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Abstract. In the present paper we provide an analytical solution for pricing discrete
barrier options in the Black-Scholes framework. We reduce the valuation problem
to a Wiener-Hopf equation that can be solved analytically. We are able to give
explicit expressions for the Greeks of the contract. The results from our formulae
are compared with those from other numerical methods available in the literature.
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1 Introduction

In this paper we study the valuation problem for discrete barrier options. Barrier
options are common, extensively traded types of exotic derivatives. They are acti-
vated (knock-ins) or terminated (knock-outs) if a specific trigger is reached before
the expiry date. There are now several papers dealing with the pricing of barrier
options and a great number of valuation techniques have been proposed.
In practice, barrier options differ from those studied in the academic literature
in many respects. One of the most important is the monitoring frequency of the
underlying assets, i.e. the frequency of observation of the triggering event. With
discrete monitoring the trigger is checked at fixed times (e.g. weekly or monthly).
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As a consequence a knock-out (knock-in) option becomes less (more) expensive
as the number of monitoring dates increases. In the case of continuous monitoring,
several pricing formulae in the Black-Scholes framework are known, [18,27,35,
31,23]. Unfortunately, the discrepancy between option prices under continuous and
discrete monitoring can be huge. One of the first papers to notice the importance
of this discrepancy was offered by Heynen and Kat [21]. Since then, several papers
have proposed approximations based on a variety of different numerical approaches,
[5,4,6,8,11–13,15,22,24–26,41,42]. A review can be found in [16].

In the present paper, we consider the pricing problem for a down-and-out barrier
option under a geometric Brownian motion (GBM) process with discrete monitor-
ing. We then show how to reduce its evaluation to an integral equation of Wiener-
Hopf type. The latter problem admits an analytical solution in the standard Black-
Scholes framework, i.e. when the underlying asset evolves according to a GBM
and the knock-out clause is activated by a constant barrier. The paper is organised
as follows. In the following section, the valuation problem is reduced to a scalar
Wiener-Hopf integral equation of the second kind. The solution is obtained ex-
plicitly in Appendix A in terms of infinite sums of simple functions plus a single
special function (12). These are summarised in Sect. 2.1 together with an alternative
representation (derived in Appendix B) that is suitable for numerical computation
in the cases of special parameter values. Section 2.2 offers the formal solution of
the barrier option price as an inverse z-transform of the Wiener-Hopf solution,
and also presents explicit formulae for the Greeks that makes our procedure really
competitive with respect to Monte Carlo simulation. Section 3 relates the result
in the present paper to the celebrated Spitzer identity and to other papers that use
this for pricing discrete barrier options [9,30,32]. Numerical results are compared
and contrasted with alternative numerical methods in Sect. 4, and final remarks are
offered in Sect. 5.

2 The model

We work in a standard Black-Scholes framework where the underlying asset evolves,
under the risk-neutral measure, according to a GBM process

dxt = rxt dt+ σxt dWt,

with initial stock price x0 and where r and σ are respectively the constant risk-free
rate and the constant instantaneous volatility. We want to price a down-and-out
call option, i.e. a call option that expires worthless if a lower barrier has been
hit at a monitoring date. The corresponding down-and-in call can be priced by
subtracting from the price of a standard call the price of the down-and-out call.
The barrier put option can be priced using the put-call transformation given in [20].
Let 0 = t0 < t1 < . . . < tn < . . . < tN = T be the monitoring dates, T the
option maturity and l the constant lower barrier active at all times tn. The nth time
interval is defined as tn < t < tn+1 and we denote the price of the barrier option in
this interval asC (x, t, n) ≡C (x, t, n; l). ThenC (x, t, n) satisfies the well-known
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Black-Scholes partial differential equation (PDE)

−∂C (x, t, n)
∂t

+ rx
∂C (x, t, n)

∂x
+

1
2
σ2x2 ∂

2C (x, t, n)
∂x2 = rC (x, t, n) . (1)

Given that the trigger condition is checked only at fixed times, we need to update
the initial condition at each of the monitoring dates tn:

C (x, tn, n) = C (x, tn, n− 1)1(x≥l),

C (x, t0, 0) = (x−K)1(x≥max(K,l)),

whereK is the exercise price of the option and 1(x≥l) is the indicator, or Heaviside,
function

1(x≥l) =

{
1 if x ≥ l,

0 if x < l.

We can use the standard change of variables (see [44], p. 98)

C (x, t, n) = w (z, t, n) ,

where

z = ln (x/l) ; k = ln (K/l) ; m = r − σ2/2,

to transform the partial differential equation (1) into

−wt +mwz + σ2

2 wzz = rw,

w (z, tn, n) = w (z, tn, n− 1)1(z≥0), n = 1, 2, 3 . . . ,
w (z, t0, 0) = l

(
ez − ek

)
1(z≥δ),

with

δ = max (k, 0) . (2)

Employing the second transformation w (z, t, n) = eαz+βtg (z, t, n) , in which
α = −m/σ2, c2 = σ2/2, β = αm+ α2σ2/2 − r, the function g (z, t, n) satisfies
the heat equation

−gt + c2gzz = 0 (3)

with initial conditions, for n = 1, 2, 3, . . . ,

g (z, tn, n) = g (z, tn, n− 1)1(z≥0),

whilst when n = 0 the initial condition becomes

g (z, 0, 0) = le−αz
(
ez − ek

)
1(z≥δ).
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When tn < t < tn+1 and z > 0 the solution of the above partial differential
equation (3) is given by, see e.g. [40], p. 47,

g (z, t, n) =

{∫ +∞
0 S (z − ξ, t− tn) g (ξ, tn, n− 1) dξ, n = 1, 2, . . . ,
l
∫ +∞
0 S (z − ξ, t− tn) e−αξ

(
eξ − ek

)
1(ξ≥δ)dξ, n = 0,

(4)

where the kernel S (z, t) is the Gaussian, S (z, t) = e−z2/(4c2t)/
√

4πc2t. Note
that an iterative application of (4) provides an evaluation of discrete barrier options
in terms of multivariate normal probabilities. This approach is followed by Heynen
and Kat [21], but from a numerical point of view is hardly feasible when the number
of observation points becomes large, say more than 10.

Let us consider the function g (z, t, n) only at the monitoring times tn, and let
τ be the fixed period between the monitoring dates so that tn + τ = tn+1. We set
f (z, n) = g (z, tn, n− 1), i.e. the value of g at the upper end, tn, of the (n− 1)-th
time interval, so that we have

f (z, n) =
∫ +∞

0

e−(z−ξ)2/(4c2τ)
√

4πc2τ
f (ξ, n− 1) dξ, n = 2, 3, . . . , (5)

and for n = 1

f (z, 1) = l

∫ +∞

0
S (z − ξ, τ) e−αξ

(
eξ − ek

)
1(ξ≥δ)dξ. (6)

The last equation may be absorbed into the set in (5) by defining the additional
function

f (z, 0) = le−αz
(
ez − ek

)
1(z≥δ). (7)

We now take the z-transform of the above difference equation (5) by multiplying
both sides of (5) by qn, q ∈ C, to get

qnf (z, n) = q

∫ +∞

0
S (z − ξ, τ) qn−1f (ξ, n− 1) dξ

and then summing over all n ≥ 1. Assuming that we can interchange the order of
integration and summation1 (which may be proved a posteriori), we obtain

∞∑
n=1

qnf (z, n) = q

∫ +∞

0
S (z − ξ, τ)

∞∑
n=1

qn−1f (ξ, n− 1) dξ

= q

∫ +∞

0
S (z − ξ, τ)

∞∑
n=0

qnf (ξ, n) dξ.

1 The interchange of integration and summation requires
∑n

j=0 qjf (ξ, j) to converge uniformly.

