. Dupire [13] considers a simple stochastic
volatility model and lets the strike price vary but keeps time fixed. Differentiating
twice with respect to the strike, he gets a partial differential equation, which, when
solved, uniquely determines a martingale measure. Finally, Derman and Kani [12]
also treat the stochastic volatility case and consider calls with varying strike price K .
As does Dupire, they assume smoothness in K , differentiate twice, and get a density
implied by the call option, which depends on K . The risk-neutral restriction leads to
a PDE, and a numerical procedure for solving it is proposed. Schönbucher [28] in
1999 considers a Brownian paradigm, with the presence of stochastic volatility. He
then finds conditions under which one has absence of arbitrage, which amounts to a
condition that the over-specified model must satisfy (it is over-specified in the sense
that there are more securities than sources of randomness). His approach revolves
around implied volatilities, with the spot volatility taken as a fundamental variable.
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In work essentially simultaneous to this paper, Schweizer and Wissel [29] have im-
proved on these ideas using different maturities (rather than different strikes as in the
1997 literature), and in that sense their paper is closer in spirit to this one; see also
the preprints by Davis and Obłoj [8] and by Schweizer and Wissel [30]. Finally, we
also wish to mention the recent and very interesting related work of Carmona and
Nadtochiy [3], which is similar in spirit to the work of Derman, Dupire, and others
(in the continuous path case), but takes the ideas much further.

At this point it is prudent to make clear what we claim and also what we do not
claim. In an incomplete market setting, in the absence of arbitrage opportunities, there
are of course an infinite number of risk-neutral measures. It is theoretically possible
to obtain enough information from contingent claim prices, given by the market, to
match one or more of these risk-neutral measures to these extra prices. Such a match-
ing implies that consistency conditions must be met. In some cases there may be only
one such measure, or perhaps none at all. Having a unique measure implies a com-
plete market, of course, but it need not be a stable complete market; that is, since the
risk-neutral measure is determined by matching the option prices, it is possible there
could be a paradigm shift. That is, the market has “chosen” (at least for now) a unique
measure among all of the possible risk-neutral measures corresponding to the asset
price process. The market could choose a different one at some future time. See [20]
for the development and use of this idea. We wish to emphasize that we are not giving
conditions for the absence of arbitrage opportunities; rather, we are giving conditions
for when the price structure of derivatives is such that one can find an equivalent lo-
cal martingale measure which is compatible with the price structure or alternatively
is such that there cannot exist such an equivalent local martingale measure corre-
sponding to the prices. When we can in fact find such a risk-neutral measure, then the
theory of Harrison, Pliska, and Kreps, or more generally of Delbaen and Schacher-
mayer, ensures the absence of arbitrage, properly interpreted. This is in contrast to the
usual approach, where one risk neutral measure is chosen a priori, and then derivative
prices are dictated by the model and this choice of risk-neutral measure.

A last warning is in order: We make no attempt to the calibration of the models we
propose. For this, we should need to specify the model within a class of parametric
models, and this would be the object of a totally different work; see however the end
of Sect. 4.

A plan of the paper is as follows. In Sect. 2 we present the general framework we
consider. The price process of a given stock will be assumed to follow what is known
as an Itô process framework; it is an adapted càdlàg process consisting of a stochastic
integral with respect to a Wiener process, and a jump component driven by a com-
pensated Poisson random measure for the “small” jumps, the “large” jumps being
arbitrary. To this we include models for the options, where we consider two different
frameworks: the first with a finite trading time horizon T� with options maturing after
T� (called partial models), and the second with T� = ∞ (called full models). We do
not specify the prices via the model of the stock price, but rather consider them as
given by the market.

In Sect. 3 we let P(T ) = (P (T )t )t≥0 denote European call option prices through
time, with a fixed strike price K and maturity time T . We keep K fixed, and we let the
maturity time T vary. We then consider the collection of equivalent local martingale
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measures that are compatible with the given prices of the stock and options, and we
characterize them, in terms of assumed structure.

In Sect. 4 we consider the entire collection of equivalent local martingale measures
for partial models and determine when it has cardinality one. This obviously requires
a compatibility condition among the option prices, since a priori we do not know the
collection is not empty. Examples are given.

In Sect. 5 we consider the analogous situation as in Sect. 4 but for full models. We
give an example of Markov-type stochastic volatility models.

2 A general model

We suppose that all sources of randomness are a family of Brownian motions and a
possibly infinite Poisson random measure; this should cover most, if not all, appli-
cations. When all processes (stock prices, option prices) are continuous in time, we
can dispense with the Poisson measure. When the stock prices are continuous but the
volatility has jumps, we do need the Poisson measure, and even more so of course
when the stock prices are discontinuous.

More specifically we have a filtered space (Ω, F ,F,P) where P is the his-
torical measure, F = (F t )t≥0, and the space is endowed with a finite or count-
able family (Wi)i∈I of standard Brownian motions, and a Poisson random measure
μ = μ(dt, dx) on R+ × R with intensity measure ν(dt, dx) = dt ⊗ F(dx). We sup-
pose that F is the smallest filtration to which the Wi and μ are adapted, and F = F ∞.

We need to consider below the optional and predictable σ -fields O and P on
the product Ω × R+. As a matter of fact, we also need to consider the products
Ω × R+ × R and Ω × R+ × R × R: all these products will be endowed with the
product σ -fields of F with the Borel σ -fields of the other factors, and the measure
which is the product of P with the relevant Lebesgue measure. We generically write
Ω̂ and P̂ for these products and the associated measures. We also write P̃ for the
product P ⊗ R on Ω × R+ × R, where of course R denotes the Borel sets.

(1) The stock model We assume the following model for the stock price X. First, in
the continuous case we suppose that

Xt = X0 +
∫ t

0
as ds +

∑

i∈I

∫ t

0
σ i

s dWi
s . (2.1)

In the general case, when there are jumps, we suppose that

Xt = X0 +
∫ t

0
as ds +

∑

i∈I

∫ t

0
σ i

s dWi
s + (

ψ1{|ψ |≤1}
) ∗ (μ − ν)t + (

ψ1{|ψ |>1}
) ∗ μt .

(2.2)
Here and below we use the standard notation for stochastic integrals with respect
to Wiener processes Wi and a random measure μ or compensated random measure
μ − ν, see, e.g., [18]. In (2.2) X0 > 0 is nonrandom, and the coefficients a, σ i , and
ψ are such that the integrals and sums above make sense; that is, a and σ i are pre-
dictable, and ψ is P̃ -measurable, and

∫ t

0

(

|as | +
∑

i∈I

∣
∣σ i

s

∣
∣2 +

∫
(
ψ(s, x)2 ∧ 1

)
F(dx)

)

ds < ∞ a.s.
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for all t . Of course these coefficients should also be such that Xt > 0; this amounts to
saying that they factorize as at = Xt−āt and σ i

t = Xt−σ̄ i
t and ψ(t, x) = Xt−ψ̄(t, x)

with ψ̄ > −1 identically, but it is more convenient to use the form (2.2). Note that
this is the most general semimartingale driven by μ and the Wi .

The process X is fixed throughout; this determines the deterministic starting point
X0, and the coefficients a, σ i and ψ up to a P̂-nullset.

(2) The associated option model For the options, we consider a fixed payoff func-
tion g on (0,∞) which is nonnegative and convex, and we denote by P(T )t the price
at time t ∈ [0, T ] of the option with payoff g(XT ) at the expiration date T . We also
assume that g is not affine, otherwise P(T )t = g(Xt ) is of course the price of the
option at time t , and there is nothing more to do.

We denote by T the set of expiration dates T corresponding to tradable options
(always with the same given payoff function g), and by T� the time horizon up to
when trading may take place. Even when T� < ∞, there might be options with expi-
ration date T > T�, so we need to specify the model up to infinity.

In practice T is a finite set, although perhaps quite large. For the mathematical
analysis, it is much more convenient to take for T an interval, or perhaps a countable
set which is dense in an interval. In this paper we mainly concentrate on two cases,
although other obvious situations are also of interest:

• The full models, for which T� = ∞ and T = (0,∞).
• The partial models, for which T� < ∞ and T = [T0,∞), with T0 > T�.

Apart from the fact that P(T )T = g(XT ), the prices P(T )t are so far unspecified,
and the idea is to model them on the basis of the same Wi and μ rather than X.
However, since these are option prices, they should have some structural properties.

Indeed, if the option prices were derived in the customary way, we should have
a measure Q which is equivalent to P, and under which X is a martingale, g(XT )

is Q-integrable, and P(T )t = EQ(g(XT ) | F t ) for t ≤ T . Then of course P(T ) is a
Q-martingale indexed by [0, T ]. But we can also look at how P(T )t varies as a func-
tion of the expiration date T , on the interval [t,∞). That is, we are taking the un-
customary step of fixing t and considering P(T )t as a process where T varies. Since
X is a quasi-left-continuous martingale and g is convex, T 
→ g(XT ) is a quasi-left-
continuous submartingale relative to Q, and this implies that T 
→ P(T )t is nonde-
creasing and continuous for T ≥ t . Observe that this property holds Q-almost surely,
hence P-almost surely as well because P and Q are equivalent.

