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Abstract In this paper, we study a class of quadratic backward stochastic differential
equations (BSDEs), which arises naturally in the utility maximization problem with
portfolio constraints. We first establish the existence and uniqueness of solutions for
such BSDEs and then give applications to the utility maximization problem. Three
cases of utility functions, the exponential, power, and logarithmic ones, are discussed.
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1 Introduction

In this paper, the problem under consideration consists of maximizing the expected
utility of the terminal value of a portfolio under constraints. The main objective is
to give an expression for the value process of the utility maximization problem with
utility function U and liability B , whose expression at time t is

V B
t (x) = ess sup

ν∈At

E
Ft

(
U

(
X

ν,t,x
T − B

))
. (1.1)
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In our model, X
ν,t,x
T is the terminal value of the wealth process associated with the

strategy ν and equal to x at time t , and the essential supremum is taken over all
trading strategies ν defined on [t, T ] and lying in an admissibility set denoted by At .
Since not any FT -measurable random variable B is replicable by a strategy in At , the
financial market is incomplete. This problem has further interest due to its connection
with utility indifference valuation; in fact, the utility indifference price relates the two
value processes V B and V 0. Introduced by Hodges and Neuberger [12], the utility
indifference selling price stands for the amount of money which makes the agent
indifferent between selling or not selling the claim B .

Among previous studies of our problem, we refer to [2, 9, 17]. Becherer [2] studies
both the utility maximization problem and the notion of utility indifference valuation
in a discontinuous setting, whereas Mania and Schweizer [17] consider the same
problem in a continuous framework. As in these papers, to solve the problem (1.1)
in the case of nonconvex trading constraints, we rely on the dynamic programming
methodology and on nonlinear BSDE theory (a major reference illustrating the con-
nection between BSDE theory and finance is [10]). In the existing literature (see, e.g.,
[3, 18], or [20]), the convex duality method is widely used to study the unconditional
case of the problem, but in the aforementioned papers, the authors either suppose that
there are no constraints or assume the convexity of the constraint set, which is an
assumption we relax here. We rather use the first method to handle dynamically the
problem and, for this approach, some major references are [13] and [17]. Our con-
tribution consists in extending the dynamic method to a general continuous setting
in the presence of constraints. This requires to establish existence and uniqueness
results for solutions to specific quadratic BSDEs and then use these results to charac-
terize both the value process expressed at time t in (1.1) and the strategies attaining
the supremum in this last expression.

The paper is structured as follows. Section 2 lays out the financial background and
gives some preliminary tools and results about BSDEs. Then, the dynamic program-
ming method is applied to derive an explicit BSDE. Section 3 investigates the exis-
tence and uniqueness results for solutions to the introduced BSDEs. In Sect. 4, appli-
cations to finance are developed, and the expression of the value process is provided
for three types of utility functions. Lengthy proofs are relegated to the Appendix.

2 Statement of the problem and main results

2.1 The model and preliminaries

As usual, we consider a probability space (Ω , F, P) equipped with a right-continuous
and complete filtration F = (Ft ) and with a continuous d-dimensional local mar-
tingale M . Throughout this paper, all processes are considered on [0, T ], T being a
deterministic time, and we denote by Z · M the stochastic integral of Z with respect
to M . We also assume that F = (Ft )t∈[0,T ] is a continuous filtration; this means that
any R-valued (square-integrable) F -martingale K is continuous and can be written
as

K = Z · M + L
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with a predictable R
d -valued process Z and a (square-integrable) R-valued martin-

gale L strongly orthogonal to M (i.e., for each i, 〈Mi,L〉 = 0). For a given square-
integrable martingale M , the notation 〈M〉 stands for the quadratic variation process,
and the notation | · |∞ stands for the norm in L∞(FT ) of any bounded FT -measurable
random variable.

From the Kunita–Watanabe inequality it follows that each component 〈Mi,Mj 〉
(i, j ∈ {1, . . . , d}) is absolutely continuous with respect to C̃ = ∑

i〈Mi〉. Hence, there
exists an increasing and bounded process C, for instance, Ct = arctan(C̃t ), such that
〈M〉 can be written

d〈M〉s = msm
′
s dCs,

where m is a predictable process taking values in R
d×d (this expression has been

used in [8] in an analogous continuous framework). The notation m′ stands for the
transposed matrix, and we also assume that, for any s, the matrix msm

′
s is invertible

P-a.s.

The financial background To bring further motivation, we explain the financial con-
text and for this, we provide here all the definitions and common assumptions. We
consider a financial market consisting of d + 1 assets: one risk-free asset with zero
interest rate and d risky assets. We model the price process S of the d risky assets as
a process satisfying1

dSs

Ss

= dMs + dAs with dA
j
s =

d∑

i=1

λi
s d

〈
Mj,Mi

〉
s
, j ∈ {1, . . . , d}, (2.1)

and with an R
d -valued process λ satisfying

(Hλ) ∃aλ > 0 such that
∫ T

0
λ′

s d〈M〉s λs =
∫ T

0
|msλs |2 dCs ≤ aλ, P-a.s. (2.2)

This definition is stronger than the usual structure condition, which only states that∫ T

0 λ′
s d〈M〉sλs < ∞ P-a.s. (we refer to [1] or [11] for this condition). Condition (2.2)

stipulates that S has a bounded mean-variance tradeoff, and in particular, it implies
that E (−λ · M) is a strict martingale density for the price process S. In the financial
application, we rely on (Hλ) to use the precise a priori estimates given in Lemma 3.1
in Sect. 3. We now state the definition of a wealth process Xν and of the associated
self-financing and constrained trading strategy ν.

Definition 2.1 A predictable R
d -valued process ν = (νs)s∈[t,T ] is called a self-

financing trading strategy if it satisfies

1. νs ∈ C P-a.s. for all s, C being the constraint set (a closed and not necessarily
convex set in R

d ).

1Both this decomposition already introduced in [7] and the assumption of almost sure invertibility of ms

for all s ensure that the no-arbitrage property holds.
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2. The wealth process Xν = Xν,t,x of an agent with strategy ν and wealth x at time
t is defined as

∀s ∈ [t, T ], Xν
s = x +

∫ s

t

d∑

i=1

νi
r

Si
r

dSi
r , (2.3)

and it is, by assumption on ν, in the space H2 of semimartingales.

In this definition, each component νi of the trading strategy corresponds to the
amount of money invested in the ith asset. Due to the presence of portfolio con-
straints, there does not necessarily exist a strategy ν (such that, for all s, νs ∈ C )
satisfying Xν

T = B for a given FT -contingent claim B . Hence, we are facing an in-
complete market. The utility maximization problem aims at giving an expression for
the value process defined at any time t by (1.1) and at characterizing the set of op-
timal strategies, i.e., those achieving the esssup for the problem. In this study, we
first consider the exponential utility maximization problem associated with the util-
ity function Uα(x) = − exp (−αx) with α > 0. Usually, the set of admissible trading
strategies consists of all strategies such that the wealth process is bounded from be-
low. To solve the problem analogously to [13], we need to enlarge the set of admissi-
ble strategies to a new set denoted by At .

Definition 2.2 Let C be the constraint set, which is such that 0 ∈ C . The set At of ad-
missible strategies consists of all d-dimensional predictable processes ν = (νs)s∈[t,T ]
satisfying νs ∈ C P-a.s. for all s, E(

∫ T

t
|msνs |2 dCs) < ∞, and the uniform integra-

bility of the family

{
exp

(−αXν
τ

) : τ is an F -stopping time taking values in [t, T ]}.

This appears to be a restrictive condition on strategies, and it implies that we have to
justify the existence of one optimal strategy admissible in this sense.

Preliminaries on quadratic BSDEs In the sequel, we consider one-dimensional BS-
DEs of the form

Yt = B +
∫ T

t

F (s, Ys,Zs) dCs + β

2

(〈L〉T − 〈L〉t
) −

∫ T

t

Zs dMs −
∫ T

t

dLs. (2.4)

To refer to this BSDE, we use the notation BSDE(F,β,B). Usually, a BSDE is char-
acterized by two parameters: its terminal condition B , assumed here to be bounded,
and its generator F = F(s, y, z), a P × B(R)× B(Rd)-measurable function, continu-
ous with respect to (y, z) (P denotes the σ -field of all predictable sets of [0, T ] × Ω ,
and B(R) the Borel σ -field of R). In our setting, we introduce another parameter β ,
which is assumed to be constant, and a financial meaning for β is given in the next
paragraph. We also impose precise growth conditions on the generator; in particu-
lar, we study existence under the assumption of quadratic growth with respect to z.
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One essential motivation of this study is that such quadratic BSDEs2 appear naturally
when using the same dynamic method as in [13] to solve the problem (1.1). A solution
of the BSDE(F,β,B) is a triple (Y,Z,L) in S∞ × L2(d〈M〉 ⊗ dP) × M2([0, T ])
satisfying (2.4) and such that 〈L,M〉 = 0 and

∫ T

0 |F(s,Ys,Zs)|dCs < ∞ P-a.s. The
space S∞ consists of all bounded continuous processes, L2(d〈M〉 ⊗ dP) consists
of all predictable processes Z such that E(

∫ T

0 |msZs |2 dCs) < ∞, and M2([0, T ])
consists of all real square-integrable martingales of the filtration F .

The stochastic exponential of a continuous semimartingale K denoted by E (K) is
the unique process satisfying

Et (K) = 1 +
∫ t

0
Es(K)dKs.

A process L is a BMO martingale if L is an F -martingale and if there exists a constant
c > 0 such that, for any F -stopping time τ ,

E
Fτ

(〈L〉T − 〈L〉τ
) ≤ c.

The dynamic method In this part, we use the same dynamic method as in [13] to
characterize the value process of the optimization problem in terms of the solution
of a BSDE with parameters (Fα , β , B). The expressions of Fα and β are obtained
below in (2.6) by formal computations (these computations are justified in the last
section of this paper).

