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Computations of Greeks in a market with jumps
via the Malliavin calculus
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Abstract. Using the Malliavin calculus on Poisson space we compute Greeks in
a market driven by a discontinuous process with Poisson jump times and random
jump sizes, following a method initiated on the Wiener space in [5]. European
options do not satisfy the regularity conditions required in our approach, however
we show that Asian options can be considered due to a smoothing effect of the
integral over time. Numerical simulations are presented for the Delta and Gamma
of Asian options, and confirm the efficiency of this approach over classical finite
difference Monte-Carlo approximations of derivatives.
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1 Introduction

The Malliavin calculus has been recently applied to numerical computations of
price sensitivities in continuous financial markets, cf., [4,5]. In this paper we deal
with Asian options in a market model with jumps, and present formulas for the
computation of Greeks using a particular version of the Malliavin calculus on Pois-
son space. The family of jump processes we consider includes sums of independent
Poisson processes with arbitrary jump sizes. In the jump case there exist two main
approaches to the Malliavin calculus, relying either on finite difference gradients
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[6,8], or on differential operators [1,2]. Finite difference gradients are not appro-
priate in our context which requires a chain rule of derivation. We choose to use a
version of the operator introduced in [2,3] because it has the derivation property
and its adjoint coincides with the Poisson stochastic integral, which provides a nat-
ural way to make explicit computations of weights. We will essentially consider an
asset price with dynamics given under the risk-neutral probability by

dSt = rt(Nt)Stdt + σt(Nt−)St−(βNt− dNt − νdt), (1.1)

where (Nt)t∈R+ is a standard Poisson process with constant intensity λ, (βk)k∈N

is a discrete-time stochastic process independent of (Nt)t∈R+ , and rt(Nt) denotes
the interest rate. For example (βk)k∈N can be a Markov chain taking values in a
finite set {b1, . . . , bd}. If (βk)k∈N is an i.i.d. sequence of random variables with
distribution P (βk = bi) = pi, i = 1, . . . , d, k ∈ N, it is well known that we have
the identity in law

βNt− dNt = b1dN1
t + · · · + bddNd

t ,

where N1, . . . , Nd are independent Poisson processes with intensities

(λi)i=1,... ,d = (piλ)i=1,... ,d,

and ν = λ
∑d

i=1 bipi. Hence βNt− dNt can be used to model a finite sum of Poisson
processes with arbitrary jump sizes and intensities.

The gradient used in this paper acts only on the Poisson component (Nt)t∈R+

of this process, described by its jump times (Tk)k≥1. Given an element w of the
Cameron-Martin space H and a smooth functional F = f(T1, . . . , Tn) of the
Poisson process, let

DwF = −
k=n∑
k=1

wTk
∂kf(T1, . . . , Tn),

cf., [9]. The interest in the operator D is that it admits a closable adjoint δ which
coincides with the compensated Poisson stochastic integral on adapted processes.
The L2 domain of Dw does not contain the value NT at time T of the Poisson
process (cf., [10] for an extension of D in distribution sense to such functionals), and
this excludes in particular European claims of the form f(NT ) from this analysis.
Nevertheless, functionals of the form∫ T

0
F (t, Nt)dt (1.2)

do belong to the domain of D provided that F (t, k) ∈ Dom (D), k ∈ N, due to the
smoothing effect of the integral. In particular it turns out that when Sζ

t = F ζ(t, Nt)
is the solution of (1.1) and ζ is the value of a parameter (initial condition x, interest
rate r, or volatility σ), Dw can be applied to differentiate the value

f

(∫ T

0
Sζ

udu

)
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of an Asian option.
Using an integration by parts formula for the gradient D we will compute the fol-
lowing Greeks for Asians options in discontinuous markets governed by a Poisson
process:

Delta =
∂C

∂x
, Gamma =

∂2C

∂x2 , Rho =
∂C

∂r
, Vega =

∂C

∂σ
,

where

C(ζ) = E

[
f

(∫ T

0
Sζ

udu

)]

i.e. C(ζ) is the value of an Asian option with price process (Sζ
t )t∈R+ , with respec-

tively ζ = x, r, σ. When f is not differentiable, no analytic expression is in general
available for such derivatives.

