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1 Introduction

In the classical model of ruin theory, the process

Xt = x + ct − Zt , t ≥ 0, (1.1)

stands for the surplus process of an insurance company. Here, x > 0 is the initial
surplus, c > 0 is the rate at which premiums are received, and Z = (Zt ; t ≥ 0) is
a compound Poisson process which represents the aggregate claims between time 0
and t . (Note that in the insurance context, X has only downward jumps.) Ruin is
the event that Xt ≤ 0 for some t ≥ 0. Let τ be the time of ruin and Xτ the negative
surplus when ruin occurs. Given a penalty scheme g, Gerber and Shiu [17] considered
the expected discounted penalty

Φ(x) = Ex

[
e−rτ g(Xτ )

]
. (1.2)

(Here r ≥ 0 is the risk-free rate, and we use the convention that e−r·(+∞) = 0.) By
taking g ≡ 1 and r = 0, the ruin probability is a special case of (1.2). For a general
penalty scheme g, (1.2) represents the amount payable at ruin, and it depends on the
deficit at ruin. For more results and related problems, see [1].

Gerber [15] extended the classical model (1.1) by adding an independent diffusion.
Then the surplus process takes the form

Xt = x + ct + σWt − Zt , t ≥ 0. (1.3)

Here σ > 0, and W = (Wt ; t ≥ 0) is a standard Brownian motion independent of
Z. In this case, ruin may be caused by oscillation (that is, Xτ = 0) or by a claim
(that is, Xτ < 0). Dufresne and Gerber [13] studied the probability of ruin caused by
oscillation and the probability of ruin caused by a claim. Moreover, as in [16, 17] con-
sidered the expected discounted penalty (1.2). They heuristically derived the integro-
differential equation for Φ and showed that Φ satisfies a renewal integral equation. As
an application of the renewal equation, they determined the optimal exercise strategy
for a perpetual American put option under the assumptions that the log price of the
stock is of the form (1.3) and only downward jumps of X are allowed. On the other
hand, by a different approach, Mordecki [25] considered optimal exercise strategies
and perpetual options for exponential Lévy models. In terms of the supremum and
infimum processes of the Lévy process, he derived closed formulas for the optimal
exercise strategies and prices of perpetual American call and put options. In partic-
ular, if X is the independent difference of a spectrally positive Levy process and a
compound Poisson process whose jump distribution is a mixture of exponential dis-
tributions, Mordecki [25] gave explicit formulas for optimal exercise strategies and
prices of perpetual American put options. (Similar results also hold for call options.)
For related results on American option pricing, see also [2, 5, 6, 8, 9], and others.

In addition to option pricing theory, the expected discounted penalty also is of im-
portance in the structural form modeling of credit risk. The structural form modeling
includes, based on (exogenous) default caused by an insufficiency of assets relative
to liabilities, the classic Black–Scholes–Merton model of corporate debt pricing and
Leland’s structural model, for which (endogenous) default occurs when the issuer’s
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assets reach a level so small that the issuer finds it optimal to declare bankruptcy. All
the aforementioned models of credit risk have relied on diffusion processes to model
the evolution of the assets. However, while the diffusion approach is mathematically
tractable and has inputs and parameters of the models observable and estimable, it
cannot capture the basic features of credit risk observed empirically.

There are many extensions of the Black–Scholes–Merton model and Leland’s
model. One example is [18] in which the model of Leland [22] or Leland and Toft
[23] was extended by adding downward jumps in the dynamics of the firm’s assets.
If the log value of the assets follows a jump-diffusion as in (1.3) with only downward
jumps, Hilberink and Rogers gave explicit formulas for the values of the debt and the
value of the firm up to Fourier transforms. Without closed-form solutions for these
two values, by imposing smooth-pasting condition, they surprisingly determined the
optimal default boundary in terms of the Wiener–Hopf factors of a Lévy process.
Also, by numerical inversion for Fourier transforms, they presented some interesting
results and discussed their interpretation. For recent works and related results, see
[4, 11, 21].

In this paper we study the function Φ defined in (1.2). Here X is a jump-diffusion
of the form (1.3), and the jump distribution for X is a two-sided phase-type distri-
bution. The main results of the paper are outlined as follows. We first show that Φ

satisfies an integro-differential equation (Theorem 2.4) and then derive an ordinary
differential equation for Φ (Theorem 3.5). Based on the ODE, we show in Proposition
3.6 that the function Φ can be written as a linear combination of known exponential
functions. Moreover, if only downward jumps are allowed, we calculate any higher-
order (right-hand) derivative of Φ at zero in terms of the penalty function g and jump
distribution. As a consequence, we obtain an explicit formula for Φ when there are
only downward jumps for X (Theorem 3.7). If the downward jumps have a mixed
exponential distribution and the upward jumps have a general distribution, we also
obtain an explicit formula for Φ in Theorem 4.3. As hints for possible finance and
insurance applications of our results, we provide some examples. In particular, in the
setup of Leland’s model with jumps, we determine the optimal endogenous default
and obtain the equity, debt, and firm values in closed-form formulas in Examples 3.9
and 4.6.

The plan of the rest of the paper is as follows. In Sect. 2 we introduce the process
X and derive an integro-differential equation for Φ . Section 3 recalls the definition
of phase-type distributions and presents our ODE approach for Φ . In Sect. 4 we con-
sider a general Lévy process X which is a difference of a spectrally positive Lévy
process and a compound Poisson process with only upward jumps. Moreover, if the
jump distribution for the compound Poisson process is a mixture of exponential dis-
tributions, based on the results in Sect. 3, we conjecture the solution form of Φ and
by using the Feynman-Kac formula we verify our conjecture. Section 5 concludes the
paper. Notation, proofs of lemmas, propositions, and technical results are relegated
to appendices.

2 Integro-differential equation

To start with, we specify a Lévy process that we consider in this paper unless
otherwise stated. We are given a probability space (Ω,F ,P) on which there are



326 Y.-T. Chen et al.

a standard Brownian motion W = (Wt ; t ≥ 0) and a compound Poisson process
Z = (Zt =∑Nt

n=1 Yn; t ≥ 0). Here the Poisson process N = (Nt ; t ≥ 0) has parameter
λ > 0 and the random variables (Yn;n ∈ N) are independent and identically distrib-
uted. We assume further that the distribution F of Y1 has a bounded density f that
is continuous on R\{0}. In addition, W, N, and(Yn) are assumed to be independent.
For every x ∈ R, let Px be the law of the process

Xt = X0 + ct + σWt − Zt , (2.1)

where c ∈ R, σ > 0, and X0 = x. Write P0 for P and Ex[Z] = ∫
Z(ω)dPx(ω) for a

random variable Z. For every ζ ∈ iR, we have

E0
[
eζX1

]= eψ(ζ ), (2.2)

where

ψ(ζ ) = Dζ 2 + cζ + λ

∫
e−ζy dF (y) − λ (2.3)

and

D = σ 2

2
.

(ψ is called the characteristic exponent of X.) Moreover, the infinitesimal generator
L of X has a domain containing C2

0(R) and, for any h ∈ C2
0(R),

Lh(x) = Dh′′(x) + ch′(x) + λ

∫
h(x − y)dF (y) − λh(x). (2.4)

(For details, see [3].) On the other hand, let (Ft ) be the usual augmentation of the
natural filtration of X. Then for every Borel set A, the entry time of A by X,

τA = inf{t ≥ 0 : Xt ∈ A}, (2.5)

is an (Ft )-stopping time. Let τ = τ(−∞,0].
From now on, we fix a bounded Borel penalty function g on (−∞,0] and let the

function Φ be given by

Φ(x) = Ex

[
e−rτ g(Xτ )

]
, x ∈ R. (2.6)

Note that Φ(x) = g(x) for x ≤ 0 and, in the insurance literature, Φ is called the
expected discounted penalty for the penalty function g.

In [16] and [30], the following regularities were used implicitly. For a rigorous
proof and related works, see [7, 10].

Theorem 2.1 The function Φ in (2.6) has the following properties:

1. For all r ≥ 0, Φ ∈ C1
b(R+) ∩ C2(R++).

2. If r > 0, or r = 0 and E[X1] > 0, then Φ ∈ C1
0(R+).
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Lemma 2.2 The process {e−r(τ∧t)Φ(Xτ∧t ); t ≥ 0} is a (Px,Ft∧τ )-martingale and,
for all t ,

Ex

[
e−rτ g(Xτ )

∣∣Fτ∧t

]= e−r(t∧τ)Φ(Xτ∧t ).

Hence, for any (Ft∧τ )-stopping time η,

Ex

[
e−r(t∧η∧τ)Φ(Xt∧τ∧η)

]= Φ(x).

Proof Please refer to Appendix A. �

We define Lh(x) by expression (2.4) for all functions h on R such that h′, h′′, and
the integral in (2.4) exist at x.

Lemma 2.3 The function LΦ is in C(R++).

Proof Please refer to Appendix A. �

Theorem 2.4 The function Φ satisfies the integro-differential equation

(L − r)Φ(x) = 0, x > 0. (2.7)

If r > 0, or r = 0 and E[X1] > 0, we have Φ ∈ C2
0,b(R++).

Proof Assume that (L − r)Φ(x) = 0 for all x > 0. Then we have

Φ ′′(x) = − c

D
Φ ′(x) − λ

D

∫
Φ(x − y)dF (y) + λ + r

D
Φ(x).