To this end, we construct, for any strategy ν and fixed t , a process Rν = (Rν
s )s≥t

such that, for all s, Rν
s = Uα(Xν

s − Ys) and such that the process Y solves a
BSDE(Fα , β , B) of type (2.4). The terminal condition is the contingent claim B ,
and the parameters Fα and β have to be determined. Besides, this family (Rν ) is
such that

(i) Rν
T = Uα(Xν

T − B) for any strategy ν.
(ii) Rν

t = Uα(x − Yt ) (x is assumed to be a constant3).
(iii) Rν is a supermartingale for any strategy ν ∈ At and a martingale for a particular

strategy ν∗ ∈ At .

We rely on (2.3) defining Xν and on Itô’s formula to get

Xν
s − Ys = (x − Yt ) +

∫ s

t

(νu − Zu)dMu − (Ls − Lt)

+
∫ s

t

F α(u,Zu)dCu + β

2

(〈L〉s − 〈L〉t
) +

∫ s

t

(muνu)
′(muλu)dCu.

2Such BSDEs have been considered in [17], where the authors already deal with the utility maximization
problem but, contrary to the present paper, they do not assume the presence of trading constraints.
3This dynamic method can be extended to any attainable wealth x, i.e., any Ft -measurable random vari-
able such that Xν

t = x for at least one admissible strategy ν defined on [0, t].
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Since Rν
s = − exp(−α(Xν

s − Ys)) for all s, using the notation Et,T (K) = ET (K)
Et (K)

for a
given local martingale K , we first write

exp

(
−α

∫ T

t

(νs − Zs)dMs

)

= Et,T

(−α(ν − Z) · M)
exp

(
α2

2

∫ T

t

∣∣ms(νs − Zs)
∣∣2

dCs

)

and

exp
(
α(LT − Lt)

) = Et,T (αL) exp

(
α2

2

(〈L〉T − 〈L〉t
))

,

which leads to the multiplicative decomposition

Rν
s = − exp

(−α(x − Yt )
)

Et,s

(−α(ν − Z) · M)
Et,s(αL) exp

(
Aν

s − Aν
t

)
. (2.5)

Here, Aν is such that

dAν
s =

(
−αFα(s,Zs) − α(msνs)

′(msλs) + α2

2

∣∣ms(νs − Zs)
∣∣2

)
dCs

+
(

α2 − αβ

2

)
d〈L〉s .

Since M and L are strongly orthogonal, we get

E
(−α(ν − Z) · M)

E (αL) = E
(−α(ν − Z) · M + αL

)
.

By (2.5), Rν is the product of a positive local martingale (as a stochastic exponential
of a continuous local martingale) and a finite variation process. The process Rν being
negative, the multiplicative decomposition (2.5) and the increasing property of Aν for
all ν yield the supermartingale property of Rν , and the process Rν∗

is a martingale
for ν∗ satisfying dAν∗ ≡ 0. These two last conditions on the family (Aν) holding true
for all ν ∈ At , we get

⎧
⎨

⎩

−α
β
2 d〈L〉s + α2

2 d〈L〉s = 0, hence β = α,

−α(Fα(s,Zs) + (msνs)
′(msλs)) + α2

2 |ms(νs − Zs)|2 ≥ 0.

This leads to

Fα(s, z) = inf
ν∈C

(
α

2

∣∣∣∣ms

(
ν −

(
z + λs

α

))∣∣∣∣

2)
− (msz)

′(msλs) − 1

2α
|msλs |2. (2.6)

This method, explained for a fixed time t , relies on the dynamic programming
principle and could therefore be extended without any additional difficulty to any

F -stopping time τ .
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2.2 Statement of the assumptions and main results

Assumptions To study the existence of solutions for the BSDEs(F,β,B) of type
(2.4), we assume in the sequel the boundedness of the terminal condition B . More-
over, we suppose that there exists a nonnegative predictable process ᾱ such that∫ T

0 ᾱs dCs ≤ a for a strictly positive constant a and such that with three strictly posi-
tive constants b, γ , and C1, one of the three following conditions hold:

(H1)
∣∣F(s, y, z)

∣∣ ≤ ᾱs + bᾱs |y| + γ

2
|msz|2 with γ ≥ |β| and γ ≥ b,

(H′
1)

∣∣F(s, y, z)
∣∣ ≤ ᾱs + γ

2
|msz|2,

(H′′
1) −C1

(
ᾱs + |msz|

) ≤ F(s, y, z) ≤ ᾱs + γ

2
|msz|2.

Remark 2.3 We give here some comments:

• Assumption (H1) is more general than the other two, but we only require these two
last assumptions to establish the existence result. We first reduce assumption (H1)
to (H′

1) by a classical truncation procedure, and we note that the additional assump-
tion in (H′′

1) is that the lower bound has at most linear growth in z. This condition
has already been used by [4] in the Brownian setting to justify the existence of a
minimal solution. We rely on the same construction to prove our existence result.

• The quadratic BSDE of the form (2.4) introduced in Sect. 2.1 has parameters
F = Fα , β = α, and B (B standing for the liability in the optimization problem
(1.1)). In particular, the generator Fα given by (2.6) satisfies (H1). In fact, we have

Fα(s, z) ≥ −(msz)
′(msλs) − 1

2α
|msλs |2 ≥ −|msz||msλs | − 1

2α
|msλs |2,

which leads to

Fα(s, z) ≥ −
(

α

2
|msz|2 + 1

α
|msλs |2

)
.

Defining ᾱ, for all s, by ᾱs = 1
α
|msλs |2, we obtain that

∫ T

0 ᾱs dCs ≤ a P-a.s. with
the parameter a depending on α and aλ (this last constant is defined in (2.2)). Since
0 is in C , we get

Fα(s, z) ≤ α

2
|msz|2.

• Even if we suppose that F is Lipschitz with respect to y and z, we cannot obtain
directly an existence and uniqueness result for a BSDE of type (2.4) because of the
presence of the additional term involving the quadratic variation process 〈L〉. This
explains the introduction of another type of BSDEs, namely

{
dUs = −g(s,Us,Vs) dCs + Vs dMs + dNs,

UT = eβB.
(2.7)
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In the previous equation, V · M + N stands for the martingale part, and N is an
R-valued martingale orthogonal to M (the presence of such a martingale N is
required, since M does not enjoy the predictable representation property). In the
sequel, we denote it by BSDE(g, eβB ). This second type of BSDE is linked with the
BSDE(F,β,B) of type (2.4) by using an exponential change of variable. Indeed,
setting U = eβY , this leads to

g(s,u, v) =
(

βuF

(
s,

ln(u)

β
,

v

βu

)
− 1

2u
|msv|2

)
1u>0.

This type of BSDE is simpler, since there is no term involving the quadratic vari-
ation process 〈N〉 in (2.7). Furthermore, these BSDEs having a generator g such
that (s, u, v) �−→ g(s,u, v) is uniformly Lipschitz with respect to u and v have
been studied in [8] in a general continuous setting. Our aim is to establish a one-
to-one correspondence between the solutions of the BSDE(F,β,B) of type (2.4)
and those of the BSDE(g, eβB ) of type (2.7).

To prove a uniqueness result for solutions of the BSDE(F,β,B) of type (2.4), we
impose that there exist two numbers μ and C2, a nonnegative predictable process θ ,
and a constant cθ such that

(H2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀z ∈ R
d, ∀y1, y2 ∈ R,

(y1 − y2)(F (s, y1, z) − F(s, y2, z)) ≤ μ|y1 − y2|2,
∃θ such that

∫ T

0 |msθs |2 dCs ≤ cθ , ∀y ∈ R, ∀z1, z2 ∈ R
d,

|F(s, y, z1) − F(s, y, z2)| ≤ C2(msθs + |msz
1| + |msz

2|)|ms(z
1 − z2)|.

Remark 2.4 The first inequality in assumption (H2) corresponds to a monotonicity
assumption (this assumption is given in [19]). The second assumption on the incre-
ments in the variable z is a kind of local Lipschitz condition with respect to z, which
is similar to the one in [13]. We check that (H2) is satisfied by the generator Fα with
C2 = α

2 , θ := 4 |mλ|
α

, and μ = 0, since Fα is independent of y. Indeed, for any z1, z2

in R
d , we argue that the increments of Fα with respect to z satisfy

∣∣Fα
(
s, z1) − Fα

(
s, z2)∣∣

≤
∣∣∣∣
α

2

(
dist2

(
ms

(
z1 + λ

α

)
,ms C

)
− dist2

(
ms

(
z2 + λ

α

)
,ms C

))∣∣∣∣

+ ∣∣−(
msz

1)′
(msλ) + (

msz
2)′

(msλ)
∣∣

≤ α

2

∣∣ms

(
z1 − z2)∣∣

(∣∣msz
1
∣∣ + ∣∣msz

2
∣∣ + 2

|msλ|
α

)
+ ∣∣ms

(
z1 − z2)∣∣|msλ|.

Main results To obtain existence and uniqueness results for solutions of BSDEs of
type (2.4), we establish the same results for BSDEs of type (2.7). We now state the
results which are justified in Sect. 3.
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Theorem 2.5 (Existence) Consider the BSDE(F,β,B) and assume both that the
generator F satisfies (H1) and that the terminal condition B is bounded. Then there
exists a solution (Y , Z, L) in S∞ × L2(d〈M〉 ⊗ dP) × M2([0, T ]) of the BSDE.

Theorem 2.6 (Uniqueness) For all BSDEs(F,β,B) of type (2.4) such that the gener-
ator F satisfies both (H1) and (H2) and such that the terminal condition is bounded,
there exists a unique solution (Y , Z, L) in S∞ × L2(d〈M〉 ⊗ dP) × M2([0, T ]).