We proceed as follows. Section 2 contains preliminaries on the Malliavin calcu-
lus on Poisson space and on the differentiability of functionals of the form (1.2). In
Sect. 3 we present the integration by parts formula which is the main tool to com-
pute the Greeks (i.e., derivatives with respect to ζ) using a random variable called
a weight. The market models are presented in Sect. 4 and explicit computations are
carried out for price processes of the form (1.1). In Sect. 5 we consider the Delta of
a binary Asian option, i.e., f = 1[K,∞[, and the Gamma of a standard Asian option,
with numerical simulations. These simulations show that the Malliavin approach
applied to Asian options in the case of a market driven by a Poisson process is more
efficient than the finite difference method. In Sect. 7 we consider several settings
to which our method can be extended.

2 Malliavin Calculus on Poisson space

Let (Nt)t∈R+ be a standard Poisson process with intensity λ on a probability space
(Ω, F , P ) and let Ñt = Nt − λt denote the associated compensated process. Let
H denote the Cameron-Martin space

H =
{∫ ·

0
ẇtdt : ẇ ∈ L2(R+)

}
.

Let S denote the set of smooth functionals of the form

F = f(T1, . . . , Tn), f ∈ C1
b (Rn), n ≥ 1,

and let

U =

{
i=n∑
i=1

Giui, G1, . . . , Gn ∈ S, u1, . . . , un ∈ H

}
.

Given w ∈ H , let D denote the gradient operator

Dwf(T1, . . . , Td) = −
k=d∑
k=1

wTk
∂kf(T1, . . . , Td).
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Given u ∈ U a process of the form

u =
i=n∑
i=1

Giui, Gi ∈ S, ui ∈ H,

we also define

DuF =
i=n∑
i=1

GiDui
F.

This definition extends to u ∈ L2(Ω, H) with the bound

|DuF | ≤ CF ‖u̇‖L2(R+), a.s.,

where u̇ denotes the time derivative of u(t, ω) and CF is a random variable de-
pending on F ∈ S. The following proposition is well-known, cf. e.g., [2,9,10].

Proposition 1 a) The operator D is closable and admits an adjoint δ such that

E[DuF ] = E[Fδ(u)], u ∈ U , F ∈ S.

b) We have for F ∈ Dom (D) and u ∈ Dom (δ) such that uF ∈ Dom (δ):

δ(uF ) = F

∫ T

0
u̇tdÑt − DuF. (2.1)

c) Moreover, δ coincides with the compensated Poisson stochastic integral on the
adapted processes in L2(Ω; H):

δ(u) =
∫ ∞

0
u̇tdÑt.

The domain of the closed extension of D is denoted by Dom (D). Given

F : R+ × N × Ω → R

we define the partial finite difference operator ∇k as

∇kF (t, k) = F (t, k) − F (t, k − 1).

The following propositions provide general derivation rules for the quantities∫ T

0 F (t, Nt)dt and
∫ T

0 F (t, Nt)dNt, which appear in the solutions of stochastic
differential equations such as (1.1).

Proposition 2 Let w ∈ H and assume that F (t, k) ∈ Dom (D), t ∈ R+, k ∈ N.
We have

Dw

∫ T

0
F (t, Nt)dt =

∫ T

0
wt∇kF (t, Nt)dNt +

∫ T

0
[DwF ](t, Nt)dt.
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Proof We have

Dw

∫ T

0
F (t, Nt)dt = Dw

∑
k≥0

∫ Tk+1∧T

Tk∧T

F (t, k)dt

= −
∑
l≥1

wTl
1[0,T ](Tl)(F (Tl, l − 1) − F (Tl, l)) +

∑
k≥0

∫ Tk+1∧T

Tk∧T

[DwF ](t, k)dt

=
∫ T

0
wt∇kF (t, Nt)dNt +

∫ T

0
[DwF ](t, Nt)dt.

