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This leads us to study a mixed singular control/optimal stopping problem for
a diffusion that we solve quasi-explicitly by establishing a connection with an
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1 Introduction

Research on optimal dividend payouts for a cash constrained firm is based on
the premise that the firm wants to pay some of its surplus to the shareholders as
dividends and therefore follows a dividend policy that maximizes the expected
present value of all payouts until bankruptcy. This approach has been used in
particular to determine the market value of a firm which, in line with Modigliani
and Miller [23], is defined as the present value of the sum of future dividends. In
diffusion models, the optimal dividend policy can be determined as the solution
of a singular stochastic control problem. In two influential papers, Jeanblanc
and Shiryaev [18] and Radner and Shepp [26] assume that the firm exploits a
technology defined by a cash generating process that follows a drifted Brownian
motion. They show that the optimal dividend policy is characterized by a thresh-
old so that whenever the cash reserve goes above this threshold, the excess is
paid out as dividend.

Models that involve singular stochastic controls or mixed singular/regular
stochastic controls are now widely used in mathematical finance. Recent con-
tributions have for instance emphasized restrictions imposed by a regulatory
agency [25], the interplay between dividend and risk policies [1,3,14], or the
analysis of hedging and insurance decisions [27]. A new class of models that
combine features of both regular stochastic control and optimal stopping has
recently emerged. Two recent papers in this line are Miao and Wang [22],
who study the interactions between investment and consumption under incom-
plete markets, and Hugonnier et al. [16], who focus on irreversible invest-
ment for a representative agent in a general equilibrium framework. From
a mathematical viewpoint, the problem we are interested in is different and
combines features of both singular stochastic control and optimal stopping.
Such models are less usual in corporate finance and, to the best of our knowl-
edge, only Guo and Pham [13] dealt with such an issue. These authors con-
sider a firm having to choose the optimal time to activate production and
then control it by buying or selling capital. Their problem can be solved in
a two-step formulation which consists in solving the singular control prob-
lem arising from the production activity after the exercise of the investment
option.

The novelty of our paper is to consider the interaction between dividends and
investment as a singular control problem. Specifically, we consider a firm with a
technology in place and a growth option. The growth option offers the firm the
opportunity to invest in a new technology that increases its profit rate. The firm
has no access to external funding and therefore finances the opportunity cost
of the growth option from its cash reserve. Our objective is then to study the
interactions between dividend policy and investment decisions. Such an objec-
tive leads us to deal with a mixed singular control/optimal stopping problem
that we solve by establishing a connection with an optimal stopping problem.
Precisely, let us consider the two following alternative strategies: (i) never invest
in the growth option (and follow the associated optimal dividend policy), (ii)
defer dividend distributions, invest optimally in the growth option (and follow
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the associated optimal dividend policy). We show that the firm value under
the optimal dividend/investment policy coincides with the value function of the
optimal stopping problem whose payoff function is the maximum of the values
of the firm computed under the above strategies (i) and (ii). The equivalence
between the mixed singular control/optimal stopping problem and the stopping
problem is proved in our main theorem and is based on a verification proce-
dure for stochastic control. We compute quasi-explicitly the value function and
show that it is piecewise C2 and not necessarily concave as in standard singular
control problems. Furthermore, from a detailed analysis based on properties of
local time, we construct explicitly the optimal dividend/investment policy. Our
model allows us to address several important questions in corporate finance.
We explain when it is optimal to postpone dividend distribution, to accumulate
cash and to invest at a subsequent date in the growth option. We analyse the
effects of cash flow and uncertainty shocks on dividend policy and investment
decision. We study the effects of financing constraints on dividend policy and
investment decision with respect to a situation where the firm has unlimited
cash.

Finally, our work helps to bridge the gap between the literature on optimal
dividend payouts and the now well-established real option literature. The real
option literature analyses optimal investment policies that can be mathemati-
cally determined as solutions of optimal stopping problems. The original model
is due to McDonald and Siegel [21] and has been extended in various ways
by many authors.1 An important assumption of standard models is that the
investment decision can be made independently of the financing decision. In
contrast, in our paper, two interrelated features drive our investment problem.
First, the firm is cash-constrained and must finance the investment using its cash
reserve. Second, the firm must decide its dividend distribution policy in view of
its growth opportunity. Such a perspective can be related to Boyle and Guthrie
[2] who analyse, in a numerical model, the dynamic investment decision of a
firm submitted to cash constraints. Two state variables drive their model: the
cash process and a project value process for which the decision maker has to pay
a fixed amount. Boyle and Guthrie [2] do not consider, however, the dividend
distribution policy.

The outline of the paper is as follows. Section 2 describes the model, analyses
some useful benchmarks, provides a formulation of our problem based on the
dynamic programming principle, and derives a necessary and sufficient condi-
tion for the growth option to be worthless. Section 3 states and proves our main
theorem, derives the optimal dividend/investment policy and presents financial
implications. Section 4 concludes.

1 See for instance Dixit and Pindyck [9] for an overview of this literature. Recent developments
include for example the impact of asymmetric information in a duopoly model [5,20], the impact of
agency conflicts and information asymmetries [11], regime switches [12], learning [6], incomplete
markets and risk aversion [15], [17], or investment in alternative projects [7].
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2 The model

2.1 Formulation of the problem

We consider a firm whose activities generate a cash process. The firm faces
liquidity constraints that cause bankruptcy as soon as the cash process reaches
the threshold 0. The manager of the firm acts in the best interest of its sharehold-
ers and maximizes the expected present value of dividends up to bankruptcy.
At any time the firm has the option to invest in a new technology that increases
the drift of the cash generating process from µ0 to µ1 > µ0 without affecting
its volatility σ . This growth opportunity requires a fixed investment cost I that
must be financed using the cash reserve. Our purpose is to study the optimal
dividend/investment policy of such a firm.

The mathematical formulation of our problem is as follows. We start with a
probability space (�, F , P), a filtration (Ft)t≥0 and a Brownian motion
W = (Wt)t≥0 with respect to (Ft). In the sequel, Z denotes the set of positive
non-decreasing right-continuous processes and T the set of Ft-stopping times.
A control policy π = (Zπ

t , τπ ; t ≥ 0) models a dividend/investment policy and
is said to be admissible if Zπ

t belongs to Z and if τπ belongs to T . We denote
the set of all admissible controls by �. The control component Zπ

t therefore
corresponds to the total amount of dividends paid out by the firm up to time t,
and the control component τπ represents the time of investment in the growth
opportunity. A given control policy (Zπ

t , τπ ; t ≥ 0) fully characterizes the asso-
ciated investment process (Iπ

t )t≥0 which belongs to Z and is defined by the
relation It = I11t≥τπ . We denote by Xπ

t the cash reserve of the firm at time t
under a control policy π = (Zπ

t , τπ ; t ≥ 0). The dynamics of the cash process
Xπ

t satisfies

dXπ
t = (µ011t<τπ + µ111t≥τπ )dt + σdWt − dZπ

t − dIπ
t , Xπ

0− = x.