The z-transform
∑∞

j=0 qjf (ξ, j) is in fact a power series in q with coefficients f(ξ, j) and radius
of convergence given in (14). A power series converges uniformly in a closed and bounded interval
contained in the interval of convergence.
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So, by defining

F (z, q) =
∞∑

n=0

qnf (z, n) (8)

and adding f (z, 0) to both sides, we arrive at the following integral equation for
F (z, q):

F (z, q) = q

∫ +∞

0
S (z − ξ, τ)F (ξ, q) dξ + f (z, 0) (9)

defined over the interval 0 < z < ∞.

2.1 Solution of the Wiener-Hopf equation

We can recognize in (9) an integral equation of the second kind with a semi-infinite
range, and a convolution structure, i.e. the kernel S depends on the difference z−ξ.
This integral equation has to be solved with respect to the unknown functionF (z, q).
Fortunately, given the form of the kernel, this can be recognized as a Wiener-Hopf
equation; see [33,28]. We remark that if the integral were extended to the whole
real line it would be sufficient to use a Fourier transform method. However, since
the integral range, and the variable z range, is the positive real line it is necessary
here to employ the Wiener-Hopf method. For continuity of the text, and for brevity,
all details of the solution procedure for Eq. (9) are given in Appendix A where we
prove that the exact solution of the above integral equation is

F (z, q) = − ilγ
2 e

(1−α)k
∞∑

n=−∞
eiµn|z−k|/γ

µn(µn−iαγ sgn(z−k))(µn−i(α−1)γ sgn(z−k))

+le−αz
{

ez

1−qe(α−1)2γ2 − ek

1−qe(αγ)2

}
1(z≥k)

− ilγ
4 e

(1−α)k
∞∑

n=−∞
L+(µn)eiµnz/γ

µn

×
∞∑

m=−∞
L+(µm)eiµmk/γ

µm(µm+iαγ)(µm+i(α−1)γ)(µm+µn) ,

(10)

valid for k > 0, where the sign of x is denoted by

sgn(x) =

{
1, x ≥ 0,

−1, x < 0,
(11)

and from (62) we have

L+ (u) = exp


 u

πi

∫ ∞

0

ln
(
1 − qe−z2

)
z2 − u2 dz


 , �(u) > 0. (12)

Also, the complex coefficients are

µm =
√

ln q + 2mπi, −∞ < m < ∞; (13)
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Fig. 1. The complex u-plane showing the locus of the zeros of L (u), ±µn (−∞ < n < ∞), as arg(q)
increases from 0 to 2π and with |q| = 1/2. The indicated positions on the path are when arg(q) = 0.
Also shown is the overlapping strip of analyticity, D ≡ {u| (1 − α) γ < �(u) < �(µ0)} (where in
this example (1 − α) γ > −�(µ0)), inside which the Wiener-Hopf equation (33) is defined

they lie in the upper half-plane as shown in Fig. 1. Note that (10) is given by (27)
and (61) with the constants there replaced by the original parameters a = αγ,
b = γ, and γ = c

√
τ = σ

√
τ/2. Finally, for (10) to offer a unique solution to the

Wiener-Hopf equation (9) it is shown in (40) that the z-transform parameter q must
satisfy

|q| < exp
{−(1 − α)2γ21((1−α)γ≥0)

}
. (14)

In formula (10) we can identify the first two terms as the z-transform of the Black-
Scholes call price, times a multiplicative term. This can be proved by solving the
integral equation (9) over the entire real axis by means of Fourier transforms, and
thence obtaining an algebraic equation in the complex domain. The solution of this
equation admits an analytical Fourier inverse, given by the first two terms in (10),
that can be computed by using residue calculus.

In the case k ≤ 0, it can be demonstrated (see (64)) that the Wiener-Hopf
solution has the alternative form, for α > 0:

F (z, q) = le−αz
{

ez

1−qe(α−1)2γ2 − ek

1−qe(αγ)2

}
− l

2

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

(
ek

L+(iαγ)(µn−iαγ) − 1
L+(i(α−1)γ)(µn−i(α−1)γ)

)
.

(15)

Note that one can show that (10) and (15) are consistent when k = 0. In the
case α < 0, the above formula will not work because the point iαγ is below the
contour. However, we may replace L+(iαγ) by L(iαγ)/L−(iαγ) where L (u) =
1 − qe−u2

is known explicitly and also L−(iαγ) = L+ (−iαγ) (L is an even
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function). The same procedure can be applied if α− 1 < 0. As for the case k > 0,
the z-transform inverse of the first term admits an analytical expression given by

le−αz
{
ez+(α−1)2γ2t − ek+(αγ)2t

}
. This is natural because if the barrier is above

the strike, the condition of being in-the-money at expiry is redundant: if the option
does not expire for the spot price touching the barrier then at maturity the spot will
certainly be above the barrier, and hence the strike.

The only term in the solution F (z, q) that does not have an explicit z-transform
inverse is the last expression in (10) and (15). It is therefore convenient to study
this quantity, defined as F̆ (z, q) by

F̆ (z, q) =

− ilγ
4 e

(1−α)k
∞∑

n=−∞
L+(µn)eiµnz/γ

µn

∞∑
m=−∞

L+(µm)eiµmk/γ

µm(µm+iαγ)(µm+i(α−1)γ)(µm+µn)1(k≥0)

− l
2

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

(
ek

L+(iαγ)(µn−iαγ) − 1
L+(i(α−1)γ)(µn−i(α−1)γ)

)
1(k<0).

(16)

Note that the convergence of the above expressions is very slow when z or k are
small, and so in this case a more efficient formula is required for numerical purposes.
Therefore, inAppendix B we obtain an alternative integral representation given here
as

F̆ (z, q) =

− lγq
2π e

(1−α)k
{

(−1)s+1

2

∞∑
n=−∞

L+(µn)eiµnz/γ

µs+2
n

∫
C

e−ξ2
eiξk/γξs+1

(ξ+iαγ)(ξ+i(α−1)γ)(ξ+µn)L−(ξ)dξ

+ q
2πi

s∑
p=0

(−1) p

(∫
C0

e−ζ2
eiζz/γ

L−(ζ)ζp+1 dζ

)(∫
C

e−ξ2
eiξk/γξp

(ξ+iαγ)(ξ+i(α−1)γ)L−(ξ)dξ

)}
1(k≥0)

+ lq
2πi

∫
C

e−ξ2
e−iξz/γ

L+(ξ)

(
ek

L+(iαγ)(ξ+iαγ) − 1
L+(i(α−1)γ)(ξ+i(α−1)γ)

)
dξ 1(k<0),

(17)

where the contour C runs from −∞ to +∞ along a line parallel to the real axis
with γ (1 − α) < �(ξ) < �(µ0), when α ≤ 1, and the contour C0 runs from −∞
to +∞ along a line such that 0 < �(ζ) < �(µ0). Alternatively, both integral paths
could run along the real line except that C0 must be indented above the pole of
order p+1 at the origin, and when α ≤ 1 the contour C is indented to run between
the poles at ξ = iγ (1 − α) and ξ = µ0. The integer parameter s is free and is
chosen large enough for rapid convergence of the sum.