The second statement follows from this and from Theorem 2.1.
To establish (2.7), we fix x > 0 and let ε ∈ (0, x). By Theorem 2.1, we have that

Φ ∈ C1
b(R+) ∩ C2(R++). Since the behavior of Φ ′′ near 0+ and +∞ is unclear, we

stop the process X at the time τ̃ , where τ̃ is the entry time of (−∞, ε] ∪ [x + 1,∞).
Then τ̃ is an (Ft )-stopping time. Moreover, since τ̃ ≤ τ , we see that τ̃ ∧ t is an
(Fτ∧t )-stopping time. By Lemma 2.2, we have Ex[e−r(t∧τ̃ )Φ(Xτ̃∧t )] = Φ(x). In
Appendix A, we also prove that

Ex

[
e−r(t∧τ̃ )Φ(Xτ̃∧t )

]= Ex

[∫ τ̃∧t

0
e−ru(L − r)Φ(Xu)du

]
+ Φ(x). (2.8)

From these we get

Ex

[∫ t∧τ̃

0
e−ru(L − r)Φ(Xu)du

]
= 0. (2.9)

On the other hand, by Lemma 2.3,

Ex

[
sup

u<t∧τ̃

∣∣se−ru(L − r)Φ(Xu) − (L − r)Φ(X0)
∣∣
]

→ 0, t ↓ 0 + . (2.10)
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Therefore, by (2.9), we obtain

∣∣(L − r)Φ(x)
∣∣=

∣∣∣∣
1

t
Ex

[∫ t∧τ̃

0
e−ru(L − r)Φ(Xu)du

]
− (L − r)Φ(x)

∣∣∣∣

≤ Ex

[
sup

u<t∧τ̃

∣∣e−ru(L − r)Φ(Xu) − (L − r)Φ(X0)
∣∣
]

+ ∣∣(L − r)Φ(x)
∣∣Ex[t − τ̃ ∧ t]

t
.

Note that τ̃ > 0 Px -a.s. and hence t − τ̃ ∧ t = 0 for all sufficiently small t . Since
further 0 ≤ t−τ̃∧t

t
≤ 2, we have Ex[ t−τ̃∧t

t
] → 0 as t → 0+. Together with (2.10) and

the last inequality, we establish that

∣∣(L − r)Φ(x)
∣∣≤ lim sup

t→0+

∣
∣∣∣
1

t
Ex

[∫ t∧τ̃

0
e−ru(L − r)Φ(Xu)du

]
− (L − r)Φ(x)

∣
∣∣∣= 0.

The proof is complete. �

3 Explicit formula for Φ: the ODE method

In this section, we consider phase-type jump distributions and the boundary value
problem

{
(L − r)Φ = 0 in R++,

Φ = g on R−,
(3.1)

where L is defined by (2.4) and r ≥ 0. Our main purpose is to show that if Φ satisfies
(3.1), then it satisfies an ODE on R++. From this we obtain a general form of Φ

and derive an explicit formula for Φ under some technical conditions. Based on these
results, we consider an example in credit risk modeling (Example 3.9). To begin with,
we recall the definition of phase-type distributions.

Definition 3.1 Assume B is an N × N nonsingular subintensity matrix, that is,
bij ≥ 0 for i = j , bii ≤ 0, and b� = −Be� ∈ R

N+\{0}. Here, e = [1 1 · · · 1] and
0 = [0 0 · · · 0]. Let α be an N -dimensional probability function. The probability dis-
tribution function F with the density function

f (x) =
{

αexBb�, x > 0,

0, x ≤ 0,

is called a phase-type distribution. We denote this distribution by PH(α,B). We say
that the representation (α,B) is minimal if there do not exist N0 < N , α′ of di-
mension N0, and a nonsingular subintensity matrix B ′ of dimension N0 such that
f (x) = α′exB ′

b′�1x>0.
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We consider the process X defined in (2.1) and assume that its jump distribution
F has the probability density function f given by

f (x) =
{

pf(+)(x), x > 0,

qf(−)(−x), x < 0,
(3.2)

where p + q = 1, p,q ∈ R+, and f(±) are of PH(α±,B±). Here B+ and B− are not
necessarily of the same dimension. We write I for the identity matrices of the same
dimensions as those of B+ and B− if there is no confusion.

Remark 3.2

1. A summary of analytic facts of phase-type distributions is given in Appendix B.
It is worth noting that the phase-type distributions are dense in the set of all prob-
ability distributions on R++. Special cases of phase-type distributions include ex-
ponential distributions, Gamma distributions with integer parameter, and mixtures
of exponential distributions. For details, see [1] or [26].

2. Asmussen et al. [2] considered a Lévy process X as in (2.1) except that Z =
(Zt ; t ≥ 0) is given by

Zt =
N+

t∑

n=1

Y+
n −

N−
t∑

n=1

Y−
n , (3.3)

where N± are both Poisson processes, and (Y+
n ) (resp. (Y−

n )) are independently
and identically distributed with distribution PH(α+,B+) (resp. PH(α−,B−)).
They also assumed that W , N+, N−, (Y+

n ), and (Y−
n ) are independent. Their

processes have the same characteristic exponent as ours, and therefore the finite-
dimensional distributions of their processes coincide with those of ours. Since the
finite-dimensional distributions determine the law of the process, our definition of
X is sufficient.

By assumption (3.2) and Theorem B.2, the characteristic exponent ψ in (2.2) is
given by

ψ(ζ ) = Dζ 2 + cζ + λψ1(ζ ) − λ, ζ ∈ iR, (3.4)

where ψ1(ζ ) = ∫
e−ζyf (y) dy is of the form

ψ1(ζ ) = pα+(ζI − B+)−1b�+ + qα−(−ζI − B−)−1b�−. (3.5)

Since the right-hand side of (3.5) is a rational function in ζ on C (see Theorem B.2),
the right-hand side of (3.4) actually is a rational function on C with a finite number of
poles in C\iR. Accordingly, we consider ψ and ψ1 on C as analytic functions except
at the poles in C\iR.

Let P0(ζ ) be the “minimal” polynomial with leading coefficient 1 such that the
zeros of P0(ζ ) coincide with the poles of ψ1(ζ ), counting their multiplicity. Write

P1(ζ ) = P0(ζ )
(
ψ(ζ ) − r

)
. (3.6)
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Then the zeros of ψ(ζ ) − r coincide with those of the polynomial P1(ζ ), counting
their multiplicity.

On the other hand, the infinitesimal generator of the process X takes the form

Lh(x) = Dh′′(x) + ch′(x) + λpα+T +
B+h(x)b�+ + λqα−T −

B−h(x)b�− − λh(x) (3.7)

for all h ∈ C2
0(R). Here, for a nonsingular subintensity matrix B , the matrix-valued

operators T ±
B are defined on the set of bounded measurable functions h by

T ±
B h(x) =

∫

R±
h(x − y)e±By dy. (3.8)

(When we perform integration and differentiation with respect to a matrix of contin-
uous parameter, these operations are meant to be performed termwise.)

The following is a further refinement of Theorem 2.4.

Proposition 3.3 Assume that the jump density f is like in (3.2), and E[X1] > 0 if
r = 0. Then Φ is in C∞

0,b(R++) and, for k ≥ 0, we have the recursive formula

Φ(k+2)(x) = − c

D
Φ(k+1)(x) + (λ + r)

D
Φ(k)(x) − λ

D
Ek(x), (3.9)

where

Ek(x) = pα+

(

Bk+T +
B+Φ(x) +

k−1∑

j=0

B
j
+Φ(k−1−j)(x)

)

b�+

+ qα−

(

(−B−)kT −
B−Φ(x) +

k−1∑

j=0

(−1)j+1B
j
−Φ(k−1−j)(x)

)

b�−. (3.10)

(Here Φ(0)(x) = Φ(x).)

Proof Please refer to Appendix A. �

Next we transform the integro-differential equations into ordinary differential
equations when the two sides of the jump distribution are both phase-type distrib-
utions. Before giving the general result, we treat a simple case by direct calculation.

Example 3.4 We consider the model (2.1) with the jump distribution dF(y) =
ηe−ηy1y>0 dy for some η > 0. Then

ψ(ζ ) = Dζ 2 + cζ + λ
η

η + ζ
− λ

and

Lh(x) = Dh′′(x) + ch′(x) + λ

∫ ∞

0
h(x − y)ηe−ηy dy − λh(x).
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Note that
∫∞

0 h(x − y)e−ηy dy = e−ηx
∫ x

−∞ h(y)eηy dy and

(
d

dx
+ η

)(
e−ηx

∫ x

−∞
h(y)eηy dy

)
= h(x).

Hence, by Theorem 2.4, Φ satisfies the ODE

0 =
(

d

dx
+ η

)
(L − r)Φ(x)

= DΦ ′′′(x) + (Dη + c)Φ ′′(x) + (cη − λ − r)Φ ′(x) − rηΦ(x).

On the other hand, we have P0(ζ ) = η + ζ and

P1(ζ ) = Dζ 2(ζ + η) + cζ(ζ + η) + λη − (λ + r)(ζ + η)

= Dζ 3 + (Dη + c)ζ 2 + (cη − λ − r)ζ − rη.

Therefore Φ satisfies an ODE with the characteristic polynomial P1.

Theorem 3.5 Let D1 be the differential operator with the characteristic polynomial
P1 given by (3.6). Then D1Φ ≡ 0 on R++.

Proof Let L2 = L2(R) be the space of square-integrable functions defined on R, and
set 〈f1, f2〉 = ∫

f1(x)f2(x) dx. For an operator A on L2, write A∗ for its adjoint
(i.e., 〈Ak,h〉 = 〈k,A∗h〉 for all k,h in L2). By integration by parts, we have 〈k′, h〉 =
−〈k,h′〉 whenever k or h has compact support. Write T h(x) = ∫

h(x − y)f (y) dy.
By a change of variables and Fubini’s theorem, we have

〈T h, k〉 =
∫

k(x)

∫
h(x − y)f (y) dy dx

=
∫

h(z)

∫
k(z − y)f (−y)dy dz = 〈

h,T ∗k
〉
,

where T ∗k(x) ≡ ∫
k(x − y)f (−y)dy.

Let D0 be the differential operator with the characteristic polynomial P0 and
φ ∈ C∞

c (R++) a test function. Recall that, by Theorem 2.4, (L − r)Φ ≡ 0 on R++.
Therefore we have

0 = 〈
D0(L − r)Φ,φ

〉= 〈
Φ,
(
L∗ − r

)
D∗

0φ
〉
. (3.11)

Here L∗ is given by

L∗h(x) = Dh′′(x) − ch′(x) + λT ∗h(x) − λh(x).