��
Proposition 3 Let w ∈ H and assume that F (t, k) ∈ Dom (D), t ∈ R+, and
F (·, k) ∈ C1

c ([0, T ]) a.s., k ∈ N. Then

Dw

∫ T

0
F (t, Nt)dNt = −

∫ T

0
wt∂1F (t, Nt)dNt +

∫ T

0
[DwF ](t, Nt)dNt,

where ∂1 denotes the derivative of F (t, k) with respect to its first variable t.

Proof We have

Dw

∫ T

0
F (t, Nt)dNt = Dw

∞∑
k=1

1[0,T ](Tk)F (Tk, k)

= Dw

∞∑
k=1

F (Tk, k) = lim
n→∞ Dw

k=n∑
k=1

F (Tk, k)

= −
∞∑

k=1

wTk
∂1F (Tk, k) +

∞∑
k=1

[DwF ](Tk, k)

= −
∫ T

0
wt∂1F (t, Nt)dNt +

∫ T

0
[DwF ](t, Nt)dNt.

��
The following corollary is a consequence of Proposition 2 and Proposition 3.

Corollary 1 Let w, v ∈ H and assume that F (t, k) ∈ Dom (D), t ∈ R+, and
F (·, k) ∈ C1

c ([0, T ]), k ∈ N. Then

DvDw

∫ T

0
F (t, Nt)dt = −

∫ T

0
vt(ẇt∇kF (t, Nt) + wt∂1∇kF (t, Nt))dNt

+
∫ T

0
wt[Dv∇kF ](t, Nt)dNt

+
∫ T

0
vt∇k[DwF ](t, Nt)dNt

+
∫ T

0
[DvDw∇kF ](t, Nt)dt.
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Proof From Proposition 2 we have

DvDw

∫ T

0
F (t, Nt)dt = Dv

∫ T

0
wt∇kF (t, Nt)dNt + Dv

∫ T

0
[DwF ](t, Nt)dt,

and the terms in the above summand are computed from Proposition 2 and Propo-
sition 3 respectively. ��
The next corollary is stated for deterministic F (t, k) only for the sake of sim-
plicity. The case of a random F (t, k) can also be treated using Proposition 2 and
Proposition 3 although with longer calculations.

Corollary 2 Assume that F (t, k) does not depend on Poisson jump times, i.e.

[DwF ](t, k) = 0, t ∈ R+, k ∈ N, w ∈ H,

and that F (·, k) ∈ C2
c ([0, T ]) a.s., k ∈ N. We have for all w ∈ C2

c ([0, T ]) and
u, v ∈ H:

DuDvDw

∫ T

0
F (t, Nt)dt =

∫ T

0
ut(v̇tẇt + vtẅt)∇kF (t, Nt)dNt

+
∫ T

0
ut(2vtẇt + wtv̇t)∂1∇kF (t, Nt)dNt +

∫ T

0
utvtwt∂

2
1∇kF (t, Nt)dNt,

where ẅt denotes the second derivative of ωt with respect to t.

Proof We use the expression

DvDw

∫ T

0
F (t, Nt)dt = −

∫ T

0
vt(ẇt∇kF (t, Nt) + wt∂1∇kF (t, Nt))dNt

obtained from Corollary 1, and apply Proposition 3. ��

3 Computations of Greeks

We present the integration by parts formula which follows from a classical Malliavin
calculus argument applied to the derivation operator D, and is essential to the
computation of Greeks. Let (a, b) be an open interval of R.