Observe that at the investment time τπ , the cash process jumps by an amount of
(�Xπ )τπ ≡ Xπ

τπ − Xπ
τπ− = −I − (Zπ

τπ − Zπ
τπ−). This reflects the fact that we do

not a priori exclude strategies that distribute some dividend at the investment
time τπ . For a given admissible control π , we define the time of bankruptcy by

τπ
0 = inf{t ≥ 0 : Xπ

t ≤ 0},
and the firm value Vπ by

Vπ (x) = Ex




τπ
0∫

0

e−rsdZπ
s


 .

The objective is to find the optimal return function which is defined as

V(x) = sup
π∈�

Vπ (x), (2.1)

and the optimal policy π� such that

Vπ�(x) = V(x).
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We thus consider in this paper the interaction between dividends and invest-
ment as a mixed singular control/optimal stopping problem. Our main theorem
shows that problem (2.1) can be reduced to a stopping problem that we solve
quasi-explicitly.

2.2 Benchmarks

Assume for the moment that the firm has only access to one of the two tech-
nologies (say, technology i = 0 for drift µ0 and technology i = 1 for drift µ1).
The cash process Xi = (Xi,t)t≥0 therefore satisfies

dXi,t = µidt + σdWt − dZi,t.

The firm value Vi,t at time t is defined by the standard singular control problem

Vi,t = ess sup
Zi∈Z

Ex




τi,0∫

t∧τi,0

e−r(s−t∧τi,0)dZi,s

∣∣∣∣∣∣∣
Ft∧τi,0


 , (2.2)

where τi,0 = inf{t : Xi,t ≤ 0} is the time of bankruptcy. This is the stan-
dard model of optimal dividends proposed by Jeanblanc and Shiryaev [18] or
Radner and Shepp [26]. It follows from these papers that the firm value satisfies
Vi,t = Vi(Xi,t∧τi,0), where

Vi(x) = sup
Zi∈Z

Ex




τi,0∫

0

e−rsdZi,s


 . (2.3)

Moreover, there exists a threshold xi such that the optimal dividend policy, the
solution of problem (2.3), is the local time Lxi(µi, W) defined by the increasing
process

Lxi
t (µi, W) = max

[
0, max

0≤s≤t
(µis + σWs − xi)

]
.

Computations are explicit and give

Vi(x) = Ex




τi,0∫

0

e−rsdLxi
s (µi, W)


 = fi(x)

f ′
i (xi)

, 0 ≤ x ≤ xi, (2.4)

with

fi(x) = eα+
i x − eα−

i x and xi = 1

α+
i − α−

i
ln

(
α−

i
)2

(
α+

i
)2 , (2.5)

where α−
i < 0 < α+

i are the roots of the characteristic equation

µix + 1
2
σ 2x2 − r = 0.
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If the firm starts with cash reserves x above xi, the optimal dividend policy
distributes immediately the amount (x − xi) as exceptional dividend and then
follows the dividend policy defined by the local time Lxi(µi, W). Thus, for x ≥ xi,

Vi(x) = x − xi + Vi(xi), (2.6)

where

Vi(xi) = Exi




τi,0∫

0

e−rsdLxi
s (µi, W)


 = µi

r
.

It is worth noting that the function fi defined on [0, ∞) is nonnegative, increas-
ing, concave on [0, xi], convex on [xi, ∞) and satisfies f ′

i ≥ 1 on [0, ∞) together
with Lifi − rfi = 0 on [0, xi] where Li is the infinitesimal generator of the drifted
Brownian motion µit+σWt. Observe also that Vi is concave on [0, xi] and linear
above xi. Finally, it is also important to note that there is no obvious comparison
between x0 and x1 (see for instance [27], Proposition 2). We shall repeatedly
use all these properties in the next sections.

Coming back to our problem (2.1), we deduce from the above standard
results that the strategies

π0 =
(

Z0
t , 0

)
= (

(x − x0)+11t=0 + Lx0
t (µ0, W)11t>0 , ∞)

(2.7)

and
π1 =

(
Z1

t , 0
)

= (
(x − I) − x1)+11t=0 + Lx1

t (µ1, W)11t>0, 0
)

(2.8)

lead to the inequalities V(x) ≥ V0(x) and V(x) ≥ V1(x − I). Strategy π0 corre-
sponds to the investment policy “never invest in the growth option (and follow
the associated optimal dividend policy)”, while strategy π1 corresponds to the
investment policy “invest immediately in the growth option (and follow the
associated optimal dividend policy)”. Finally, note that because the inequality
x − I ≤ 0 leads to immediate bankruptcy, the firm value V1(x − I) is given by




V1(x − I) = max

(
0,

f1(x − I)
f ′
1(x1)

)
, 0 ≤ x ≤ x1 + I,

V1(x − I) = x − I − x1 + µ1
r , x ≥ x1 + I.

(2.9)

2.3 First results

In this section we prove that the value function V satisfies the dynamic pro-
gramming principle. We then derive a necessary and sufficient condition under
which the growth opportunity is worthless.

Proposition 2.1 The value function V satisfies the dynamic programming
principle:

V(x) = sup
π∈�

Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1

(
Xπ

(τπ∧τπ
0 )− − I

)

 . (2.10)
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Proof Let us define

W(x) = sup
π∈�

Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1

(
Xπ

(τπ∧τπ
0 )− − I

)

 .

We start by proving the inequality V(x) ≤ W(x). Consider a given admissible
policy π = (Zπ

t , τπ ). Now, from (2.2) and (2.3), the firm value at the investment
date τπ satisfies

V1,τπ = ess sup
Z∈Z

E




τπ
0∫

τπ∧τπ
0

e−r(s−τπ∧τπ
0 )dZs

∣∣∣∣∣∣∣
Fτπ∧τπ

0




= V1

(
Xπ

(τπ∧τπ
0 )− − I

)

= V1

(
Xπ

τπ∧τπ
0

)
, (2.11)

where the first equality uses the relation τπ
0 = τ1,0, which holds almost surely

on the event {τπ ∧ τπ
0 = τπ }. We then deduce

Vπ (x) = Ex




τπ
0∫

0

e−rsdZπ
s




= Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s + E

[ τπ
0∫

τπ∧τπ
0

e−rsdZπ
s

∣∣∣∣Fτπ∧τπ
0

]


≤ Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s

+ e−r(τπ∧τπ
0 ) ess sup

Z∈Z
E

[ τπ
0∫

τπ∧τπ
0

e−r(s−τπ∧τπ
0 )dZs

∣∣∣∣ Fτπ∧τπ
0

]


≤ Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1

(
Xπ

(τπ∧τπ
0 )− − I

)

 . (2.12)

Taking the supremum over π ∈ � on both sides gives the desired inequality.
The reverse inequality relies on the fact that Z1

t defined by (2.8) is the
optimal dividend policy for problem (2.11). Indeed, consider the control
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π = (Zπ
t 11t<τπ + Z1

t 11t≥τπ , τπ ) where Zπ
t and τπ are arbitrarily chosen in Z

and T . Then we get

V(x) ≥ Vπ (x)

= Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s

+ e−r(τπ∧τπ
0 ) ess sup

Z∈Z
E

[ τπ
0∫

τπ
0 ∧τπ

e−r(s−τπ∧τπ
0 )dZπ

s

∣∣∣∣Fτπ∧τπ
0

]


= Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1

(
Xπ

(τπ∧τπ
0 )− − I

)

 .