2.2 The analytical formula

The solution of the Wiener-Hopf equation gives the function F̆ (z, q), but we still
have to invert the z-transform (and then add in the leading terms from (10) and
(15)) in order to recover the original function f (z, n). The inversion formula is

Z−1
(
F̆ (z, q)

)
=

1
2πρn

∫ 2π

0
F̆
(
z, ρeiu

)
e−inudu, n = 0, 1, 2, . . . (18)
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where ρ = |q| satisfies (14). Formally, the expression (18) with (16) or (17) gives an
analytical solution for the pricing problem of discrete barrier options. The barrier
option price C (x, tn, n− 1) at a monitoring date tn is given by

C (x, tn, n− 1) =
(x
l

)α

eβtnf
(
ln
x

l
, n
)
, n = 1, 2, 3, . . . (19)

As observed in the previous section, in (10) and (15) we can identify a term due to
the Black-Scholes formula. Therefore, (19) may be written as

C (x, tn, n− 1) = CBS (x) +
(x
l

)α

eβtn f̆
(
ln
x

l
, n
)
, n = 1, 2, 3, . . . ,

(20)

where f̆ (z, n) = Z−1
(
F̆ (z, q)

)
and CBS (x) is given by

CBS (x) =

{
xN (d1) −Ke−rtnN (d2) , k ≥ 0,
x−Ke−rtn , k < 0,

d1 =
ln (x/K) +

(
r + σ2

2

)
(tn − t0)

σ
√
tn − t0

; d2 = d1 − σ
√
tn − t0.

The above formula can be used also for the computation of the Greeks, i.e., the
derivatives with respect to x of the option price. Indeed, the function F̆

(
z, ρeiu

)
is analytic for all 0 ≤ u ≤ 2π and so may be differentiated without difficulty2. For
the Delta, ∂C

∂x (x, tn, n− 1), we have

∆ = ∆BS(x) +
1
l

(x
l

)α−1
eβtn

[
αf̆(z, n) +

∂f̆

∂z
(z, n)

]
(21)

with z = ln(x
l ), where ∆BS = N (d1)1k≥0 + 1k<0 and

∂f̆

∂z
(z, n) =

1
2πρn

∫ 2π

0

∂F̆

∂z
(z, ρeiu)e−inudu.

In a similar way we obtain for the Gamma, ∂2C/∂x2(x, tn, n− 1), that

Γ = ΓBS(x) +
1
l2

(x
l

)α−2
eβtn

[
α(α− 1)f̆(z, n) + (2α− 1)

∂f̆

∂z
+
∂2f̆

∂z2

]

(22)

with z = ln(x
l ), where ΓBS (x) is the Black-Scholes Gamma and

∂2f̆

∂z2 (z, n) =
1

2πρn

∫ 2π

0

∂2F̆

∂z2 (z, ρeiu)e−inudu.

2 In particular, the interchange of derivative and inversion integral can be justified using 33.7 p. 267
in [34]. The differentiation term by term of the series in (16) can be justified by the convergence of the
series and by observing that the sequence of derivatives converges uniformly for z > 0.
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Note that by carefully combining f̆ (z, n) and its derivatives appearing in the ex-
pression for the Delta and Gamma, one can obtain Greeks that are computationally
of the same cost as the option price itself. The above derivatives can be computed
using (16) or the integral representation (17).

3 Relationship with the Spitzer identity

In a recent work Petrella and Kou [32], using the Spitzer identity [38], have de-
veloped an algorithm to price discrete barrier options. In particular, starting from
the Spitzer identity and generalizing an idea by Ohgren [30] and Borovkov and
Novikov [9], they obtain by recursion the Fourier transform of the solution, which
at the final step must be inverted by a suitable numerical procedure. In the present
paper, the inverse of the Fourier transform is obtained in analytical form and we
need to perform the numerical z-transform inversion.

To understand the relationship between our approach and the one in [32] we
have to recall the Spitzer identity [38]. This identity gives the z-transform of the
characteristic function of the successive maxima of a sequence of i.i.d. random
variables. In the literature, other important papers like [14,43,39] have examined the
equivalence between the Spitzer identity and the solution of a Wiener-Hopf integral
equation. With respect to the results in these papers, we provide the analytical
solution to the Wiener-Hopf equation when the kernel is Gaussian; in other words
we analytically invert the characteristic function appearing in the Spitzer identity.
However, although our methodology is quite general and applicable to processes
with independent and stationary increments, it is dubious if an analytical expression
can be obtained in more general cases than the Brownian motion considered here.

The solution of the Wiener-Hopf equation presented in Appendix A requires
that the transformed kernel of the integral equation (or here more precisely δ(ξ) −
qS(ξ, τ), where δ(ξ) is the generalised delta function) is decomposed into a product
of two functions, one analytic in the upper half of the transform plane and the
other analytic in an overlapping lower half-plane. The Spitzer contribution consists
in giving a different representation to these functions and in their probabilistic
interpretation in terms of the characteristic function of the maximum and minimum
of a geometrically stopped random walk. The use of geometrically (exponentially)
distributed random times as stopping times allows one to replace the use of the
z-transform (Laplace transform) by considerations related only to the probabilistic
structure of the process under consideration. For an expository discussion see [19].

In order to stress the relationship of our approach with the Spitzer identity in
the Gaussian case, let us consider the process

Sn = Z1 + ...+ Zj + ...+ Zn, S0 = 0

where Zj are i.i.d. and let Mn = max (0, S1, ...., Sn). Spitzer [38], using combi-
natorial arguments, derived the identity
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ψ (u, q) =
∞∑

n=0

E
(
eiuMn

)
qn

= exp

( ∞∑
n=1

qn

n
E
(
eiuSn ;Sn ≥ 0

))
exp

( ∞∑
k=1

qn

n
Pr (Sn < 0)

)

= ψ+ (u, q)ψ− (0, q) (23)

and where

ψ+ (u, q)ψ− (u, q) =
1

1 − qE (eiuZ)
.

In other words, Spitzer obtained an expression for the z-transform of the character-
istic function of the discrete maximum. His factorization ψ (u, q) = ψ+ (u, q)
ψ− (u, q) is comparable to the factorization of the Fourier transform L (u) = 1 −
qF (k (z)) = L+(u)L−(u). Moreover,ψ+ (u, q) andψ− (u, q) have a probabilistic
interpretation as characteristic functions of the maximum and minimum stopped at
a geometrically distributed stopping time.

If Zj is a Gaussian random variable with zero mean and variance 2, then
E
(
eiuZj

)
= e−u2

. Therefore it is easy to show that

ψ+ (u, q) = exp

( ∞∑
n=1

qn

2n
e−nu2 (

1 + erf
(
i
√
nu
)))

, (24)

ψ− (0, q) = exp

(
1
2

∞∑
k=1

qn

n

)
= exp

(
−1

2
ln (1 − q)

)
=

1

(1 − q)
1
2
,

where erf (u) is the error function, erf (u) = (2/
√
π)
∫ u

0 e−t2 dt. The factoriza-
tion ofψ (u, q) as a product of the functionsψ+ andψ− is related to the factorization
L (u) = L+ (u)L− (u) we give in (42). Indeed, there we write

ln (L+ (u)) =
1

2πi

∫ +∞

−∞

ln
(
1 − qe−ξ2

)
ξ − u

dξ = − 1
2πi

∫ +∞

−∞

∞∑
n=1

(
qe−ξ2

)n

n (ξ − u)
dξ

(25)

by using the Taylor expansion of ln (1 + x). We note that

∫ +∞

−∞

e−nξ2
dξ

ξ − u
= iπe−nu2 (

1 + erf
(
i
√
nu
))
, � (u) > � (ξ) .

Thus, interchanging the sum and integral in (25) and exponentiating yields

L+ (u) = exp

(
−1

2

∞∑
n=1

qne−nu2

n

(
1 + erf

(
i
√
nu
)))

, � (u) > −� (µ0) .
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In other words, ψ+ (u, q) = 1/L+ (u). As we know that L− (u) = L+ (−u), it
immediately follows that

L− (u) = exp

(
−1

2

∞∑
n=1

qne−nu2

n

(
1 − erf

(
i
√
nu
)))

, � (u) < � (µ0) ,

from which we have L− (0) = (1 − q)
1
2 = 1/ψ− (0, q), as desired.