Theorem 2.7 (Comparison) Consider two BSDEs of the form (2.4) given by
(F 1, β, ξ1) and (F 2, β, ξ2), where F 1 and F 2 satisfy (H1) and (H2), and assume
furthermore that (Y 1, Z1, L1) and (Y 2, Z2, L2) are respective solutions of each
BSDE such that

(
ξ1 ≤ ξ2 and F 1(s, Y 1

s ,Z1
s

) ≤ F 2(s, Y 1
s ,Z1

s

))
P-a.s. for all s.

Then we have Y 1
s ≤ Y 2

s P-a.s. for all s.

We only provide proofs for the two first theorems, since, without additional dif-
ficulty, we check that the comparison result given in Theorem 2.7 holds. To prove
this, we proceed with a linearization of the generator similar to the one in Sect. 3.2;
this consists of applying the Itô–Tanaka formula to the adapted and bounded process
Ỹ 1,2· = exp(2μC·)|(Y 1· − Y 2· )+|2 and rewriting the same proof.

3 Results about quadratic BSDEs

3.1 A priori estimates

In this part, we obtain precise a priori estimates for solutions of BSDEs of type (2.4).
Referring to previous studies on quadratic BSDEs (such as in [4] or [16]), these esti-
mates are the starting point of the proof of the main existence result.

To prove these estimates, we assume the existence of a solution (Y , Z, L) of
the BSDE(F,β,B) such that F satisfies (H1) and we proceed analogously to [4].
However, since those authors work with a Brownian filtration, we have to generalize
their method to our setting.

Lemma 3.1 Consider a BSDE of type (2.4) given by (F,β,B) and assume both the
boundedness of B and condition (H1) for F . Then we can give explicitly in terms of
the parameters γ , a, b given in (H1) and |B|∞ three constants c,C,C′ such that, for
any solution (Y,Z,L) in S∞ × L2(d〈M〉 ⊗ dP) × M2([0, T ]),
(i) P-a.s. and for all t, c ≤ Yt ≤ C,

(ii) for any F -stopping time τ , E
Fτ

(∫ T

τ
|msZs |2 dCs + 〈L〉T − 〈L〉τ

) ≤ C′.

Proof By definition, the solution (Y,Z,L) is in S∞ ×L2(d〈M〉⊗dP)× M2([0, T ]),
and our first objective is to exhibit explicitly both a lower and an upper bound for Y .
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Setting first ã = eba−1
b

, we aim at proving

∀t, exp
(
γ |Yt |

) ≤ exp
(
γ
(
ã + |B|∞eba

))
. (3.1)

To this end and for fixed t , we introduce H = (U(s, |Ys |)) such U(t, |Yt |) = eγ |Yt |
and, for all s ≥ t ,

Hs = U
(
s, |Ys |

) = exp

(
γ

(
exp(

∫ s

t
bᾱu dCu) − 1

b

)
+ γ |Ys | exp

(∫ s

t

bᾱu dCu

))
.

Applying Itô’s formula to the process H , we claim that it is a local submartingale; to
this end, we prove that the predictable bounded variation process A in the canonical
decomposition of the semimartingale H is increasing. For clarity, we first apply the
Itô–Tanaka formula to |Y | to get

d|Ys | = −sign(Ys)F (s,Ys,Zs) dCs − sign(Ys)
β

2
d〈L〉s + d�s

+ sign(Ys)
(
Zs dMs + dLs

)
,

� being the local time of Y . Now, Itô’s formula yields for A the expression

exp

(
−

∫ s

t

bᾱu dCu

)
dAs

= Hs

(
γ ᾱs − γ sign(Ys)F (s,Ys,Zs) + γ bᾱs |Ys | + γ 2

2
e
∫ s
t bᾱu dCu |msZs |2

)
dCs

+ Hsγ d�s + Hsγ

((
γ

2
exp

(∫ s

t

bᾱu dCu

)
− sign(Ys)

β

2

)
d〈L〉s

)
.

Using assumption (H1) and the inequalities |β| ≤ α and ᾱ ≥ 0, we get that the process
A is increasing. Hence, H is a local submartingale, and there exists an increasing
sequence (τk) of stopping times converging to T , taking values in [t, T ], and such
that (U(s ∧ τk, |Ys∧τk

|)) is a submartingale. This entails

eγ |Yt | = U
(
t, |Yt |

) ≤ E
(
U

(
T ∧ τk, |YT ∧τk

|)∣∣Ft

)
.

Applying the bounded convergence theorem to (E(U(T ∧ τk, |YT ∧τk
|)|Ft ))k and let-

ting k tend to infinity, we obtain

eγ |Yt | ≤ E
(
U

(
T , |YT |)∣∣Ft

)
,

which gives (3.1). Hence, assertion (i) of Lemma 3.1 is satisfied with

C = (
ã + |B|∞eba

)
and c = −(

ã + |B|∞eba
)
.

To prove assertion (ii), we apply Itô’s formula to the bounded process
ψ̃(Y ) = ψγ (Y + |c|) with ψγ given by

ψγ (x) = eγ x − 1 − γ x

γ 2
.
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This function satisfies

ψ ′
γ (x) ≥ 0 for x ≥ 0 and − γψ ′

γ + ψ ′′
γ = 1, (3.2)

and since c is the lower bound of Y , we have Y + |c| ≥ 0 P-a.s. We now consider
an arbitrary stopping time τ of (Ft )t∈[0,T ]. Taking the conditional expectation with
respect to Fτ in Itô’s formula between τ and T , we get

ψ̃(Yτ ) − E
Fτ

(
ψ̃(YT )

) = −E
Fτ

(∫ T

τ

ψ̃ ′(Ys)

(
−F(s,Ys,Zs) dCs − β

2
d〈L〉s

))

− E
Fτ

(∫ T

τ

ψ̃ ′(Ys)(Zs dMs + dLs)

)

− E
Fτ

(∫ T

τ

ψ̃ ′′(Ys)

2

(|msZs |2 dCs + d〈L〉s
))

.

Since Z ·M and L are square-integrable martingales and ψ̃ ′(Y ) is a bounded process,
the second conditional expectation on the right-hand side vanishes. Using both the
upper bound on F in (H1) and simple computations, we obtain

ψ̃(Yτ ) − E
Fτ

(
ψ̃(YT )

) ≤ E
Fτ

(∫ T

τ

ψ̃ ′(Ys)|ᾱs |
(
1 + b|Y |S∞

)
dCs

)

+ E
Fτ

(∫ T

τ

(
β

2
ψ̃ ′ − 1

2
ψ̃ ′′

)
(Ys) d〈L〉s

)

+ E
Fτ

(∫ T

τ

(
γ

2
ψ̃ ′ − 1

2
ψ̃ ′′

)
(Ys)|msZs |2 dCs

)
.

Using the properties of ψγ given by (3.2) and the fact that γ ≥ |β|, we get
(

1

2
ψ̃ ′′ − β

2
ψ̃ ′

)
(Ys) ≥

(
1

2
ψ̃ ′′ − γ

2
ψ̃ ′

)
(Ys) = 1

2
P-a.s. for all s.

Putting the two last terms into the left-hand side of Itô’s formula applied to ψ̃(Y ), it
follows from the two last inequalities that

1

2
E

Fτ

(∫ T

τ

|msZs |2 dCs + (〈L〉T − 〈L〉τ
))

≤ E
Fτ

(∫ T

τ

(
1

2
ψ̃ ′′ − γ

2
ψ̃ ′

)
(Ys)|msZs |2 dCs +

∫ T

τ

(
1

2
ψ̃ ′′ − β

2
ψ̃ ′

)
(Ys) d〈L〉s

)

≤ 2
∣∣ψ̃(Y )

∣∣
S∞ + ∣∣ψ̃ ′(Y )

∣∣
S∞

∫ T

0
|ᾱs |

(
1 + b|Y |S∞

)
dCs,

and using the integrability assumption on ᾱ given in Sect. 2.2, we get the existence
of a constant C′ as in assertion (ii), Lemma 3.1. This constant is independent of the
stopping time τ and depends only on the parameters a, b, γ and |B|∞. �
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3.2 The uniqueness result

Proof The key idea of this proof is to proceed by linearization and to justify as in [13]
the use of Girsanov’s theorem. Let (Y 1, Z1, L1) and (Y 2, Z2, L2) be two solutions
of the BSDE(F,β,B) with F satisfying both (H1) and (H2) and B bounded. We
define Y 1,2 by Y 1,2 = Y 1 −Y 2 (Z1,2 and L1,2 are defined similarly) and consider the
nonnegative and bounded semimartingale Ỹ 1,2 defined by Ỹ

1,2
t = e2μCt |Y 1,2

t |2. We
then use Itô’s formula to get

dỸ 1,2
s = 2μỸ 1,2

s dCs + e2μCs 2Y 1,2
s dY 1,2

s + 1

2
e2μCs 2d

〈
Y 1,2〉

s
.

Since Y 1 and Y 2 are solutions of the BSDE(F,β,B), we have

dY 1,2
s = −(

F
(
s, Y 1

s ,Z1
s

) − F
(
s, Y 2

s ,Z2
s

))
dCs − β

2
d
(〈
L1〉

s
− 〈

L2〉
s

) + dKs,

where K = Z1,2 · M + L1,2 stands for the martingale part. Hence, considering Itô’s
formula between t and an arbitrary F -stopping time τ ≥ t , we get

Ỹ
1,2
t − Ỹ 1,2

τ = −
∫ τ

t

2μỸ 1,2
s dCs

+
∫ τ

t

e2μCs 2Y 1,2
s

(
F

(
s, Y 1

s ,Z1
s

) − F
(
s, Y 2

s ,Z2
s

))
dCs

+
∫ τ

t

e2μCs 2Y 1,2
s

β

2
d
〈
L1,2,L1 + L2〉

s

−
∫ τ

t

e2μCs 2Y 1,2
s

(
Z1,2

s dMs + dL1,2
s

)−
∫ τ

t

e2μCs
1

2
2d

〈
Y 1,2〉

s

︸ ︷︷ ︸
≤0

.