Taking the supremum over (Zπ , τπ ) on the right-hand side gives the result. �	
We now establish a necessary and sufficient condition under which, for all

current values of the cash process, the growth opportunity is worthless.

Proposition 2.2 We have

V(x) = V0(x) for all x ≥ 0 if and only if
µ1 − µ0

r
≤ (x1 + I) − x0.

Proof It follows from the previous section that if V(x) = V0(x) for all x ≥ 0,
then V0(x) ≥ V1(x) which implies for x ≥ max{x0, x1 + I} the inequality
µ1−µ0

r ≤ (x1 + I)− x0. The sufficient condition in Proposition 2.2 is less obvious
and relies on the following lemma.

Lemma 2.3 If
(

µ1 − µ0

r

)
≤ (x1 + I)−x0, then V0(x) ≥ V1(x− I) for all x ≥ 0.

Proof We distinguish three cases. First, if x ∈ [0, I], then V1(x− I) = 0 ≤ V0(x).
Second, if x ≥ x0, then

V1(x − I) < x − x1 + µ1

r
≤ x − x0 + µ0

r
= V0(x),

where the first inequality comes from the concavity of V1, the second inequality
is our assumption, and the last equality follows from the definition of V0 for
x ≥ x0. Third, fix x ∈ [I, x0] and consider the function k defined on [I, x0] by the
relation k(x) = V0(x)−V1(x−I). We already know that k(I) > 0 and k(x0) > 0.
Note also that k′(x0) = 1 − V′

1(x0 − I) ≤ 0 and k′′(x0) ≥ 0. Next, suppose that
there exists y ∈ (I, x0) such that k(y) = 0. Because k is decreasing and convex
in a left neighbourhood of x0, there exists z ∈ (y, x0) such that k′(z) = 0 with k
concave in a neighbourhood centred in z. We thus obtain

L0k(z) − rk(z) = σ 2

2
k′′(z) − rk(z) < 0. (2.13)
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Using the equality L0V0(x) − rV0(x) = 0, which holds for all x ∈ (I, x0), we get

L0k(x) − rk(x) = −L0V1(x − I) + rV1(x − I). (2.14)

Now, because µ1 > µ0, the inequality x0 ≥ x1 + I holds by assumption and the
relation L1V1(x − I) − rV1(x − I) = 0 is therefore satisfied for x ∈ (I, x0). We
then deduce for all x ∈ (I, x0) that

L0V1(x − I) − rV1(x − I) = (L0 − L1)V1(x − I) = (µ0 − µ1)V
′
1(x − I) < 0,

where the last inequality follows because V1(· − I) is increasing and from
µ1 > µ0. It then follows from (2.14) that L0k(z) − rk(z) > 0. This contra-
dicts (2.13) and concludes the proof of Lemma 2.3. �	

We now finish the proof of Proposition 2.2. By Eq. (2.12), for all fixed
π = (Zπ

t , τπ ; t ≥ 0) ∈ �, we have

Vπ (x) ≤ Ex




(τπ∧τπ
0 )−∫

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1

(
Xπ

(τπ∧τπ
0 )− − I

)



≤ Ex




(τπ∧τπ
0 )∫

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V0

(
Xπ

(τπ∧τπ
0 )−

)



≤ V0(x),

where the second inequality comes from Lemma 2.3 and the third from the
dynamic programming principle applied to the value function V0. It thus fol-
lows that V(x) ≤ V0(x) which implies our result since the reverse inequality is
always true. �	

In the rest of the paper, condition (H1) will refer to the inequality

µ1 − µ0

r
> (x1 + I) − x0.

Condition (H1) is therefore a necessary and sufficient condition for the growth
option not to be worthless. Note that condition (H1) ensures the existence and
uniqueness of a positive real number x̃ such that V0(x) ≥ (resp. ≤) V1(x − I)
for x ≤ (resp. ≥) x̃. This property will play a crucial role in the next section.

3 Main results

We derive in this section our main results. First, we present and comment in
Sect. 3.1 our main theorem and prove it in Sect. 3.2. Next, we derive in Sect. 3.3
the optimal dividend/investment policy and develop in Sect. 3.4 the economic
interpretations.
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3.1 The main theorem

Let us denote by R = (Rt)t≥0 the cash reserve process generated by the activity
in place in the absence of dividend distribution, so that

dRt = µ0dt + σdWt,

and consider the stopping problem with the value function

φ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0) max

(
V0(Rτ∧τ0), V1(Rτ∧τ0 − I)

)]
, (3.1)

where τ0 = inf{t ≥ 0 : Rt ≤ 0}. We show

Theorem 3.1 For all x ∈ [0, ∞), V(x) = φ(x).

The intuition of our result is as follows. Having in mind the properties derived
in Sect. 2 and standard results on optimal stopping problems, one expects that
the optimal dividend/investment policy is defined by a reflecting barrier for the
dividend policy together with an investment threshold. Such a guess implies that
only two alternative strategies remain available: (i) ignore the growth option
and pay out any surplus above x0 as dividend; (ii) postpone dividend distribu-
tion, invest at a certain threshold b in the growth opportunity and pay out any
surplus above x1 as dividend. Theorem 3.1 shows that this intuition is correct.
In other words, Theorem 3.1 says that the manager fits his dividend policy to
the option value to invest in the growth opportunity and everything happens
as if he had simply to choose between paying dividends versus retaining the
earnings for investment. The mixed singular control/optimal stopping problem
(2.1) is therefore reduced to the stopping problem (3.1).

3.2 Proof of the main theorem

The proof follows the standard line of stochastic control which relies on the
dynamic programming principle and Hamilton–Jacobi–Bellman (HJB) equa-
tion. We start with the following lemma.

Lemma 3.2 For all x ∈ [0, ∞), V(x) ≥ φ(x).