We should like to stress another important difference between our approach and
that employed in [9,32] and [30]. This is that their procedure requires as input an
expression for ψ+ (u, q) and ψ− (0, q). They are able to compute these for some
non-Gaussian models. However, the evaluation of the expected values appearing
in (23) is not available for general Lévy process models. This is not a restriction
for the present approach in which the functions L+ and L− are obtained using
expressions (50) and (51); these just require knowledge of the characteristic function
of the underlying variable, which is in general known in closed form. Finally, the
Wiener-Hopf technique has recently been used successfully to solve a number of
different evaluation problems, especially within the framework of exotic derivatives
[29,10,36] and in connection with Lévy processes. However, the exotic contracts
considered in these papers always assume continuous monitoring of the underlying
asset and the Wiener-Hopf factorizations used there arise as continuous limits as the
monitoring distance goes to zero. Note that this factorization has been obtained by
Baxter and Donkser [7] using a probabilistic approach. Unfortunately, the analytical
solutions obtained there do not admit simple numerical implementation (typically
the solution is given as a complex multiple integral with difficult integrands).

4 Numerical results

In this section we offer numerical results. To do this, a solution to the barrier option
price (19) can be computed by combining (10) with a numerical approximation to
the z-transform inverse (18). A simple and accurate algorithm, based on the Fourier
series method, can be found in Abate and Whitt [1]. They approximate the integral
in (18) using the trapezoidal rule with a step size of π/n, and obtain the result

f̆ (z, n) ≈ f̃ (z, n) =
1

2nρn

2n∑
j=1

(−1)j 	
(
F̆
(
z, ρejiπ/n

))
(26)

=
1

2nρn


F̆ (z, ρ) + (−1)n

F̆ (z,−ρ) + 2
n−1∑
j=1

(−1)j 	
(
F̆
(
z, ρejiπ/n

))
 .

Note that the last expression is valid for all n > 0, where the sum term is taken as
zero for n = 1. Abate and Whitt are able to provide an error bound when, in our
case, ρ satisfies the constraint (14); it is given by∣∣∣f̆ (z, n) − f̃ (z, n)

∣∣∣ ≤ ρ2n

1 − ρ2n
.
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Table 1. In the Table we price a single barrier down-and-out call option for different levels
of l and different monitoring dates n. Parameters used are spot price = 100, strike = 100, r
= 0.10, σ = 0.3, T = 0.2. The competing methods are the recursive integration method (RI)
in [5] where a grid with 2000 nodes has been used; the continuous monitoring formula
(CC) with a correction based on shifting the barrier level in [13]; the trinomial tree (TT) in
[12]; the Simpson recursive quadrature method (SQ) (grid spacing 2000 points) in [16];
Monte Carlo (MC) with 108 simulations with Mersenne twister generator and antithetic
variables according to the results reported in [8]. The Wiener-Hopf (WH) solution in
(10) has been computed with 300x100 terms for the double sum (700x100 terms if l = 95
and n = 5). The inversion of the z-transform has been computed setting ρ = 10−γ/2n,
γ = 8 and n the number of monitoring dates

l n WH+ZT RI CC TT SQ MC (st.error)

89 5 6.28076 6.2763 6.284 6.281 6.2809 6.28092 (0.00078)

95 5 5.67111 5.6667 5.646 5.671 5.6712 5.67124 (0.00076)

97 5 5.16725 5.1628 5.028 5.167 5.1675 5.16739 (0.00073)

99 5 4.48917 4.4848 4.050 4.489 4.4894 4.48931 (0.0007)

89 25 6.20995 6.2003 6.210 6.21 6.2101 6.21059 (0.00078)

95 25 5.08142 5.0719 5.084 5.081 5.0815 5.08203 (0.00073)

97 25 4.11582 4.1064 4.113 4.115 4.11598 4.11621 (0.00067)

99 25 2.81244 2.8036 2.673 2.812 2.8128 2.81261 (0.00057)

For practical purposes, this error bound, when ρ2n is small, is approximately equal
to ρ2n. Hence, to have accuracy to 10−γ , say, we require ρ = 10−γ/2n, which lies
within the uniqueness constraint. Note that in practice it is important to adjust ρ in
this way for each value of n, so that ρn stays small but bounded away from zero as
n → ∞. Otherwise small computational errors in the numerical evaluation of the
denominator in (26) are magnified and will lead to gross errors in the evaluation of
f̆ (z, n).

In Table 1, we compare different numerical methods with the solution of the
Wiener-Hopf equation. We consider a single barrier down-and-out call option for
different barrier levels and different monitoring dates. The competing methods
are the recursive integration method (RI) in [5] where a grid with 2000 nodes
has been used, the continuous monitoring formula (CC) with a correction based
on shifting the barrier level in [13], the trinomial tree (TT) in [12], the Simpson
recursive quadrature method (SQ) (grid spacing 2000 points) in [16], Monte Carlo
simulation with 108 simulations with Mersenne twister pseudo random generator
and antithetic variables in [8]3. The Wiener-Hopf solution (WH+ZT) in (10) has
been computed using 20 terms in the first sum and 300×100 terms for the double
sum appearing in the third term (except when n = 5 and l = 99 when 700×100
terms are required for the given number of decimal places; for 300×100 the formula
gives the value 4.48911). As we can see, the solution gives results comparable to
other methods and our values can be considered exact to the figures quoted; this
is confirmed when comparing with the numerical results obtained by the integral
formula (17).

3 We should like to thank M. Bertoldi and M. Bianchetti (Caboto SIM, Banca Intesa Group) for
kindly providing the results of the Monte Carlo simulation.



An exact analytical solution for discrete barrier options 13

Table 2. In the table we price a single barrier down-and-out call option for different levels of l and
different monitoring dates n. Parameters used are spot price = 100, strike = 100, r = 0.10, σ = 0.2, T =
0.5. The competing numerical approximations are the Wiener-Hopf solution computed using the integral
representation (IR) in (17) combined with Padé approximant in [17]; Markov chain (MCh) with a grid
with 1001 points in [15]; Monte Carlo (MC) with 108 simulations with Mersenne twister generator and
antithetic variables according to the results reported in [8] (in brackets we have the standard errors); the
trinomial tree (TT) in [12]; the Simpson recursive quadrature method (SQ) (grid spacing 2000 points)
in [16]. The Wiener-Hopf (WH) solution in (10) has been computed with 300x100 terms for the double
sum. The inversion of the z-transform has been computed setting ρ = 10−γ/2n, γ = 8 and n the
number of monitoring dates

l n WH+ZT MCh TT SQ MC (st.error)

Formula (10) IR (17)

95 25 6.63156 6.63156 6.6307 6.6181 6.6317 6.63204 (0.0009)

99.5 25 3.35558 3.35558 3.3552 3.3122 3.3564 3.35584 (0.00068)

99.9 25 2.95073 3.00887 3.0095 2.9626 3.0098 3.00918 (0.00064)

95 125 6.16864 6.16864 6.1678 6.1692 6.1687 6.16879 (0.00088)

99.5 125 1.9613 1.9613 1.9617 1.9624 1.9628 1.96142 (0.00053)

99.9 125 1.51031 1.51068 1.5138 1.5116 1.5123 1.5105 (0.00046)