Set LD = L − r − λT . Then
(
L∗ − r

)
D∗

0φ = λT ∗D∗
0φ + L∗

DD∗
0φ = λT ∗D∗

0φ + (D0LD)∗φ. (3.12)

Write D2 as the differential operator corresponding to the polynomial P2(ζ ) =
P0(ζ )ψ1(ζ ). We prove that T ∗D∗

0φ = D∗
2φ a.e. by showing that both T ∗D∗

0φ and
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D∗
2φ are in L2 ∩ L1 and have the same Fourier transforms. (Here L1 = L1(R) is the

space of integrable functions on R.)
First, we show that T ∗D∗

0φ and D∗
2φ are in L1 ∩ L2. Since φ ∈ C∞

c (R++), we
obtain D∗

2φ ∈ L1 ∩ L2. Also,
∫ ∣∣T ∗D∗

0φ(x)
∣∣dx ≤

∫ ∫ ∣∣D∗
0φ(x − y)

∣∣dx f (−y)dy ≤ ∥∥D∗
0φ
∥∥

L1
‖f ‖L1 < ∞,

and hence T ∗
0 D∗

0φ ∈ L1. We show that T ∗D∗
0φ ∈ L2. Since D∗

0φ ∈ C∞
c (R++)

and T ∗h(x) = ∫
h(x − y)f (−y)dy, it suffices to show that T k ∈ L2 for any

k ∈ C∞
c (R++). Note that, by Theorem B.1, f has tails that decay exponentially and,

hence,
∫

f 2 dx < ∞. Let k ∈ C∞
c (R++) and write H for the compact support of k.

By the Cauchy–Schwarz inequality we get

∫ [
T k(x)

]2
dx =

∫ (∫
k(x − y)f (y) dy

)2

dx =
∫ (∫

H

k(y)f (x − y)dy

)2

dx

≤
∫ (∫

k(y)2 dy

)(∫

H

f (x − y)2 dy

)
dx

≤ ‖k‖2
L2

‖f ‖2
L2

∫

H

dx < ∞.

Next, we show that the Fourier transforms F(T ∗D∗
0φ) and F(D∗

2φ) coin-
cide, where Fh(θ) = ∫

e−2πiθxh(x) dx. Recall that ψ1(ζ ) = ∫
e−ζyf (y) dy and

notice that F(D∗
0φ)(θ) = P0(−2πiθ)F(φ)(θ). (See [28], Sect. 5.3.) Since

T ∗D∗
0φ ∈ L1 ∩ L2, we have, for all θ ∈ R,

F(T ∗D∗
0φ)(θ) =

∫
e−2πiθx

(∫
D∗

0φ(x − y)f (−y)dy

)
dx

=
∫ (∫

D∗
0φ(x − y)e−2πiθ(x−y) dx

)
e−2πiθyf (−y)dy

= ψ1(−2πiθ)P0(−2πiθ)F(φ)(θ)

= P2(−2πiθ)F(φ)(θ)

= F
(
D∗

2φ
)
(θ).

By the Fourier inversion formula, we deduce that T ∗D∗
0φ = D∗

2φ almost everywhere.
By (3.12) and the fact that T ∗D∗

0φ = D∗
2φ a.e., (L∗ − r)D∗

0φ =
λD∗

2φ + (D0LD)∗φ = D∗
1φ a.e. Hence, by (3.11), we have

0 = 〈
Φ, (L∗ − r)D∗

0φ
〉= 〈

Φ,D∗
1φ
〉= 〈D1Φ,φ〉.

Since φ ∈ C∞
c (R++) is arbitrary, we have D1Φ = 0 a.s. on (0,∞). Since

Φ ∈ C∞
0,b(R++), D1Φ ≡ 0 on R++. This completes the proof. �

Assume from now on that r > 0. We denote by Zr
(−) = (ρr

i )
S
i=1 the collection of

zeros of ψ(ζ ) − r (counting their multiplicity) with strictly negative real parts. We
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say that Zr
(−) is separable if its members are distinct. We write Z(−) for Zr

(−) and ρi

for ρr
i if these cause no confusion.

Proposition 3.6 There exist polynomials Qi(x) such that Φ(x) =∑S
i=1 Qi (x)eρix

for x ≥ 0.

Proof Please refer to Appendix A. �

Let U be the column vector with entries Uj = Φ(j−1)(0) for 1 ≤ j ≤ S and V the
S × S Vandermonde matrix with V ij = ρi−1

j . Here Φ(0)(0) = Φ(0) and, for k ≥ 1,

Φ(k)(0) is the kth (right-hand) derivative of Φ at 0.

Theorem 3.7 Suppose that Z(−) is separable. Then we have Φ(x) =∑S
i=1 Qie

ρix ,
where Q = (Q1,Q2, . . . ,QS)T is the unique constant column vector satisfying the
system of linear equations V Q = U . Moreover, if there are no upward jumps for X

(i.e., q = 0), then Φ(k)(0) can be obtained explicitly by the recursive formula

Φ(k+2)(0) = 1

D

[−cΦ(k+1)(0) + (λ + r)Φ(k)(0) − λEk(0)
]

(3.13)

with Φ(0) = g(0),

Ek(0) = α+

(

Bk+
∫ ∞

0
g(−y)eBy dy +

k−1∑

j=0

B
j
+Φ(k−1−j)(0)

)

b�+, (3.14)

and

Φ ′(0) = −
(

c

D
+ ρ∗

r

)
g(0) + λ

D

∫ ∞

0
dv

∫ ∞

v

dF (y) e−ρ∗
r vg(v − y). (3.15)

(Here ρ∗
r is a positive real number satisfying ψ(ρ∗

r ) = r .)

Proof By Proposition 3.6, we know that Φ(x) =∑S
i=1 Qi (x)eρix , where Qj (x) are

polynomials. Since Z(−) is separable, standard theory of ordinary differential equa-
tions gives that Qj (x) must be a constant for all j . For details, see [29], Lessons 20B
and 20D.

Simple calculation shows that the constant vector Q satisfies the system of linear
equations V Q = U . Since Z(−) is separable, the ρi are distinct and, hence, the Van-
dermonde matrix V is invertible (see, e.g., [14], p. 218). Since V is invertible, Q is
the unique solution of the system of linear equations. By letting x → 0+ in (3.9) and
(3.10), we obtain (3.13) and (3.14). Formula (3.15) follows from Theorem C.1. �

Remark 3.8 It is interesting to compare our results with those of Asmussen et al. [2].
By martingale stopping and Wiener–Hopf factorization, they obtained similar results
as ours.

As an application of Theorem 3.7, we consider Hilberink and Rogers’ extension
of Leland’s model. We first recall the basic setup of Leland’s model and then obtain



334 Y.-T. Chen et al.

the optimal default boundary in explicit form. Furthermore, we provide a procedure
to calculate the values of bond, firm, and equity.

Example 3.9 (Optimal capital structure) We shall assume that, under a risk-neutral
measure Q, the value of the firm’s assets is given by Vt = V ect+σWt−Zt . The setting
of debt issuance and coupon payment follows the convention in [23]. In the time in-
terval (t, t + dt), the firm issues new debt with face value a dt and maturity profile
k(t) = me−mt . With the exponential maturity profile, the face value of the debt matur-
ing in (t, t + dt) is the same as the face value of the newly issued debt. Thus the face
value of all pending debt is equal to the constant A = a

∫∞
0 e−mt dt = a/m. All bond-

holders will receive coupons at rate b until default. All debt is of equal seniority and,
once default occurs, the bondholders get the rest of the value, βVτ , after the bank-
ruptcy cost (1−β)Vτ . We assume that there is a corporate tax rate δ, and the coupons
paid can be offset against tax. We further assume that the default occurs at time
τ = inf{t ≥ 0;Vt ≤ L}, where L will be determined optimally later on. As in [18], we
assume that the market has a risk-free rate r > 0, and μ > 0 is the proportional rate
at which profit is disbursed to investors. Then the total value at time 0 of all debt is

D(V,L) = bA + mA

m + r
EQ

[
1 − e−(m+r)τ

]+ βEQ

[
Vτ e

−(m+r)τ
]
, (3.16)

and the value of the firm is

v(V,L) = V + bAδ

r
EQ

[
1 − e−rτ

]− (1 − β)EQ

[
Vτ e

−rτ
]
. (3.17)

The value of equity of the firm is given by

S(V,L) = v(V,L) − D(V,L). (3.18)

(See [18] or Remark 4.8 below.) By imposing the smooth-pasting condition, we cal-
culate the optimal default-triggering level L∗ that maximizes the value of equity of
the firm.

Set Xt = log Vt

L
and x = log V

L
. Note that τ = inf{t ≥ 0;Vt ≤ L} =

inf{t ≥ 0;Xt ≤ 0} and, under the risk-neutral measure Q, X is of the form (2.1).
Then we have

D(V,L) = A(m + b)

m + r

(
1 − Gm+r (x)

)+ βLHm+r (x) (3.19)

and

v(V,L) = V + Aδb

r

(
1 − Gr(x)

)− (1 − β)LHr(x), (3.20)

where

Gs(x) = Ex

[
e−sτ

]
(3.21)

and

Hs(x) = Ex

[
e−sτ eXτ

]
. (3.22)
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Hence, we obtain that

∂S

∂V
(V,L) = ∂

∂V

(
v(V,L) − D(V,L)

)

= 1 − δAb

r
G′

r (x)
1

V
− (1 − β)LH ′

r (x)
1

V

+ A(m + b)

m + r
G′

m+r (x)
1

V
− βLH ′

m+r (x)
1

V
.