Proof According to Proposition 2.1 and (2.11), we have for every policy (Zπ
t , τπ )

and for all x ≥ 0

V(x) ≥ E




(τπ
0 ∧τπ )−∫

0

e−rs dZπ
s + e−r(τπ

0 ∧τπ )V1

(
Xτπ

0 ∧τπ

)



= E




(τπ
0 ∧τπ )−∫

0

e−rs dZπ
s + e−r(τπ

0 ∧τπ )V
(

Xτπ
0 ∧τπ

)

 .
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The strategy with Zπ
s = 0 for 0 ≤ s ≤ t and τπ = t leads to

V(x) ≥ E

(
e−r(t∧τπ

0 )V(Rt∧τπ
0
)
)

,

and it results from the Markov property that the process (e−r(t∧τπ
0 )V(Rt∧τπ

0
))t≥0

is a supermartingale which dominates the function max(V0(·), V1(· − I)). On
the other hand, according to optimal stopping theory, our candidate value func-
tion φ is defined as the smallest supermartingale function which dominates
max(V0(·), V1(· − I)); hence the inequality V(x) ≥ φ(x) follows. �	

The proof of the reverse inequality V(x) ≤ φ(x) is more involved and requires
a verification result for the HJB equation associated to problem (2.10). One
indeed expects, from the dynamic programming principle, that the value func-
tion satisfies the HJB equation

max(1 − v′, L0v − rv, V1(· − I) − v) = 0. (3.2)

The next proposition shows that any piecewise C2 function which is a superso-
lution to the HJB equation (3.2) is a majorant of the value function V.

Proposition 3.3 (Verification result for the HJB equation) Suppose we can find
a positive function Ṽ, piecewise C2 on (0, +∞) with bounded first derivatives2

and such that for all x > 0,
(i) L0Ṽ − rṼ ≤ 0 in the sense of distributions,

(ii) Ṽ(x) ≥ V1(x − I),
(iii) Ṽ′(x) ≥ 1,
with the initial condition Ṽ(0) = 0. Then Ṽ(x) ≥ V(x) for all x ∈ [0, ∞).

Proof We must show that for any control policy π = (Zπ
t , τπ ; t ≥ 0),

Ṽ(x) ≥ Vπ (x) for all x > 0. Let us write Zπ
t = Zπ ,c

t + Zπ ,d
t where Zπ ,c

t is
the continuous part of Zπ

t and Zπ ,d
t is the purely discontinuous part of Zπ

t .
Using a generalized Itô’s formula (see [8], Theorem VIII-25 and Remark c, p.
349), we can write

e−r(τπ∧τπ
0 )Ṽ

(
Xπ

(τπ∧τπ
0 )−

)
= Ṽ(x) +

(τπ∧τπ
0 )−∫

0

e−rs
(
L0Ṽ

(
Xπ

s
) − rṼ

(
Xπ

s
))

ds

+
(τπ∧τπ

0 )−∫

0

e−rsṼ′ (Xπ
s
)

σdWs

−
(τπ∧τπ

0 )−∫

0

e−rsṼ′ (Xπ
s
)

dZc
s

+
∑

s<τπ∧τπ
0

e−rs
(

Ṽ
(
Xπ

s
) − Ṽ

(
Xπ

s−
))

.

2 In the sense of Definition 4.8, p. 271 in Karatzas and Shreve [19].
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Since Ṽ satisfies (i), the second term of the right hand side is nonpositive. On the
other hand, the first derivative of Ṽ being bounded, the third term is a square
integrable martingale. Taking expectations, we get

Ex

[
e−r(τπ∧τπ

0 )Ṽ
(

Xπ

(τπ∧τπ
0 )−

)]
≤ Ṽ(x) − Ex




(τπ∧τπ
0 )−∫

0

e−rsṼ′ (Xπ
s
)

dZπ ,c
s




+ Ex

[ ∑
s<τ∧τ0

e−rs
(

Ṽ
(
Xπ

s
) − Ṽ

(
Xπ

s−
))]

.

Since Ṽ′(x) ≥ 1 for all x > 0, we have Ṽ(Xπ
s )− Ṽ(Xπ

s−) ≤ Xπ
s −Xπ

s−. Therefore,
using the equality Xπ

s − Xπ
s− = −(Zπ

s − Zπ
s−) for s < τπ ∧ τπ

0 , we finally get

Ṽ(x) ≥ Ex

[
e−r(τπ∧τπ

0 )Ṽ
(

Xπ

(τπ∧τπ
0 )−

)]
+ Ex




(τπ∧τπ
0 )−∫

0

e−rsṼ′ (Xπ
s
)

dZπ ,c
s




+ Ex

[ ∑
s<τ∧τ0

e−rs (
Zπ

s − Zπ
s−

)]

≥ Ex

[
e−r(τπ∧τπ

0 )V1

(
Xπ

(τπ∧τπ
0 )− − I

)]
+ Ex




(τπ∧τπ
0 )−∫

0

e−rs dZπ
s




= Vπ (x),

where assumptions (ii) and (iii) have been used for the second inequality. �	
We call thereafter supersolution to the HJB equation (3.2) any function Ṽ

satisfying Proposition 3.3. To complete the proof of Theorem 3.1, it thus remains
to verify that our candidate value function φ is a supersolution to the HJB equa-
tion (3.2). This will clearly imply the inequality V(x) ≤ φ(x). It is worth pointing
out that, contrary to a standard verification procedure, we do not need here to
finish the proof of Theorem 3.1 by constructing a control policy whose perfor-
mance functional coincides with the value function φ. The reason is that we
proved in Lemma 3.2 that the inequality V(x) ≥ φ(x) is always satisfied. Deriv-
ing the optimal control/stopping strategy is nevertheless crucial for a detailed
analysis of economic interpretations and will be done in Sect. 3.3. We now turn
to the last step of the proof of Theorem 3.1.

Proposition 3.4 φ is a supersolution to the HJB equation (3.2).

The proof of Proposition 3.4 requires to solve quasi-explicitly the optimal
stopping problem (3.1), a task we achieve in the next paragraph.

Solution to the optimal stopping problem (3.1)
As a first remark, note that, from Lemma 3.2 and from the definition of the

optimal stopping problem (3.1), we have V(x) ≥ φ(x) ≥ θ(x) for all positive x,
where θ is the value function of the optimal stopping problem
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θ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0 − I)

]
, (3.3)

with τ0 = inf{t ≥ 0 : Rt ≤ 0}. The value function θ therefore represents
the value of the option to invest in the growth opportunity when the manager
decides to postpone dividend payments until investment. In line with the intui-
tion underlying Theorem 3.1, one anticipates that if for all positive x, the option
value θ(x) is larger than V0(x), then we have the equalities V(x) = φ(x) = θ(x).
A crucial point will be to show that the inequality θ(x) > V0(x) holds for all
positive x if and only if it is satisfied at the threshold x0 that triggers the distribu-
tion of dividends when the firm is run under the technology in place. In such a
situation, the optimal dividend/investment policy will be to postpone dividend
distribution, to invest at a certain threshold b in the growth opportunity and to
pay out any surplus above x1 as dividend. The next proposition makes all these
points precise and derives the solution to the optimal stopping problem (3.1).