Proposition 4 Let (F ζ)ζ∈(a,b) and (Gζ)ζ∈(a,b), be two families of random func-
tionals, continuously differentiable in Dom (D) in the parameter ζ ∈ (a, b). Let
(wt)t∈[0,T ] be a process satisfying

DwF ζ 	= 0, a.s. on {∂ζF
ζ 	= 0}, ζ ∈ (a, b),

and such that wGζ∂ζF
ζ/DwF ζ is continuous in ζ in Dom (δ). We have

∂

∂ζ
E
[
Gζf(F ζ)

]
= E

[
f(F ζ)δ

(
Gζw

∂ζF
ζ

DwF ζ

)]
+ E

[
∂ζG

ζf(F ζ)
]
, (3.1)

for any function f such that f(F ζ) ∈ L2(Ω), ζ ∈ (a, b).
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Proof Assuming that f ∈ C∞
b (R), we have

∂

∂ζ
E
[
Gζf(F ζ)

]
= E

[
Gζf ′ (F ζ

)
∂ζF

ζ
]
+ E

[
∂ζG

ζf(F ζ)
]

= E

[
Gζ ∂ζF

ζ

DwF ζ
Dwf(F ζ)

]
+ E

[
∂ζG

ζf(F ζ)
]

= E

[
f(F ζ)δ

(
wGζ ∂ζF

ζ

DwF ζ

)]
+ E

[
∂ζG

ζf(F ζ)
]
.

The extension to square-integrable f can be obtained from the same argument as
in p. 400 of [5], using the bound∣∣∣∣ ∂

∂ζ
E
[
Gζfn(F ζ)

]− E

[
f(F ζ)

(
δ

(
Gζw

∂ζF
ζ

DwF ζ

)
+ ∂ζG

ζ

)]∣∣∣∣
≤ ‖f(F ζ) − fn(F ζ)‖L2(Ω)

∥∥∥∥δ
(

Gζw
∂ζF

ζ

DwF ζ

)
+ ∂ζG

ζ

∥∥∥∥
L2(Ω)

,

and an approximating sequence (fn)n∈N of smooth functions. ��

Using (2.1), the weight δ
(
wGζ ∂ζF ζ

DwF ζ

)
can be computed using Poisson stochastic

integrals:

δ

(
wGζ ∂ζF

ζ

DwF ζ

)
= Gζ ∂ζF

ζ

DwF ζ

∫ T

0
ẇtdÑt − Dw

(
Gζ ∂ζF

ζ

DwF ζ

)

= Gζ ∂ζF
ζ

DwF ζ

∫ T

0
ẇtdNt − Gζ Dw∂ζF

ζ

DwF ζ

+Gζ ∂ζF
ζ

(DwF ζ)2
DwDwF ζ − ∂ζF

ζ

DwF ζ
DwGζ .

First derivatives

In particular, first derivatives such as the Delta, Rho and Vega can be computed
from

∂

∂ζ
E
[
f(F ζ)

]
= E

[
f(F ζ)δ

(
w

∂ζF
ζ

DwF ζ

)]
,

with, from (2.1):

δ

(
w

∂ζF
ζ

DwF ζ

)
=

∂ζF
ζ

DwF ζ

∫ T

0
ẇtdNt − Dw∂ζF

ζ

DwF ζ
+

∂ζF
ζ

(DwF ζ)2
DwDwF ζ .

(3.2)

Second derivatives

Assume that w ∈ C2
c ([0, T ]). Concerning second derivatives we have

∂2

∂ζ2 E
[
f(F ζ)

]
=

∂

∂ζ
E
[
f(F ζ)δ(Gζw)

]
(3.3)



168 Y. El-Khatib, N. Privault

= E

[
f(F ζ)

∂

∂ζ
δ(Gζw)

]
+ E

[
f(F ζ)δ

(
δ(Gζw)Gζw

)]
,

with Gζ = ∂ζF ζ

DwF ζ , and from (2.1):

δ
(
δ(Gζw)Gζw

)
= Gζδ(Gζw)

∫ T

0
ẇtdÑt − Dw(Gζδ(Gζw))

= Gζδ(Gζw)
∫ T

0
ẇtdÑt − δ(Gζw)DwGζ

−GζDw

(
Gζ

∫ T

0
ẇtdÑt − DwGζ

)