As in [18, 23], by imposing the smooth pasting condition (i.e., ∂S
∂V

(V,L)|V =L = 0),
we get the optimal default-triggering level

L∗ =
δAb
r

G′
r (0) − A(m+b)

m+r
G′

m+r (0)

1 − (1 − β)H ′
r (0) − βH ′

m+r (0)
. (3.23)

Assume further that X has only downward jumps and σ > 0. (Indeed, in this case,
Kyprianou and Surya [21] proved that the optimal default triggering level does satisfy
the condition of smooth pasting.) By taking g(y) = ey1y≤0 in (3.15), we get

H ′
s(0) = d

dx
Hs(x)

∣∣∣
∣
x=0

= − c

D
− ρ∗

s + λ

D

∫ ∞

0
dv

∫ ∞

v

dF (y) e−ρ∗
s vev−y

= − c

D
− ρ∗

s + λ

D

∫ ∞

0
dF(y)

∫ y

0
e(1−ρ∗

s )ve−y dv

= − c

D
− ρ∗

s + λ

D(1 − ρ∗
s )

∫ ∞

0

(
e−ρ∗

s y − 1 + 1 − e−y
)
dF(y)

= − c

D
− ρ∗

s + 1

D(1 − ρ∗
s )

[−D
(
ρ∗

s

)2 − cρ∗
s + s − (

ψ(1) − D − c
)]

= s − ψ(1)

D(1 − ρ∗
s )

+ 1. (3.24)

(Here in the fourth equation we use the fact that ρ∗
s is a positive real number satisfying

ψ(ρ∗
s ) − s = 0.) Similarly, by taking g(y) = 1 for all y ≤ 0 in (3.15), we get

G′
s(0) = d

dx
Gs(x)

∣∣∣∣
x=0

= − c

D
− ρ∗

s + λ

D

∫ ∞

0
dv

∫ ∞

v

dF (y)e−ρ∗
s v

= − c

D
− ρ∗

s + λ

D

∫ ∞

0
dF(y)

∫ y

0
e−ρ∗

s v dv

= − c

D
− ρ∗

s + λ

Dρ∗
s

∫ ∞

0

(
1 − e−ρ∗

s y
)
dF(y)
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= − c

D
− ρ∗

s + 1

Dρ∗
s

(
D
(
ρ∗

s

)2 + cρ∗
s − s

)

= −s

Dρ∗
s

. (3.25)

Plugging (3.25) and (3.24) into (3.23) and using the fact that ψ(1) = r − μ (since
V = EQ[e−(r−μ)V1] = V e−(r−μ)+ψ(1)), we obtain the optimal default-triggering
level

L∗ =
A(m+b)

ρ∗
m+r

− δAb
ρ∗

r

β
m+μ

ρ∗
m+r−1 + (1 − β)

μ
ρ∗

r −1

. (3.26)

Assume that the jump distribution F is of phase-type distribution PH(α,B) on
(0,∞). By using (3.18–3.20), we compute D(V,L), v(V,L) and S(V,L) in terms
of Gs(x) and Hs(x). Note that

G(k+2)
s (0) = − c

D
G(k+1)

s (0) + λ + s

D
G(k)

s (0) − λ

D
Ik(0) (3.27)

and

H(k+2)
s (0) = − c

D
H(k+1)

s (0) + λ + s

D
H(k)

s (0) − λ

D
Jk(0), (3.28)

where

Ik(0) = α

(

Bk

∫ ∞

0
eBy dy +

k−1∑

j=0

BjG
(k−1−j)
s (0)

)

bT

and

Jk(0) = α

(

Bk

∫ ∞

0
e−yeBy dy +

k−1∑

j=0

BjH
(k−1−j)
s (0)

)

bT .

Using (3.24), (3.25), and Gs(0) = Hs(0) = 1 in (3.27) and (3.28), we get higher-order
derivatives of Gs and Hs at zero. Then, by Theorem 3.7, we compute the constant
vector Q and, hence, obtain solutions for Gs(x) and Hs(x).

To illustrate our method, we consider the particular case dF(x) = ηe−ηx1x>0 dx.
Then ψ(ζ ) = Dζ 2 + cζ + λ

η
η+ζ

− λ and, for every s > 0, there exist

ρ1 < η < ρ2 < 0 < ρ∗ such that ψ(ρ1) = ψ(ρ2) = ψ(ρ∗) = s (i.e., Zs
(−) = {ρ1, ρ2}),

and we write ρ∗ for ρ∗
s . Recall that G′

s(0) = −s
Dρ∗ . Hence Gs(x) = Q1e

ρ1x +Q2e
ρ2x ,

where Q is the unique column vector satisfying the equation
[

1 1

ρ1 ρ2

][
Q1
Q2

]
=
[

1
−s
Dρ∗

]
.

Simple algebra shows that

[
Q1
Q2

]
= 1

ρ2 − ρ1

[
ρ2 + s

Dρ∗

−ρ1 − s
Dρ∗

]

.
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Since ρ1ρ2ρ
∗ = sη

D
, we get

Gs(x) = ρ2 + s
Dρ∗

ρ2 − ρ1
eρ1x + −ρ1 − s

Dρ∗

ρ2 − ρ1
eρ2x

= ρ2(η + ρ1)

η(ρ2 − ρ1)
eρ1x + −ρ1(η + ρ2)

η(ρ2 − ρ1)
eρ1x. (3.29)

Recall that H ′(0) = s−ψ(1)
D(1−ρ∗) + 1. Hence Hs(x) = P 1e

ρ1x + P 2e
ρ2x , where P is

the unique column vector satisfying the equation

[
1 1
ρ1 ρ2

][
P 1
P 2

]
=
[

1
s−ψ(1)

D(1−ρ∗) + 1

]

.

Simple algebra shows that

[
P 1
P 2

]
= 1

ρ2 − ρ1

[
ρ2 − 1 − s−ψ(1)

D(1−ρ∗)

1 − ρ1 + s−ψ(1)
D(1−ρ∗)

]

.

Using the fact that (1 + η)(ψ(1) − s) = D(1 − ρ1)(1 − ρ2)(1 − ρ∗), we obtain

Hs(x) = ρ2 − 1 − s−ψ(1)
D(1−ρ∗)

ρ2 − ρ1
eρ1x + 1 − ρ1 + s−ψ(1)

D(1−ρ∗)
ρ2 − ρ1

eρ2x

= (ρ2 − 1)(η + ρ1)

(1 + η)(ρ2 − ρ1)
eρ1x + (1 − ρ1)(η + ρ2)

(1 + η)(ρ2 − ρ1)
eρ1x. (3.30)

Remark 3.10 The optimal level L∗ in (3.26) coincides with that in [18]. Our ODE
approach also works for the perpetual American put option. Indeed, we determine the
optimal stopping times when only downward jumps are allowed. Also we calculate
exactly the price of the perpetual American put option.

For general two-sided jump distributions, we get a necessary condition for the co-
efficient constant Q. This necessary condition will play an important role in Sect. 4.

Proposition 3.11 If (α+,B+) is minimal, Z(−) is separable, and p > 0, then the
constant vector Q for Φ satisfies

∑S
i=1 Qi = g(0) and

α+
(∫ ∞

0
g(−y)eB+ydy

)
exB+b�+ = α+

[
S∑

i=1

Qi (ρiI − B+)−1

]

exB+b�+, ∀x > 0.

(3.31)

Proof Please refer to Appendix A. �
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4 The constant vector Q: the second method

In this section, we consider a more general process whose upward jumps are de-
termined by a general Lévy measure and downward jumps by a compound Poisson
process with a mixture of exponential jump distributions. We show that if a vector Q
satisfies a system of linear equations, then a conjectured function must be the desired
function Φ . To find a solution to the system of equations, instead of directly inverting
the system of equations, we exploit the technique in [12] to obtain an explicit solution
for Φ . With this explicit formula, we compute especially in Example 4.6 the optimal
default-triggering level. We also provide an example (Example 4.7) which shows that
we can calculate certain option prices with finite maturity up to a Fourier transform.

Let X = (Xt , {Px}x∈R) be the Lévy processes given by

Xt = X0 + X
(+)
t − Zt , t ≥ 0. (4.1)

Here X(+) = (X
(+)
t ; t ≥ 0) is a Lévy process on R such that it starts at 0 and

has a nontrivial diffusion part and no downward jumps, and Z is a compound
Poisson process that is independent of X(+) with jump distribution given by
f(+) =PH(α+,B+). As before, under Px , X0 = x a.s. Clearly, the process in (4.1) is
a generalization of (2.1).

The characteristic exponent ψ of X is given by

ψ(ζ ) = Dζ 2 + cζ +
∫ ∞

0

[
eζz − 1 − ζz1|z|≤1

]
ν(dz) + λ

∫ ∞

0
e−ζyf(+)(y) dy − λ,

where ν is an arbitrary Lévy measure on (0,∞) and
∫∞

0 min(1, z2)ν(dz) < ∞. More-
over, the infinitesimal generator of X has a domain containing C2

0(R) and is given by

Lh(x) =Dh′′(x) + ch′(x) +
∫ ∞

0

[
h(x + z) − h(x) − h′(x)z1|z|≤1

]
ν(dz)

+ λ

∫ ∞

0
h(x − z)f(+)(z) dz − λh(x).

Recall that Φ(x) = Ex[e−rτ g(Xτ )], where τ = inf{t ≥ 0;Xt ≤ 0}. The next
proposition gives a converse to Theorem 2.4.

Proposition 4.1 If φ ≡ g on (−∞,0], φ ∈ C2
0(R+), and (L − r)φ ≡ 0 on R++, then

φ ≡ Φ on R.

Proof Please refer to Appendix A. �

We consider below the special case where f(+)(y) is a mixture of exponential
distributions. Namely, there exist constants (pj )

m
j=1 and (ηj )

m
j=1 such that pj > 0,

ηj > 0,
∑m

j=1 pj = 1, and

f(+)(y) =
m∑

j=1

pjηj e
−ηj y (4.2)
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on y > 0 and f(+)(y) = 0 otherwise. Without loss of generality, assume that the ηj

are distinct.
It is worth noting that Z(−) = (ρi)

S
i=1 is separable and S = m + 1 (see [2],

Lemma 1(1) or [25], Corollary 2). Now, based on Theorem 3.7, we conjecture that
Φ(x) = Ex[e−rτ g(Xτ )] =∑S

i=1 Qie
ρix for some Qi . By Proposition 3.11, we fur-

ther assume that Q satisfies (3.31). More precisely, for f(+) given by (4.2),

m∑

j=1

pjηj e
−ηj x

∫ 0

−∞
g(y)eηj y dy =

m+1∑

i=1

Qi

m∑

j=1

pj

ηj e
−ηj x

ρi + ηj

. (4.3)

(Note that f(+) =PH((p1, . . . , pm),diag(−η1, . . . ,−ηm)).) Recall that
∑S

i=1 Qi =
g(0). Then, by comparing the coefficients of e−ηj x in (4.3), we get the system of
linear equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m+1∑

i=1

Qi = g(0),

m+1∑

i=1

Qiηj

ρi + ηj

=
∫ 0

−∞
g(y)ηj e

ηj y dy, 1 ≤ j ≤ m.