The generator F satisfying (H2), it follows that

2Y 1,2
s

(
F

(
s, Y 1

s ,Z1
s

) − F
(
s, Y 2

s ,Z2
s

)) ≤ 2μ
∣∣Y 1,2

s

∣∣2 + 2Y 1,2
s (msκs)

′(msZ
1,2
s

)
,

where the R
d -valued process κ is defined by

κs =
⎧
⎨

⎩

(F (s,Y 2
s ,Z1

s )−F(s,Y 2
s ,Z2

s ))(Z
1,2
s )

|msZ
1,2
s |2 if |msZ

1,2
s | �= 0,

0 otherwise.

We introduce a new process A by

As = 2Y 1,2
s

(
F 1(s, Y 1

s ,Z1
s

)−F 2(s, Y 2
s ,Z2

s

)−(
2μ

∣∣Y 1,2
s

∣∣2 +2Y 1,2
s (msκs)

′(msZ
1,2
s

)))
.
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This process being almost surely nonpositive, we obtain

Ỹ
1,2
t − Ỹ 1,2

τ =
∫ τ

t

As dCs −
∫ τ

t

e2μCs
1

2
2d

〈
Y 1,2〉

s

︸ ︷︷ ︸
≤0

+
∫ τ

t

2Y 1,2
s e2μCs (msκs)

′(msZ
1,2
s

)
dCs

+
∫ τ

t

2Y 1,2
s e2μCs

β

2
d
〈
L1,2,L1 + L2〉

s

−
∫ τ

t

2e2μCs Y 1,2
s Z1,2

s dMs −
∫ τ

t

2e2μCs Y 1,2
s dL1,2

s .

We then consider the stochastic integrals

Ñ = (
2e2μCY 1,2Z1,2) · M and N̄ = κ · M, on the one hand,

L̃ = (
2Y 1,2e2μC

) · L1,2 and L̄ = β

2
(L1 + L2), on the other hand.

From (H2) we deduce

∃C > 0, |msκs | ≤ C
(|msθs | +

∣∣msZ
1
s

∣∣ + ∣∣msZ
2
s

∣∣).

Using both assertion (ii) in Lemma 3.1 and the assumption on θ given by (H2),
we get that κ · M + β

2 (L1 + L2) is a BMO martingale. Hence according to [14],

E (κ·M+β
2 (L1+L2)) is a true martingale. Defining Q by dQ

dP
= E (κ·M+β

2 (L1+L2)),

Girsanov’s theorem entails that K = Ñ + L̃−〈Ñ + L̃, κ ·M + β
2 (L1 +L2)〉 is a local

martingale under Q. This implies the existence of a sequence (τ k) converging to T

such that each τ k may be assumed greater than t and such that K·∧τk is a martingale

under Q. Hence, between t = t ∧ τ k and τ k , the adapted process Ỹ satisfies

Ỹ
1,2
t = Ỹ

1,2
τk +

∫ τk

t

As dCs + (Kτk − Kt).

Taking the conditional expectation with respect to Ft under Q in that last equality
and using the martingale property of K·∧τk , we get

Ỹ
1,2
t ≤ E

Q
(
Ỹ

1,2
τk

∣∣Ft

)
. (3.3)

As in the proof of Lemma 3.1, the use of the bounded convergence theorem on the
right-hand side of (3.3) entails

Ỹ
1,2
t ≤ lim

k
E

Q
(
Ỹ

1, 2
τk

∣∣Ft

) = 0.

Hence, it implies

∀t, Ỹ
1,2
t ≤ 0 Q-a.s. (and P-a.s., because of the equivalence of P and Q),

which ends the proof, Ỹ 1,2 being a nonnegative adapted process. �
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3.3 Existence

3.3.1 Main steps of the proof of Theorem 2.5

In this part, to prove the existence result (Theorem 2.5), we proceed with three main
steps.

In a first step, we prove that, to solve a BSDE of type (2.4) under assumption (H1),
it suffices to solve the same BSDE under simpler assumption (H′

1).
In a second step, we introduce an intermediate BSDE of the form (2.7) and estab-

lish a one-to-one correspondence between the existence of a solution of a BSDE of
the form (2.4) and one of the form (2.7).

The third and last step consists in constructing a solution of the BSDE of the form
(2.7) when its generator g satisfies (H′

1) and in establishing a “monotone stability”
result analogous to the one given in [16].

Step 1: Truncation in y We rely on the a priori estimates given in Lemma 3.1 to
strengthen the assumption on the generator and obtain precise estimates for an inter-
mediate BSDE. More precisely, we show that it is sufficient to study existence under
simpler assumption (H′

1) (instead of (H1)), namely

(H′
1) ∃ᾱ ≥ 0 such that

∫ T

0
ᾱs dCs ≤ a (a > 0) and

∣∣F(s, y, z)
∣∣ ≤ ᾱs + γ

2
|msz|2.

Assuming that we have a solution of the BSDE(F,β,B) of type (2.4) under assump-
tion (H′

1) on F , we deduce the existence of a solution of this BSDE under (H1). For
this, we define K by K = |c| + |C| with constants c and C given in assertion (i) in
Lemma 3.1, and we introduce

{
dYK

s = −FK(s,YK
s ,ZK

s ) dCs − β
2 d〈LK〉s + ZK

s dMs + dLK
s ,

YK
T = B,

where the generator FK and the truncation function ρK are respectively defined by
FK(s, y, z) = F(s,ρK(y), z) and

ρK(y) =

⎧
⎪⎨

⎪⎩

−K if y < −K,

y if |y| ≤ K,

K if y > K.

Hence, we have

∀y ∈ R, z ∈ R
d,

∣∣FK(s, y, z)
∣∣ ≤ ᾱs

(
1 + b

∣∣ρK(y)
∣∣) + γ

2
|msz|2.

Since |ρK(y)| ≤ |y|, FK again satisfies (H1) with the same parameters as F . Using
Lemma 3.1, K is an upper bound of YK in S∞ for any solution (YK,ZK,LK) of
BSDE(FK , β , B). Besides, if we replace ᾱ by α̃ = ᾱ(1 + bK), FK satisfies (H′

1).
Due to the initial assumption, there exists a solution denoted by (YK , ZK , LK ) of
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BSDE(FK , β , B). Since |YK | ≤ K , FK and F coincide along the trajectories of
this solution, and hence, (YK , ZK , LK ) is a solution of BSDE(F , β , B) with F

satisfying (H1).

Step 2: An intermediate BSDE To establish the one-to-one correspondence, we first
assume the existence of a solution (Y , Z, L) of BSDE(F,β,B) with F satisfying
(H′

1) and we set U = eβY . Using Itô’s formula, we check that U solves a BSDE of
the type (2.7) and that the generator g is given by

g(s,u, v) =
(

βuF

(
s,

ln(u)

β
,

v

βu

)
− 1

2u
|msv|2

)
1u>0. (3.4)

A solution of the BSDE(g, eβB ) of type (2.7) is given by the triple (U , V , N ) such
that Us = eβYs , Vs = βUsZs , and N = βU · L. Our aim is to prove that the converse
is true, i.e., if we can solve the BSDE(g, eβB ) of type (2.7) under assumption (H′

1)
on g, then we obtain a solution of the BSDE(F , β , B) of type (2.4) by setting

Y = ln(U)

β
, Z = V

βU
, and L = 1

βU
· N. (3.5)

To achieve this, we give precise estimates of U in S∞ for any solution (U , V , N ) of
the BSDE(g, eβB ) of type (2.7). Due to the singularity of the expression (3.4) of g

with respect to u, we first rely on a truncation argument and for this, we introduce a
new generator G by

G(s,u, v) = βρc2(u)F

(
s,

ln(u ∨ c1)

β
,

v

β(u ∨ c1)

)
− 1

2(u ∨ c1)
|msv|2.

The two positive constants c1 and c2 are defined later, and the function ρc2 is the same
as in the first step. Since F satisfies (H′

1) and since ρc2(u) ≤ c2, we obtain that G also
satisfies (H′

1). Hence, for any positive constants c1 and c2, there exists a solution of

the BSDE(G,eβB ) of type (2.7). We denote it by (Uc1,c2
, V c1,c2

, Nc1,c2
). Thanks to

the estimates

∣∣G(s,u, v)
∣∣ ≤ βρc2(u)

(
ᾱs + γ |msv|2

2|βc1|2
)

+ |msv|2
2c1

≤ βᾱs |u| + γ̂

2
|msv|2, with γ̂ = γ c2

|β||c1|2 + 1

c1
,

we obtain that G satisfies (H1) with parameters a, b, and γ defined by

a =
∫ T

0
|β|ᾱs dCs, b = 1, γ = γ̂ .

Using (i) in Lemma 3.1, the solution (Uc1,c2
, V c1,c2

, Nc1,c2
) satisfies

Uc1,c2 ≤ ea − 1 + ∣∣eβB
∣∣∞ea

P-a.s.
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Defining c2 by c2 = ea − 1 + |eβB |∞ea , this provides an upper bound independent
of γ . To prove the existence of a strictly positive lower bound, we consider a solution
(U , V , N ) of the BSDE(G, eβB ) and we introduce the adapted process Ψ (U) for all t

by Ψ (Ut ) = e− ∫ t
0 β̃s dCs Ut (we check that β̃ = |β|ᾱ sign(Us) satisfies

∫ T

0 |β̃s |dCs ≤ a

P-a.s.). Applying then Itô’s formula to Ψ (U) between t and T , we get

Ψ (Ut ) − Ψ (UT )

=
∫ T

t

(
e− ∫ s

0 β̃u dCu
(
G(s,Us,Vs) + β̃sUs

))
dCs

−
∫ T

t

e− ∫ s
0 β̃u dCu(Vs dMs + dNs)

=
∫ T

t

e− ∫ s
0 β̃u dCuAs dCs −

∫ T

t

γ

2
e− ∫ s

0 β̃u dCu |msVs |2 dCs

−
∫ T

t

(
e− ∫ s

0 β̃u dCu(Vs dMs + dNs)
)

with the process A such that As = G(s,Us,Vs)+(β̃sUs + γ
2 |msVs |2), which is almost

surely positive. Since − γ
2 (V ·M) is a BMO martingale (thanks to (ii) in Lemma 3.1),

we introduce a probability measure by defining dQ
dP

= E (− γ
2 V · M). The Girsanov

transform M̃ of M , i.e., M̃ = M + γ
2 〈V · M,M〉, is a local martingale under Q, and

it follows that Ψ (U) is the sum of a local martingale (under Q) and an increasing
process. Using the standard localization procedure and the boundedness assumption
on Ψ (U), we conclude that

Ψ (Ut ) ≥ E
Q
(
Ψ (UT )

∣
∣Ft

)
.