=

(
Gζ

∫ T

0
ẇtdÑt − DwGζ

)2

−Gζ

(
DwGζ

∫ T

0
ẇtdÑt + Gζ

∫ T

0
wtẅtdNt − DwDwGζ

)

=

(
∂ζF

ζ

DwF ζ

∫ T

0
ẇtdÑt +

∂ζF
ζ

(DwF ζ)2
DwDwF ζ − Dw∂ζF

ζ

DwF ζ

)2

− ∂ζF
ζ

DwF ζ

((
− ∂ζF

ζ

(DwF ζ)2
DwDwF ζ +

Dw∂ζF
ζ

DwF ζ

)∫ T

0
ẇtdÑt

+
∂ζF

ζ

DwF ζ

∫ T

0
wtẅtdNt − DwDw∂ζF

ζ

DwF ζ
+ 2Dw∂ζF

ζ DwDwF ζ

(DwF ζ)2

+∂ζF
ζ DwDwDwF ζ

(DwF ζ)2
− 2∂ζF

ζ (DwDwF ζ)2

(DwF ζ)3

)
.

Delta in the linear case

This is a first derivative with F x = xF . Then ∂xF x = F and the weight for the
Delta is

δ

(
w

∂xF x

DwF x

)
=

1
x

(
F

DwF

∫ T

0
ẇtdÑt − 1 +

F

(DwF )2
DwDwF

)
. (3.4)

Gamma in the linear case

This is a second derivative, with F x = xF . The weight associated to the Gamma
is computed via (3.3) with

Gx =
∂xF x

DwF x
=

F

xDwF
and

∂

∂x
Gx = − 1

x2

F

DwF
,

i.e.

Gamma =
−Delta

x
+ E[f(F ζ)δ (δ(Gxw)Gxw)], (3.5)



Computations of Greeks in a market with jumps 169

with

δ (δ(Gxw)Gxw) =
1
x2

(
F

DwF

∫ T

0
ẇtdÑt − 1 +

F

(DwF )2
DwDwF

)2

(3.6)

− F

x2DwF

((
1 − F

(DwF )2
DwDwF

)∫ T

0
ẇtdÑt +

F

DwF

∫ T

0
wtẅtdNt

+F

(
DwDwDwF

(DwF )2
− 2

(DwDwF )2

(DwF )3

)
+

DwDwF

DwF

)
,

with w ∈ C2
c ([0, T ]). In the next section, these general formulas are specialized to

the model described by (1.1).

4 Market model

In this section we make explicit computations for an underlying asset price given
under the risk-neutral probability by the linear equation

dSt = rt(Nt)Stdt + σt(Nt−)St−(βNt− dNt − νdt), (4.1)

whose solution can be written under the form F (t, Nt). For simplicity the random
dependence on βk will not be mentioned as it plays no role in the integration by
parts since βk is independent of (Nt)t∈R+ . As noted in the introduction we may
consider as a particular case d independent Poisson processes N1, . . . , Nd with
intensities λ1, . . . , λd, λ = λ1 + · · ·+λd, and a sequence (βk)k∈N of i.i.d. random
variables with values in b1, . . . , bd, and distribution

P (βk = bi) =
λi

λ1 + · · · + λd
, i = 1, . . . , d, k ∈ N.

In this case we have the identity in law:

b1dN1
t + · · · + bddNd

t = βNt− dNt,

and (4.1) can be written as

dSt = rt(Nt)Stdt + St−σt(Nt−)
d∑

i=1

bi(dN i
t − λidt), (4.2)

with ν =
∑d

i=1 biλi, i.e. we are in a market driven by a sum of independent Poisson
processes with arbitrary jump sizes. Coming back to the general case we write (4.1)
as

dSt = αt(Nt)Stdt + σt(Nt−)St−βNt− dNt, S0 = x,

where
αt(k) = rt(k) − νσt(k), k ∈ N.
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The next result is an application of Proposition 2 to the solution of (4.1) which can
be written as

St = F (t, Nt),

with

F (t, k) = xe
∫ t
0 αs(Ns)ds

i=k∏
i=1

(1 + βi−1σTi(i − 1)).