We wish to emphasize that, for example in the case of European call options, the
usual theory calls for P(T )t = EQ� ((XT − K)+ | F t ) for some risk-neutral mea-
sure Q

�. We do not make this assumption here. Indeed, the previous paragraph is
simply motivation for us to assume a priori that T 
→ P(T )t is nondecreasing and
continuous. This seems completely reasonable from the viewpoint of practice, where
(in the absence of dividends or interest rate changes and anomalies) it is always ob-
served that T 
→ P(T )t is nondecreasing. In the language of practitioners, if it were
not, it would imply a “negative pricing of the calendar”, which makes no economic
sense [22]. Nevertheless we warn the reader that there are pathological examples
where this assumption does not hold. For example, if X is the reciprocal of a three-
dimensional Bessel process starting at X0 = 1, then X is a local martingale for its
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natural filtration, but T 
→ P(T )0 is not increasing, since P(0)0 = 0, P(T )0 > 0 for
T ∈ (0,∞), but limT →∞ P(T )0 = 0, hence T 
→ P(T )0 cannot be increasing for
T ≥ 0. Thus our assumption T 
→ P(T )t is increasing in T rules out the possibility
of the market being governed by such prices processes. (Note that the assumption
that T 
→ P(T )t is increasing in T is not essential and could be replaced simply with
T 
→ P(T )t is absolutely continuous as a function of T , provided that one makes the
appropriate mathematics changes in the proofs.)

So one can consider the latter property as embedded into the fact that the P(T )t
are option prices. We slightly strengthen this property by assuming that T 
→ P(T )t
is absolutely continuous on (t,∞); we shall check that this assumption is satisfied by
the Black–Scholes and many other usual models. An equivalent way of expressing
these properties is to write

P(T )t = g(Xt ) +
∫ T

t

f (t, s) ds, t ≤ T , (2.3)

where the f (t, s) for t < s are random nonnegative and F t -measurable variables,
whose dynamics we now need to specify. (We remark that this is reminiscent of one
of the “Greeks”, namely theta, which measures the rate of change in the option’s value
with respect to time to expiration, namely T − t . Usually, however, it is implicit that T

is fixed and that t is changing; here of course we are taking t fixed with T changing.)
A priori P(T )t is not defined for t > T , but it is convenient to set P(T )t = g(XT )

for t > T (recall that P(T )T = g(XT )). So in fact each process P(T ) is well defined
over the whole positive line, and our extension of course does not alter the putative
martingale property of P(T ); moreover since T 
→ P(T )t is constant on [0, t), we
should have f (t, s) = 0 for s < t .

Now we have to specify the dynamics of the processes (f (t, s),0 ≤ t < s). Note
that in (2.3), for any (ω, t), the function s 
→ f (ω, t, s) (for s > t) is a priori defined
up to a Lebesgue-nullset only, since it is a density, and the nullset may depend on
(ω, t). However it is convenient to assume that f (t, s) is well defined for all t < s. In
the continuous case the dynamics is given by

f (t, s) = f (0, s) +
∫ t

0
α(u, s) du +

∑

i∈I

∫ t

0
γ i(u, s) dWi

u, (2.4)

and in the general case it is

f (t, s) = f (0, s) +
∫ t

0
α(u, s) du +

∑

i∈I

∫ t

0
γ i(u, s) dWi

u

+ (
φ(., s)1{|φ(.,s)|≤1}

) ∗ (μ − ν)t + (
φ(., s)1{|φ(.,s)|>1}

) ∗ μt . (2.5)

The coefficients α(ω,u, s), γ i(ω,u, s), and φ(ω,u, x, s) and the starting points
f (0, s) determine our option price model. The precise assumptions, which amount to
nonnegativity and finiteness conditions, are given below.
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Definition 2.1 A full option model associated with (X,g) is a family of processes
(P (T ) : T > 0) given by (2.3), where for each s, the process (f (t, s) : 0 ≤ t < s) has
the form (2.5), and where

(1) f (0, s) is a nonrandom nonnegative initial condition, measurable and locally in-
tegrable in s.

(2) α(ω,u, s) and γ i(ω,u, s), respectively φ(ω,u, x, s), are measurable with re-
spect to P ⊗ R+, respectively P ⊗ R ⊗ R+.

(3) α, γ i , and φ are such that the integrals in (2.5) make sense for all t < s, and
(ω, t, s) 
→ f (t, s)(ω)1{t<s} is O ⊗ R+-measurable.

(4) We have f (t, s) ≥ 0 for all t < s.
(5) We have

∫ T

t
f (t, s) ds < ∞ a.s. for all t ≤ T .

An important role will be played by the processes

χ(s)t =
∫ t

0

(
∣
∣α(u, s)

∣
∣ +

∑

i∈I

∣
∣γ i(u, s)

∣
∣2 +

∫
(
φ(u, x, s)2 ∧ 1

)
F(dx)

)

du. (2.6)

Under (2) above, (3) is equivalent to saying that χ(s)t < ∞ a.s. for all t < s.
Analogously to the stock model, one can modify α, γ i , or φ on a P̂-nullset without

changing the option prices P(T )t .
The above specification is necessary and sufficient for the P(T )t to be well de-

fined, but it is not quite enough if we want to exchange the stochastic integrals in
(2.5) and the ordinary integral in (2.3) in order to exhibit the dynamics of P(T ) it-
self. Note also that while we assume χ(T )t < ∞ for t < T , we do not suppose that
χ(T )T < ∞. Therefore f (T ,T ) might be not well defined, and this is indeed the
case for the Black–Scholes model with payoff function g(x) = (x − K)+. Neverthe-
less when f (T ,T ) exists (as it does for some models), the models are much simpler
to deal with. This leads us to consider more special models.

Definition 2.2 A full option model associated with (X,g) is said to be

(1) Regular if for almost all s, we have χ(s)s < ∞ a.s. (this implies that f (s, s) is
well defined);

(2) Fair if for all T , we have
∫ T

t
χ(s)t ds < ∞ a.s.

(3) Strongly regular if for all T ∈ R+, we have
∫ T

0 χ(s)s ds < ∞ a.s.

Note that strongly regular implies regular and fair, because t 
→ χ(s)t is increasing
(but s 
→ χ(s)t is usually not increasing).

Now we turn to partial models, where trading takes place up to time T� and expi-
ration dates are all T ≥ T0, with T0 > T�. In this case we have only to model P(T )

for T ≥ T0 and t < T0, and of course (2.3) gives us

P(T )t = P(T0)t +
∫ T

T0

f (t, s) ds (2.7)
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Then if we know the dynamics of P(T0), the model will be fully specified by the dy-
namics of t 
→ f (t, s) for s > T0, whereas we need only to characterize the dynamics
of all processes up to time T�. This leads us to the following definition.

Definition 2.3 A (T�, T0) partial option model associated with (X,g) is a family of
processes (P (T ) : T ≥ T0) with time interval [0, T�] given by (2.7), where

(a) For each s > T0, the process (f (t, s) : t ≤ T�) has the form (2.5), and all require-
ments of Definition 2.1 are satisfied for t ≤ T� and s > T0.

(b) The process P(T0) is given for t ≤ T� by

P(T0)t = P(T0)0 +
∫ t

0
αs ds +

∑

i∈I

∫ t

0
γ i

s dWi
s (2.8)

in the continuous case, and in the general case by

P(T0)t = P(T0)0 +
∫ t

0
αs ds +

∑

i∈I

∫ t

0
γ i

s dWi
s + (

φ1{|φ|≤1}
) ∗ (μ − ν)t

+ (
φ1{|φ|>1}

) ∗ μt , (2.9)

where the above coefficients are predictable and satisfy

∫ T�

0

(

|αt | +
∑

i∈I

|γ i
t |2 +

∫
(φ(t, x)2 ∧ 1)F (dx)

)

dt < ∞

a.s., and further the (nonrandom) initial condition P(T0)0 and these coefficients
are such that we have identically

t ∈ [0, T�] �⇒ P(T0)t ≥ g(Xt ). (2.10)

Finally the model is fair if we have
∫ T

T0
χ(s)T� ds < ∞ a.s. for all T > T0.

Note that here the notions of regular or strongly regular models are irrelevant.

(3) Equivalent (local) martingale measures The definition of equivalent martingale
measures is standard, but we need first to specify a number of points.

Here we diverge a bit from the standard theory of Delbaen and Schachermayer
(see [9, 10]), where it is proved that the condition “No Free Lunch with Vanishing
Risk” (known as NFLVR) is equivalent to the existence of an equivalent probability
measure making the price process a local martingale in the continuous case. Instead,
we consider locally equivalent probability measures; two probability laws Q and P

are said to be locally equivalent if they are equivalent on each σ -field F t , t < ∞.
A canonical example of two processes which give rise to locally equivalent proba-
bilities, but not equivalent ones, are W = (Wt)0≤t<∞ and Z, where Zt = Wt + αt ,
0 ≤ t < ∞ and α �= 0, for a standard Wiener process W .
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For a full model, we then call Mar , respectively Mar loc, the set of all probability
measures Q on (Ω, F ) which are locally equivalent to P, and under which X and
P(T ) for all T ∈ T are martingales, respectively local martingales.

Similarly, for a (T�, T0)-partial model, we call Mar(T�, T0) and Mar loc(T�, T0)

the sets of all probability measures Q on (Ω, F T�) which are equivalent to P on
F T� and under which X and P(T ) for all T ≥ T0 are martingales, respectively local
martingales, over the time interval [0, T�].

According to the folklore of the subject, no-arbitrage means that the set Mar

is not empty, and completeness means that it is a singleton. This of course comes
from (local) martingale representation theory. From a mathematical point of view,

Mar loc is much easier to deal with, and justified from the standpoint of the theory
of Delbaen and Schachermayer ([9, 10]). We note that Delbaen and Schachermayer
show that one can in general have only an equivalent sigma-martingale measure in the
general case (i.e., not necessarily continuous) for the price process. However a sigma-
martingale which is bounded below is a local martingale (see, e.g., [18] or [24]),
and we are assuming nonnegativity of our risky asset price process, which of course
is appropriate when modeling stock prices. So we do not need to consider sigma-
martingales here.