In Table 2 we consider a numerically more difficult example, that is taking the
barrier level approaching the spot price. The competing methods are the Markov
Chain method (MCh) in [15], the trinomial tree method in [13], the Simpson recur-
sive quadrature method in [16] and the Monte Carlo simulation with 108 simulations
with Mersenne twister pseudo random generator and antithetic variables in [8]. For
the case of 25 monitoring dates and for a spot price far from the barrier (e.g. l = 95
in Table 2) we get an accurate solution. But as we move the barrier level closer
to the spot price, the accuracy of our numerical solution in (10) deteriorates. This
is due to the very slow convergence of the double summation when z and k are
very small. The error also increases as we decrease the number of monitoring dates
(from 125 to 25) because 1/γ =

√
2n/T/σ appears in the exponent of each sum

(which is why we required 700×100 terms for n = 5 and l = 99 in Table 1). In
general, to yield acceptable values when the barrier is close to the spot and strike
prices, a number of terms greater than the 300 × 100 actually used in Table 2 are re-
quired (indeed for n = 25 and l = 99.9 using 700×100 terms we obtain 3.00562).
For this reason, we need an improved representation for the exact solution when
k or z approach zero; a useful alternative exact form is given in (17). Note that it
is actually valid for all k, z values, and the parameter s is free to be adjusted in
order to balance accuracy against computational effort. For example, if we take,
say, s = 11 in (17) then the summand of the second term is

L+(µn)eiµnz/γ

µs+2
n

le−αz

∫
C

e−ξ2
e−iξk/γξs+1

(ξ + iαγ) (ξ + i (α− 1) γ) (ξ + µn)L− (ξ)
dξ,

which behaves as O
(
n−(s+3)/2

)
as n → ∞, or O

(
1/n7
)
, µn ∼ n1/2, and

therefore converges very rapidly. Hence, in the sum we only need a truncation
number of 10 terms or so if s = 10 or 11. However, in (17), three of the four
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Table 3. In the table we give the Delta and the Gamma for a single barrier down-and-out call
option for different levels of l and different monitoring datesn. Spot price = 100, strike = 100, r
= 0.10, σ = 0.2, T = 0.5. The WH+ZT solution has been computed using the same parameters
as in Table 2 (except if l = 99.9, when in the double sum we have used 700x100 terms).
The competing numerical approximations are the Wiener-Hopf solution computed using the
integral representation (IR) in (17) combined with Padé approximant in [17]; Markov chain
(MCh) with a grid with 1001 points in [15]; the modified finite difference explicit scheme
(EFD) in [11] (the figures are taken from [15]); and Monte Carlo (MC) with 108 simulations
with Mersenne twister generator and antithetic variables according to the results reported in
[8] (in brackets we have the standard errors)

Option Delta ∆

l n WH+ZT MCh EFD MC (st.error)

Formula (21) IR (17)

95 25 0.92911 0.92912 0.9289 0.9291 0.92906 (0.00031)

99.5 25 1.07192 1.07115 1.0709 1.0714 1.07118 (0.00027)

99.9 25 1.66652 1.03757 1.0374 1.0378 1.03755 (0.00027)

95 125 0.98963 0.98963 0.9897 0.9895 0.98889 (0.00070)

99.5 125 1.27373 1.27373 1.2740 1.2761 1.27368 (0.00044)

99.9 125 1.14565 1.165562 1.1668 1.1674 1.16572 (0.00043)

Option Gamma Γ

95 25 −0.01171 −0.01277 −0.0129 −0.0129 −0.01285 (0.00035)

99.5 25 0.12429 0.12274 0.1226 0.1229 0.12274 (0.00015)

99.9 25 −48.40667 0.14827 0.1481 0.1484 0.14824 (0.00015)

95 125 −0.02068 −0.02078 −0.0209 −0.0208 −0.02040 (0.00078)

99.5 125 0.26083 0.26073 0.2601 0.2621 0.26078 (0.00054)

99.9 125 2.25320540 0.39302 0.3916 0.3944 0.39297 (0.00053)

integrals to be evaluated have 1/L− (ξ) in their integrands. This term would make
the integrals very expensive computationally if we use the integral form (51) for
L− (ξ). Thus, considerable savings in time can be made ifL± (u) are approximated
by analytical expressions using Padé approximants. Full details of the validity and
accuracy of this approach can be found in Abrahams [3,2]. Numerical results for
the integral form of the solution are provided in Table 2 under the heading IR
(integral representation). As we can see from the Table, use of this alternative
solution representation eliminates the slow convergence problem experienced when
using Eq. (10). The Wiener-Hopf results in the second column of Table 2 can be
considered exact to the decimal places given.

In Table 3, using the same parameters as in Table 2, we compare the Greeks, that
is Delta and Gamma, with those obtained by other methods, i.e. the Wiener-Hopf
method using the integral representation (IR) (17), the Markov Chain method (MCh)
in [15], the explicit finite difference (EFD) in [11] and Monte Carlo simulation
results reported in [8]. Our formula agrees very well with the results reported for
EFD and MC methods, except when the spot price is very close to the barrier.

Finally, we note that the computational cost in calculating f (z, n) from (26)
increases linearly with monitoring frequency n. Moreover, we can compare, for
example, the case of l=95 and N=25 in Table 2. Using C code and a Pentium 600
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MHz PC with 256 Mb RAM, the Monte Carlo simulation required 3.7 seconds with
104 runs (yielding a price estimate 6.603 and standard error 0.090), 37 seconds with
106 runs (price estimate 6.634, standard error 0.029) and 37000 seconds with 108

runs (price estimate 6.6320, standard error 0.0009). In contrast, the Wiener-Hopf
solution coded in C required 50 seconds to give a three-digit accurate result (except
the difficult case of l = 99.9 where at least 120 seconds are required to obtain a two-
digits accurate result). This difference in computational cost, for a given level of
accuracy, makes the proposed Wiener-Hopf method really competitive with respect
to Monte Carlo simulation. Moreover, note that by carefully combining f (z, n) and
its derivatives appearing in the expression for∆ and Γ , one can obtain Greeks that
are computationally of the same cost as the option price itself, whilst in the MC
simulation the computational cost has been approximately equal to 40000 seconds
(approximately 11 hours) with 108 runs, which is very expensive.

5 Conclusion

In this paper we have introduced a Wiener-Hopf and z-transform approach to ob-
tain an analytical solution to the single barrier problem under the hypothesis of a
geometric Brownian motion evolution for an underlying asset. As shown, the so-
lution thus derived is in a form suitable for numerical evaluation, and the results
were compared and contrasted with other numerical/approximate techniques. The
present method could also be used to find the solution under different assump-
tions for the evolution. For example, this approach applies in all cases in which
the process for the underlying asset has a Markov feature with a stationarity as-
sumption (e.g., Lévy process). A wide class of evolution processes could then be
analysed with the present technique, although the possibility of analytically solving
the Wiener-Hopf equation is not so obvious. An additional advantage of the exact
solution for discrete barrier options consists in the derivation of explicit expressions
for the Greeks.

Finally, in the case of double barrier options, the pricing problem can be reduced
to the solution of a Fredholm integral equation of the second kind with a differ-
ence kernel, which it is possible to solve in an L2-framework. It is straightforward
to pose the corresponding eigenvalue problem for the integral operator, and the
solution admits a representation in terms of their eigenvalues and eigenfunctions.
However, the exact calculation of the latter is sometimes involved and requires suit-
able numerical approximation. An alternative approach for double barrier options
is to employ the modified Wiener-Hopf technique (or Jones’ method) [28], and this
is currently being investigated by the authors.