Hence, Ut ≥ E
Q
(
(infUT )e− ∫ T

t β̃s dCs
∣∣Ft

)
, and if c1 is defined by c1 = e−|β|(|B|∞+a),

it is a lower bound of U . For these choices of c1, c2, the generator G satisfies (H1)
and, for any solution (U , V , N ),

c1 ≤ Us ≤ c2
P-a.s. for all s.

Since G(s,Us,Vs) = g(s,Us,Vs) P-a.s. for all s, (U , V , N ) is a solution of the
BSDE(g, eβB ). The process U being strictly positive and bounded, we can define
(Y , Z, L) by (3.5) and applying Itô’s formula to ln(U)

β
, we check that (Y , Z, L) is a

solution of the BSDE(F,β,B).

Step 3: Approximation To prove the existence of a solution to the BSDE(F,β,B)
of type (2.4) under (H1), the above two steps show that it is sufficient to prove the
existence to a solution of the BSDE(g, eβB ) of type (2.7). Assuming here that F

satisfies (H′
1), Step 2 entails that we only need to prove existence for the second

type of BSDE under assumption (H′
1) on g. Analogously to [16], we construct an

approximating sequence (Un, V n, Nn) satisfying

• These triples are solutions of the BSDEs(gn, eβB ),
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• The sequence (gn) is increasing and converges, P-a.s. for all s, to the function
(y, z) �−→ g(s, y, z)).

From now and for the remainder of Sect. 3.3.1, we impose

Assumption 1: The generator g satisfies (H′′
1). (3.6)

We then proceed by defining gn by inf-convolution, i.e.,

gn(s, u, v) = ess inf
u′,v′∈Qd

(
g(s,u′, v′) + n

∣∣ms(v − v′)
∣∣ + n|u − u′|).

Each gn is well defined and globally Lipschitz-continuous, which means that

∀u1, u2, v1, v2,
∣∣gn

(
s, u1, v1) − gn

(
s, u2, v2)∣∣ ≤ n

(∣∣ms

(
v1 − v2)∣∣ + ∣∣u1 − u2

∣∣). (3.7)

Since (gn) is increasing and converges, P-a.s. for all s, to g : (u, v) �−→ g(s,u, v),
which is continuous with respect to (u,v), Dini’s theorem implies that the conver-
gence is uniform over compact sets. Besides, using that gn ≤ g, we obtain

sup
n

∣∣gn(s,0,0)
∣∣ ≤ ᾱs . (3.8)

The existence of a unique solution (Un, V n, Nn) of the BSDEs given by (gn, eβB ) in
S2 ×L2(d〈M〉⊗dP)× M2([0, T ])4 follows from (3.7) and (3.8) (a detailed proof of
this existence result can be found in [8], where it is obtained in a general continuous
setting). Furthermore, applying Theorem 2.7 for these BSDEs of type (2.7) and using
that (gn)n is increasing, we get Un ≤ Un+1. The following result entails that, for all
n, Un is in S∞.

Proposition 3.2 Let (Un, V n, Nn) be a solution in S2×L2(d〈M〉⊗dP)×M2([0, T ])
of a BSDE of type (2.7) given by the parameters (gn, B̄), a generator gn, which is
Ln-Lipschitz, and a bounded terminal condition B̄ . Then we have

∃K(Ln,T ) > 0,∀t,

∣∣Un
t

∣∣2 ≤ K(Ln,T )E

(
|B̄|2∞ +

(∫ T

t

∣∣gn(s,0,0)
∣∣dCs

)2∣∣∣∣Ft

)
. (3.9)

The proof, relegated to the Appendix, is adapted from the results given in Proposi-
tion 2.1 in [5]. Relying on (3.8) and on the assumption on ᾱ, Proposition 3.2 implies
that Un is in S∞. Furthermore, since each generator gn satisfies assumption (H′′

1)
(and hence (H1) with the same parameters), assertion (i) in Lemma 3.1 ensures that
(Un) is uniformly bounded in S∞.

4The space S2 consists of all continuous processes U such that E
(
supt∈[0,T ] |Ut |2

)
< ∞.
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Step 4: Convergence of the approximations To prove the convergence of the solu-
tions of the BSDEs(gn, eβB ) under Assumption 1 (see (3.6)), we introduce the triple
(Ũ , Ṽ , Ñ ) as the limit (in a specific sense) of (Un,V n,Nn). (Un) being increasing,
we set Ũs = limn ↗ (Un

s ) P-a.s. for all s. Any generator gn satisfying (H′′
1) and hence

(H1) with the same parameters, estimate (ii) in Lemma 3.1 holds true for each term
of (V n)n and (Nn)n (uniformly in n). As bounded sequences in Hilbert spaces, there
exist subsequences of (V n) and (Nn

T ) such that V n w−→ Ṽ (in L2(d〈M〉 ⊗ dP)) and

Nn
T

w−→ ÑT in L2(Ω, FT ,P). This implies the weak convergence in L2(Ω, Ft ,P) of
Nn

t to Ñt if we define Ñt by Ñt = E
Ft (ÑT ). However, to justify the passage to the

limit in the BSDEs given by (gn, eβB ), we need the strong convergence of (V n), pos-
sibly along a subsequence, to Ṽ in L2(d〈M〉⊗ dP) (resp. (Nn) to Ñ in M2([0, T ])).
We give one essential result (similar to the stability result in [16]) which is the key
ingredient in the last step of the proof of Theorem 2.5.

Lemma 3.3 Let (gn) and (B̃n) be two sequences associated with the BSDEs(gn, B̃n)

of type (2.7) and satisfying

• P-a.s. and for all s, (gn : (u, v) �−→ gn(s, u, v)) converges increasingly with re-
spect to n and uniformly on the compact sets of R×R

d to g : (u, v) �−→ g(s,u, v)

(g is continuous with respect to (u, v)).
• For all n, each gn satisfies (H′′

1), with the same parameters as g (independent of
n),

• (B̃n) is a uniformly bounded sequence of FT -measurable random variables, which
converges almost surely to B̃ and increasingly with respect to n.

If there exist solutions (Un, V n, Nn) of the BSDEs given by (gn, B̃n) such that
the sequence (Un)n is increasing, then the sequence (Un, V n, Nn) converges to
(Ũ , Ṽ , Ñ) in the sense that

E

(
sup

t∈[0,T ]
∣∣Un

t − Ũt

∣∣
)

→ 0 as n → ∞

and

E

(∫ T

0

∣∣ms(Ṽs − V n
s )

∣∣2
dCs + ∣∣ÑT − Nn

T

∣∣2
)

→ 0 as n → ∞,

and the triple (Ũ , Ṽ , Ñ) solves the BSDE(g, B̃) of type (2.7).

Remark 3.4 The “stability” result stated in Lemma 3.3 holds also for the solution of
the BSDE(F,β,B) of type (2.4) (this results from the correspondence established in
the second step).

We relegate to Sect. 3.3.2 the technical point in the proof of Lemma 3.3, i.e., the
strong convergence in their respective Hilbert spaces of the sequences (V n) and (Nn).
Assuming this, we prove the existence of a solution for BSDE(g, B̃) by justifying the
passage to the limit in the BSDEs(gn, B̃n), i.e.,

Un
t = B̃n +

∫ T

t

gn
(
s,Un

s ,V n
s

)
dCs −

∫ T

t

V n
s dMs − (

Nn
T − Nn

t

)
.
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To this end, we check that, P-a.s. for all t ,

(i) V n → Ṽ
(
in L2(d〈M〉 ⊗ dP

))
as n → ∞,

(ii) Nn → Ñ
(
in M2([0, T ])) as n → ∞,

(iii) E

(∫ t

0

∣∣gn
(
s,Un

s ,V n
s

) − g(s, Ũs, Ṽs)
∣∣dCs

)
→ 0 as n → ∞.

Assertions (i) and (ii) are consequences of the strong convergence of the sequences
(V n) (resp. (Nn)) in L2(d〈M〉 × dP) (resp. in M2([0, T ])). To prove (iii), we justify
the convergence in L1(ds ⊗ dP) using the two following results:

• The convergence in dCs ⊗ dP-measure of (msV
n
s ) and (Un

s ) (at least along suit-
able subsequences) and the properties of (gn) which ensure the convergence of
(gn(s,Un

s ,V n
s )) to g(s, Ũs, Ṽs) in dCs ⊗ dP-measure.

• The uniform integrability of the family (gn(s,Un
s ,V n

s )) resulting from the esti-
mates of gn given by (H′

1) and from the fact that (|mV n|2) is a uniformly integrable
sequence, since it is strongly convergent in L1( dC × dP).

Passing to the limit as n goes to ∞, we get that the triple (Ũ , Ṽ , Ñ ) is a solution of
the BSDE(g, eβB ).