We note in passing that the really meaningful sets would be the above sets of
measures with the original filtration (F t ) replaced by the filtration (G t ) generated by
the processes X and the P(T ) for T ∈ T . But this is much more difficult to analyze
when the inclusion G t ⊂ F t is strict. It is often the case that the two filtrations agree,
although it is of course easy to exhibit “counterexamples.” We do not pursue this
issue in this paper.

Throughout X is fixed, and of course the question of whether Mar loc, resp. Mar ,
is empty or not is irrelevant if we do not have (M), resp. (M′), below:

Hypothesis (M) There exists at least one locally equivalent probability measure un-
der which X is a local martingale.

Hypothesis (M′) There exists at least one locally equivalent probability measure
under which X is a martingale.

(4) The Black–Scholes model Here we check that option models as defined above
encompass at least the Black–Scholes model, for which the price of options is com-
pletely determined by the stock price model. Other examples are provided later. We
have a single Brownian motion W 1 = W and no Poisson measure (μ = 0). We sup-
pose that P is the risk-neutral measure, so that

Xt = X0 +
∫ t

0
σXs dWs. (2.11)

Under the traditional setting, the price of a European option with payoff function g

having polynomial growth and maturity T , at time t ≤ T , is P(T , t) = C(Xt , T − t),
where

C(x, t) = E
(
g
(
xeσU

√
t−σ 2t/2)), (2.12)
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and U is N (0,1). One knows that C is C∞ on (0,∞)×(0,∞) and that (with obvious
notation for the partial derivatives)

C′
t (x, t) = 1

2t

∫
h(u)g

(
xeσu

√
t−σ 2t/2)(u2 − 1 − uσ

√
t
)
du,

where h denotes the density function of the standard normal distribution. If g is C2,

then C is C1 on (0,∞) × [0,∞) and C′
t (x,0) = σ 2

2 x2g′′(x), which is the value
Lg(x) with L the generator of X, at it should be. When g is convex but not C2, one
deduces from (2.12) that C(x, t) − g(x) = O(

√
t) as t → 0, and for the particular

case g(x) = (x − K)+, a simple computation shows that

√
tC′

t (x, t) → σ

2
√

2π
1{x=K}.

More generally, C′
t (x,0) exists if g is twice continuously differentiable at x, and not

if g is not twice differentiable at x.
From this discussion, it follows that (2.3) holds with

f (t, T ) = C′
t (Xt , T − t),

and by Itô’s formula we have (2.5) for t < T , with

f (0, T ) = C′
t (X0, T ),

α(s, T ) = −C′′
t t (Xs, T − s) + 1

2 C′′′
txx(Xs, T − s)σ 2X2

s ,

γ (s, T ) = C′′
tx(Xs, T − s)σXs.

⎫
⎪⎬

⎪⎭
(2.13)

Therefore the prices P(T ) follow a full option model associated with (X,g), which
is always fair. It is strongly regular if g is C2, but it is not even regular if g is not
twice differentiable.

3 A characterization of equivalent local martingale measures

In this section we aim to give a sort of “technical” characterization of equivalent
local martingale measures. We start by showing that all processes P(T ) are of the
type (2.7) and more specifically of the type (2.9) for suitable coefficients, and under
the right assumptions. Let us first introduce the notation

σ̃ i
t = σ i

t g
′(Xt−),

ψ̃(t, x) = g(Xt− + ψ(t, x)) − g(Xt−),

ψ(t, x) = ψ̃(t, x) − g′(Xt−)ψ(t, x),

ãt = atg
′(Xt−) + 1

2 g′′(Xt−)
∑

i∈I (σ
i
t )

2 + ∫
F(dx)ψ(t, x)1{|ψ(t,x)|≤1}.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.1)
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Lemma 3.1 For a strongly regular full model and if g is C2, we have, for t ≤ T ,

P(T )t = P(T )0 +
∫ t

0
A(u,T )du +

∑

i∈I

∫ t

0
Γ i(u,T )dWi

u

+ Φ(., T ) ∗ (μ − ν)t + Φ ′(., T ) ∗ μt , (3.2)

where the coefficients above are, for u ≤ T ,

A(u,T ) = −f (u,u) + ãu + ∫ T

u
α(u, s) ds,

Γ i(u,T ) = σ̃ i
u + ∫ T

u
γ i(u, s) ds,

Φ(u, x,T ) = ψ̃(u, x)1{|ψ(u,x)|≤1} + ∫ T

u
(φ(u, x, s)1{|φ(u,x,s)|≤1}) ds,

Φ ′(u, x,T ) = ψ̃(u, x)1{|ψ(u,x)|>1} + ∫ T

u
(φ(u, x, s)1{|φ(u,x,s)|>1}) ds.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.3)

Although it is not immediately apparent from the sight of (3.2), taking t = T in
this formula yields P(T )T = g(XT ); this happens because of the presence of the
term f (u,u) in the drift A(u,T ), plus the presence of ã, σ̃ i , and ψ̃ in the four terms
of (3.3). Writing (3.2) implicitly means that all terms in it are meaningful, which
amounts to saying that a.s.,

∫ T

0

(
∣
∣A(u,T )

∣
∣ +

∑

i∈I

∣
∣Γ i(u,T )

∣
∣2 +

∫
(
Φ(u,x,T )2 + 1{Φ ′(u,x,T ) �=0}

)
F(dx)

)

du

< ∞. (3.4)

Proof By hypothesis
∫ T

0 f (0, s) ds < ∞, and also
∫ T

0 χ(s)s ds < ∞ a.s., hence for
all s outside a Lebesgue-nullset N , the process f (t ∧ s, s) is a semimartingale over
R+. So a simple transformation of (2.3) gives

P(T )t = P(T )0 + g(Xt ) − g(X0) −
∫ t

0
f (s, s) ds +

∫ T

0

(
f (t ∧ s, s) − f (0, s)

)
ds

(3.5)
if t ≤ T , provided that the last integral above makes sense, in which case the first
one will also be finite (recall f ≥ 0). Now each semimartingale f (t ∧ s, s) − f (0, s)

is “controlled” by the process χ(s), so
∫ T

0 χ(s)s ds < ∞ is exactly what we need
to apply Fubini’s theorem for ordinary (for the drift) and stochastic integrals. This
means that the last integral in (3.5) is well defined and equal to

∫ t

0
A(u,T )du +

∑

i∈I

∫ t

0
Γ

i
(u,T )dWi

s + Φ(., T ) ∗ (μ − ν)t + Φ
′
(., T ) ∗ μt ,

where

A(u,T ) =
∫ T

u

α(u, s) ds, Φ(u, x,T ) =
∫ T

u

(
φ(u, x, s)1{|φ(u,x,s)|≤1}

)
ds,

Γ
i
(u,T ) =

∫ T

u

γ i(u, s) ds, Φ
′
(u, x,T ) =

∫ T

u

(
φ(u, x, s)1{|φ(u,x,s)|>1}

)
ds.
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On the other hand, Itô’s formula yields

g(Xt ) = g(X0) +
∫ t

0
ãu du +

∑

i∈I

∫ t

0
σ̃ i

s dWi
s

+ (
ψ̃1{|ψ |≤1}

) ∗ (μ − ν)t + (
ψ̃1{|ψ |>1}

) ∗ μt . (3.6)

Putting all these facts together readily gives us the result. �

Now for partial models, P(T0) is given by (2.9), so we really only need to write
in a form like (3.2) the differences Q(T ) = P(T ) − P(T0) for T ≥ T0, which is

Q(T )t = Q(T )0 +
∫ T

T0

(
f (t, s) − f (0, s)

)
ds.

Then as soon as
∫ T�

0 χ(s)T� ds is a.s. finite (recall that here t ≤ T�), we can apply
Fubini’s theorem as in the previous proof, and we readily get the following lemma;
note that unlike in the previous lemma, we make no regularity assumption on g.

Lemma 3.2 For a fair (T�, T0) partial model, we have, for t ≤ T� and T ≥ T0,

Q(T )t = Q(T )0 +
∫ t

0
A(u,T )du +

∑

i∈I

∫ t

0
Γ

i
(u,T )dWi

u

+ Φ(., T ) ∗ (μ − ν)t + Φ
′
(., T ) ∗ μt ,

where the coefficients above are, for u ≤ T�,

A(u,T ) = ∫ T

T0
α(u, s) ds, Φ(u, x,T ) = ∫ T

T0
(φ(u, x, s)1{|φ(u,x,s)|≤1}) ds,

Γ
i
(u,T ) = ∫ T

T0
γ i(u, s) ds, Φ

′
(u, x,T ) = ∫ T

T0
(φ(u, x, s)1{|φ(u,x,s)|>1}) ds.

⎫
⎬

⎭

Next, we recall how locally equivalent measures can be described. We introduce
the set Υ0 of all families Y = ((bi)i∈I , Y ), where each bi is a predictable process,
and Y is a positive P̃ -measurable function satisfying

D(Y )t :=
∑

i∈I

∫ t

0

(
bi
s

)2
ds +

∫ t

0
ds

∫
(∣∣Y(s, x) − 1

∣
∣2 ∧ ∣

∣Y(s, x) − 1
∣
∣)F(dx) < ∞

(3.7)
for all t . We denote by Υ0,b (the “b” is for bounded) the subset of all Y ∈ Υ0 for which
the random variables D(Y )t are bounded for each t . Two families Y = ((bi)i∈I , Y )

and Y ′ = ((b′i )i∈I , Y
′) in Υ0 are said to be equivalent if

i ∈ I �⇒ bi = b′i
P̂-a.e., Y = Y ′

P̂-a.e. (3.8)

Finally, Υ and Υb are the sets of all equivalence classes (for this equivalence relation)
of Υ0 and Υ0,b respectively. Then Girsanov’s theorem applied to the family (Wi)i∈I

and to μ, with respect to which a martingale representation theorem holds, yields the
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following (see, e.g., [18], Sects. III.3 and III.4; let us emphasize that the “martingale
representation theorem” here is different from the martingale representation with re-
spect to a given process or a family of processes, as needed for complete models; this
is the representation of all martingales as sums of stochastic integrals with respect to
the Wi and the random martingale measure μ − ν).