Appendix A: The solution of the Wiener-Hopf equation

The purpose of thisAppendix is to obtain an exact analytical solution of the Wiener-
Hopf equation written in (9). There are several key steps in obtaining an analytical
solution to Wiener-Hopf equations. First, one must apply a Fourier transform to
the integral equation, which converts it into a Riemann-Hilbert equation defined
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in a strip in the complex transform parameter plane. To solve this equation, the
transformed kernel of the integral equation (or here more precisely δ(ξ)−qS(ξ, τ),
where δ(ξ) is the generalised delta function) must be decomposed into a product
of two functions, one analytic in the upper half of the transform plane and the
other analytic in an overlapping lower half-plane. By this means, the equation
can be rearranged so that the left (right) side has similar upper (lower) analyticity
properties, and hence analytical continuation arguments, and Liouville’s theorem,
can be applied to obtain an explicit solution.

For simplicity of notation we drop explicit mention of the parametric depen-
dence on q, τ etc., and write the dependent variable as

h (z) ≡ 1
l
F (z, q) , (27)

where l is the (constant) lower barrier value, and the kernel as

k(z) ≡ S (z, τ) =
1√

4πc2τ
e−z2/(4c2τ). (28)

We also slightly generalise the forcing term f(z, 0) from (7) arising in (9) by writing

v(z) = e−az/γ
(
ebz/γ − ebk/γ

)
1(z≥δ), (29)

where δ is given in (2) and we can recover the original forcing f(z, 0) by taking
lv(z) with a ≡ αγ and b ≡ γ. The constant γ is chosen for algebraic convenience
a little later. The Wiener-Hopf equation to solve is now

h (z) = q

∫ +∞

0
k (z − ξ)h (ξ) dξ + v(z), (30)

defined over 0 < z < ∞, and we shall insist on a solution for whichh(z) is bounded
for all finite z values. As will be shown, a unique solution to (30) is obtained if
ρ = |q| is sufficiently small. We commence the solution procedure by defining the
Fourier transform of the unknown h (z) as follows:

H (u) = F (h (z)) =
∫ +∞

−∞
h (z) eizu/γdz

with its inverse

h (z) = F−1 (H (u)) =
1

2πγ

∫ +∞

−∞
H (u) e−izu/γdu. (31)

Here γ is chosen as γ = c
√
τ so that the Fourier transform of the kernel (28) is the

simple expression F (k (z)) = e−u2
. We further extend the range of h(z) to all z

by defining

h (z) = 0 for z < 0,
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and also write

q

∫ +∞

0
k (z − ξ)h (ξ) dξ = −m (z) for z < 0,

in which m (z) is an as yet unknown function. Then (30) becomes

h (z) − q

∫ +∞

0
k (z − ξ)h (ξ) dξ =

{
v (z) , z > 0,
m (z) , z < 0,

(32)

and if we now apply the Fourier transform to this equation (and employ the convo-
lution relation) we get

H+ (u) − qe−u2
H+ (u) = V+ (u) +M− (u) (33)

where

H+ (u) =
∫ +∞

0
h (z) eizu/γdz, (34)

V+ (u) =
∫ +∞

0
v (z) eizu/γdz, (35)

M− (u) =
∫ 0

−∞
m (z) eizu/γdz. (36)

From the properties of semi-infinite Fourier integrals (see [28]), the subscript “+”
denotes a function analytic in the upper half of the complex u-plane; and to ensure
convergence of (34) and (35), given the exponential form of the forcing (29), it is
easy to show that �(u) > b−a as long as b is positive. Similarly, the subscript “−”
denotes a function analytic in a lower half-plane, and clearly the functional equation
(33) only holds for u in the overlap region. For a unique solution to the integral
equation (30) it can be shown that this strip must lie within the interval around the
origin between the (infinite) set of zeros of 1 − qe−u2

in the upper half-plane and
the set in the lower half-plane. This strip of analyticity is indicated in Fig. 1. The
location of the zeros of the function

L (u) = 1 − qe−u2
(37)

are easily determined. These occur when qe−u2+2nπi = 1 or, taking the logarithm
of both sides and roots, for

u = ±
√

ln q + 2nπi = ±µn, −∞ < n < ∞, (38)

where we define +µn (−µn) to lie in the upper (lower) half-plane. It is easy to
show that

� (µn) =

√√√√− ln ρ+
√

ln2 ρ+ (2nπ + θ)2

2
,
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in which

q = ρeiθ (39)

and so the root in the upper half-plane which lies closest to the real line is µ0. For
the configuration shown in Fig. 1 we therefore have the constraint �(µ0) > b− a,
or rearranging we require

ρ = |q| < exp
{−(b− a)21(b−a≥0)

}
. (40)

Finally, the strip of analyticity of the governing equation (33), i.e. the overlap region
between the “+” and “−” regions, can be defined as

D ≡ {u| max(−�(µ0), b− a) < �(u) < �(µ0)} . (41)

To proceed with the solution of the transformed equation, we must first decompose
L (u) into a product of two functions, analytic in the overlapping half-planes as
indicated, so that

L (u) = L+ (u)L− (u) (42)

where we can show that

L± (u) ∼ 1 (43)

as u → ∞ in the strip D. Note that L+ (u) = L− (−u) from the symmetry of the
function L (u). Thus, equation (33) can be rearranged as

L+ (u)H+ (u) =
V+ (u)
L− (u)

+
M− (u)
L− (u)

(44)

and if we perform an additive decomposition of the forcing term,

V+ (u)
L− (u)

= P+ (u) + P− (u) , (45)

say, we obtain

L+ (u)H+ (u) − P+ (u) = P− (u) +
M− (u)
L− (u)

≡ Ω (u) . (46)

We can observe that the left-(right-)hand side is analytic in the upper (lower) half-
plane, and so both sides give analytic continuations from D into the whole complex
plane. Thus, both sides are equal to an entire function Ω (u), say. We have taken
from the outset that h (z) and v (z) are bounded functions near z = 0, and so it can
be shown (see [28]) that

V+ (u) = O

(
1
u

)
, H+ (u) = O

(
1
u

)
as |u| → ∞ (47)

in the upper region. Further, from (43) and (45) we can deduce P± (u) = O
( 1

u

)
as |u| → ∞ in respective half-planes. So, both sides of (46) behave like O (1/u)
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as |u| → ∞ in their respective half-planes, which, by Liouville’s theorem, implies
that Ω (u) ≡ 0. Therefore, the solution of the Wiener-Hopf problem is given by

H+ (u) =
P+ (u)
L+ (u)

(48)

which, inverting via (31), yields

h (z) =
1

2πγ

∫ +∞

−∞

P+ (u)
L+ (u)

e−izu/γdu. (49)

Note that the functions that appear in the solution have straightforward integral
representations as

L+ (u) = exp
{

1
2πi

∫ +∞

−∞

ln (L (ξ))
ξ − u

dξ

}
, � (u) > � (ξ) , ξ ∈ D, (50)

L− (u) = exp
{

− 1
2πi

∫ +∞

−∞

ln (L (ξ))
ξ − u

dξ

}
, � (u) < � (ξ) , ξ ∈ D, (51)

P± (u) = ± 1
2πi

∫ +∞

−∞

V+ (ξ)
L− (ξ)

dξ

ξ − u
, � (u) ≷ � (ξ) , ξ ∈ D. (52)

A.1 Simplification of the solution

In this section we analyse and simplify the solution given in (49). Let us consider
the quantity V+ (u) /L− (u) = V+ (u)L+ (u) /L (u). As discussed above in (37)
– (38), the function L (u) has simple zeros only, at ±µn,−∞ < n < ∞. Using
the Mittag-Leffler expansion [37] we can write its (meromorphic) inverse as

1
L (u)

= 1 +
1
2

∞∑
n=−∞

1
µn (u− µn)

− 1
2

∞∑
n=−∞

1
µn (u+ µn)

(53)

where we have used the fact that the residue at u = ±µn is

lim
u→±µn

(u∓ µn)
L (u)

=
1

L′ (±µn)
=

1
2 (±µn) qe−µ2

n
= ± 1

2µn

in which the relation qe−µ2
n = 1 is employed. As a consequence, we have

V+ (u)L+ (u)
L (u)