To obtain a solution of the BSDE(F,β,B), we rely on the results of the two first
steps and we define (Ỹ , Z̃, L̃) using formula (3.5). �

Now, we relax Assumption 1 given by (3.6), i.e., we proceed with the case where
g only satisfies (H′

1). In this case, the lower bound is no more Lipschitz and, for
the procedure, we refer once again to [4]. The idea consists in using two successive
approximations. For this, we define (gn,p) by

gn,p(s, u, v) = ess inf
u′,v′

(
g+(s, u′, v′) + n

∣∣ms(v − v′)
∣∣ + n|u − u′|)

− ess inf
u′,v′

(
g−(s, u′, v′) + p

∣∣ms(v − v′)
∣∣ + p|u − u′|),

which is increasing with respect to n and decreasing with respect to p. The entire
proof can be rewritten by passing to the limit as n goes to ∞ (p being fixed) and then
as p goes to ∞.

3.3.2 Proof of the “stability” result in Lemma 3.3

Following the same method as in [16], we establish the strong convergence of the se-
quences (V n)n and (Nn)n to Ṽ and Ñ (this requires the a priori estimates established
in Lemma 3.1 for the solutions of the BSDEs given by (gn, B̃n)). We first introduce
the nonnegative semimartingale ΦL(Un − Up) = (ΦL(Un,p))n≥p with ΦL given by

ΦL(x) = eLx − Lx − 1

L2
. (3.10)

This function ΦL satisfies ΦL ≥ 0, ΦL(0) = 0, Φ ′′
L − LΦ ′

L = 1, Φ ′
L(x) ≥ 0, and

Φ ′′
L(x) ≥ 1 if x ≥ 0. Since V n,p · M and Nn,p are square-integrable martingales,
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their expectations are constant. Applying Itô’s formula to ΦL(Un,p) between 0 and
T , we get

EΦL

(
U

n,p

0

) − EΦL

(
U

n,p
T

)

= E

(∫ T

0

(
Φ ′

L

(
U

n,p
s

)(
gn

(
s,Un

s ,V n
s

) − (
gp

(
s,U

p
s ,V

p
s

)))
dCs

)

− E

(∫ T

0

Φ ′′
L

2

(
U

n,p
s

)∣∣ms

(
V

n,p
s

)∣∣2
dCs

)
− E

(∫ T

0

Φ ′′
L

2

(
U

n,p
s

)
d
〈
Nn,p

〉
s

)
.

Then, since both gn and gp satisfy (H′
1) with the same parameters,

∣∣gn
(
s,Un

s ,V n
s

) − gp
(
s,U

p
s ,V

p
s

)∣∣

≤ 2ᾱs + γ

2

∣∣ms

(
V n

s

)∣∣2 + γ

2

∣∣ms

(
V

p
s

)∣∣2

≤ 2ᾱs + 3γ

2

(∣∣ms

(
V

n,p
s

)∣∣2 + ∣∣ms

(
V

p
s − Ṽs

)∣∣2 + ∣∣msṼs

∣∣2)

+ γ
(∣∣ms

(
V

p
s − Ṽs

)∣∣2 + |msṼs |2
)

≤ 2ᾱs + 3γ

2

(∣∣ms

(
V

n,p
s

)∣∣2) + 5γ

2

(∣∣ms

(
V

p
s − Ṽs

)∣∣2 + |msṼs |2
)
.

The two last inequalities result from the convexity of z �→ |z|2. Using these estimates
and transferring both

E

(∫ T

0

Φ ′′
L

2

(
U

n,p
s

)∣∣ms

(
V

n,p
s

)∣∣2
dCs

)
and

E

(∫ T

0
Φ ′

L

(
U

n,p
s

)3γ

2

∣∣ms

(
V

n,p
s

)∣∣2
dCs

)

to the left-hand side of Itô’s formula applied to ΦL(Un,p), we obtain

E
(
ΦL

(
U

n,p

0

)) + 1

2
E

(∣∣Nn,p
T

∣∣2)

+ E

(∫ T

0

(
Φ ′′

L

2
− 3γ

2
Φ ′

L

)(
U

n,p
s

)∣∣ms

(
V

n,p
s

)∣∣2
dCs

)

≤ E
(
ΦL

(
B̃n − B̃p

))

+ E

(∫ T

0
Φ ′

L

(
U

n,p
s

)(
2ᾱs + 5γ

2

(∣∣ms

(
V

p
s − Ṽs

)∣∣2 + |msṼs |2
))

dCs

)
. (3.11)

Setting L = 8γ and using the definition (3.10), we check that

Φ ′′
L − 8γΦ ′

L = 1, (3.12)
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which entails, in particular, the positiveness of the last term on the left-hand side
of (3.11). Then, thanks to the weak convergence of (V n) to Ṽ (and of (Nn) to Ñ ) and
the convexity of z �→ |z|2, we have

lim inf
n→∞ E

(∫ T

0

(
Φ ′′

L

2
− 3γ

2
Φ ′

L

)(
U

n,p
s

)∣∣ms

(
V

n,p
s

)∣∣2
dCs

)

≥ E

(∫ T

0

(
Φ ′′

L

2
− 3γ

2
Φ ′

L

)(
Ũs − U

p
s

)(∣∣ms

(
Ṽs − V

p
s

)∣∣2)
dCs

)
. (3.13)

Similarly, we get

lim inf
n→∞ E

(∣∣Nn,p
T

∣∣2) ≥ E
(∣∣ÑT − N

p
T

∣∣2)
. (3.14)

Using the almost sure convergence of the increasing sequence (Un) to Ũ , the domi-
nated convergence theorem yields

Φ ′
L

(
U

n,p
s

)(5γ

2

(∣∣ms

(
Ṽs − V

p
s

)∣∣2 + |msṼs |2
) + 2ᾱs

)

≤ Φ ′
L

(
Ũs − U

p
s

)(5γ

2

(∣∣ms

(
Ṽs − V

p
s

)∣∣2 + |msṼs |2
) + 2ᾱs

)
,

which holds uniformly in n. Besides, the process on the right-hand side of (3.15)
is integrable with respect to dC, as a product of a bounded process and a sum of
integrable processes. To obtain a lower bound for the left-hand side of inequality
(3.11), we use both (3.13) and (3.14). Then, for the right-hand side of (3.11), we rely
on (3.15) and on the almost sure and increasing convergence of (B̃n) to B̃ to get

E
(
ΦL

(
Ũ0 − U

p

0

)) + 1

2
E

(∣∣ÑT − N
p
T

∣∣2)

+ E

(∫ T

0

(
Φ ′′

L

2
− 3γ

2
Φ ′

L

)(
Ũs − U

p
s

)∣∣ms

(
Ṽs − V

p
s

)∣∣2
dCs

)

≤ E
(
ΦL(B̃ − B̃p)

)

+ E

(∫ T

0
Φ ′

L

(
Ũs − U

p
s

)(5γ

2

∣∣ms

(
Ṽs − V

p
s

)∣∣2 + 2ᾱs + 5γ

2
|msṼs |2

)
dCs

)
.

Transferring now E
(∫ T

0 Φ ′
L(Ũs −U

p
s )(

5γ
2 |ms(Ṽs −V

p
s )|2) dCs

)
to the left-hand side

of this inequality and using the properties of ΦL and in particular (3.12), we obtain

E
(
ΦL

(
Ũ0 − U

p

0

)) + 1

2
E

(∫ T

0

∣∣ms

(
Ṽs − V

p
s

)∣∣2
dCs + ∣∣ÑT − N

p
T

∣∣2
)

≤ E

(
ΦL

(
B̃ − B̃p

) +
∫ T

0
Φ ′

L

(
Ũs − U

p
s

)(
2ᾱs + 5γ

2
|msṼs |2

)
dCs

)
.
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Thanks to the convergence of (Ũs − U
p
s ) to 0 (holding true P-a.s. for all s) and since

|mṼ |2 and ᾱ are in L1( dC ⊗ dP), the dominated convergence theorem entails the
convergence of the right-hand side to 0. Taking the lim sup over p on the left-hand
side yields

lim sup
p→∞

1

2
E

(∫ T

0

∣∣ms

(
Ṽs − V

p
s

)∣∣2
dCs + ∣∣ÑT − N

p
T

∣∣2
)

≤ 0,

which ends the proof. �

4 Applications to finance

In this section, we study the problem (1.1) stated in the introduction for three types
of utility functions.

4.1 The case of the exponential utility

Theorem 4.1 (1) For any fixed t , the value process given at time t by V B
t can be

expressed in terms of the unique solution (Y,Z,L) of a BSDE of type (2.4) given by
(Fα,β,B) as

V B
t (x) = Uα(x − Yt ). (4.1)

The constant β corresponds to the risk aversion parameter α, B is the contingent
claim, and Fα is the generator given by

Fα(s, z) = inf
ν∈C

(
α

2

∣∣∣∣ms

(
ν −

(
z + λs

α

))∣∣∣∣

2)
− (msz)

′(msλs) − 1

2α
|msλs |2.

(2) There exists an optimal strategy ν∗ = (ν∗
s )s∈[t,T ] such that ν∗ ∈ At and satis-

fying, P-a.s. for all s,

ν∗
s ∈ arg min

ν∈C

∣∣
∣∣ms

(
ν −

(
Zs + λs

α

))∣∣
∣∣

2

. (4.2)

(3) Extending the definition of V B
t (x) to an arbitrary stopping time τ , we set

V B
τ (x) = ess sup

ν
E

Fτ

(
Uα

(
x +

∫ T

τ

∑

i

νi
u

dSi
u

Si
u

− B

))
,

where, in this expression, all trading strategies ν are defined on [τ, T ]. Then, for
any τ ,

V B
τ (x) = Uα(x − Yτ ) = Rν∗

τ ,

and we recover the formulation of the dynamic programming principle as

∀τ, σ, τ ≤ σ, F -stopping times, V B
τ (x) = E

Fτ
(
V B

σ

(
Xν∗,τ,x

σ

))
. (4.3)
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Remark 4.2 To give sense to the expression V B
σ (Xν∗,τ,x

σ ), we refer to the footnote 3.
Indeed, by definition, Xν∗,τ,x

σ = x + ∫ σ

τ
ν∗
u

dSu

Su
is an attainable wealth at time σ when

starting from x at time τ .