Lemma 3.3

(a) There is a subset Υeq of Υ which is in one-to-one correspondence with the set of
all probability measures Q on (Ω, F ) which are locally equivalent to P.

(b) If Y = ((bi), Y ) ∈ Υeq and if Y ′ = ((b′i ), Y ′) ∈ Υb is such that Y +Y ′ > 1 identi-
cally, then the family Y ′′ = ((b′′i ), Y ′′), where b′′i = bi +b′i and Y ′′ = Y +Y ′ −1,
also belongs to Υeq. In particular Υeq contains Υb.

(c) If Y = (bi, Y ) ∈ Υeq, then under the associated measure Q the processes
W ′i

t = Wi
t − ∫ t

0 bi
s ds are independent Brownian motions, and the compen-

sator of the random measure μ (no longer a Poisson measure in general) is
ν′(ω, dt, dx) = Y(ω, t, x)ν(ω,dt, dx). Moreover the martingale representation
theorem holds for Q, with respect to the W ′i and μ − ν′.

When the time horizon T� is finite, we are interested in probability measures equiv-
alent to P on F T� only. The restrictions of these measures to F T� are in one-to-one
correspondence with the subset Υ ′

eq(T�) of Υeq consisting of those ((bi), Y ) satisfying

bi
t = 0 and Y(t, x) = 0 identically for t > T�.

We denote by Υloc the set of all Y ∈ Υeq which correspond, via the previous
lemma, to a probability measure in Mar loc. In a similar way, Υ ′

loc(T�, T0) is the
set of all Y ∈ Υ ′

eq(T�) which correspond to a probability measure in Mar loc(T�, T0).

For the next theorem, we recall the notation ψ of (3.1). We also note that one can
modify the coefficients of the model outside a P̂-nullset without affecting the model
itself; so when these coefficients satisfy a property for P̂-almost all (ω, s, T ), we can
thus find “good” versions of these coefficients which satisfy the property identically.
The same holds for the elements Y of Υ .

Therorem 3.4 For a full strongly regular model and if g is C2, the set Υloc is the
set of all ((bi), Y ) ∈ Υeq which, for a good version of the coefficients of the model,
satisfy, for all s > 0,

as +
∑

i∈I

σ i
s b

i
s +

∫
ψ(s, x)

(
Y(s, x) − 1{|ψ(s,x)|≤1}

)
F(dx) = 0, (3.9)

f (s, s) = 1

2
g′′(Xs)

∑

i∈I

(
σ i

s

)2 +
∫

Y(s, x)ψ(s, x)F (dx), (3.10)

and also, for all T ≥ s,

α(s, T ) +
∑

i∈I

γ i(s, T )bi
s +

∫
φ(s, x,T )

(
Y(s, x) − 1{|φ(s,x,T )|≤1}

)
F(dx) = 0.

(3.11)
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Remark 3.5 For any given s, relation (3.11) should hold for all T ≥ s, whereas bi
s

and Y(s, x) do not depend on T ; so (3.11) basically specifies the drift when γ i and φ

are given. This is typical of term structure models and already present in the Heath–
Jarrow–Morton model. On the other hand, relation (3.10) is somewhat surprising,
probably difficult to check and even to interpret, and quite specific to the option
model.

Before proceeding to the proof of Theorem 3.4 we need a lemma.

Lemma 3.6 For a strongly regular full model with g being C2, the set Υloc is the set
of all ((bi), Y ) ∈ Υeq which, for all (ω, s) outside a P̂-nullset, satisfy (3.9) and, for
all T > 0,

A(s,T ) +
∑

i∈I

Γ i(s, T )bi
s

+
∫

(
Φ(s, x,T )

(
Y(s, x) − 1

) + Y(s, x)Φ ′(s, x, T )
)
F(dx) = 0. (3.12)

Proof Let Q be the locally equivalent measure associated with ((bi), Y ) ∈ Υeq. Since
the coefficients A(., T ), Γ i(., T ), Φ(., T ), and Φ ′(., T ) are continuous in T , condi-
tion (3.11) is equivalent to having, for any given T , the property (3.12) for P̂-almost
all (ω, s). Hence we just have to show that X, respectively P(T ), is a Q-local mar-
tingale if and only if we have (3.9), respectively (3.12), for any given T . We prove
only the second property; the first one is similar, and in fact simpler.

With the notation of Lemma 3.1, we have

P(T )t = P(T )0 +
∫ t

0
A(s,T ) ds +

∑

i∈I

∫ t

0
Γ i(s, T ) dW ′i

s

+ Φ(., T ) ∗ (μ − ν′)t + Φ ′(., T ) ∗ μt

+
∑

i∈I

∫ t

0
Γ i(s, T )bi

s ds +
∫ t

0
ds

∫
(
Y(s, x) − 1

)
Φ(s, x,T )F (dx),

where all terms make sense because of (3.4) and (3.7). The third and fourth terms
on the right side above are Q-local martingales, and the second and the last two
terms are continuous with finite variation, with a sum denoted by At . Then for
P(T ) to be a Q-local martingale, it is necessary and sufficient that the process
A′

t = Φ ′(., T ) ∗ ν′
t , which is also

∫ t

0 ds
∫

Y(s, x)Φ ′(s, x, T )F (dx), is well defined
and satisfies At + A′

t = 0 a.s. But this amounts to saying that (3.12) holds P̂-almost
everywhere, and we are finished. �

Proof of Theorem 3.4 We fix a family ((bi), Y ) ∈ Υeq. Denote by Gs , H(s,T ), and
K(s,T ) the left sides (for s < T ) of (3.9), (3.11), and (3.12) respectively, and by Rs

the right side of (3.10). Set

Ms = −f (s, s) + ãs +
∑

i∈I

σ̃ i
s b

i
s +

∫
ψ̃(s, x)

(
Y(s, x) − 1{|ψ(s,x)|≤1}

)
F(dx).
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Some tedious but straightforward calculations based on (2.5) and (3.3) yield

K(s,T ) = Ms +
∫ T

s

H(s, r) dr, (3.13)

Ms = Rs − f (s, s) + g′(Xs−)Gs. (3.14)

Now we let N1 be the set of all (ω, s) such that either Gs(ω) �= 0 or
K(s,T )(ω) �= 0 for some T > s, N ′

1 the set of all (ω, s) such that either Gs(ω) �= 0 or
f (s, s) �= Rs(ω), and N3 the set of all (ω, s, T ) such that H(s,T )(ω) �= 0 and
T ≥ s. In view of Lemma 3.6, it is enough to prove that P̂(N1) = 0 is equivalent to
P̂(N ′

1) = P̂(N3) = 0.
Suppose first P̂(N ′

1) = 0 and P̂(N3) = 0. By Fubini, the set N ′′
1 of all (ω, s) such

that
∫ ∞
s

1N3(ω, s, T ) dT > 0 has P̂(N ′′
1 ) = 0, and (3.13) yields that

K(s,T )(ω) = Ms(ω) for all T ≥ s if (ω, s) ∈ N ′′
1 . Then N1 ⊂ N ′

1 ∪ N ′′
1 , and thus

P̂(N1) = 0.
Second, suppose P̂(N1) = 0. If (ω, s) /∈ N1, (3.13) yields that H(s, r)(ω) = 0

for dr-almost all r ≥ s, and also Ms(ω) = 0. We deduce that P̂(N3) = 0, and also
obviously that P̂(N ′

1) = 0, and upon using our comments about “good versions” for
the coefficients, the proof is finished. �

In exactly the same way, one proves the following theorem.

Therorem 3.7 For a (T�, T0) partial fair model, the set Υ ′
loc(T , T�) is the set of all

((bi), Y ) in Υ ′
eq(T�) which, for a good version of the coefficients of the model, satisfy

(3.9) for s ≤ T� a.s., (3.11) for s ≤ T� and T ≥ T0 a.s., and also, for s ≤ T� a.s.,

αs +
∑

i∈I

γ i
sb

i
s +

∫
φ(s, x)

(
Y(s, x) − 1{|φ(s,x)|≤1}

)
F(dx) = 0. (3.15)

4 Completeness for partial fair models

In this section we consider (T�, T0) partial models. There is no problem for the exis-
tence of such models with no-arbitrage (a nonempty set Mar loc(T�, T0)), or at least
not any more than for a one- or multidimensional stock price model for having no
arbitrage; indeed the model basically amounts to specifying the processes X and
P(T ) for T ≥ T0, with no restrictions except for g(Xt ) ≤ P(T )t ≤ P(T ′)t when
t < T� < T0 ≤ T < T ′.

Therefore we concentrate on the completeness of such (fair) models. Since for us
completeness means that the set Mar loc(T�, T0) is a singleton, this is a relatively
simple matter, at least from a theoretical point of view (see, e.g., [23]).