=

(
1 − 1

2

∞∑
n=−∞

1
µn (u+ µn)

)
V+ (u)L+ (u)

+

(
1
2

∞∑
n=−∞

1
µn (u− µn)

)
V+ (u)L+ (u) .
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The first term on the right-hand side is a function regular and nonzero in the upper
half-plane, whereas the second has simple poles at u = µn in the upper region. The
latter can be separated, by inspection, to give the split functions P± (u) introduced
in (45), as

P+ (u) =

(
1 − 1

2

∞∑
n=−∞

1
µn (u+ µn)

)
V+ (u)L+ (u) (54)

+
1
2

∞∑
n=−∞

V+ (u)L+ (u) − V+ (µn)L+ (µn)
µn (u− µn)

,

P− (u) =
1
2

∞∑
n=−∞

V+ (µn)L+ (µn)
µn (u− µn)

. (55)

We now use the above in the rearranged solution (49) to get

h (z) =
1

2πγ

∫ +∞

−∞

{
V+ (u)
L (u)

− P− (u)L− (u)
L (u)

}
e−izu/γdu. (56)

The second term is straightforward; we deform its contour into the lower half-plane,
picking up poles at u = −µn, and then employ symmetry and expression (54) to
get for z > 0

− 1
2πγ

∫ +∞
−∞

P−(u)L−(u)
L(u) e−izu/γdu = −i

2γ

+∞∑
n=−∞

P−(−µn)L−(−µn)
µn

eiµnz/γ

= i
4γ

+∞∑
n=−∞

L+(µn)
µn

eiµnz/γ
+∞∑

m=−∞
V+(µm)L+(µm)

µm(µm+µn) .
(57)

The first term of (56) requires specific knowledge of V+ (u). Employing (29) in
(35) we find

V+ (u) =
∫ +∞

δ

e−az/γ
(
ebz/γ − ebk/γ

)
eiuz/γ dz

= γe(iu−a)δ/γ

{
ebk/γ

(iu− a)
− ebδ/γ

(iu+ b− a)

}
, (58)

where δ = max (k, 0). There are two distinct cases to deal with, namely when
k > 0 (δ = k), or k ≤ 0 (δ = 0). For ease of exposition we now restrict attention
to the slightly more complicated case k > 0, and quote the result when the strike
is lower than the barrier at the end of this section. By inspection, the integrand in
the first term of (56) is exponentially decaying in the upper half of the complex
u-plane for z < k, and in the lower half-plane for z > k. So, for 0 < z < k, we
deform the contour of the first integral upwards to yield for 0 < z < k

i
γ

+∞∑
n=−∞

V+(µn)
2µn

e−izµn/γ = i
2e

(b−a)k/γ
+∞∑

n=−∞
e−iµn(z−k)/γ

µn

{
−1

(iµn+b−a) + 1
(iµn−a)

}

= − i
2be

(b−a)k/γ
+∞∑

n=−∞
e−iµn(z−k)/γ

(µn+ia)(µn+i(b−a))µn
. (59)
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For z > k, deformation into the lower half-plane results in the picking up of
residue contributions from the poles at u = −µn from 1/L (u), and poles in
V+ (u) at u = −ia, u = −i (a− b). For simplicity here we initially assume that
ia, i (a− b) = µn, ∀n, but this is not a necessary requirement and the final result
offered at the end of this Appendix does permit a coincidence of poles. So, we
obtain

i
γ

+∞∑
n=−∞

V+(−µn)
2µn

eizµn/γ −
{

ebk/γe−za/γ

L(−ia) − e−z(a−b)/γ

L(−i(a−b))

}
= i

2e
(b−a)k/γ

+∞∑
n=−∞

ei(z−k)µn/γ

µn

{
1

−iµn−a − 1
(−iµn−a+b)

}
+
{

e−z(a−b)/γ

L(i(a−b)) − e−(za−bk)/γ

L(ia)

}
= − ib

2 e
(b−a)k/γ

+∞∑
n=−∞

eiµn(z−k)/γ

µn(µn−ia)(µn−i(a−b))

+
{

ezb/γ

(1−qe(a−b)2) − ekb/γ

(1−qea2)

}
e−za/γ

(60)

for z > k. Finally, we can combine expressions (57), (59) and (60), and employ
the relation

V+ (µn) = −bγe(b−a)k/γ eiµnk/γ

(µn + ia) (µn + i (a− b))

to give the solution of the Wiener-Hopf equation (30) in z > 0, and for k > 0, as

h (z) = − ib
2 e

(b−a)k/γ
+∞∑

n=−∞
eiµn|z−k|/γ

µn(µn−ia sgn(z−k))(µn−i(a−b) sgn(z−k))

+
{

ezb/γ

(1−qe(a−b)2) − ekb/γ

(1−qea2)

}
e−za/γ1(z≥k)

− ib
4 e

(b−a)k/γ
+∞∑

n=−∞
L+(µn)eiµnz/γ

µn

+∞∑
m=−∞

L+(µm)eiµmk/γ

µm(µm+ia)(µm+i(a−b))(µm+µn) ,

(61)

where the sign function sgn(x) was defined in (11). We can easily show that the
symmetry of the transformed kernel L (u) enables the product factor (50) to be
expressed as

L+ (u) = exp


 u

πi

∫ +∞

0

ln
(
1 − qe−z2

)
z2 − u2 dz


 , �(u) > 0, (62)

which is routinely computable at all µn values, where µn =
√

ln q + 2nπi, with
the branch chosen such that they lie in the upper half-plane, � (µn) > 0 ∀n. It is
simple matter to repeat the procedure just performed when k ≤ 0. It can be shown



22 G. Fusai et al.

that the function h (z) in this case is

h(z) = − 1
2

∞∑
n=−∞

(
ebk/γ

µn−ia − 1
µn−i(a−b)

)
eiµnz/γ

µn

+
{

ezb/γ

1−qe(a−b)2 − ekb/γ

1−qea2

}
e−za/γ

+ 1
4

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

∞∑
m=−∞

(
ekb/γ

µm+ia − 1
µm+i(a−b)

)
L+(µm)

µm(µm+µn) .

(63)

However, it can be substantially simplified by noting that the inner sum in the last
term may be written as

∞∑
m=−∞

(
ekb/γ

µm + ia
− 1
µm + i (a− b)

)
L+(µm)

µm(µm + µn)

=
1
πi

∫
C

1
L−(ξ)(ξ + µn)

(
ekb/γ

ξ + ia
− 1
ξ + i(a− b)

)
dξ,

where the contour C runs along the real line but is indented, if necessary, above
the pole at ξ = −i(a − b) and below ξ = µ0. This is easily proved by deforming
the contour into the upper half-plane, thereby collecting residues at +µm,−∞ <
m < ∞. Now, this contour may be deformed instead into the lower half-plane,
which yields the alternative form

2
L+(µn)

(
ebk/γ

µn−ia − 1
µn−i(a−b)

)
− 2
(

ebk/γ

L+(ia)(µn−ia) − 1
L+(i(a−b))(µn−i(a−b))

)
.

Substituting into (63) and cancelling the first term gives, for k ≤ 0, that

h(z) =
{

ezb/γ

1−qe(a−b)2 − ekb/γ

1−qea2

}
e−za/γ

− 1
2

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

(
ebk/γ

L+(ia)(µn−ia) − 1
L+(i(a−b))(µn−i(a−b))

)
.

(64)

Finally, it is necessary to prove that the solution (61) remains valid if µp = ia
or µp = i(a− b) for any p. On inspection it appears that the first two terms become
singular at these values, and so we must show that the leading terms vanish. We can
easily prove that this is the case and so the above expression (61) for h(z) is always
valid; restrictions on space prevent to give here this proof, which is available upon
request.