Proposition 3.5 The following hold:

(A) If condition (H1) is satisfied, then:
(i) If θ(x0) > V0(x0), then the value function φ satisfies φ(x) = θ(x) for

all positive x.
(ii) If θ(x0) ≤ V0(x0), then the value function φ has the structure

φ(x) =




V0(x), 0 ≤ x ≤ a,
V0(a) Ex[e−rτa 11τa<τc ] + V1(c − I)Ex[e−rτc 11τa>τc ]

= Aeα+
0 x + Beα−

0 x, a ≤ x ≤ c,
V1(x − I), x ≥ c,

where τa = inf{t ≥ 0 : Rt ≤ a} and τc = inf{t ≥ 0 : Rt ≥ c} and
where A, B, a, c are determined by the continuity and smooth-fit C1

conditions at a and c, i.e.,

φ(a) = V0(a),

φ(c) = V1(c − I),

φ′(a) = V′
0(a),

φ′(c) = V′
1(c − I).

(B) If condition (H1) is not satisfied, then φ(x) = V0(x) for all positive x.

Figures 1 and 2 illustrate cases (i) and (ii) of Proposition 3.5. We establish
Proposition 3.5 through a series of lemmas. The first one derives quasi-explicitly
the value function θ .

Lemma 3.6 The value function θ is given by



θ(x) = f0(x)

f0(b)
V1(b − I), x ≤ b,

θ(x) = V1(x − I), x ≥ b,

(3.4)
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Fig. 1 θ(x0) > V0(x0)

x0

µ0
r

V0(x)

I

V1(x − I )

x1 + I

µ1
r

ca

φ(x)

x̃

Fig. 2 θ(x0) < V0(x0)

where f0 is defined in (2.5) and where b > I is defined by the smooth-fit condition

V′
1(b − I)

f ′
0(b)

= V1(b − I)
f0(b)

. (3.5)
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Proof It follows from Dayanik and Karatzas [4] (Corollary 7.1) that the optimal
value function θ is C1 on [0, ∞), and furthermore from Villeneuve [29] (The-
orem 4.2 and Proposition 4.6) that a threshold strategy is optimal. This allows
us to use a standard verification procedure and to write the value function θ in
terms of the free boundary problem

{
L0θ(x) − rθ(x) = 0, 0 ≤ x ≤ b, and L0θ(x) − rθ(x) ≤ 0, x ≥ b,

θ(b) = V1(b − I), θ ′(b) = V′
1(b − I).

(3.6)

Standard computations lead to the desired result. �	
The next lemma characterizes the stopping region of the optimal stopping

problem (3.1).

Lemma 3.7 The stopping region S of problem (3.1) satisfies S = S0 ∪ S1 with

S0 = {0 < x < x̃ | φ(x) = V0(x)}
and

S1 = {x > x̃ | φ(x) = V1(x − I)},
where x̃ is the unique crossing point of the value functions V0(·) and V1(x − ·).
Proof According to optimal stopping theory (see [10], or Theorems 10.1.9 and
10.1.12 in [24]), the stopping region S of problem φ satisfies

S = {x > 0 | φ(x) = max(V0(x), V1(x − I))}.
Now, from Proposition 5.13 and Corollary 7.1 by Dayanik-Karatzas [4], the
hitting time τS = inf{t : Rt ∈ S} is optimal and the optimal value function is C1

on [0, ∞). Moreover, it follows from Lemma 4.3 from Villeneuve [29] that x̃,
defined as the unique crossing point of the value functions V0(·) and V1(x − ·),
does not belong to S. Hence, the stopping region can be decomposed into two
subregions S = S0 ∪ S1 with

S0 = {0 < x < x̃ | φ(x) = V0(x)}
and

S1 = {x > x̃ | φ(x) = V1(x − I)}.
�	

We now obtain assertion (i) of Proposition 3.5 as a byproduct of the next
lemma.

Lemma 3.8 The following assertions are equivalent:

(i) θ(x0) > V0(x0).
(ii) θ(x) > V0(x) for all x > 0.

(iii) S0 = ∅.
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Proof (i) �⇒ (ii). We start with x ∈ (0, x0). Let us define
τx0 = inf{t : Rt < x0} ∈ T . The inequality θ(x0) > V0(x0) together with the
initial condition θ(0) = V0(0) = 0 implies

Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0) − V0(Rτx0 ∧τ0)

)]
> 0.

Itô’s formula gives

0 < Ex

[
e−r(τx0 ∧τ0)

(
θ(Rτx0∧τ0) − V0(Rτx0∧τ0)

)]

= θ(x) − V0(x) + Ex




τx0∧τ0∫

0

e−rt (L0θ(Rt) − rθ(Rt)) dt




≤ θ(x) − V0(x),

where the last inequality follows from (3.6). Thus, θ(x) > V0(x) for 0 < x ≤ x0.
Assume now that x > x0. We distinguish two cases. If b > x0, it follows from
(2.4) and (3.4) that θ(x) > V0(x) for x ≤ x0 is equivalent to θ ′(x0) > 1. Then the
convexity property of f0 yields θ ′(x) > 1 for all x > 0. If on the contrary b ≤ x0,
then θ(x) = V1(x − I) for all x ≥ x0. Since V′

1(x − I) ≥ 1 for all x ∈ [I, ∞),
the smooth-fit principle implies θ ′(x) ≥ 1 for all x ≥ x0. Therefore, the function
θ − V0 is increasing for x ≥ x0 which ends the proof.

(ii) �⇒ (iii). Simply remark that (3.3) and (3.1) give φ ≥ θ . Therefore, we
have φ(x) ≥ θ(x) > V0(x) for all x > 0 which implies the emptyness of S0.

(iii) �⇒ (i). Suppose S0 = ∅ and let us show that θ = φ. This will clearly imply
θ(x0) = φ(x0) > V0(x0) and thus (i). From optimal stopping theory, the process(
e−r(t∧τ0∧τS)φ(Xt∧τ0∧τS)

)
t≥0 is a martingale. Moreover, on the event {τS < t}, we

have φ(RτS) = V1(RτS − I) a.s. It results that

φ(x) = Ex

[
e−r(t∧τS)φ(Rt∧τS)

]

= Ex
[
e−rτS V1(RτS − I)11τS<t

] + Ex
[
e−rtφ(Rt)11t≤τS

]

≤ θ(x) + Ex
[
e−rtφ(Rt)

]
.

Now, it follows from (2.6), (2.9) that φ(x) ≤ Cx for some positive constant C.
This implies that Ex

[
e−rtφ(Rt)

]
converges to 0 as t goes to infinity. We therefore

deduce that φ ≤ θ and thus that φ = θ . �	

Assertion (ii) of Proposition 3.5 relies on the following lemma.