Proof of Theorem 4.1 To prove (4.1), we rely on the results obtained in Sect. 3 to get
the existence of a unique solution (Y,Z,U ) to the BSDE(Fα,α,B). Then, using the
expression of Rν = Uα(Xν − Y) obtained in the last paragraph of Sect. 2.1, we write

∀s ∈ [t, T ], Rν
s = Rν

t M̃ν
t,s exp

(
Aν

s − Aν
t

)
,

with M̃ν
t,s = Et,s (−α(ν − Z) · M + αL). Since the continuous stochastic exponential

is a positive local martingale and since Aν ≥ 0, there exists a sequence of stopping
times (τn) such that (Rν·∧τn

) are supermartingales (for each ν), which entails

∀s, t ≤ s ≤ T ,∀A ∈ Ft , E
(
Rν

s∧τn
1A

) ≤ E
(
Rν

t∧τn
1A

)
.

Using the definition of admissibility and the boundedness of Y , we obtain the uniform
integrability of (Rν

t∧τn
) and (Rν

s∧τn
). Passing to the limit, we get E(Rν

s 1A) ≤ E(Rν
t 1A),

which entails the supermartingale property of Rν , as soon as ν ∈ At . Both this super-
martingale property and the relation Rν

t = Uα(x − Yt ) imply

V B
t (x) = ess sup

ν∈At

E
Ft

(
Uα

(
X

ν,x,t
T − B

)) ≤ Uα(x − Yt ).

Now, to obtain (4.1), we focus on the second point of Theorem 4.1. Since
z �−→ Fα(s, z) is a continuous functional of z, which tends to +∞ as |z| goes to ∞,
the infimum in the expression of Fα is attained. Furthermore, relying on the same se-
lection argument as in Lemma 11 in [13] and thanks to the continuity of the functional
and the predictability of the processes λ and Z, there exists a measurable choice of
ν∗
s satisfying (4.2), i.e., Aν∗ ≡ 0. To check that ν∗ ∈ At , we argue that, by the choice

of ν∗ given in Theorem 4.1 and since 0 is in C ,

∀s ∈ [0, T ],
∣∣∣∣ms

(
ν∗
s −

(
Zs + λs

α

))∣∣∣∣ ≤
∣∣∣∣ms

(
Zs + λs

α

)∣∣∣∣.

Since |ms(ν
∗
s − Zs)| ≤ |ms(ν

∗
s − (Zs + λs

α
))| + |ms

λs

α
|, we obtain a control of

|m(ν∗ − Z)| depending only on the processes Z and λ. Hence, thanks to Kazamaki’s
criterion (see [14]), E (−α(ν∗ − Z) · M) is a true martingale. The process Rν∗

such
that, for all s ≥ t ,

Rν∗
s = −e−α(x−Yt )Et,s

(−α(ν∗ − Z) · M + αL
)
,

is a true martingale, which implies that ν∗ ∈ At and (4.1).
To recover the dynamic programming principle, we define the Fτ -measurable ran-

dom variable V B
τ (x) for any F -stopping time τ in the same way as V B

t (x). The same
procedure as the one used to prove (4.1) entails

V B
τ (x) = Uα(x − Yτ ) = Uα

(
Xν∗,τ,x

τ − Yτ

) = Rν∗
τ .
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Applying the optional sampling theorem between τ and σ to the martingale Rν∗

defined by Rν∗ = Uα(Xν∗,τ,x − Y), we get (4.3). �

4.2 Power and logarithmic utilities

As in [13], we introduce two other types of utility functions. The first one is the power
utility defined for all γ ∈]0,1[ by Uγ (x) = 1

γ
xγ (γ being fixed, we write U1 instead

of Uγ ). The second one is the logarithmic utility given by U2(x) = ln(x).
Contrary to the exponential case, we have to impose that the wealth process is

positive. We focus our attention to the case where there is no liability any more
(i.e., B ≡ 0 in the problem (1.1)). In this context, a constrained trading strategy is a
d-dimensional process ρ which takes its values in the constraint set C and such that,
for each i, ρi stands for the fraction of the wealth invested in stock i. The discounted
price process S is again assumed to satisfy (2.1), and we denote by Xρ = Xρ,t,x the
wealth process associated with the strategy ρ and such that X

ρ
t = x. Its expression

for any s ∈ [t, T ] is

Xρ
s = x +

∫ s

t

Xρ
uρu

dSu

Su

= x +
∫ s

t

Xρ
uρu dMu +

∫ s

t

Xρ
uρ′

u d〈M〉uλu.

The decomposition of the price process S is the same as in Sect. 2.1, and, in particular,
λ is a predictable R

d -valued process. For each case, we give in Sects. 4.2.1 and 4.2.2
a definition of the admissibility set for trading strategies (this set is always denoted
by At ). Denoting by U the utility function, we are going to characterize the value
process associated to the utility maximization problem with liability equal to zero;
this process is defined at time t by

Vt (x) = ess sup
ρ∈At

E
Ft

(
U

(
x +

∫ T

t

Xρ
uρu

dSu

Su

))
. (4.4)

4.2.1 The power utility case

Definition 4.3 The set of admissible strategies At consists of all d-dimensional pre-
dictable processes ρ = (ρs)s∈[t,T ] such that ρs ∈ C (P-a.s. for all s) and

∫ T

t

ρ′
s d〈M〉sρs =

∫ T

t

|msρs |2 dCs < ∞ P- a.s.

This condition entails that the stochastic exponential E (ρ · M) is a continuous local
martingale. We can now solve the problem (4.4) for the power utility function U1.

Theorem 4.4 Let V 1 be the value process associated with the problem (4.4) and
having the utility function U = U1.

(1) Its expression is

V 1
t (x) = xγ

γ
exp(Yt ).
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In this expression, (Y,Z,L) stands for the unique solution of the BSDE(f 1, 1
2 ,0)

of type (2.4) given by

Yt = 0 −
∫ T

t

f 1(s,Zs) dCs +
∫ T

t

1

2
d〈L〉s −

∫ T

t

Zs dMs − (LT − Lt),

the process L is a real-valued martingale strongly orthogonal to M , and the
generator f 1 is given by

f 1(s, z) = inf
ρ∈C

γ (1 − γ )

2

(∣∣∣∣ms

(
ρ −

(
z + λs

1 − γ

))∣∣∣∣

2)

− γ (1 − γ )

2

∣
∣∣∣ms

(
z + λs

1 − γ

)∣
∣∣∣

2

− 1

2
|msz|2.

(2) There exists an optimal strategy ρ∗
1 satisfying, P-a.s. for all s,

(ρ∗
1 )(s) ∈ arg min

ρ∈C

∣∣∣∣ms

(
ρ −

(
Zs + λs

1 − γ

))∣∣∣∣

2

. (4.5)

Remark 4.5 The expression of the optimal strategy ρ∗ is already known in the
Brownian setting and when there are no trading constraints. In that case, the wealth
process Xπ satisfies

dXπ
s = rXπ

s ds + Xπ
s

(
σsπs dWs + (μ − r)πs ds

)
. (4.6)

In the elementary case of constant coefficients in (4.6), the optimal proportion is equal
to μ−r

(1−γ )σ 2 (this result can be found in [6] or also in the seminal paper of Merton [15]).
In [21], the author generalizes those previous results assuming that the price process
is a geometric Brownian motion and assuming that there exists an additional asset,
which is driven by another Brownian motion correlated to the first one. In that case,
the explicit formula for the optimal strategy incorporates the effect of the correlation
factor.

Proof of Theorem 4.4 We just give a sketch of the proof, which is similar to the one
given in the exponential case and relies on the same dynamic method as in [13]. To
this end, we define the process Rρ for all s ∈ [t, T ] by R

ρ
s = X

ρ
s exp(Ys). We first

write

Xρ
s = x +

∫ s

t

Xρ
uρu dMu +

∫ s

t

Xρ
u(muρu)

′(muλu)dCu,

and since Y is solution of the BSDE(f 1, 1
2 ,0), simple computations lead to

Rρ
s = R

ρ
t

1

γ
Et,s

(
(γρ + Z) · M + L

)
exp

(
Ãρ

s − Ã
ρ
t

)
,
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where the process Ãρ is such that

Ãρ
s =

∫ s

0

(
f 1(u,Zu) + 1

2
|muZu|2 + γ (γ − 1)

2
|muρu|2

+ γ (muρu)
′(mu(Zu + λu)

))
dCu.

By the definition of f 1, we check that

• Rρ is a supermartingale for any ρ ∈ At ,
• Rρ∗

is a martingale for any strategy ρ∗
1 satisfying (4.5), taking into consideration

that, for such a strategy, we have |mρ∗
1 | ≤ |m(Z+λ)

(1−γ )
|.

Besides, we obtain

V 1
t (x) = E

Ft
(
R

ρ∗
1

T

) = R
ρ∗

1
t = xγ

γ
exp(Yt ). �

4.2.2 The logarithmic utility case

We again introduce the notion of admissible strategy adapted to our problem.

Definition 4.6 The set of admissible strategies At consists of all d-dimensional pre-
dictable processes ρ such that ρs ∈ C P-a.s. for all s and such that

E

(∫ T

t

ρ′
s d〈M〉sρs

)
= E

(∫ T

t

|msρs |2 dCs

)
< ∞.

Theorem 4.7 Let V 2 be the value process associated with the problem (4.4) and
having the utility function U = U2.