Appendix B: Improving the convergence of the Wiener-Hopf solution

The purpose of this Appendix is to obtain an alternative representation for the exact
solution (10). As stated in Sect. 4, the infinite sums are very slowly convergent
when z or k tend to zero, and so a more efficient formula is required for numerical
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purposes. We shall derive such a representation for all values of the strike and price.
We start by recalling that q is defined as

|q| < exp
{−(1 − α)2γ21((1−α)γ≥0)

}
and so � (µn) > γ (1 − α) ,∀n. Now we concentrate on the double sum, I say,
appearing in (10) and given by

I =
∞∑

n=−∞

L+(µn)eiµnz/γ

µn

∞∑
m=−∞

L+(µm)eiµmk/γ

µm(µm + iαγ)(µm + i(α− 1)γ)(µm + µn)
.

(65)

The functional dependence of I, and all following integrals, on z, k, q etc. is omitted
for clarity. First, look at the integral

I1 =
∫

C

L+ (ξ) eiξk/γ

(ξ + iαγ) (ξ + i (α− 1) γ) (ξ + µn)L (ξ)
dξ, (66)

where C runs from −∞ to +∞ along the real line except that it is indented
above the pole at ξ = iγ (1 − α), but below ξ = µ0, when α ≤ 1. Alter-
natively, the contour could be taken as a line parallel to the real line but with
γ (1 − α) < �(ξ) < �(µ0). The poles in the integrand in the lower half-plane
occur at ξ = −iαγ, ξ = −i (α− 1) γ, ξ = −µm,−∞ < m < +∞, the latter
arising from the zeros ofL (ξ), and in the upper half-plane the poles lie at ξ = +µm,
−∞ < m < +∞. Restricting attention to k > 0 for now, we deform the contour in
the upper half-plane. This gives, on employing the Mittag-Leffler expansion (53),
that

I1 = πi

+∞∑
m=−∞

L+ (µm) eiµmk/γ

µm (µm + iαγ) (µm + i (α− 1) γ) (µm + µn)
.

Therefore I may be written as

I =
1
πi

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

∫
C

L+ (ξ) eiξk/γ

L (ξ) (ξ + iαγ) (ξ + i (α− 1) γ) (ξ + µn)
dξ.

We can improve the convergence of this integral by writing 1/L (ξ) = qe−ξ2
/L (ξ)

+ 1, where we have used L (ξ) = 1 − qe−ξ2
, and so

I = 1
πi

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

∫
C

L+(ξ)eiξk/γ

(ξ+iαγ)(ξ+i(α−1)γ)(ξ+µn)

(
qe−ξ2

L(ξ) + 1
)
dξ

= q
πi

∞∑
n=−∞

L+(µn)eiµnz/γ

µn

∫
C

e−ξ2
eiξk/γ

L−(ξ)(ξ+iαγ)(ξ+i(α−1)γ)(ξ+µn)dξ,
(67)

employing the relation L+ (ξ)L− (ξ) = L (ξ) , and the fact that the second term
on the top line is zero because there are no poles in the upper half-plane. Although
the integral on the second line in (67) is now rapidly convergent, the sum in n is
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still slow to converge when z is small. To improve matters, we expand 1/ (ξ + µn)
as

1
ξ + µn

=
1
µn

1(
1 + ξ

µn

) =
1
µn

∞∑
p=0

(−1)p ξ
p

µp
n

=
1
µn

s∑
p=0

(−1)p ξ
p

µp
n

+
1
µn

∞∑
p=s+1

(−1)p ξ
p

µp
n

= (−1)s+1 ξs+1

µs+1
n (ξ + µn)

+
s∑

p=0

(−1)p ξp

µp+1
n

.

Note that s is an integer parameter that can be chosen for convenience. Hence

I =
(−1)s+1

q

πi

∞∑
n=−∞

L+(µn)eiµnz/γ

µs+2
n

×
∫

C

e−ξ2
eiξk/γξs+1

L− (ξ) (ξ + iαγ) (ξ + i (α− 1) γ) (ξ + µn)
dξ

+
q

πi

s∑
p=0

(−1)p
∞∑

n=−∞

L+(µn)eiµnz/γ

µp+2
n

×
∫

C

e−ξ2
eiξk/γξp

L− (ξ) (ξ + iαγ) (ξ + i (α− 1) γ)
dξ.

Finally, we can show, for z/γ > 0, that the following identity holds:

I2 =
∫

C0

L+ (ζ) eiζz/γ

L (ζ) ζp+1 dζ = πi

+∞∑
n=−∞

L+ (µn) eiµnz/γ

µp+2
n

,

whereC0 again runs from −∞ to +∞ along real values of ζ, but is indented above
the pole of order p+1 at the origin. Again using 1/L (ξ) = qe−ξ2

/L (ξ)+ 1 gives

I2 = q

∫
C0

L+ (ζ) e−ζ2
eiζz/γ

L (ζ) ζp+1 dζ,

and so the modified form of I from (65) is

I =
(−1)s+1

q

πi

∞∑
n=−∞

L+(µn)eiµnz/γ

µs+2
n

×
∫

C

e−ξ2
eiξk/γξs+1

L− (ξ) (ξ + iαγ) (ξ + i (α− 1) γ) (ξ + µn)
dξ

+
q2

(πi)2

s∑
p=0

(−1)p
∫

C0

e−ζ2
eiζz/γ

L− (ζ) ζp+1 dζ

×
∫

C

e−ξ2
eiξk/γξp

L− (ξ) (ξ + iαγ) (ξ + i (α− 1) γ)
dξ,
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where we choose s large enough for rapid convergence of the infinite sum. This is
discussed in Sect. 4.
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Quaderno SEMEQ, Universitá del Piemonte Orientale, n. 75 (2004)

18. Geman H., Yor, M.: Pricing and hedging double barrier options: a probabilistic approach. Math.
Finance 6, 365–378 (1996)

19. Greenwood P.: Wiener-Hopf methods, decompositions, and factorization identities for maxima
and minima of homogeneous random processes. Adv. Appl. Probab. 7, 767–785 (1975)

20. Haug, E. G.: Barrier put-call transformations, Tempus Financial Engineering Number 3/97, Nor-
way, download at http://ssrn.com/abstract=150156 (1999)

21. Heynen R.C., Kat, H.M.: Lookback options with discrete and partial monitoring of the underlying
price. Appl. Math. Finance 2, 273–284 (1995)

22. Hörfelt, P.: Extension of the corrected barrier approximation by Broadie, Glasserman, and Kou.
Finance Stochast. 7, 231–243 (2003)

23. Hui, C.H., Lo, C.F., Yuen, P.H.: Comment on ‘Pricing double barrier options using Laplace trans-
forms’ by Antoon Pelsser. Finance Stochast. 4, 105–107 (2000)

24. Kat, H., Verdonk, L.: Tree surgery. Risk 8, 53–56 (1995)
25. Kou, S.G.: On pricing of discrete barrier options. Statist. Sinica 13, 955–964 (2003)



26 G. Fusai et al.

26. Kuan G., Webber, N.: Valuing discrete barrier options on a Dirichlet lattice, FORC preprint 04-140,
University of Warwick, (2004)

27. Kunitomo, N., Ikeda, M.: Pricing options with curved boundaries. Math. Finance 2, 275–298
(1992)

28. Noble, B.. Methods based on the Wiener-Hopf Technique, 2nd ed. New York: Chelsea Press, 1988
29. Nguyen-Ngoc, L., Yor, M.: Lookback and barrier options under general Lévy processes. In: Aït-
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