Lemma 3.9 Assume θ(x0) ≤ V0(x0). Then there are two positive real numbers
a ≥ x0 and c ≤ x1 + I such that

S0 = ]0, a] and S1 = [c, +∞[.
Proof From the previous lemma we know that the inequality θ(x0) ≤ V0(x0)

implies S0 �= ∅. We start the proof with the shape of the subregion S0. Taking
x ∈ S0, we have to prove that any y ≤ x belongs to S0. As a result, we shall then
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define a = sup{x < x̃ | x ∈ S0}. Now, according to Proposition 5.13 by Dayanik
and Karatzas [4], we have

φ(y) = Ey

[
e−r(τS∧τ0) max

(
V0(RτS∧τ0), V1(RτS∧τ0 − I)

)]
.

Since x ∈ S0, x < x̃ and thus τS = τS0P
y-a.s. for all y ≤ x. Hence,

φ(y) = Ey

[
e−r(τS0 ∧τ0)V0(RτS0∧τ0)

]
≤ V0(y),

where the last inequality follows from the supermartingale property of the pro-
cess

(
e−r(t∧τ0)V0(Rt∧τ0)

)
t≥0. Now, assuming that a < x0, (i.e., φ(x0) > V0(x0))

yields a contradiction since

φ(a) = V0(a)

= Ea

[
e−rτx0 11τx0 <τ0 V0(Rτx0

)
]

≤ Ea

[
e−rτx0 V0(Rτx0

)
]

< Ea

[
e−rτx0 φ(Rτx0

)
]

≤ φ(a),

where the second equality follows from the martingale property of the process(
e−r(t∧τx0∧τ0)V0(Rt∧τx0∧τ0)

)
t≥0

under P
a and the last inequality follows from the

supermartingale property of the process
(
e−r(t∧τ0)φ(Rt∧τ0)

)
t≥0.

The shape of the subregion S1 is a direct consequence of Lemma 4.4 by
Villeneuve [29]. The only difficulty is to prove that c ≤ x1 + I. Let us consider
x ∈ (a, c), and let us introduce the stopping times τa = inf{t : Rt = a}, and
τc = inf{t : Rt = c}. Then we have

φ(x) = Ex

[
e−r(τa∧τc) max

(
V0(Rτa∧τc), V1(Rτa∧τc − I)

)]

≤ Ex

[
e−r(τa∧τc)

(
Rτa∧τc − (x1 + I) + µ1

r

)]

= x − (x1 + I) + µ1

r
+ Ex




τa∧τc∫

0

e−rs(µ0 − r(Rs − (x1 + I)) − µ1) ds


 .

Observe that on the stochastic interval [0, τa ∧ τc], Rs ≥ a ≥ x0 P
x-a.s. and thus

µ0 − r(Rs − (x1 + I)) − µ1 ≤ µ0 − r(x0 − (x1 + I)) − µ1 < 0,

by condition (H1). Therefore, φ(x) ≤ x−(x1+I)+ µ1
r for x ∈ (a, c). We conclude

by noting that assuming the inequality c > x1 + I would yield the contradiction

µ1

r
= V1(x1) < φ(x1 + I) ≤ µ1

r
.

�	
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We now finish the proof of Proposition 3.5. It follows from Lemma 3.9 that
the structure of the value function φ in assertion (ii) of Proposition 3.5 is a direct
consequence of continuity and smooth-fit C1 properties. Finally, consider case
(B) of Proposition 3.5 and therefore assume that condition (H1) is not satisfied.
Similar arguments to those used for studying the optimal stopping problem
(3.3) easily yield the relation

V0(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V0(Rτ∧τ0 − I)

]
.

The equality V(x) = φ(x) follows then from Proposition 2.2. �	
As a final remark note that if θ(x0) = V0(x0), then we have that a = x0, c = b

and the value functions φ and θ coincide. Indeed, using the same argument as in
the first part of the proof of Lemma 3.8, we easily deduce from θ(x0) = V0(x0)

that θ(x) = V0(x) = φ(x) for x ≤ x0. Furthermore, (2.4) and (3.4) imply that
θ(x0) = V0(x0) is equivalent to θ ′(x0) = V′(x0) = 1, which implies that a = x0.
The equality c = b follows then from relations (3.4) and (3.5). To summarize, if
θ(x0) = V0(x0), then

(
e−r(t∧τ0)θ(Rt∧τ0

)
is the smallest supermartingale that maj-

orizes
(
e−r(t∧τ0) max(V0(Rt∧τ0), V1(Rt∧τ0 − I)

)
, from which it results that θ = φ.

We are now ready to prove Proposition 3.4, namely that φ is a supersolution
to the HJB equation (3.2). This will complete the proof of Theorem 3.1.

Proof of Proposition 3.4 The result clearly holds if φ(x) = V0(x) for all positive
x (that is, if condition (H1) is not satisfied). Assume now that condition (H1) is
satisfied. Two cases have to be considered.

(i) θ(x0) > V0(x0).
In this case, φ = θ according to part (i) of Proposition 3.5. It remains to
check that the function θ satisfies the assumptions of Proposition 3.3. But
according to optimal stopping theory, θ ∈ C2[(0, ∞)\b)], L0θ − rθ ≤ 0
and clearly θ ≥ V1(· − I). Moreover, it is shown in the first part of the
proof of Lemma 3.8 that θ ′(x) ≥ 1 for all x > 0. Finally, let us check that
θ ′ is bounded above in the neighbourhood of zero. Clearly we have that

θ(x) ≤ sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0)

]
,

and furthermore, the process
(
e−r(t∧τ0)V1(Rt∧τ0)

)
t≥0 is a supermartingale

since µ1 > µ0. Therefore θ ≤ V1, and the boundedness of the first deriv-
ative of θ then follows from (2.9).

(ii) θ(x0) ≤ V0(x0).
In this case, the function φ is characterized by part (ii) of Proposition 3.5.
Thus, φ = V0 on (0, a), φ = V(·−I) on (c, +∞) and φ(x) = Aeα+

0 x +Beα−
0 x

on (a, c). Hence, φ will be a supersolution if we prove that φ′(x) ≥ 1 for
all x > 0. In fact, it is enough to prove that φ′(x) ≥ 1 for x ∈ (a, c) because
V′

0 ≥ 1 and V′
1(·−I) ≥ 1. The smooth-fit principle gives φ′(a) = V′

0(a) ≥ 1
and φ′(c) = V′

1(c − I) ≥ 1. Clearly, φ is convex in a right neighbourhood
of a. Therefore, if φ is convex on (a, c), the proof is over. If not, the second
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derivative of φ, given by A(α+
0 )2eα+

0 x +B(α−
0 )2eα−

0 x, vanishes at most once
on (a, c), say in d. Therefore,

1 ≤ φ′(a) ≤ φ′(x) ≤ φ′(d) for x ∈ (a, d),

and

1 ≤ φ′(c) ≤ φ′(x) ≤ φ′(d) for x ∈ (d, c),

which completes the proof of Proposition 3.4 and thus concludes the proof
of Theorem 3.1. �	

3.3 Optimal policy

We give here a construction of the optimal dividend/investment policy. Theo-
rem 3.1 and Proposition 3.5 drive the intuition. For instance, one expects that if
condition (H1) is satisfied together with the inequality θ(x0) < V0(x0) then, for
a current value of the cash reserve between the thresholds a and c, the optimal
strategy is to delay any decision until the cash reserve process hits threshold
a or threshold c. Two cases can then happen. If the cash reserve process rises
to c before hitting a, the optimal strategy is to invest in the growth option and
then to deliver any surplus above x1 as dividend. On the contrary, if the cash
reserve process falls to a before hitting c, the optimal strategy is to deliver
as exceptional dividend the amount a − x0 and never to invest in the growth
opportunity. Assertion (ii) of the next proposition encompasses this particular
case. We now state our result.