(1) Its expression is V 2
t (x) = ln(x)+Yt . Here Y stands for the unique solution of the

BSDE(f 2,0) of type (2.7) given by

Yt = 0 −
∫ T

t

f 2(s) dCs −
∫ T

t

Zs dMs −
∫ T

t

dLs,

and the generator f 2 is

f 2(s) = inf
ρ∈C

1

2

∣∣ms(ρ − λs)
∣∣2 − 1

2
|msλs |2.

(2) There exists an optimal strategy ρ∗
2 satisfying (P-a.s. for all s)

(ρ∗
2 )(s) ∈ arg min

ρ∈C

∣∣ms(ρ − λs)
∣∣2

. (4.7)

Remark 4.8 As in the power utility case, we recover the expression of the optimal
proportion in the Brownian setting. Assuming that the coefficients μ, σ , and r are
constant, this proportion is equal to ρ∗ ≡ (μ−r)

σ 2 .



Utility maximization solved by BSDE theory 147

Proof of Theorem 4.7 The wealth process Xρ satisfies again

Xρ
s = x +

∫ s

t

Xρ
uρu dMu +

∫ s

t

Xρ
u(muρu)

′(muλu)dCu.

Now, using both Itô’s formula and the assumption that Y solves a BSDE of type (2.7)
yields

Rρ
s = ln

(
Xρ

s

) + Ys = ln(x) + Yt +
∫ s

t

(
(ρu + Zu)dMu + dLu

) + A
ρ
2 (s) − A

ρ
2 (t),

where the process A
ρ
2 is such that

A
ρ
2 (s) =

∫ s

0

(
f 2(u) − 1

2
|muρu|2 + (muρu)

′(muλu)

)
dCu.

From the definition of f 2 we obtain A
ρ
2 ≤ 0 and we deduce that ln(Xρ) + Y is a

supermartingale for any ρ ∈ At . If, besides, ρ∗
2 satisfies (4.7) then A

ρ∗
2

2 = 0, and hence
|m(ρ∗

2 −λ)| ≤ |mλ|. Since assumption (Hλ) on λ implies the uniform integrability of
Rρ∗

2 , we can claim that ln(Xρ∗
2 ) + Y is a martingale. Such a strategy ρ∗

2 is optimal,
and applying the optional sampling theorem to Rρ∗

2 , we get

V 2
t (x) = E

Ft
(
R

ρ∗
2

T

) = R
ρ∗

2
t = ln(x) + Yt . �

5 Conclusion

In this paper, we have solved the utility maximization problem by characterizing both
the value process and the optimal strategies. The novelty of our study is that we have
used a dynamic method in the context of a general (and not necessarily Brownian)
continuous filtration and in the presence of portfolio constraints. This last assumption
entails that the introduced BSDEs have quadratic growth.

Since we are not in a Brownian setting, the first part of our work consists in justify-
ing new existence and uniqueness results for solutions of a specific type of quadratic
BSDEs. This study leads to an expression of the value process in terms of a solution
of a BSDE of the previous type. Relying on the dynamic programming principle, we
are able to characterize this value process for three cases of utility functions. This
type of BSDE has already been studied in a particular case in [17] in connection with
the notion of indifference utility price. However, one of the main differences in [17]
is that there no constraints are imposed on the portfolio. Furthermore and contrary to
our setting, they refer to duality methods. Our study depends heavily on the assump-
tion that the filtration is continuous, and we hope to study the case where jumps are
allowed. Another perspective is to study the connection with the problem of utility
indifference pricing.

Acknowledgements I express my gratitude to Professor Schweizer and Professor Jeanblanc for helpful
discussions and to the anonymous referees for their valuable comments, which allowed me to greatly
improve the previous versions of my paper.
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Appendix: Proof of Proposition 3.2

Contrary to Lemma 3.1, where the process Y is supposed to be in S∞, in this propo-
sition, the process Un is only assumed to be in S2. First, we apply Itô’s formula to
(eΓ Ct |Un

t |2), Γ being a nonnegative constant, to get

d
(
eΓ Ct

∣∣Un
t

∣∣2) = Γ eΓ Ct
∣∣Un

t

∣∣2
dCt + eΓ Ct

(
2Un

t dUn
t + d

〈
Un

〉
t

)
(A.1)

with

2Un
t dUn

t + d
〈
Un

〉
t
= −2Un

t gn
(
t,Un

t ,V n
t

)
dCt + ∣∣mtV

n
t

∣∣2
dCt + d

〈
Nn

〉
t

+ 2Un
t

(
V n

t dMt + dNn
t

)
.

Since (Un,V n,Nn) is in S2 × L2(d〈M〉 × dP) × M2([0, T ]), it follows that the
process K defined by

∀s ∈ [0, T ], Ks =
∫ s

0
2eΓ CuUn

u

(
V n

u dMu + dNn
u

)
,

is a true martingale. We now fix t ∈ [0, T ] and we rewrite Itô’s formula (A.1) between
s and T as

eΓ Cs
∣∣Un

s

∣∣2 − eΓ CT
∣∣Un

T

∣∣2 =
∫ T

s

eΓ CuUn
u

(−Γ Un
u + 2gn

(
u,Un

u ,V n
u

))
dCu

−
∫ T

s

eΓ Cu
(∣∣muV

n
u

∣∣2
dCu + d

〈
Nn

〉
u

) − (KT − Ks).

Relying on the Lipschitz property of the generator gn, we get

2
∣∣Un

u

∣∣∣∣gn
(
u,Un

u ,V n
u

)∣∣ ≤ 2
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣ + 2Ln

(∣∣Un
u

∣∣2 + ∣∣Un
u

∣∣∣∣muV
n
u

∣∣),

and using the inequality |2Lnab| ≤ (2(Ln)
2a2 + 1

2b2), we obtain

2Ln

∣∣Un
u

∣∣∣∣muV
n
u

∣∣ ≤ 2(Ln)
2
∣∣Un

u

∣∣2 + 1

2

∣∣muV
n
u

∣∣2
.

Combining these two last inequalities, setting Γ = 2((Ln)
2 + Ln), and taking the

conditional expectation with respect to Ft in Itô’s formula applied to eΓ Cs |Un
s |2 be-

tween t and T yields

eΓ Ct

∣∣Un
t

∣∣2 ≤ E
(
eΓ CT

∣∣Un
T

∣∣2∣∣Ft

)

+ E

(∫ T

t

eΓ Cu

(
2
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣ + 1

2

(∣∣muV
n
u

∣∣2)
)

dCu

∣∣∣∣Ft

)

− E

(∫ T

t

eΓ Cu
(∣∣muV

n
u

∣∣2
dCu + d

〈
Nn

〉
u

)
∣∣∣∣Ft

)
.
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This leads to

E

(∫ T

t

eΓ Cu
(∣∣muV

n
u

∣∣2
dCu + d〈N〉u

)
∣∣∣∣Ft

)

≤ 2E

(
eΓ CT

∣∣Un
T

∣∣2 + 2
∫ T

t

eΓ Cu
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣dCu

∣∣∣∣Ft

)
. (A.2)

We come back to Itô’s formula (A.1) for the process eΓ C· |Un· |2 between s and T .
Taking the supremum over s ∈ [t, T ], it follows that

sup
t≤s≤T

eΓ Cs
∣∣Un

s

∣∣2 ≤ eΓ CT
∣∣Un

T

∣∣2 + 2
∫ T

t

eΓ Cu
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣dCu

+ sup
t≤s≤T

|KT − Ks |.

Applying the Burkholder–Davis–Gundy inequality to the supremum of the square-

integrable martingale K and using the relation Cab ≤ C2

2 a2 + 1
2b2, we deduce the

existence of a constant C such that

E

(
sup

t≤s≤T

eΓ Cs
∣∣Un

s

∣∣2
∣∣∣∣Ft

)

≤ E

(
eΓ CT

∣∣Un
T

∣∣2 + 2
∫ T

t

eΓ Cu
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣dCu

∣∣∣
∣Ft

)

+ C2

2
E

(∫ T

t

eΓ Cu
(∣∣muV

n
u

∣∣2
dCu + d〈N〉u

)
∣∣∣∣Ft

)

+ 1

2
E

(
sup

t≤s≤T

eΓ Cs
∣
∣Un

s

∣
∣2

∣∣
∣∣Ft

)
,

where the constant C is generic and may vary from line to line. Combining this last
inequality with (A.2), we deduce

E

(
sup

t≤s≤T

eΓ Cs
∣∣Un

s

∣∣2 +
∫ T

t

eΓ Cu
(∣∣muV

n
u

∣∣2
dCu + d〈N〉u

)
∣∣∣∣Ft

)

≤ CE

(
eΓ CT

∣∣Un
T

∣∣2 +
∫ T

t

eΓ Cu
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣dCu

∣
∣∣∣Ft

)
.

To obtain the desired relation, we use the last estimate of the last term on the right-
hand side of the previous inequality,

CE

(∫ T

t

eΓ Cu
∣∣Un

u

∣∣∣∣gn(u,0,0)
∣∣dCu

∣∣∣
∣Ft

)

≤ 1

2
E

(
sup

t≤u≤T

eΓ Cu
∣∣Un

u

∣∣2
∣∣∣∣Ft

)
+ C2

2
E

((∫ T

t

e
Γ
2 Cu

∣∣gn(u,0,0)
∣∣dCu

)2∣∣∣∣Ft

)
.
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We can now claim that relation (3.9) given in Proposition 3.2 holds true, using that

eΓ Ct
∣∣Un

t

∣∣2 ≤ E

(
sup

t≤u≤T

eΓ Cu
∣∣Un

u

∣∣2
∣∣∣Ft

)
.

To deduce the boundedness of Un in S∞, we use the two following properties. On the
one hand, |gn(u,0,0)| ≤ ᾱu with the process ᾱ satisfying

∫ T

0 ᾱs dCs ≤ a < ∞ P-a.s.,
and, on the other hand and for all n, the random variable Un

T = eβB is bounded. �
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