So we start with a partial fair model. For any (ω, s), we denote by Υ ′(ω, s) the set
of all families ζ = ((βi)i∈I , y) where βi ∈ R, and y is a function on R satisfying the
conditions

∑
i∈I β2

i < ∞,
∫
(y(x)2 ∧ |y(x)|)F (dx) < ∞,

x 
→ ψ(ω, s, x)y(x) and x 
→ φ(ω, s, x)y(x) are F -integrable,

T ≥ T0 �⇒ x 
→ φ(ω, s, x, T )y(x) is F -integrable.

⎫
⎪⎪⎬

⎪⎪⎭
(4.1)
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Therorem 4.1 Consider a (T�, T0) partial fair model such that the set
Mar loc(T�, T0) is not empty. Then this set is a singleton if and only if, for a good
version of the coefficients of the model, we have the following property: The system
of linear equations

∑

i∈I

σ i
s (ω)βi +

∫
ψ(ω, s, x)y(x)F (dx) = 0, (4.2)

∑

i∈I

γ i
s(ω)βi +

∫
φ(ω, s, x)y(x)F (dx) = 0, (4.3)

T ≥ T0 �⇒
∑

i∈I

γ i(s, T )(ω)βi +
∫

φ(ω, s, x, T )y(x)F (dx) = 0, (4.4)

all for s > 0 a.s., where ((βi), y) ∈ Υ ′(ω, s), has the only solution βi = 0 and y = 0
up to an F(dx)-nullset.

Proof Let us first observe that, since

(x + y)2 ∧ |x + y| ≤ 6
(
x2 ∧ |x| + y2 ∧ |y|),

each set Υ ′(ω, s) is clearly a linear space (for the obvious vector operations).
By hypothesis there exists a Q ∈ Mar loc(T�, T0), associated with the family

Y = ((bi), Y ) ∈ Υ ′
eq(T�, T0) in such a way that, provided we choose a good version of

the coefficients and of Y , we have (3.9), (3.15), and (3.11) for all s ≤ T� and T ≥ T0,
and also

∑
i∈I |bi

s |2 < ∞ and
∫
(Y (ω, s, x) − 1)2 ∧ |Y(ω, s, x) − 1|)F (dx) < ∞ for

s ≤ T�. In particular the family ((bi
s(ω),Y (ω, s, .) − 1) belongs to Υ ′(ω, s).

Let us now prove the sufficient condition. If Q
′ is another measure in

Mar loc(T�, T0), associated with the family Y ′ = ((b′i ), Y ′) ∈ Υ ′
eq(T�, T0), then Y ′

has the same properties as above (we can of course choose a good version of the coef-
ficients which works for both Q and Q

′). Then if, for some (ω, s) with s ≤ T�, we set
βi = bi

s(ω) − b′i
s (ω) and y(x) = Y(ω, s, x) − Y ′(ω, s, x), we readily deduce from

(3.9), (3.15), and (3.11), written for Y and for Y ′, that ((βi), y) belongs to Υ ′(ω, s)

and satisfies (4.2), (4.3), and (4.4). Then the condition of the theorem implies that
bi = b′i and Y = Y ′, that is, Q′ = Q, and we have the sufficient condition.

For the converse, suppose that the condition is not satisfied. Using a section the-
orem (or, measurable selection theorem), one can construct predictable processes b′i
and a predictable function Y ′ > 0 on Ω × R+ × R such that

Y + Y ′ > 1,
∑

i∈I

(
b′i
s

)2 +
∫

((
Y ′(s, x) − 1

)2 ∧ ∣
∣Y ′(s, x) − 1

∣
∣
)
F(dx) ≤ 1

and that the family ((β ′i
s (ω)), Y ′(ω, s, .) − 1) belongs to Υ ′(ω, s) and solves (4.2),

(4.3), and (4.4), and also such that the set

A = {
(ω, s) : s ≤ T�, b

′i
s (ω) = 0∀i ∈ I,Y ′(ω, s, .) = 1 F(dx)-a.e.

}
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has a non-̂P-negligible complement Ac in Ω × [0, T�]. Then Y ′ = ((b′i ), Y ′) ∈ Υb ,
and the family Y ′′ = ((b′′i ), Y ′′), where b′i = bi + b′′i and Y ′′ = Y + Y ′ − 1, satisfies
(3.9), (3.15), and (3.11). Hence by Lemma 3.3(b) and Theorem 3.7 there is a measure
Q

′′ associated with Y ′′, and this measure belongs to Mar loc(T�, T0). Moreover since
P̂(Ac) > 0, we deduce that Y and Y ′′ are not equivalent in the sense of (3.8), that is,
Q

′′ �= Q; this proves the necessary condition. �

Remark 4.2 In practice the set T of the expiration dates of all tradable options is
finite. In that case, and still in the “partial” situation studied here, there are evidently
other, and perhaps simpler, ways to pose the problem. Namely, instead of describ-
ing the dynamics of f (t, s), we can as well give directly the dynamics of P(T ) for
each T ∈ T as we did for P(T0) in (2.9), provided we add the compatibility rela-
tionship P(T )t ≤ P(T ′)t if T < T ′ (like we did in (2.10) for P(T0)). In this case the
family (P (T ) : T ∈ T ) behaves like a family of stock prices, especially as far as com-
pleteness is concerned; for example, in the continuous case we have completeness if
and only if there are not more driving Wiener processes than the number of options,
plus 1 (the stock itself), as soon as some nondegeneracy holds. See, in this regard, for
example, the work of Romano and Touzi [27] or Davis [7].

The continuous case As an example, let us consider the continuous case, that is, the
model given by (2.1), (2.4), and (2.8).

In this case, the second terms on the left sides of (4.2), (4.3), and (4.4) vanish, and
the following result is then a trivial consequence of Theorem 4.1. Below, when I is
infinite, we denote by �2(I ) the subspace of R

I of all vectors whose sum of squared
components is finite (so at most a countable number of them are nonzero), and this
space is endowed with the usual �2 topology. The same applies when I is finite, but
then of course �2(I ) = R

I . Note that one can consider (βi)i∈I in (4.1) as an element
of �2(I ), and similarly for (σ i(ω)s)i∈I , (γ i(ω, s, T )i∈I , and (γ i(ω)s)i∈I just above,
at least for a good version.

Therorem 4.3 Suppose that we have the (T�, T0) partial fair model described by
(2.1), (2.4), and (2.8), and also that the set Mar loc(T�, T0) is not empty. Then there
are two alternatives:

(a) Either, for a good version of the coefficients, for all s ≤ T� and ω, the closed
linear subspace of �2(I ) spanned by the vectors (σ i(ω)s)i∈I , (γ i(ω)s)i∈I ,
and (γ i(ω, s, T ))i∈I for T ≥ T0, is equal to �2(I ) itself; in this case the set

Mar loc(T�, T0) is a singleton.
(b) Or this property fails, and the set Mar loc(T�, T0) is infinite.

So in this case it is very simple to obtain models that are complete. Checking that
(a) above holds for a “good” version of the coefficients may be tricky. However in
practice it is quite likely that the coefficients σ i

s , γ i
s , and γ i(s, T ) are taken contin-

uous in s and T ; then they are automatically such a good version, and (a) can be
checked directly.

On the other hand checking that, to begin with, the set Mar loc(T�, T0) is not
empty is quite another matter. This depends primarily on the structure of the vectors
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σs , γ s , and γ (s, T ), considered as elements of �2(I ). When all coefficients (including
the drifts as , αs , and α(s, T )) are continuous in s and T , then as soon as for all
ω and s < T� there is a countable dense subset D(ω, s) of (T0,∞) such that the
vectors σs(ω), γ s(ω), and γ (ω, s, T ) for T ∈ D(ω, s) are linearly independent, then

Mar loc(T�, T0) is not empty (note that this implies that I is infinite). Otherwise this
property may fail; if, for example, γ (s, T )i = 0 for all i and some s < T� and T > T0,
then one should have α(s, T ) = 0 as well if Mar loc(T�, T0) is to be not empty.

The Lévy driven case Here we assume that all our processes are driven by the same
real-valued Lévy process Z, say with square-integrable jumps, and whose charac-
teristics are denoted by (B,C,F ). That is, we replace (2.2), (2.5), and (2.9) by the
equations

Xt = X0 + ∫ t

0 δs dZs,

f (t, T ) = f (0, T ) + ∫ t

0 ρ(u,T )dZu,

P (T0)t = P(T0)0 + ∫ t

0 ηu dZu.

⎫
⎪⎪⎬

⎪⎪⎭
(4.5)

This is a particular case of our general models; indeed, F is the restriction to R\{0}
of the image of Lebesgue measure on R by a Borel function θ , and either I = {1}
and W = W 1 = Zc/

√
C when the unit variance C of the Gaussian part Zc of Z is

positive, or I = ∅ if C = 0, so that

Zt = Bt + √
CWt + θ ∗ (μ − ν)t , (4.6)

where μ = μZ , the jump measure of Z. Then (4.5) amounts to (2.2), (2.5), and (2.9),
with the coefficients

as = δs(B − ∫
{|δsθ(x)|>1} θ(x)F (dx)), σ 1

s = δs

√
C,

α(s, T ) = ρ(s, T )(B − ∫
{|ρ(s,T )θ(x)|>1} θ(x)F (dx)), γ 1(s, T ) = ρ(s, T )

√
C,

αs = ηs(B − ∫
{|ηsθ(x)|>1} θ(x)F (dx)), γ 1

s = ηs

√
C,

ψ(s, x) = δsθ(x),φ(s, x, T ) = ρ(s, T )θ(x), φ(s, x) = ηsθ(x).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.7)
Two popular examples in the literature are geometric Lévy processes and the expo-
nential of a Lévy process. A geometric Lévy process is often expressed in the form

Xt = 1 +
∫ t

0
σXs− dZs +

∫ t

0
μXs− ds (4.8)

with the caveat that the jumps of the Lévy process Z are strictly larger than −1,
so that the price process X remains positive. An exponential Lévy process has the
particularly simple form

Yt = exp (σZt + μt), (4.9)

and in this case there is no a priori restriction on the jumps of Z. Since t is also a
(degenerate) Lévy process, one can show (using Itô’s formula) that X in (4.8) and Y

in (4.9) can both be expressed in the form (4.5). Thus this situation is quite general,
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and analogous considerations show that almost all previously proposed models fall
within this scope. Indeed, if one wants to consider even quite general semimartingale
Markov processes as models of stock prices, using the work of Çinlar and Jacod [5],
up to a change of time and change of space, such models can be represented as solu-
tions of stochastic differential equations driven by Wiener processes and compensated
Poisson random measures, and these too fit into this framework.