A differentiability hypothesis is required on σ.

Proposition 5 Assume that σ·(k) ∈ C1
b (R+) and 1 + βkσ·(k) > 0, for all k ∈ N.

We have

Dw

∫ T

0
Sudu =

∫ T

0
wtσt(Nt−)St−βNt− dNt +

∫ T

0
St

∫ t

0
ws∇kαs(Ns)dsdt

−
∫ T

0
St

∫ t

0

σ̇s(Ns−)
1 + βNs− σs(Ns−)

βNs− dNsdt. (4.3)

Proof We have

∇kF (t, k) = βk−1σTk
(k − 1)F (t, k − 1),

moreover ∂1F (t, k) = αt(k)F (t, k), hence

DwF (t, k) = F (t, k)Dw

∫ t

0
αs(Ns)ds + F (t, k)

i=k∑
i=1

βi−1σ̇Ti(i − 1)
1 + βi−1σTi

(i − 1)

= F (t, k)
∫ t

0
ws∇kαs(Ns)ds + F (t, k)

i=k∑
i=1

βi−1σ̇Ti(i − 1)
1 + βi−1σTi(i − 1)

,

and

[DwF ](t, Nt) = F (t, Nt)
∫ t

0
ws∇kαs(Ns)ds

+F (t, Nt)
∫ t

0

σ̇s(Ns−)
1 + βNs− σs(Ns−)

βNs− dNs.

We conclude using Proposition 2. ��
The second and third derivatives are obtained as applications of Corollary 1 and
Corollary 2 in the following proposition.

Proposition 6 Let w ∈ C1
c ([0, T ]). Assume that αt does not depend on k and that

σ is constant. We have

DwDw

∫ T

0
Sudu = −

∫ T

0
wt(ẇtσSt− + wtσαtSt−)βNt− dNt. (4.4)

Assuming further that α does not depend on t and w ∈ C2
c ([0, T ]), we have:

DwDwDw

∫ T

0
Sudu =

∫ T

0
wtσ

(
ẇ2

t +3αwtẇt+wtẅt+α2w2
t

)
St−βNt− dNt.

(4.5)
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Again, the hypothesis of the above proposition are stated only to simplify the cal-
culations of the Greeks:

Delta in the linear case

The corresponding weight is obtained from (3.4) and (4.3), (4.4) and is equal to:

1
xσ



∫ T

0 Stdt
∫ T

0 ẇtdÑt∫ T

0 wtSt−βNt− dNt

− 1 −
∫ T

0 Stdt
∫ T

0 wt (ẇt + αwt) St−βNt− dNt(∫ T

0 wtSt−βNt− dNt

)2


 .

Note that unlike in the Brownian case ([4]), the weight is not a function of(
ST ,

∫ T

0 Sudu
)

.

Gamma in the linear case

The corresponding weight is given by (3.5) and (3.6), with from (4.3)-(4.5):

δ (δ(Gxw)Gxw) = (4.6)