(4.4)

The following proposition confirms our conjecture.

Proposition 4.2 If Q satisfies (4.4) for some bounded Borel-measurable function g,
then

Φ(x) = Ex

[
e−rτ g(Xτ )

]=
S∑

i=1

Qie
ρix, for x ≥ 0. (4.5)

Proof Please refer to Appendix A. �

In fact, the coefficient matrix of the system of equations (4.4) is invertible. Hence
we can write Q in a general matrix form. Instead of the matrix form, we exploit the
technique in [12] to get an explicit formula for Q.

Theorem 4.3 Assume that X satisfies (4.1) and f(+)(y) is given by (4.2). Then,
for any bounded Borel function g : R− → R, we have Φ(x) = Ex[e−rτ g(Xτ )] =∑S

i=1 Qie
ρix on R+, where, for 1 ≤ h ≤ m + 1,

Qh = 1

ρh

∏m+1
�=1,� =h(−ρh + ρ�)

m+1∑

j=1

Rj

(
m+1∏

k=1

(ηj + ρk)

m+1∏

i=1,i =j

−ρh − ηi

ηj − ηi

)

(4.6)

and

Rj = g(0) −
∫ ∞

0
g(−y)ηj e

−ηj y dy. (4.7)

(Here we set ηm+1 = 0.)
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Proof Clearly, the system (4.4) is equivalent to the system of linear equations

m+1∑

i=1

Qiρi

ρi + ηj

= Rj , 1 ≤ j ≤ m + 1, (4.8)

where the Rj are given by (4.7). Since the system (4.4) admits at most one solution,
so does (4.8).

Consider the rational function

H(x) =
m+1∑

j=1

Rj

m+1∏

k=1

ηj + ρk

x + ρk

m+1∏

i=1,i =j

x − ηi

ηj − ηi

. (4.9)

Note that, for each summand in (4.9), the numerator is a polynomial of degree m, and
the denominator is a polynomial of degree m + 1. By the principle of partial fraction
decomposition, there exist constants Dh, 1 ≤ h ≤ m + 1, such that

m+1∑

j=1

Rj

m+1∏

k=1

ηj + ρk

x + ρk

m+1∏

i=1,i =j

x − ηi

ηj − ηi

= H(x) =
m+1∑

i=1

Diρi

ρi + x
. (4.10)

By multiplying both sides of (4.10) by x + ρh and then setting x = −ρh, we get
that Dh is given by the right-hand side of (4.6). On the other hand, since∏m+1

i=1,i =j
ηh−ηi

ηj −ηi
= 0 for all h = j ,

m+1∑

i=1

Diρi

ρi + ηh

= H(ηh) = Rh

m+1∏

k=1

ηh + ρk

ηh + ρk

m+1∏

i=1,i =h

ηh − ηi

ηh − ηi

= Rh, 1 ≤ h ≤ m + 1.

That is, D is a solution to (4.8). Since the solution to (4.8) is unique and (4.4) and
(4.8) are equivalent, Q = D is the unique solution of (4.4). By Proposition 4.2, we
have Φ ≡∑S

i=1 Qie
ρix on R+. �

Remark 4.4 In fact, by approximation in (4.6) and (4.7), one sees that the con-
clusion of Theorem 4.3 still holds if g is any Borel function on R− such that∫ 0
−∞ |g(y)|eηj y dy < ∞ for all 1 ≤ j ≤ m.

Example 4.5 We consider some special g.
(1) Assume that g ≡ 1(−∞,y) for some y ≤ 0. Then Rj = −eηj y for 1 ≤ j ≤ m

and Rm+1 = 0. Hence,

Ex

[
e−rτ 1Xτ <y

] =
m+1∑

h=1

[
−1

ρh

∏m+1
�=1,� =h(−ρh + ρ�)

×
m∑

j=1

eηj y

(
m+1∏

k=1

(ηj + ρk)

m+1∏

i=1,i =j

−ρh − ηi

ηj − ηi

)]

eρhx.
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(2) Assume that g ≡ 1{0}. Then Rj = 1 for all j . Hence,

Ex

[
e−rτ 1{0}(Xτ )

] =
m+1∑

h=1

[
1

ρh

∏m+1
�=1,� =h(−ρh + ρ�)

×
m+1∑

j=1

(
m+1∏

k=1

(ηj + ρk)

m+1∏

i=1,i =j

−ρh − ηi

ηj − ηi

)]

eρhx.

(Cf. [20].)

Example 4.6 (Optimal capital structure, continued) We use the notation and setting
of Example 3.9, except that the process X is of the form (4.1) (also assume that
σ > 0) and Z has a mixed exponential jump distribution (4.2). For every s > 0, let
ρs

i ,1 ≤ i ≤ m+1, be the negative real solutions to ψ(z)− s = 0. As before, we write
ρi for ρs

i if this causes no confusion. By taking g ≡ 1 in (4.7), we get Rj = 0 for
1 ≤ j ≤ m and Rm+1 = 1. By Theorem 4.3, we get

Gs(x) =
m+1∏

k=1

ρk

[
m+1∑

h=1

(
1

ρh

∏m+1
�=1,� =h(−ρh + ρ�)

m∏

i=1

ρh + ηi

ηi

)

eρhx

]

(4.11)

and, hence,

G′
s(0) =

m+1∏

k=1

ρk

[
m+1∑

h=1

1
∏m+1

�=1,� =h(−ρh + ρ�)

(
m∏

i=1

ρh + ηi

ηi

)]

. (4.12)

Similarly, by taking g(y) = ey for y ≤ 0 in (4.7), we get Rj = 1
1+ηj

for 1 ≤ j ≤
m + 1. By Theorem 4.3 again, we get

Hs(x) =
m+1∑

h=1

1

ρh

∏m+1
�=1,� =h(−ρh + ρ�)

×
{

m+1∑

j=1

1

1 + ηj

[
m+1∏

k=1

(ηj + ρk)

m+1∏

i=1,i =j

−ρh − ηi

ηj − ηi

]}

eρhx (4.13)

and, hence,

H ′
s(0) =

m+1∑

h=1

1
∏m+1

�=1,� =h(−ρh + ρ�)

×
{

m+1∑

j=1

1

1 + ηj

[
m+1∏

k=1

(ηj + ρk)

m+1∏

i=1,i =j

−ρh − ηi

ηj − ηi

]}

. (4.14)

Plugging formulas (4.12) and (4.14) into (3.23), we get the explicit solution for the
optimal default triggering level L∗(under the smooth pasting assumption). Similarly,
plugging (4.11) and (4.13) into (3.19), (3.20), and (3.18) respectively, we get closed
formulas for the value of debt, the value of the firm, and hence the value of equity.
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Example 4.7 (Option pricing) A first-touch digital is a digital contract paying $1
when and if a prespecified event occurs. Consider the first-touch digital, or touch-
and-out option, which pays $1 if the stock price S falls below the level H from
above. If the stock price turns out to stay above the level H up to the expiration time
T > 0, the claim expires worthless. It can be interpreted as an American-put-like
option with a digital payoff. Since a payoff is the same for all levels of the stock
price below the barrier, it is clearly optimal to exercise the option once the level H

is crossed. We consider a general framework. Let S be the price process of a security
satisfying S = HeX under a risk-neutral probability measure, where X is given by
(4.1), and H > 0 is a given constant threshold. Assume the existence of a constant
risk-free rate r > 0. Consider a derivative with maturity T on this security whose
payoff structure is given by

1. a bounded function k(SτH
) at the time τH ≤ T , where τH = inf{t;St ≤ H },

2. a constant payment A at the time T if S does not cross the boundary H till matu-
rity.

Let x = log(S0/H), g(y) = k(Hey) for y ≤ 0, and τ = inf{t;Xt ≤ 0} as usual.
Then by the risk-neutral pricing formula the risk-neutral price of this derivative is
given by

V(S0, T ) =Ex

[
e−rτ g(Xτ )1[τ≤T ]

]+ Ex

[
e−rT A1[τ>T ]

]

=Ex

[
e−rτ g(Xτ )1[τ≤T ]

]+ e−rT A
(
1 − Px[τ ≤ T ]). (4.15)

To find the unknown quantities Ex[e−rτ g(Xτ )1[τ≤T ]] and Px[τ ≤ T ], we take their
Laplace transforms with respect to time T . By Fubini’s theorem, for every β > 0,

∫ ∞

0
e−βT

Ex

[
e−rτ g(Xτ )1[τ≤T ]

]
dT = 1

β
Ex

[
e−(r+β)τ g(Xτ )

]
(4.16)

and
∫ ∞

0
e−βT

Px[τ ≤ T ]dT = 1

β
Ex

[
e−βτ

]
. (4.17)

The right-hand sides of both equations can be written explicitly using Theorem 4.3.
Hence we have an expression for the value V(S0, T ) up to a Fourier transform.

For the first-touch digital, we have k ≡ 1 and A = 0. Hence, using (4.16) and
(4.11) with s = r + β , we deduce that the Laplace transform of the option price with
respect to T is given by

∫ ∞

0
e−βT V(S0, T ) dT

= 1

β
Ex

[
e−(r+β)τ

]

= 1

β

m+1∏

k=1

ρk

{
m+1∑

h=1

[
1

ρh

∏m+1
�=1,� =h(−ρh + ρ�)

m∏

i=1

ρh + ηi

ηi

](
S0

H

)ρh

}

. (4.18)
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Remark 4.8 It is worth noting that the time zero value of debt in Example 3.9 is of
the form A

∫∞
0 me−mT B(V,L,T )dT , where B(V,L,T ) is the time zero value of

a bond issued at zero with face value 1 and maturity T . The price formula (3.16)
follows by similar arguments as in Example 4.7.