We do not examine here the question of whether Mar loc(T�, T0) is empty or not
(both cases are possible) and concentrate on the completeness.

Proposition 4.4 In the Lévy case described above, the set Mar loc(T�, T0) is not a
singleton, unless either C = 0 and the support of F contains one point, or C > 0 and
F = 0.

Proof Equations (4.2)–(4.4) amount to the single equation

√
Cβ1 +

∫
θ(x)y(x)F (dx) = 0. (4.10)

The result is thus obvious. �

Hence, as far as completeness is concerned, we are in a situation similar to what
happens for the stock price only, namely a one-factor driving Lévy process (for the
asset price and option prices all together) does not provide completeness except when
completeness holds already for the asset price by itself.

On the one hand this is natural for a model like (4.5), which is thus probably
irrelevant in practice: If we take any specific equivalent martingale measure for the
asset price, supposed to be given by (4.5), and then compute the option prices under
that particular measure, we do not obtain option prices driven by (4.5), except in the
two special cases above. In fact, the option prices are driven by the Wiener part and
the jump measure of Z, but not by Z itself.

On the other hand this is a noticeable difference with what happens for generaliza-
tions of the Heath–Jarrow–Morton model driven by Lévy processes, see, e.g., [15] or
[16], and despite the fact that the two kinds of models look very similar: For interest
rate models driven by a one-factor Lévy process, we typically have completeness as
soon as bonds with all maturities are tradable.

An example of a complete model in the discontinuous case The reason complete-
ness fails in the previous example is the way the coefficient φ in (4.7) factors. In
contrast, completeness does not fail for the analogous situation for bonds. Indeed,
this is because, in the case for bond models, (2.3) is replaced by an equation where
the (random) interest rate enters, implying that even when the processes f (., s) are all
driven by the same Lévy process Z, the prices P(T ) (prices of bonds) are not driven
by Z, but rather by its jump measure which is a Poisson measure.

Having this in mind, it is simple enough to produce an example where complete-
ness holds, in the discontinuous case, even though the stock price is driven by a Lévy
process. So let Z be as in (4.6), with say C = 0 (we are in the “purely discontinuous
case”). The stock price X and the option price P(T0) are still driven by Z, that is, by
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(4.5), and the associated coefficients a, ψ , α, and φ are still given by (4.7), whereas
σ = 0 and γ = 0 because no Wiener process is present. What differs is the dynamics
for the f (t, s): In (2.5) we take γ = 0 (again, there is no Wiener process) and φ as

φ(ω, s, x, T ) = Φs(ω)g(x,T − s)

for some predictable process Φ which does not vanish and some function g on
R × (T0 − T�,∞). We have left α(s, T ) unspecified, since it plays no role as far
as completeness is concerned. But of course it plays a fundamental role as to whether
the set Mar loc(T�, T0) is empty or not, see Theorem 3.7 above.

Proposition 4.5 For the model described above, and if the set Mar loc(T�, T0) is not
empty, then it is a singleton as soon as the family of functions (x 
→ g(x, t) : t > 0) is
“measure-determining” in the sense that any two measures G(dx) = y(x)F (dx) and
G′(dx) = y′(x)F (dx) on R, with y ≥ 0 and y′ ≥ 0 satisfying the second property in
(4.1), and having

∫
g(x, t)G(dx) = ∫

g(t, x)G′(dx) for all t > 0, coincide.

Proof In our case, (4.2)–(4.4) amount to
∫

θ(x)y(x)F (dx) = 0,

Φs

∫
g(x,T − s)y(x)F (dx) = 0 ∀T > T0.

}

Then again the result is obvious, since Φs �= 0. �

An example of a function g satisfying the above requirement is g(x, t) = e−th(x),
where h is a bijection from R into (0,∞) such that

∫
e−th(x)F (dx) < ∞ for all

t > 0. If we further assume that F belongs to a given parametric family of measures
and that Φ belongs to a parametric family of processes, then one could attempt to do
calibration on empirical data.

What this shows is the intuitively appealing observation that if we have enough
information obtained from contingent claims, which in some sense spans the hid-
den noise leading to the original incompleteness, then we can in fact “complete” the
market with this extra information.

5 Full regular models: existence and completeness

Now we consider full models. A full model describes in particular what happens
when time increases and reaches the expiration times T ∈ T , and thus some com-
patibility between the stock price and the option model is required, in addition to
P(T )t ≥ g(Xt ). This property strongly restricts the class of possible option models
associated with (X,g), if we want them to be arbitrage-free, and the question of their
existence is naturally posed (from the Black–Scholes example seen above we know
that there are some . . .).

The main results in that direction are the following two theorems. For their state-
ment, we need to recall the Itô–Meyer–Tanaka formula

g(Xt ) = g(X0) +
∫ t

0
hs ds + Mt + Nt + Lt , (5.1)



306 J. Jacod, P. Protter

where M is a local martingale, and in fact the sum of stochastic integrals with respect
to the Wi and μ− ν, h is locally integrable, N is an integral with respect to μ having
locally finitely many jumps, and L is an increasing continuous adapted process such
that the measure dLt is singular with respect to Lebesgue measure (a local time).
When g is C2, we have L = 0, but otherwise L typically does not vanish (the fact
that L does not vanish depends in a rather complicated way on how the continuous
martingale part of X behaves when X reaches the points where g is not twice differ-
entiable).

Therorem 5.1

(a) If the process L in (5.1) does not vanish a.s. (hence g is not twice differentiable),
for any full strongly regular option model associated with (X,g), the set Mar loc
is empty.

(b) If g is of class C2 and if (M) holds, there exists at least a sequence of stopping
times Sn increasing to ∞ and for each n a full regular option model associated
with (XSn, g) such that Mar loc is not empty (here XSn is the stopped process
X

Sn
t = XSn∧t ).

(c) If g is of class C2 with at most linear growth and if (M’) holds, there exists at
least a full regular option model associated with (X,g) such that Mar loc is not
empty.

Remark 5.2 Theorem 5.1 shows that one cannot have models such as we propose for
classic European options, since the function g(x) = (x − K)+ is not C2 on (0,∞).
This essentially implies that if our models are correct, then classic financial deriva-
tives such as European calls create arbitrage opportunities, since there cannot be a
risk-neutral measure for which all prices are compatible. At first blush this is horri-
fying, but some reflection leads one to reconsider the concept of NFLVR, where the
“vanishing risk” occurs as one passes to the limiting case. If one were to approximate
g with C2 functions gn, then there could exist compatible pricing measures Qn for
each gn, and these measures would vary continuously with gn (see [26]). This would
correspond to practice, where the difference in a practical economic sense between
g(x) = (x − K)+ and a close approximation of g is essentially negligible. In other
words, the arbitrage opportunity only exists in the limit, and thus in reality cannot be
used in practice to economic advantage.

Nevertheless, this is unsatisfying, since any reasonable model should be able to
handle a function of the form g(x) = (x − K)+ and not only C2 approximations
of it. This shows that our approach of constructing a type of term structure model is
theoretically unsatisfying, although for practical purposes, it is essentially the same as
if functions such as g(x) = (x −K)+ were included exactly as they are. We note that
the (less general) models of [3, 6, 29], and [31] do not have this shortcoming, although
they of course have their own limitations. Basically, this shortcoming is due to the
NFLVR condition (and the NFL condition before it) being justified primarily by its
equivalence to the existence of an equivalent sigma-martingale probability measure,
and not due to its inherent nature as a lack of arbitrage in any practical sense. In other
words, the arbitrage which would be present in our model if we included functions
such as g(x) = (x − K)+ is an arbitrage obtainable only “in the limit,” and to exploit
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it one would essentially need to be able to use a strategy which exploits a process
of the nature of a local time, an essentially impossible task in practice (see in this
regard [19], for example).

Remark 5.3 In the continuous case for the stock price, that is, (2.1), the process L

associated by (5.1) is always nonvanishing when g is not twice differentiable, and
thus there is no arbitrage-free option model associated with (X,g) which is strongly
regular. This is due to the fact that L has paths which are singular with respect to
Lebesgue measure and thus creates an arbitrage opportunity, which has been observed
long ago (see, for example, the book of Karatzas and Shreve [21, p. 329], where it is
a consequence of Theorem B.2, or alternatively the recent detailed treatment in [25]).
One may perhaps find nonregular arbitrage-free option models; see, for example, [29]
for results in this direction in a different but related (continuous) context.

Therorem 5.4 Assume that g is of class C2. A locally equivalent measure Q cannot
be in the sets Mar loc corresponding to two different full strongly regular option
models associated with (X,g).