Proposition 3.10 The following holds:

(A) If condition (H1) is satisfied, then:
(i) If θ(x0) > V0(x0), then the policy π� = (Zπ�

t , τπ�
) defined by the

increasing right-continuous process

Zπ�

t = ((Rτb − I) − x1)+11t=τb + Lx1
t (µ1, W)11t>τb

and by the stopping time

τπ� = τb

satisfies for all positive x the relation φ(x) = Vπ�(x).
(ii) If θ(x0) ≤ V0(x0), then the policy π� = (Zπ�

t , τπ�
) defined by the

increasing right-continuous process

Zπ�

t = [
(Rτa − x0)+11t=τa+(Lx0

t (µ0, W)−Lx0
τa

(µ0, W))11t>τa

]
11τa<τc

+ [
((Rτc − I) − x1)+11t=τc + Lx1

t (µ1, W)11t>τc

]
11τc<τa

and by the stopping time

τπ� =
{

τc, if τc < τa
∞, if τc > τa

satisfies for all positive x the relation φ(x) = Vπ�(x).
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(B) If condition (H1) is not satisfied, then the policy π� = (Zπ�

t , τπ�
) defined

by the increasing right-continuous process

Zπ�

t = (x − x1)+11t=0 + Lx0
t (µ0, W)11t>0

and by the stopping time

τπ� = ∞
satisfies for all positive x the relation φ(x) = Vπ�(x).

Proof Part (i) is immediate from (2.8) and part (i) of Proposition 3.5. We start
the proof of part (ii) by some helpful remarks on the considered policy π�. On
the event {τa < τc}, the investment time τπ�

is infinite a.s. Moreover, denoting
by Xπ�

the cash process generated by the policy π�, we have that Xπ�

τa
= x0

a.s. and for t ≥ 0, we have the equality

Xπ�

τa+t = x0 + µ0t + σ(Wτa+t − Wτa) − (
Lx0

τa+t(µ0, W) − Lx0
τa

(µ0, W)
)

. (3.7)

Now, introduce the process B(a)
t = Wτa+t − Wτa . We know that B(a) is a Brown-

ian motion independent of Fτa (Theorem 6.16 in [19]), and from the uniqueness
of the solution to the Skorohod equation (Chap. IX, Exercise 2.14 in [28])
follows by (3.7) the identity in law

Lx0
τa+t(µ0, W) − Lx0

τa
(µ0, W)

law= Lx0
t (µ0, B(a)). (3.8)

Keeping in mind these remarks, we now turn to the proof of (ii). According to
the structure of the value function φ in Proposition 3.5, three cases have to be
considered.

α) If x ≤ a, then we have τa = 0, τπ� = ∞ a.s. and

Zπ�

t = (x − x0)+11t=0 + Lx0
t (µ0, W)11t>0.

We get

Vπ�(x) = Ex




τπ�

0∫

0

e−rsdZ�
s




= (x − x0)+ + Emin(x,x0)




τπ�

0∫

0

e−rsdLx0
s (µ0, W)




= V0(x) = φ(x).

β) If x ≥ c, then we have τπ� = τc = 0 a.s.,

Zπ�

t = ((x − I) − x1)+ 11t=0 + Lx1
t (µ1, W)11t>0

and Xπ�

τc
= x − I a.s. We thus obtain Vπ�(x) = V1(x − I) = φ(x).
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γ ) Finally, assume that a < x < c. We have

Vπ�(x) = Ex


11τa<τc

τπ�

0∫

0

e−rsdZπ�

s


 + Ex

[
11τa>τc e−rτc V1(c − I)

]
.

Now,

Ex


11τa<τc

τ0
π�∫

0

e−rsdZ�
s




= Ex

[
11τa<τc

(
e−rτa(a − x0) +

∫
11]τa,τπ�

0 ](s)e
−rsdLx0

s (µ0, W)

)]

= Ex
[
11τa<τc e−rτa(a − x0)

] + A. (3.9)

On the other hand, on the event {τa < τc}, we have the equality

τπ�

0 ≡ inf{s : Xπ�

s ≤ 0} = τa + inf{s : Xπ�

s+τa
≤ 0} a.s.

It then follows from (3.7) and (3.8) that

τπ�

0 − τa
law= T0 ≡ inf

{
s ≥ 0 : x0 + µ0s + σB(a)

s − Lx0
s (µ0, B(a)) ≤ 0

}
.

Coming back to (3.9), we thus obtain

A = Ex

[
11τa<τcE

[ ∫
11]τa,τπ�

0 ](s)e
−rsdLx0

s (µ0, W)

∣∣∣∣ Fτa

]]

= Ex

[
11τa<τcE

[ ∫
11]0,τπ�

0 −τa](u)e−r(u+τa)dLx0
u+τa

(µ0, W)

∣∣∣∣ Fτa

]]

= Ex

[
11τa<τc e−rτaEx0

[∫
11]0,T0](u)e−rudLx0

u (µ0, B(a))

] ]

= Ex
[
11τa<τc e−rτa V0(x0)

]

where the third equality follows from the independence of B(a) with respect
to Fτa and from (3.8) together with the fact that Lx0(µ0, B(a)) is an additive
functional. We therefore obtain

Ex


11τa<τc

τπ�

0∫

0

e−rsdZπ�

s


 = Ex

[
11τa<τc e−rτa V0(a)

]

which leads to

Vπ�(x) = Ex
[
11τa<τc e−rτa V0(a)

] + Ex
[
11τa>τc e−rτc V1(c − I)

] = φ(x).

The proof of the proposition is completed by remarking that assertion (B)
follows directly from relation (2.7). �	



24 J.-P. Décamps, S. Villeneuve

3.4 Discussion

Our mathematical analysis addresses several important issues in corporate
finance. We first characterize situations where it is optimal to postpone divi-
dend distribution in order to invest later in the growth opportunity. We then
investigate the effect of liquidity shocks on the optimal dividend/investment
policy. In particular, we show that a liquidity shock can result in an inaction re-
gion in which the manager waits to see whether or not the growth opportunity
is valuable. In a third step we analyse the effect of positive uncertainty shocks.
In stark difference with the standard real options literature, we explain why
a sufficiently large positive uncertainty shock can make worthless the option
to invest in a growth opportunity. Finally, we identify situations where a cash
constrained firm may want to accumulate cash in order to invest in the growth
opportunity whereas an unconstrained firm will definitively decide not to invest.