1
x2σ2



∫ T

0 Stdt
∫ T

0 ẇtdÑt∫ T

0 wtSt−βNt− dNt

− 1 −
∫ T

0 Stdt
∫ T

0 wt (ẇt + αwt) St−βNt− dNt(∫ T

0 wtSt−βNt− dNt

)2




2

−
∫ T

0 Stdt
∫ T

0 ẇtdÑt

x2σ
∫ T

0 wtSt−βNt− dNt


1 +

∫ T

0 Stdt
∫ T

0 wt (ẇt + αwt) St−βNt− dNt

σ
(∫ T

0 wtSt−βNt− dNt

)2




+

(∫ T

0 Stdt
)2

x2σ2
(∫ T

0 wtSt−βNt− dNt

)2

∫ T

0
wtẅtdNt

+

(∫ T

0 Stdt
)2

x2σ
∫ T

0 wtSt−βNt− dNt


2(

∫ T

0 wt (ẇt + αwt) St−βNt− dNt)2(∫ T

0 wtSt−βNt− dNt

)2

−
∫ T

0 wt

(
ẇ2

t + 3αwtẇt + wtẅt + α2w2
t

)
St−βNt− dNt

σ
(∫ T

0 wtSt−βNt− dNt

)2




−
∫ T

0
Stdt

∫ T

0 wt (ẇt + αwt) St−βNt− dNt

σ
(∫ T

0 wtSt−βNt− dNt

)2 . (4.7)

Vega

The Vega of an Asian option with payoff f(Fσ) = f
(∫ T

0 Sudu
)

is given by (3.2)

and

∂σFσ =
∫ T

0
St

(
Nt∑

k=1

βk−1

1 + σβk−1
− νt

)
dt,
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hence from Proposition 2:

Dw∂σFσ =
∫ T

0
wuSu−


βNu− (1 + σ)

Nu−∑
k=1

βk−1

1 + σβk−1
− νu


 dNu,

with DwFσ , DwDwFσ given by (4.3), (4.4).

Rho

The Rho of an Asian option with payoff f
(∫ T

0 Sudu
)

is given by (3.2) and

∂rF
r =

∫ T

0
tStdt, Dw∂rF

r = σ

∫ T

0
twtSt−dNt,

with DwFσ , DwDwFσ given by (4.3), (4.4).

5 Numerical simulations

We present simulations for the Delta and the Gamma of Asian options, successively
the Delta of a binary Asian option with strike price K:

C(x) = e−rT E

[
1[K,∞[

(
1
T

∫ T

0
Sx

t dt

)]
,

and the Gamma of a standard Asian option:

C(x) = e−rT E


( 1

T

∫ T

0
Sx

t dt − K

)+

 .

We consider a simplified model with constant parameters σ and r, first with a fixed
jump size, and then with multiple random jump sizes independent from (Nt)t∈R+ .
In the case of constant interest rate and volatility, the price of the underlying asset
is given by

St = xeαt
i=Nt∏
i=1

(1 + σβi−1) = f(x, t, Nt), t ∈ [0, T ],

with f(x, t, k) = xeαt
∏i=k

i=1(1 + σβi−1). Proposition 4 can be applied to F x =∫ T

0 Stdt, with

Dw

∫ T

0
Stdt = σ

∫ T

0
wtSt−βNt− dNt

= xσ

k=NT∑
k=1

wTk
βk−1

i=k−1∏
i=1

(1 + σβi−1)eαTk , (5.1)
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DwDw

∫ T

0
Stdt = −σ

∫ T

0
wt (ẇt + αwt) St−βNt− dNt (5.2)

= −xσ

k=NT∑
k=1

wTk
βk−1e

αTk(ẇTk
+ αwTk

)
i=k−1∏

i=1

(1 + σβi−1),

and

DwDwDw

∫ T

0
Stdt = σ

∫ T

0
wt

(
ẇ2

t + 3αwtẇt + wtẅt + α2w2
t

)
St−βNt− dNt

= xσ

k=NT∑
k=1

wTk
βk−1e

αTk
(
ẇ2

Tk
+ 3αwTk

ẇTk
+ wTk

ẅTk
+ α2w2

Tk

)

×
i=k−1∏

i=1

(1 + σβi−1), (5.3)

if w ∈ C2
c ([0, T ]). The finite difference method gives Delta as

Delta =
C(x + ε) − C(x − ε)

2ε
.

For the Malliavin approach we take wt = sin(πt/T ) (so that
∫ T

0 ẇtdt = 0), and
T = 500, x = 10, K = 15000, α = 0.009, σ = 0.01, N = k and ε = 0.001.

The following graphs allow to compare both methods on several sample sizes.
We start with the case of a fixed jump size β = 1.