Remark 5.5 This result is in deep contrast with what happens for bond models à
la Heath–Jarrow–Morton and also for the usual stock prices models. In the latter
case, for instance, if we have two stock prices X and Y under, say, some risk-
neutral measure, the volatility of X obviously does not determine the volatility of Y ;
here, however, if P is a risk-neutral measure and in the continuous case, say (that is
μ = ν = 0), knowing the volatility of X (that is, the σ i ) determines the volatility of
the P(T ) (that is, the γ i(., T )).

Remark 5.6 This result does not mean that there is a single arbitrage-free strongly
regular option model associated with (X,g). There might be several, and even infi-
nitely many, each one corresponding to a different equivalent local martingale mea-
sure, as we shall see in the stochastic volatility example provided at the end of the
paper. Rather it shows that these ideas are well defined.

Remark 5.7 However, for the Black–Scholes model (2.11) with W being the only
source of randomness, Mar loc is either empty or is the singleton {P} because P is
the only measure under which X is a (local) martingale. Then Theorem 5.4 yields
that there is at most a full strongly regular which is arbitrage-free, and of course there
is one, exhibited in (2.13). In view of the PDE satisfied by the function C, it is clear
from (2.13) that the conditions of Theorem 3.4 are satisfied with b = bi = 0. More
generally, if we start with a stock model which by itself is already complete, then
the associated full strongly regular model which is arbitrage-free is unique; in other
words, the theory developed in this paper is useless in that case, as we know from the
start since the stock model is enough for hedging any claim!

Proof of Theorems 5.1 and 5.4 (a) Suppose that we have a full strongly regular model
and that g is such that the process L in (5.1) is not almost surely zero. Then (3.5)
holds. If we try to derive (3.2), we get the same formula, for possibly different coef-
ficients A, Γ i , and Ψ , plus the extra summand Lt .
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Now, by Girsanov’s theorem, under any locally equivalent measure Q, the process
P(T ) is the sum of stochastic integrals with respect to W ′i and μ − ν′ (notation of
Lemma 3.3), plus an absolutely continuous drift which may possibly be set to 0 by
the right change of measure, plus the continuous increasing process L which, being
singular with respect to Lebesgue measure, is always here. Then P(T ) cannot be a
local martingale under any locally equivalent measure.

(b) We assume that g is C2 and that (M) holds. Consider ((bi), Y ) ∈ Υeq associated
with a measure Q under which X is a local martingale. This amounts to assuming
(3.9) for a good version of a, σ i , and ψ , and under Q, the local martingale X can be
written as

Xt = X0 +
∑

i∈I

∫ t

0
σ i

s dW ′i
s + ψ � (μ − ν′)t .

Then Itô’s formula yields that, under Q,

g(Xt ) = g(X0) +
∫ t

0
Rs ds +

∑

i∈I

∫ t

0
σ̃ i

s dW ′i
s + ψ̃ � (μ − ν′)t , (5.2)

where

Rs = 1

2
g′′(Xs)

∑

i∈I

(
σ i

s

)2 +
∫

F(dx)Y (s, x)ψ(s, x),

which has Rs ≥ 0 because g is convex. In particular
∫ t

0 Rs ds < ∞ a.s. for all t .
Then we choose the increasing sequence of stopping times Sn such that, for example,∫ Sn

0 Rs ds ≤ n. We shall prove the existence of a full regular option model associated
with (XSn, g), which is arbitrage-free for each fixed n.

Replace as and ψ(s, x) by as1{s≤Sn} and ψ(s, x)1{s≤Sn}; this does not affect (3.9),
and it implies that X is replaced by XSn and Rs by Rs1{s≤Sn}. Therefore it is in
fact enough to prove the existence of an arbitrage-free option model associated with
(X,g), under the additional assumption that

∫ t

0
EQ(Rs) ds < ∞ ∀t. (5.3)

Under (5.3) it is also possible to set the coefficients a and ψ to be 0 at any time s

such that EQ(|Rs |1{s≤Sn}) = ∞ without altering the model. Therefore we can also
suppose that Rs is Q-integrable for all s.

The process U(s)t = EQ(Rs |F t ) is a Q-martingale. Using the notation of
Lemma 3.3(b) and the representation theorem for Q-martingales, we obtain

U(s)t = u(s) +
∑

i∈I

∫ t

0
γ i(u, s) dWi

u + φ(., s) ∗ (μ − ν′)t , (5.4)

with u(s) = EQ(Rs) and some predictable processes γ i(., s) and P̃ -measurable
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φ(., s), which are determined, uniquely up to P̂-nullsets, by the properties

[
U(s),W ′i]

t
=

∫ t

0
γ i(u, s) du, φ(., s) = M

(
�U(s) | P̃

)
, (5.5)

where �U(s)t (ω, x) = U(s)t (ω) − U(s)t−(ω), and M denotes the positive
P̃ -σ -finite measure on (Ω × R+ × R, F ⊗ R+ ⊗ R) given by
M(dω,dt, dx) = Q(dω)μ(ω,dt, dx). Since (ω, s) 
→ Rs(ω) is F ⊗ R+-measurable,
there is a version of U(s)t (ω) which is F ⊗ R+ ⊗ R+-measurable in (ω, t, s). Hence
by (5.5) we can find a version for γ i and φ which has the properties (2) of Defini-
tion 2.1, and such that γ i(u, s) = φ(u, x, s) = 0 if u > s because U(s)t = U(s)s if
t ≥ s. Moreover, since the right side of (5.4) makes sense, for all t and s, we have
P-almost surely

C(s)t :=
∫ t

0

(
∑

i∈I

∣
∣γ i(u, s)

∣
∣2 +

∫
(
Y(u, s)

(
φ(u, x, s)2 ∧ ∣

∣φ(u, x, s)
∣
∣))F(dx)

)

du

< ∞.

Then we use the elementary estimates

φ2 ∧ 1 ≤ 2Y
(
φ2 ∧ |φ|) + 4

(
(Y − 1)2 ∧ |Y − 1|),

∣
∣φ(Y − 1{|φ|≤1})

∣
∣ ≤ Y

(
φ2 ∧ |φ|) + (

(Y − 1)2 ∧ |Y − 1|)

+
√(

φ2 ∧ 1
)(

(Y − 1)2 ∧ |Y − 1|)

plus Cauchy–Schwarz to get, with Dt denoting the (finite) left side of (3.7),

∫ t

0

(
∑

i∈I

∣
∣γ i(u,T )

∣
∣2 +

∫
(
φ(u, x,T )2 ∧ 1

)
F(dx)

)

du ≤ 2C(T )t + 4Dt, (5.6)

∫ t

0

(
∑

i∈I

∣
∣γ i(u,T )bi

u

∣
∣ +

∫ ∣
∣φ(u, x,T )

(
Y(u, x) − 1{|φ(u,x,T )|≤1}

)∣
∣F(dx)

)

du

≤
√

C(T )t
(
2C(T )t + 4Dt

) + C(T )t + Dt . (5.7)

Equation (5.7) allows to define the coefficient α in such a way that (3.11) holds
P̂-a.e., and this coefficient satisfies the same measurability property as the γ i , and
by using also (5.6) we get that the processes χ(T ) of (2.6) are finite-valued.

At this stage we set f (t, s) = U(s)t , and we define P(T )t by (2.3), so in particular
f (0, s) = u(s). Since Rs ≥ 0 and (5.3) holds, we clearly have the properties (1), (4),
(5) of Definition 2.1, and (2) and (3) were proved above. It remains to show that f is
given by (2.5) and that P(T ) is a Q-local martingale for all T ; we then have an option
model associated with (X,g) which will necessarily be regular because χ(T )T < ∞,
as seen above, and for which Q ∈ Mar loc.
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That (2.5) holds follows from a simple calculation based on (5.4) and
f (0, s) = u(s) and on the form of α and the fact that W ′i

t = Wi
t − ∫ t

0 bi
s ds and

ν′ = Y · ν. For the local martingale property, one could think that, since (3.10) holds
by construction of f (we have f (s, s) = Rs ), it follows from Theorem 3.4. This is
not correct, because we do not know that the model is strongly regular (although we
suspect it is!). However, we can use (3.6) and perform a calculation similar to the one
for getting (3.14), plus use the fact that (3.9) holds, to obtain (5.2). Therefore P(T )t
is the sum of a Q-local martingale, plus the process

∫ t

0

(
Rs − f (s, s)

)
ds +

∫ T

0

(
f (t, s) − f (0, s)

)
ds = EQ

(∫ T

0
Rs ds

∣
∣
∣
∣ F t

)

−
∫ T

0
EQ(Rs) ds,

because f (t, s) = f (s, s) = Rs if t ≥ s. Due to (5.3), this is a Q-martingale, and the
proof of (b) of Theorem 5.1 is finished.

(c) For (c) of Theorem 5.1, we can reproduce the proof of (b), choosing for Q a
measure under which X is a martingale, hence g(X) is a submartingale. Recall that
(3.6) under Q gives

g(Xt ) = g(X0) +
∫ t

0
Rs ds + Mt

for a Q-local martingale M , and Rs ≥ 0. This gives the Doob–Meyer decomposition
of the Q-submartingale g(X). Since X is a Q-martingale, it is locally of class (D) (for
Q) and, since g is of linear growth here, the process g(X) is also locally of class (D).
It follows that the increasing process in the Doob–Meyer decomposition is integrable
for each time t , that is, we have (5.3) without any stopping at the times Sn as before.
The result follows from the end of the proof of (b).