When to postpone dividend distribution? Intuitively, delaying dividend dis-
tribution is optimal when the growth option is “sufficiently” valuable. Our
model allows to make this point precise. Let us describe the optimal divi-
dend/investment policy assuming the current value x of the cash reserve to be
lower than the threshold level x0 that triggers the distribution of dividends when
the firm is run under the initial technology. Two cases arise. If, evaluated at the
threshold x0, the value of the option to invest in the new project is larger than
the value of the firm under the technology in place

(
that is, θ(x0) > V0(x0)

)
,

then the manager postpones dividend distribution in order to accumulate cash
and to invest in the new technology at threshold b. Any surplus above x1 will be
then distributed as dividends. If, on the contrary, θ(x0) < V0(x0), then the man-
ager optimally ignores the growth option, runs the firm under the technology
in place and pays out any surplus above x0 as dividends.

The effect of liquidity shocks. Our model emphasizes the value of cash
for optimal dividend/investment timing. Consider indeed the case where the
current value x of the cash reserve is lower than the threshold x0 and where
θ(x0) ≤ V0(x0). Assume that an exogenous positive shock on the cash reserve
occurs so that the current value x is now larger than x0. Three possibilities must
be considered. First, if x > c, then, according to Proposition 3.10, the manager
optimally invests immediately in the new project (and pays out any surplus
above I + x1 as dividends). Second, if x lies in (x0, a), then the manager pays
out x − x0 as “exceptional dividend”, never invests in the new technology, and
pays out any surplus above x0 as dividends. Finally, if x lies in (a, c), then two
scenarios can occur. If the cash reserve rises to c before hitting a, the manager
invests in the new project (and pays out any surplus above x1 as dividends).
By contrast, if the cash reserve falls to a before hitting c, the manager pays
a − x0 as “exceptional dividend”, never invests in the new technology, and pays
out any surplus above x0 as dividends. The region (a, c) is therefore an inaction
region where the manager has not enough information to decide whether or
not the growth option is valuable. He therefore chooses neither to distribute
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dividends nor to invest in the new technology. His final decision depends on
which of the bounds a or c will be reached first by the cash flow process. As a
result, our model suggests that a given cash injection does not always provoke
or accelerate investment decision.

The effect of uncertainty shocks. In the standard real options literature as
well as in the optimal dividend policy literature, increasing the volatility of the
cash process has an unambiguous effect: greater uncertainty increases both the
value of the option to invest (see [21]), and the threshold that triggers the
distribution of dividends (see [27]). In our setting, because the dividend and
the investment policies are interrelated, the effect of an uncertainty shock is
ambiguous. Consider for instance a situation where initially θ(x0) < V(x0) with
a current value x of the cash reserve lower than x0 and assume that a positive
shock on the volatility of the cash process occurs. The volatility shock increases
the trigger x0, but does not affect V(x0) which is by construction equal to µ0

r .
A volatility shock, however, increases θ(x0), the value of the option to invest in
the new project, and therefore the inequality θ(x0) < V(x0) can happen to be
reversed. In this case, the manager who initially ignores the growth opportunity
will decide after a positive shock on uncertainty to accumulate cash and to exer-
cise the growth opportunity at threshold b. Here, in line with the standard real
options literature, a positive volatility shock makes the growth option valuable.
An interesting feature of our model is that the opposite can also occur; more
precisely, a sudden increase of the volatility can kill the growth option. The
crucial remark here is that the difference x1 −x0 considered as a function of the
volatility σ tends to µ1−µ0

r when σ tends to infinity. This implies that for large
volatility, condition (H1) is never satisfied and thus the growth opportunity is
worthless. As a matter of fact, think of an initial situation where θ(x0) > V(x0)

(and thus condition (H1) holds) and consider a shock on the volatility such that
(H1) is no longer satisfied. In such a case, before the shock occurs, the optimal
strategy is to postpone dividend distribution and to invest in the new technol-
ogy at threshold b, whereas after the uncertainty shock, the growth option is
worthless and will thus no more be considered by the manager.

The effect of liquidity constraints. As a last implication of our model, we
now investigate the role of liquidity constraints. In the absence of liquidity
constraints, the manager has unlimited cash holdings. The firm is never in bank-
ruptcy, the manager injects money whenever needed and distributes any cash
surplus in the form of dividends. In this setting, for a current cash reserve x,
we thus have that V0(x) = x + µ0

r while V1(x − I) = x + µ1
r − I. It follows

that the manager invests in the growth option if and only if µ1−µ0
r > I, a deci-

sion that is furthermore immediate. We point out here that liquidity constraints
have an ambiguous effect on the decision to exercise the growth opportunity.
Indeed it can happen that, in the absence of liquidity constraints, exercising the
growth option is optimal (that is, µ1−µ0

r > I), whereas it is never the case when
there are liquidity constraints because condition (H1) does not hold. On the
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contrary, the growth opportunity can be worthless in the absence of liquidity
constraints, whereas this is not the case with liquidity constraints. Such a situa-
tion occurs when µ1−µ0

r < I, condition (H1) holds and θ(x0)>V0(x0)
(
that is, 3

r(x1 + I − x0) < µ1 − µ0 < rI and θ(x0) >
µ0
r

)
. The reason is that investing in

the growth option for a liquidity constrained firm will increase the drift of the
cash generating process, and therefore will lower the probability of failure. An
unconstrained firm, however, is not threatened by bankruptcy and will ignore
the growth opportunity because the drift µ1 driving the new technology is not
large enough (µ1 < I + rµ0).

4 Conclusion

In this paper, we consider the implications of liquidity for the dividend/invest-
ment policy of a firm that owns the perpetual right to invest in a new, profit rate
increasing technology. The mathematical formulation of our problem leads to a
mixed singular control/optimal stopping problem that we solve quasi-explicitly
by using a connection with an auxiliary stopping problem. A detailed analysis
based on the properties of local time gives the precise optimal dividend/invest-
ment policy. This type of problem is non standard and does not seem to have
attracted much attention in the corporate finance literature. Our analysis fol-
lows the lines of stochastic control and relies on the choice of a drifted Brownian
motion for the cash reserve process in the absence of dividend distribution. This
modelling assumption guarantees the quasi-explicit nature of the value func-
tion φ. We use this feature for instance in Proposition 3.4 where we show that
φ is a supersolution. Furthermore, the property of independent increments for
Brownian motion plays a central role for deriving the optimal policy (Propo-
sition 3.10). Clearly, future work is needed to examine the robustness of our
results to more general diffusions than a drifted Brownian motion.
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