0

0.05

0.1

0.15

0.2

0.25

0 100000 200000 300000 400000 500000

Malliavin formula
Finite differences

Fig. 1. 500000 simulations for Delta with K = 15000 and β = 1

The same simulation is presented with a larger sample size:
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0.1
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Finite differences

Fig. 2. 3 × 106 simulations for Delta with K = 15000 and β = 1

In the next simulation we increase the value of K to K = 28000.

0
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0.001

0.0015
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0.0025
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0 5x10E6 10x10E6 15x10E6 20x10E6 25x10E6

Malliavin formula
Finite differences

Fig. 3. 25 × 106 simulations for Delta with K = 28000 and β = 1

Next we present two simulations of Delta in models with multiple random jump
sizes, for K=2500.
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Fig. 4. 25 × 106 simulations for Delta with jump sizes in {−1, 2}
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Fig. 5. 25 × 106 simulations for Delta with jump sizes in {−2.5, −1.5, 1, 2.2, 3}

For the Gamma, the finite difference are computed via

Gamma =
C(x + ε) − 2C(x) + C(x − ε)

ε2
.

The Malliavin method uses (3.3) and (4.6). We take wt = sin(πt/T ), and the values
T = 100, x = 10, K = 30, r = 0.009, σ = 0.01, ε = 0.001, and a fixed jump size
β = 1.
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Fig. 6. 500000 simulations for Gamma
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Fig. 7. 3 × 106 simulations for Gamma
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Fig. 8. 30 × 106 simulations for Gamma

6 Conclusion

The simulation graphs show a faster and better convergence of the Greeks obtained
from the Malliavin method on Poisson space for Asian options in a market with
jumps, when compared to the finite difference approximations. When performing
simulations, the Malliavin method turned out to be more efficient for out-of-the-
money options.

7 Extensions

In this section we consider two more general settings which can be treated by the
above method. We first consider a model with state-dependent coefficients given
by a nonlinear equation of the form

dSt = αt(St)dt + σt(St−)βNt− dNt, S0 = x, (7.1)

since St does have an expression in terms of the jump times and the flow associated
to dxt = αt(xt)dt. In this model and the following, the computations of

∫ T

0 Stdt
and its derivatives are still possible recursively (although more complicated) using
the general results of Sect. 3. More precisely we have on {Nt = k}:

St = ΦTk,t(STk
),

and

STk
= (1 + βk−1σTk

(STk−1)ΦTk−1,Tk
(STk−1))ΦTk−1,Tk

(STk−1),
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where Φs,t is the flow defined by

dxt = αt(xt)dt,

i.e.

Φs,t(x) = x +
∫ t

s

αu(xu)du, xs = x.

Secondly, although this paper focuses on the Poisson case an independent diffusion
term can be introduced in the driving stochastic differential equation as in the
complete market model of [7]:

dSt = rtStdt + σtSt−
(
1{φt=0}dBt + φt(βNt− dNt − νtdt)

)
, t ∈ R+,

where φ : R+ −→ R is a deterministic bounded functions satisfying 1 +
σtβNt− φt > 0, t ∈ R+, and (Bt)t∈R+ is a Brownian motion independent of
(Nt)t∈R+ . In this case St still has an explicit form in terms of jump times:

St = S0 exp
(∫ t

0
σs1{φs=0}dBs +

∫ t

0
(rs − φsνsσs)ds − σ2

s

2

∫ t

0
1{φs=0}ds

)

×
k=Nt∏
k=1

(1 + σTk
βk−1φTk

) , t ∈ R+.

In this way one can use either the method of [5] to perturb the Brownian compo-
nent, or our method to deal with the Poisson part. Note however that the Poisson
and Brownian have to mutually exclude each other (as a result of the presence of
(φt)t∈R), otherwise Dw

∫ T

0 Stdt will contain Brownian indefinite stochastic in-
tegrals evaluated at Poisson jump times, which will not belong to the domain of
Dw.
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