5 Concluding remarks

The expected discounted penalty is a generalized notion of the ruin probability in
the insurance literature. It has been widely studied and generalized since Gerber and
Shiu [17]. On the other hand, this function has been a major concern in the pricing
of perpetual financial securities and the Laplace transforms of securities with finite
maturity, and examples include option theory and credit risk modeling.

While empirical studies have been indicating the failure of diffusion models, the
seminal paper of Merton [24] has received more attention in recent years. However,
unlike the diffusion case in which many functionals are available, this is no longer
the case for jump-diffusion processes, especially in the first-passage models. This is
where the difficulty in the pricing of securities under a jump-diffusion process arises.

In this paper, we consider the jump-diffusion process as in [2]. In the case where
the jump distribution is a two-sided phase-type one, by a Fourier transform argument,
we transform the integro-differential equation of the expected discounted penalty into
a homogeneous ordinary differential equation. The present method could possibly be
extended to transform more integro-differential equations into ordinary differential
equations and hence give an alternative approach to compute prices in jump-diffusion
models.

Next, by ODE theory, we know that the solution for the expected discounted
penalty is a linear combination of some known exponential functions. Moreover,
by using the limit behavior of the expected discounted penalty and the integro-
differential equation, we can determine these coefficients (under some conditions).
All these distinguish not only our approach from that of Asmussen et al. [2] but also
itself from the classical method to solve differential equations in which the knowledge
of boundary values is required. This could be applied to solve other functionals once
we have transformed their integro-differential into an ordinary differential equation.

Our results in fact provide explicit solutions to a large amount of existing pric-
ing problems in finance. Using our closed-form solutions, especially Theorem 4.3,
the Laplace transforms of securities with finite maturity have explicit solutions as
mentioned in Example 4.7, and we show an example by considering a touch-and-
out option. In addition, the pricing problems of perpetual securities in jump-diffusion
models have improved answers. For example, both the value of shareholders and
the optimal bankruptcy level (by using the smooth-pasting condition) in the optimal
capital structure problem have exact solutions. We worked out these in Example 3.9
under the setup of Hilberink and Rogers [18], which is an extension of Leland and
Toft [23]. Moreover, in Example 4.6, we obtained a closed-form solution even in a
two-sided jump case. By using our closed-form solution as criterion, many structural
form models in credit risk can be reconsidered and modified to see whether more
phenomena in empirical studies can be captured by a jump-diffusion model.
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Appendix A Notation and proofs

Notation We write R+ = {x ∈ R;x ≥ 0}, R++ = {x ∈ R;x > 0}, and analogously
R− and R−−.

Let I be an interval in R and n ∈ N. We introduce the following function spaces:

1. C(I ) is the space of real-valued continuous functions f on I .
2. Cb(I ) is the space of bounded continuous functions f on I .
3. C0(I ) is the space of continuous functions f on I with limx→∞ f (x) = 0 and

limx→−∞ f (x) = 0, provided that I is not bounded above (resp. below). Also,
C0,b(I ) = C0(I ) ∩ Cb(I ).

4. Cc(I ) is the space of continuous functions f on I with compact supports.
5. Cn(I ) is the space consisting of f ∈ C(I ) with f (n) ∈ C(I ). Here, on I ◦, f (n) is

the usual nth derivative. If x is the left- (resp. right-)hand boundary point of I and
is in I , f (n)(x) is the nth right- (resp. left-)hand derivative at x. Cn

0 (I ), Cn
b (I ),

Cn
c (I ), and Cn

0,b(I ) are defined similarly.

6. C∞
c (I ) =⋂

k Ck
c (I ), C∞

0,b(I ) =⋂
k Ck

0,b(I ), and C∞
0 (I ) =⋂

k Ck
0(I ).

Proof of Lemma 2.2 Fix t ≥ 0. On {t ≥ τ }, using the local property of conditional
expectation (see [19], Lemma 6.2) and the fact that Φ = g on R−, we have

Ex

[
e−rτ g(Xτ )

∣∣Fτ∧t

]= Ex

[
e−rτ g(Xτ )

∣∣Fτ

]= e−rτΦ(Xτ ).

Similarly, on {t < τ },
Ex

[
e−rτ g(Xτ )

∣∣Fτ∧t

]= Ex

[
e−rτ g(Xτ )

∣∣Ft

]
.

By the strong Markov property of X, on {t < τ },
Ex

[
e−rτ g(Xτ )

∣∣Fτ∧t

]= e−rt
EXt

[
e−rτ g(Xτ )

]= e−rtΦ(Xt ).

The proof is complete. �

Proof of Lemma 2.3 Since Φ ∈ C2(R++), it suffices to show that, as y → x,

∫
Φ(y − z) dF (z) →

∫
Φ(x − z) dF (z).

For any y > 0, write
∫

Φ(y − z) dF (z) =
∫ ∞

y

g(y − z) dF (z) +
∫ y

−∞
Φ(y − z) dF (z).

Let ε > 0 and find M > x such that
∫
(−∞,x−M+1]∪[x+M−1,∞)

dF (z) < ε. Then, for
all y > 0 such that |x − y| ≤ 1/2,



Expected discounted penalty at ruin 345

∣∣
∣∣

∫
Φ(y − z) dF (z) −

∫
Φ(x − z) dF (z)

∣∣
∣∣

≤ 2‖g‖∞ε +
∣∣
∣∣

∫ y+M

y

g(y − z) dF (z) −
∫ x+M

x

g(x − z) dF (z)

∣∣
∣∣

+
∣∣∣∣

∫ y

y−M

Φ(y − z) dF (z) −
∫ x

x−M

Φ(x − z) dF (z)

∣∣∣∣

≤ 2‖g‖∞ε +
∣∣∣∣

∫ 0

−M

g(z)
[
f (y − z) − f (x − z)

]
dz

∣∣∣∣

+
∣∣∣∣

∫ M

0
Φ(z)

[
f (y − z) − f (x − z)

]
dz

∣∣∣∣,

where f is the density function for F . Since g and Φ are bounded and f is continuous
on R\{0}, by dominated convergence, we have

lim sup
y→x

∣∣∣∣

∫
Φ(y − z) dF (z) −

∫
Φ(x − z) dF (z)

∣∣∣∣≤ 2‖g‖∞ε.

Since ε > 0 is arbitrary, the proof is completed. �

To prove (2.8), we need the following lemmas and Dynkin’s formula.

Lemma A.1 For every bounded Borel-measurable function g on R−, there exists a
sequence of uniformly bounded functions (gn) in C2

0(R−) such that gn → g Lebesgue-
a.e. on R− and gn(0) = g(0) for all n.

Proof Write dm for Lebesgue measure on R. Let h be a normal density, and set
dG(y) = h(y)dm. Then, by the strict positivity of h, dG and dm are equivalent.

Fix ε > 0. By dominated convergence, we can find N large enough such that we
have

∫ 0
−∞ |g1[−N,0] −g|dG < ε. Also, since g1[−N,0] is bounded and in L1(R, dm),

a modification of the proof of Theorem 2.4 in [28], Chap. 2, shows that we can find
a sequence of uniformly bounded C2

0(R−)-functions (g′
n) such that g′

n → g1[−N,0]
dm-a.e. Since dG and dm are equivalent, g′

n → g1[0,N ] dG-a.e. Hence, by domi-
nated convergence, we can pick n large such that

∫ |g′
n − g1[−N,0]|dG < ε. We have

obtained that
∫ 0
−∞ |g′

n − g|dG < 2ε. And this implies that there exists a sequence
of C2

0(R−)-functions (gn) such that gn → g dG-a.e. on R−. Since dG and dm are
equivalent, we see that gn → g dm-a.e. on R−. In addition, it is clear that we can
pick (gn) to be uniformly bounded.

Now, for each n, define a C2
0(R−)-function hn such that hn = gn on (−∞,1/n),

hn(0) = g(0) and (hn) is uniformly bounded. Then it is obvious that (hn) is the
desired sequence. This completes the proof. �

Lemma A.2 The following distributions are absolutely continuous with respect to
Lebesgue measure:
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(1) The distribution Px[Xτ̃ < 0,Xτ̃ ∈ ·], where X is defined by (2.1), and τ̃ is defined
as in the proof of Theorem 2.4.

(2) The distribution Px[Xτ < 0,Xτ ∈ ·] for x > 0, where X is defined by (4.1).

Proof We only show (2), and the proof of (1) follows similarly. Let N be a Borel
set in (−∞,0) with Lebesgue measure zero. Write Jn for the nth jump time of the
compound Poisson process Z. Observe that, for x > 0,

Px[Xτ < 0,Xτ ∈N ] =
∞∑

n=1

Px[Xτ < 0,Xτ ∈N , τ = Jn].

We first show that Px[Xτ ∈N ,Xτ < 0, τ = J1] = 0. Note that since X(+), J1 and Y1

are independent, so are X
(+)
J1

and Y1. Hence, we have

Px[Xτ ∈ N ,Xτ < 0, τ = J1] = Px

[
X

(+)
J1

− Y1 ∈ N ,X
(+)
J1

− Y1 < 0, τ = J1
]

≤ Px

[
X

(+)
J1

− Y1 ∈ N
]

=
∫

Px[z − Y1 ∈ N ]dG(z),

where G is the distribution of X
(+)
J1

. Since Y1 has an absolutely continuous distribu-
tion, from the last inequality we deduce that Px[Xτ ∈N ,Xτ < 0, τ = J1] = 0.