(d) It remains to prove Theorem 5.4. We fix the stock model (2.2). Suppose that
we have a locally equivalent measure Q which is a local martingale measure for our
stock model and for two distinct full strongly regular option models associated with
(X,g), with g of class C2; one is the model (2.3)–(2.5), the other one is similar with
initial data f ′(0, T ) and coefficients α′, γ ′i , and φ′.

The measure Q is associated with ((bi), Y ) ∈ Υloc. The left side of (3.10) can be
written (with the notation of Lemma 3.3 again) as

f (0, s) +
∑

i∈I

∫ t

0
γ i(u, s) dW ′i

u + φ(., s) ∗ (μ − ν′)s,

and we have a similar expression if we use the second option model, whereas the
right side of (3.10) depends on X and Y (hence on Q), but not on the option model.
Therefore if f ′′ = f − f ′ and γ ′′i = γ i − γ ′i and φ′′ = φ − φ′, we deduce that for
all (ω, s), s ≥ 0, outside a P̂-nullset,

f ′′(0, s) +
∑

i∈I

∫ t

0
γ ′′i (u, s) dW ′i

s + φ′′(., s) ∗ (μ − ν′)s = 0. (5.8)
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Now, as said before, any Q-integrable martingale can be written as the sum of a con-
stant plus stochastic integrals with respect to the W ′i and μ − ν′, this decomposition
is unique, and the integrands are unique as well up to nullsets. Applying this to the
“variable” 0, we deduce from (5.8) that f (0, s) = f ′(0, s) for almost all s, γ i = γ ′i
for P̂-almost all (ω,u, s), and φ = φ′ for P̂-almost all (ω,u, x, s). If we finally ap-
ply (3.11) for the two option models and use the previous result, we obtain also that
α = α′ for P̂-almost all (ω,u, s). Hence the two option models coincide. �

Now let us turn to the completeness of our model. We start with a full strongly
regular model with coefficients as above. Similarly to (4.1), for any (ω, s), we denote
by Υ (ω, s) the set of all families ζ = ((βi)i∈I , y), where βi ∈ R, and y is a function
on R satisfying the first condition in (4.1), and also (recall (3.1) for ψ )

x 
→ ψ(ω, s, x)y(x) and x 
→ ψ(ω, s, x)y(x) are F -integrable,

T ≥ s ⇒ x 
→ φ(ω, s, x, T )y(x) is F -integrable.

}

Then the proof of the following characterization of completeness is the same as for
Theorem 4.1.

Therorem 5.8 Assume that our model is full and strongly regular, that g is C2, and
that the set Mar loc is not empty. Then this set is a singleton if and only if, for a good
version of the coefficients of the model, we have the following property: The system
of linear equations consisting of (4.2) and

∫
ψ(ω, s, x)y(x)F (dx) = 0, (5.9)

T ≥ s �⇒
∑

i∈I

γ i(s, T )(ω)βi +
∫

φ(ω, s, x, T )y(x)F (dx) = 0, (5.10)

where ((βi), y) ∈ Υ (ω, s), has the only solutions βi = 0 and y = 0 up to an
F(dx)-nullset.

In particular when the model is “continuous,” we have, similarly to Theorem 4.3:

Therorem 5.9 Suppose that we have a full strongly regular model described by (2.1)
and (2.4), with further g being C2 and Mar loc being nonempty. Then there are two
alternatives:

(a) Either, for a good version of the coefficients, for all s ≥ 0 and ω, the closed
linear subspace of �2(I ) spanned by the vectors (σ i(ω)s)i∈I and (γ i(ω, s, T )i∈I

for T ≥ s is equal to �2(I ) itself; in this case the set Mar loc is a singleton.
(b) Or this property fails, and the set Mar loc is infinite.

In the Lévy driven case, we also have a result similar to Proposition 4.4. Consider
again the situation where our full model is driven by the Lévy process Z, that is, the
first two equations in (4.5) hold. Then the coefficients a, σ i , and ψ on the one side,
α, γ i , and φ on the other side, are given by (4.7). Then we have:
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Proposition 5.10 In the Lévy case described above, the set Mar loc is not a singleton,
unless either C = 0 and the support of F has at most two points, or C > 0 and the
support of F has at most one point.

Proof Equations (4.2), (5.9), and (5.10) amount to the two equations (4.10) and
∫

(
g
(
Xs− + δsθ(x)

) − g(Xs−) − g′(Xs−)δsθ(x)
)
y(x)F (dx) = 0.

The result is thus obvious. �

Hence, as far as completeness is concerned, we are in the same situation as we
are for a pure (that is, there are no options being considered) model for two stocks
driven by a Lévy process. However, although we cannot prove it, we suspect that in
this case the set Mar loc usually is empty. To support this, one can look at the proof
of Theorem 5.1(b); the key to the proof is to establish the analogue of (3.6), but to
achieve a model like (4.5), we need that φ factorizes as φ(u, x, s) = ρ(u, s)θ(x), and
this is of course usually not the case.

On the other hand, Proposition 4.5 holds for full models, with exactly the same
statement.

Remark 5.11 A different approach to the completion of Lévy driven markets is that
of introducing new securities, based on the sums of the powers of the jumps, such that
these sums are convergent (which implies the imposition of some light hypotheses on
the existence of moments). For this, see Corcuera et al. [6].

A family of Markov-type stochastic volatility models This example is a typical, and
quite general, “Markov-type” stochastic volatility model. Namely, within our gen-
eral setting (a filtered space endowed with the Wiener processes Wi and the Poisson
random measure μ), the dynamics of the stock price is

Xt = X0 +
∫ t

0
a(Xs,Ys) ds +

∫ t

0
σ(Xs,Ys) dW 1

s . (5.11)

Now Y is an auxiliary process, which we take for simplicity to be d-dimensional and
locally integrable (more general versions would do as well), and the basic assumption
is that the pair (X,Y ) is a semimartingale driven by (Wi)i∈I and μ and also a Markov
process. This amounts to saying that, in addition to (5.11), we have

Yt = Y0 +
∫ t

0
h(Xs,Ys) ds +

∑

i∈I

∫ t

0
ki(Xs,Ys) dWi

s

+
∫ t

0

∫

R

H(Xs,Ys−, x)(μ − ν)(ds, dx) (5.12)

for Borel functions h and ki on R × R
d and H on R × R

d × R (the fact that the
pair (X,Y ) is driven by the two equations (5.11) and (5.12) is in fact necessary if
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it is a Markov process and a semimartingale with absolutely continuous characteris-
tics, with in addition X continuous; see [5]). We assume that a, σ , h, ki , and H are
nice enough for these equations to have a unique (strong) solution for every (non-
random) starting point (X0, Y0), and this solution (X,Y ) is consequently a Markov
process. This covers in particular the usual globally Markov stochastic volatility mod-
els, where σ(x, y) = y, H = 0, and I = {1,2}, and also cases when the volatility has
jumps.

In the classical paradigm, we choose a locally equivalent martingale measure Q

(meaning that X is a martingale, or a local martingale, under Q; no reason of course
for Y to be a martingale), and we evaluate the prices P(T )t of options under Q.
These prices may be discontinuous. Among the (many) locally equivalent martingale
measures, some preserve the Markov property, namely the “extremal” ones in the
convex set of all locally equivalent martingale measures. Let us suppose that it is the
case for Q and denote by (Qt ) the semigroup of the Markov process (X,Y ) under
Q, and (L, D L) its infinitesimal generator. We also assume that D L contains all C2

functions. Recall that, under Q, the pair (X,Y ) satisfy (5.11) and (5.12) with the
same σ , ki , and H , but with modified coefficients a and h, other Wiener processes
W ′i , and another compensator ν′ for μ.

Now, the price P(T )t (under Q) takes the form

P(T )t = EQ

(
g(XT )

∣
∣ F t

) = QT −tG(Xt ,Yt )

by the Markov property, where G(x,y) = g(x). If g is C2, hence G as well, we have
G ∈ D L , and thus we may write

P(T )t = g(Xt ) +
∫ T

t

Qs−t LG(Xt ,Yt ) ds.

Hence (2.3) holds, with f (t, s) = Qs−t LG(Xt ,Yt ). Note that the process
(f (t, s) : 0 ≤ t ≤ s) is a Q-martingale and also that it is discontinuous when Y is
discontinuous (that is, the process H in (5.11) is not identically 0). If further g and
the coefficients driving (X,Y ) are smooth enough, the function Qs−t LG(x,y) is C2

in (x, y) and C1 in t over [0, s], so we can apply Itô’s formula to obtain (2.5) (relative
to W ′i and μ − ν′) with coefficients of the form

α(s, T ) = A(T − s,Xs,Ys−),

γ i(s, T ) = Γ i(T − s,Xs,Ys−),

φ(s, x, T ) = Φ(T − s,Xs,Ys−, x)

⎫
⎪⎬

⎪⎭

for functions A, Γ i , and Φ which are easily computable in terms of the function
Qt LG(x,y) and its derivatives in t , x, and y. That is, we have obtained a full model
for our option prices, which is necessarily regular and with the corresponding Mar loc
not empty because it contains at least Q itself.

In other words, under some regularity conditions, we have at least as many full
regular option models associated with (X,g), with no-arbitrage, as there are locally
equivalent martingale measures under which (X,Y ) is a Markov process with a nice
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enough semigroup and X is a (local) martingale (and actually many more because
there is a full option price model with no-arbitrage for any convex combination of
measures Q as above).

When g is convex but not C2, then G does not usually belong to the domain of L.
However under some ellipticity condition, QεG does for all ε > 0. Then the same
argument shows that T 
→ P(t, T ) is absolutely continuous on (t,∞). Since it is
also continuous at T = t (because g is continuous), we still have (2.3) and a full
option model, no longer regular.
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