In general, for each n ≥ 2, we have by the strong Markov property that

Px[Xτ < 0,Xτ ∈N , τ = Jn] = Ex

[
1τ>Jn−1PXJn−1

[Xτ < 0,Xτ ∈ N , τ = J1]
]= 0,

since Jn−1 is an (Ft )-stopping time and XJn−1 > 0 on {τ > Jn−1}. This implies that
Px[Xτ < 0,Xτ ∈ ·] is absolutely continuous with respect to Lebesgue measure for
every x > 0. �

Theorem A.3 (Dynkin’s formula) Let X = (X(t)) be an R
n-valued jump-diffusion,

and let k ∈ C2
0(R

n). If η is a stopping time such that Ex(η) < ∞, then

Ex

[
k(Xη)

]= k(x) + Ex

[∫ η

0
Ak
(
X(s)

)
ds

]

where A is the generator of X defined by

Ak(x) = lim
t→0+

1

t

{
Ex

[
k
(
X(t)

)]− k(x)
}

(if the limit exists).

(See, for example, [27], Exercise 44.22.)

Proof of (2.8) As in the proof of Theorem 2.4, let ε > 0 and τ̃ the first exit time for X

from (ε, x+1). Pick a sequence of uniformly bounded functions (gn) ⊂ C2
0((−∞,0])

that converges to g, except on a set N of Lebesgue measure 0 in R−−, and gn(0) =
g(0) for all n. (See Lemma A.1.) Therefore, we may consider a sequence of uniformly
bounded functions (Φn;n ≥ 1) that satisfies the following conditions:
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C1 Φn = gn on (−∞,0];
C2 Φn = Φ on (1/n,n);
C3 Φn ∈ C2

0(R).

By (C1), (C2), and the fact that gn → g except on N , we have that Φn → Φ pointwise
on R except on N .

Now, pick n large such that (ε, x + ε) ⊂ (1/n,n). Then Φn(x) = Φ(x) by (C2).
By Dynkin’s formula, for all t > 0,

Ex

[
e−r(τ̃∧t)Φn(Xτ̃∧t )

]= Ex

[∫ τ̃∧t

0
e−ru(L − r)Φn(Xu)du

]
+ Φ(x). (A.1)

Since (Φn) is uniformly bounded, Φn → Φ pointwise on R+, and Φn → Φ a.e. on
(−∞,0), by Lemma A.2(1) and dominated convergence,

lim
n→∞ Ex

[
e−r(t∧τ̃ )Φn(Xt∧τ̃ )

]= Ex

[
e−r(t∧τ̃ )Φ(Xτ̃∧t )

]
. (A.2)

On the other hand, for every u < τ̃ ∧ t , Xu ∈ (ε, x + ε), and hence Φn(Xu) = Φ(Xu)

for all large n. These give

(L − r)Φ(Xu) − (L − r)Φn(Xu) =
∫ [

Φ(Xu − y) − Φn(Xu − y)
]
dF(y) (A.3)

and hence
∣∣(L − r)

[
Φ(Xu) − Φn(Xu)

]∣∣≤ sup
n

‖Φn‖∞ + ‖g‖∞. (A.4)

By dominated convergence, (A.3) and the absolute continuity of F imply, for all
u < t ∧ τ̃ ,

(L − r)Φn(Xu) → (L − r)Φ(Xu), n → ∞.

By (A.4) and dominated convergence, we have

lim
n→∞ Ex

[∫ τ̃∧t

0
e−ru(L − r)Φn(Xu)du

]
= Ex

[∫ t∧τ̃

0
e−ru(L − r)Φ(Xu)du

]
.

(A.5)

By (A.2) and (A.5), letting n → ∞ for both sides of (A.1), we get (2.8). �

Proof of Proposition 3.3 Fix x > 0. Since (L − r)Φ(x) = 0, by (3.7), we get that
(3.9) holds for k = 0 and, hence, Φ ∈ C2

0,b(R++). Since Φ is continuous at x (Theo-

rem 2.1), we obtain, by Theorem B.3, that T +
B+Φ is differentiable at x and

d

dx
T +

B+Φ(x) = B+T +
B+Φ(x) + Φ(x)I .

Similarly, we have d
dx

T −
B−Φ(x) = −B−T −

B−Φ(x) − Φ(x)I . So, by the differentia-

bility of T ±
B±Φ at x and (3.9) for k = 0, Φ ′′ is differentiable at x, and (3.9) holds for
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k = 1. Since Φ ∈ C2
0,b(R++) and T ±

B±Φ ∈ C0,b(R++), Φ ′′′ ∈ C0,b(R++) and hence

Φ ∈ C3
0,b(R++). A similar argument holds for general k. �

Proof of Proposition 3.6 Denote by Z(+) the collection of all solutions to
ψ(ζ ) − r = 0 with nonnegative real parts, counting their multiplicity. Since D1Φ ≡ 0
on R++ and ψ(ζ ) − r and P1(ζ ) have the same zero set, Φ is of the form

Φ(x) =
∑

ρi∈Z(−)

Qi(x)eρix +
∑

ρ′∈Z(+)

Rρ′(x)eρ′x

for some polynomials Qi and Rρ′ . (See [29], Theorem 19.3 and Lesson 20.) We show
that Rρ = 0 for all ρ ∈ Z(+). Assume that Rρ(x) = 0 for some ρ ∈ Z(+). Let a ≥ 0
be the maximum of all real parts of members in Z(+), and let {ρ′

1, . . . , ρ
′
k} be the set

of all elements in Z(+) such that �(ρ′
j ) = a. Now, let m ≥ 0 be the smallest integer

such that the order of Rρ′
j

is ≤ m for all j , and select the ρ′
j such that the order of

Rρ′
j

is equal to m. Still call the selected members {ρ′
1, ρ

′
2, . . . , ρ

′
k}. Let aj = 0 be the

coefficient of xm in Rρ′
j

for all j . Then

Φ(x)x−me−ax =
∑

j

aj e
i�(ρ′

j )x + h(x), where h(x) → 0 as x → ∞.

However,
∑

j aj e
i�(ρ′

j )x is the discrete Fourier transform of a nonzero function and
hence is not identically zero, and it has period 2π . So, Φ(x)x−me−ax

� 0 as x → ∞.
Since Φ ∈ C0(R+), this is impossible. Hence, Rρ′ ≡ 0 for all ρ′ ∈Z(+). �

Proof of Proposition 3.11 The first statement follows from the fact that
∑S

i=1 Qi =
Φ(0) = g(0).

Consider the second statement. First, note that the minimality of the representa-
tion (α+,B+) guarantees that the collection of all zeros η ∈ C of the rational func-
tion 1

r−ψ(η)
is equal to the collection of all eigenvalues of B+. (For details, see [2],

Lemma 1 and the paragraph above it.) Hence, ρi is not an eigenvalue of B+ for each
i, and ρiI − B+ is invertible for all i. By Theorem B.1(4) and B.2(2), we have

∫ x

−∞
Φ(x − y)f (y) dy =

∫ x

0
Q�eρ(x − y)f (y) dy +

∫ 0

−∞
Q�eρ(x − y)f (y) dy

=
S∑

i=1

Qie
ρixpα+(ρiI − B+)−1(I − ex(B+−ρiI )

)
b�+

+
S∑

i=1

Qie
ρixqα−(−ρiI − B−)−1b�−.

Therefore, by (3.5),
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∫ x

−∞
Φ(x − y)f (y) dy =

S∑

i=1

Qie
ρixψ1(ρi)

−
S∑

i=1

Qie
ρixpα+(ρiI − B+)−1ex(B+−ρiI )b�+.

Recall that ψ(ρi) = Dρ2
i + cρi + λψ1(ρi) − (λ + r) = 0 for all i. Since Φ(x) =

∑S
i=1 Qie

ρix , we have

0 = (L − r)Φ(x) = DΦ ′′(x) + cΦ ′(x) + λ

∫
Φ(x − y)f (y) dy − (λ + r)Φ(x)

=
S∑

i=1

Qiψ(ρi)e
ρix + λ

∫ ∞

x

g(x − y)f (y) dy

− λ

S∑

i=1

Qie
ρixpα+(ρiI − B+)−1ex(B+−ρiI )b�+

= λpα+
(∫ ∞

0
g(−y)eB+ydy

)
exB+b�+

− λp

S∑

i=1

Qie
ρixα+(ρiI − B+)−1ex(B+−ρiI )b�+.

So, the conclusion of the proposition follows. �

Proof of Proposition 4.1 Let x > 0. Similarly to the proof of (2.8), we can pick a
sequence of uniformly bounded functions (φn) ⊂ C2

0(R) such that φn ≡ φ on R+ and
φn → φ a.e. on (−∞,0). By Dynkin’s formula, we have

Ex

[
e−r(t∧τ)φn(Xτ∧t )

]= Ex

[∫ t∧τ

0
e−ru(L − r)φn(Xu)du

]
+ φ(x). (A.6)

Note that φn and φ only differ on (−∞,0) and Xu > 0 for all u < t ∧ τ . Moreover,
the jump distribution of Z is absolutely continuous. Hence, similarly to the proof of
(A.5), we have

lim
n→∞ Ex

[∫ t∧τ

0
e−ru(L − r)φn(Xu)du

]
= Ex

[∫ t∧τ

0
e−ru(L − r)φ(Xu)du

]
.

By dominated convergence and Lemma A.2(1), letting n → ∞ on both sides of (A.6)
gives

Ex

[
e−r(t∧τ)φ(Xτ∧t )

]= Ex

[∫ t∧τ

0
e−ru(L − r)φ(Xu)du

]
+ φ(x) = φ(x). (A.7)
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Note that the last equality follows from the assumption that (L − r)φ ≡ 0 on R++.
Let t → ∞ on both sides of the last equality. Since r > 0, the result follows by the
fact that e−rt1[τ>t] → 0 as t → ∞. This completes the proof. �

Proof of Proposition 4.2 Set φ(x) =∑S
i=1 Qie

ρix for x > 0, and φ(x) = g(x) for
x ≤ 0. Then, for every x > 0,

(L − r)φ(x) =
m+1∑

i=1

Qi

[
Dρ2

i + cρi +
∫ ∞

0

(
ezρi − 1 − ρiz1|z|≤1

)
ν(dz) − (λ + r)

]

× eρix

+ λ

[
m+1∑

i=1

Qi

∫ x

0
eρi(x−y)f(+)(y)dy +

∫ ∞

x

g(x − y)f(+)(y) dy

]

=
m+1∑

i=1

Qi

[

Dρ2
i + cρi +

∫ ∞

0

(
ezρi − 1 − ρiz1|z|≤1

)
ν(dz)

+ λ

m∑

j=1

pjηj

ηj + ρi

− (λ + r)

]

eρix + λ

m∑

j=1

e−ηj xpj

×
[

−
m+1∑

i=1

ηjQi

ηj + ρi

+ ηj

∫ 0

−∞
g(y)eηj y dy

]

.

Since ψ(ρi) − r = 0 for all i and Q satisfies (4.4) and hence (4.3), we conclude that
(L − r)φ(x) = 0. By Proposition 4.1, φ ≡ Φ on R. �

Appendix B Toolbox for phase-type distributions

We first give a summary of some facts of matrix algebra.

Theorem B.1

(1) The matrix exponential function ehA is differentiable on R and

dehA

dh
= AehA = ehAA.

(2) Let θ1, . . . , θk be the eigenvalues of a matrix A. Then, for each s > maxi �(θi),
limt→∞ e−st exp(tA) = 0.

(3) Let B be a subintensity matrix. Then B is nonsingular if and only if every eigen-
value of B has a strictly negative real part.

(4) If A is nonsingular, then
∫ t

v
exA dx = A−1(etA − evA); if further all eigenvalues

of A have strictly negative real parts, then
∫∞

0 exA dx = −A−1.

The following summarizes the main analytic properties of phase-type distribu-
tions.
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Theorem B.2 Suppose that F is PH(α,B). Then:

(1) The n-th moment of F is (−1)nn!αB−ne�.
(2) For any s ∈ C with �(s) ≥ 0, s �→ ∫∞

0 e−sx dF (x) = α(sI − B)−1b� is a ratio-
nal function.

Assume that B is a nonsingular subintensity matrix. Theorem B.1(2) and (3) imply
that

lim
y→∞ eByeδy = 0

for some δ > 0. Hence, T ±
B given by (3.8) is well defined.

Theorem B.3 Let h be a bounded Borel-measurable function. If h is continuous at
x, then T ±

B h are both differentiable at x and ( d
dx

− B)T +
B = −(B + d

dx
)T −

B = I .
Moreover, if h ∈ C0,b(R++), each entry of T ±

B h is in C0,b(R++).

Proof Assume that h is bounded and continuous at x. By Theorem B.1(1), d
dx

eBx =
BeBx . On the other hand, since h is continuous at x, d

dx

∫ x

−∞ h(y)e−Bydy =
h(x)e−xB . Therefore,

d

dx
T +

B h(x) = d

dx

(
eBx

∫ x

−∞
h(y)e−By dy

)
= BT +

B h(x) + h(x)I .

This shows that ( d
dx

− B)T +
B h(x) = h(x)I . Similarly, −(B + d

dx
)T −

B h(x) = h(x)I .
Finally, if h ∈ C0,b(R++), then it is clear that T ±

B h is bounded on R. Moreover, by
dominated convergence, T ±

B h ∈ C0,b(R++). This proves the last statement. �

Appendix C First-order derivative of Φ at zero

We consider the process (2.1) and set

Δ = sup

{
ζ ∈ R+;

∫
e−ξy dF (y) < ∞,∀ξ ∈ [0, ζ ]

}
. (C.1)

Throughout this section, we assume that Δ > 0 and ψ(Δ−) > 0. Let r > 0. Since
ψ(0) − r < 0 and ψ is strictly convex on [0,Δ), there exists a unique number
ρ∗ ∈ (0,Δ) such that ψ(ρ∗) − r = 0. (ρ∗ is called the Lundberg constant in the
actuarial literature.) We write

β = c

D
+ ρ∗, α = β + ρ∗ (C.2)

and hρ∗(x) = e−ρ∗xh(x) for any function h. Recall that Φ(x) = Ex[e−rτ g(Xτ )] for
some fixed bounded Borel-measurable function g : (−∞,0] → R and
τ = inf{t ≥ 0;Xt ≤ 0}. Following similar arguments as in Sect. 3 of [16], we cal-
culate the first-order derivative of Φ at 0.



352 Y.-T. Chen et al.

Theorem C.1 Suppose r > 0. The derivative of Φ at 0 is given by

Φ ′(0+) = ϑ0 − λ

D

∫ 0

−∞
dF(y)

∫ −y

0
dv Φρ∗(v)e−ρ∗y, (C.3)

where

ϑ0 = −βg(0) + λ

D

∫ ∞

0
dv

∫ ∞

v

dF (y) e−ρ∗ygρ∗(v − y). (C.4)

In particular, if
∫
(−∞,0] dF = 0, then Φ ′(0+) = ϑ0.

Proof By Theorem 2.4, we have (L − r)Φ(v) = 0 for all v > 0. Multiplying both
sides of this equation by e−ρ∗v gives

e−ρ∗v
[
D

d2

dv2
+ c

d

dv
− (λ + r)

]
Φ(v) + λ

∫ ∞

−∞
Φ(v − y)e−ρ∗v dF (y) = 0. (C.5)

Note that Φ(v) = eρ∗vΦρ∗(v) for v ∈ R. Then

Φ ′(v) = ρ∗eρ∗vΦρ∗(v) + eρ∗vΦ ′
ρ∗(v) (C.6)

and

Φ ′′(v) = (
ρ∗)2eρ∗vΦρ∗(v) + 2ρ∗eρ∗vΦ ′

ρ∗(v) + eρ∗vΦ ′′
ρ∗(v).

Hence, (C.5) becomes

0 = DΦ ′′
ρ∗(v) + (

c + ρ∗σ 2)Φ ′
ρ∗(v) + λ

∫ ∞

−∞
Φρ∗(v − y)e−ρ∗y dF (y)

+ [
D
(
ρ∗)2 + cρ∗ − (λ + r)

]
Φρ∗(v).

Recall that ψ(ρ∗) = r . Then

0 = DΦ ′′
ρ∗(v) + (

c + ρ∗σ 2)Φ ′
ρ∗(v) + λ

∫ ∞

−∞
Φρ∗(v − y)e−ρ∗y dF (y)

− λΦρ∗(v)

∫
e−ρ∗y dF (y). (C.7)

By Theorem 2.1, Φ ′(0+) exists as a right-hand side derivative. Therefore, integrating
(C.7) from v = 0 to v = z gives

D
[
Φ ′

ρ∗(z) − Φ ′
ρ∗(0+)

]+ (
c + ρ∗σ 2)[Φρ∗(z) − Φρ∗(0)

]

+ λ

∫ z

0
dv

∫ v

−∞
dF(y)Φρ∗(v − y)e−ρ∗y

− λ

∫ z

0
dv

∫
dF(y)Φρ∗(v)e−ρ∗y + λ

∫ z

0
dv

∫ ∞

v

dF (y)gρ∗(v − y)e−ρ∗y = 0.

(C.8)
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Note that we have, by Fubini’s theorem, a change of variables; again, by Fubini’s
theorem,
∫ z

0
dv

∫ v

−∞
dF(y)Φρ∗(v − y)e−ρ∗y

=
∫ 0

−∞
dF(y)

∫ z

0
dv Φρ∗(v − y)e−ρ∗y +

∫ z

0
dF(y)

∫ z

y

dv Φρ∗(v − y)e−ρ∗y

=
∫ 0

−∞
dF(y)

∫ z

0
dv Φρ∗(v − y)e−ρ∗y +

∫ z

0
dF(y)

∫ z−y

0
dv Φρ∗(v)e−ρ∗y

=
∫ 0

−∞
dF(y)

∫ z

0
dv Φρ∗(v − y)e−ρ∗y +

∫ z

0
dv

∫ z−v

0
dF(y)Φρ∗(v)e−ρ∗y.

So, (C.8) is equivalent to

0 =D
[
Φ ′

ρ∗(z) − Φ ′
ρ∗(0)

]+ (
c + ρ∗σ 2)[Φρ∗(z) − Φρ∗(0)

]

+ λ

[∫ 0

−∞
dF(y)

∫ z

0
dv Φρ∗(v − y)e−ρ∗y

−
∫ z

0
dv

(∫ ∞

z−v

+
∫ 0

−∞

)
dF(y)Φρ∗(v)e−ρ∗y

+
∫ z

0
dv

∫ ∞

v

dF (y)e−ρ∗ygρ∗(v − y)

]
. (C.9)

By Theorem 2.1, Φ ′(z) and Φ(z) tend to zero as z → ∞. Hence, letting z → ∞ in
the last equation gives

Φ ′
ρ∗(0) = 1

D

[
−(c + ρ∗σ 2)g(0) − λ

∫ 0

−∞
dF(y)

∫ −y

0
dv Φρ∗(v)e−ρ∗y

+ λ

∫ ∞

0
dv

∫ ∞

v

dF (y)e−ρ∗ygρ∗(v − y)

]
. (C.10)

Since Φ ′(0) = ρ∗g(0) + Φ ′
ρ∗(0), we get (C.3). �

Proposition C.2 Assume that (3.2) holds, and r > 0. Then the number Δ defined by
(C.1) is in (0,∞], and ψ(Δ−) = +∞.

Proof First, we show that Δ > 0. Since all eigenvalues of B− have strictly negative
real parts by Theorem B.1(3), so do the eigenvalues of B− + ζI for all ζ in an open
interval in (0,∞). For all these ζ , from Theorem B.1(4) we obtain that

∫ ∞

0
eζyf(−)(y) dy = α−(−ζI − B−)−1b�− < ∞

and hence
∫

e−ζy dF (y) < ∞.
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Next, we show that ψ(Δ−) = +∞. If Δ < ∞, Δ must be a pole of ψ(ζ ) on
C so that ψ(Δ−) = +∞ or −∞. Since ψ is strictly convex on [0,Δ), we have
ψ(Δ−) = +∞. If Δ = ∞, we have ψ(Δ−) = +∞ by the fact that D > 0. This
completes the proof. �
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