Smart Playing Cards: A Ubiquitous
Computing Game

Kay Romer and Svetlana Domnitcheva

Department of Computer Science, ETH Zurich, Zurich, Switzerland

Abstract: We present the ‘Smart Playing Cards’ application, a ubiquitous computing game that augments a classical card game with
information technological functionality by attaching RFID tags to the cards. We also mention requirements that such an application
makes on a supporting software infrastructure for ubiquitous computing.

Keywords: Games; Radio tags; RFID; Ubiquitous computing

1. Introduction

Recent technological advances allow for turning
parts of our everyday environment into so-called
smart environments, which augment the physi-
cal environment with useful IT functionality in
an unobtrusive way, without destroying the usual
‘look and feel’. The main challenge of ubiquitous
computing [1] is to envision such unobtrusive
smart environments that provide a reasonable
advantage for people using it, without violating
the social and legal rules of our society and life.

The area of gaming looks promising with
respect to ubiquitous computing, since due to the
entertaining nature of the social interactions,
users are willing to explore innovative meta-
phors, modalities and hardware even when they
are not as apparent or fluid as the designers might
have hoped [2].

In contrast to developing new games around
the abilities of the available technology, we took
the opposite approach by augmenting a classical
game with IT functionality. According to our
vision, users play a classical card game with the
usual ‘look and feel’ and corresponding social
interactions. Additionally, they are equipped
with a small information appliance (ideally of
the same size as a playing card) that displays
game-related information (score, winner) and
gives hints (cheat alarm, playing hints).

Besides exploring possible applications of
ubiquitous computing, design and implementa-
tion of the Smart Playing Cards application gave
us some insight into the requirements on

Ownership and Copyright
© Springer-Verlag London Ltd 2002
Personal and Ubiquitous Computing (2002) 6:371-377

software infrastructures that would be useful for
building ubiquitous computing applications.
The remainder of the paper presents a first
prototype of the Smart Playing Cards application,
followed by the requirements this application
makes on a supporting software infrastructure.

2. Smart Playing Cards: Whist

In this section we give an overview of the Smart
Playing Cards prototype developed for the game
of Whist. Before going into detail, we present the
rules of the game of Whist and motivations for
choosing it.

2.1. The game of Whist

The classic game of Whist [3] is a plain-trick
game without bidding for four players in two
fixed partnerships (‘teams’), using a standard 52
card pack. First, all the cards are dealt out so that
each player has 13 cards, the last card indicates
the trump color. The game then starts with the
player to the right of the dealer laying down any
card. The game continues clockwise with each of
the players playing a card to the trick. They have
to follow the suit if possible, otherwise any card
is allowed. The trick is won by the highest
trump, or by the highest card of the suit led if
there is no trump. The winner of a trick leads to
the next trick. The team with the most tricks
won, wins the game.

We chose Whist for our prototype implemen-




tation for several reasons. First, the RFID system
we use to detect the cards on the table can only
reliably detect a rather limited number of tags at
the same time. In Whist there are no more than
four cards on the table at any time. Additionally,
Whist does not depend on spoken announce-
ments like Skat. Furthermore, Whist allows us to
implement a rich set of features in our informa-
tion appliance, such as score counting, determin-
ing the winner, cheat alarm, and hints for
beginners.

2.2. Prototype description

The hardware setup of the prototype is depicted
in Fig. 1. It consists of a Philips [-Code Radio
Frequency Identification (RFID) [4] system
connected to a desktop PC, a set of PDAs, and
a standard 52 card deck, where each card is
equipped with an RFID tag (in form of an
adhesive sticker). Each tag holds a unique 1D,
which identifies the card it is attached to.

The RFID system consists of a reader device
and an antenna, which is mounted underneath a
table. The reader device powers the antenna to
generate an electromagnetic field that provides
the tags with power via electromagnetic induc-
tion. Furthermore, the reader device implements
the transceiver for communication with the tags.
A PC running the RFID driver and application
software is connected to the reader by a serial
connection.

A large flat panel display connected to the PC

displays game information common to all
players, for example the current score. Each of
the players can additionally use a PDA (in our
case a Compaq iPAQ equipped with Cisco
Aironet WLAN) to obtain private information
such as a rating of the current move. The PDAs
talk to the Smart Playing Cards application
executing on the PC using a wireless link.

The software setup consists of the main
application executing on the PC and an addi-
tional application executing on the PDAs. Both
are implemented in Java. The PC application
maintains the current game state using the RFID
system. The PDA application first asks the player
for an identification (numbers 1 to 4 according
to the players position) and logs into the main
application. Afterwards, a rating of each of the
players moves is displayed.

Figure 2 shows two screen-shots of the display
in two different game situations. The game starts
with dealing out the cards on the table four at a
time (one for each player). The players have to
take up their card before dealing the next round
of cards. Upon dealing the last card, which
indicates trump color, the application displays
the trump color in the middle of the cross (2 in
Fig. 2). Note that the Smart Playing Cards
application now knows the cards each player got.

Now the Smart Playing Cards application
indicates which player has to lay down the first
card (3 in Fig. 2). Then each player plays a card
to the trick, which is automatically displayed by
the user interface. If a player does not follow the

Fig. 1. Smart Playing Cards prototype: system architecture.

Kay Rémer and Svetlana Domnitcheva



0
C

Fig. 2. Smart Playing Cards prototype: two game situations.

suit although he could, a cheat alarm is displayed
(4 in Fig. 2), asking the player to correct the
mistake. Upon completion of one round, the
winner of the trick is determined and the trick
count is increased in the upper right corner of
the user interface (1 in Fig. 2). The winner of the
trick is then indicated and waited upon for
playing out the next card. Upon completion of
the game, the game count of the winning team is
increased in the upper right corner of the user
interface (1 in Fig. 2).

©:©

yes | keep highest any yes
® arde cards =
| ?
no

1

As indicated in Fig. 1, the display of the PDA
shows a happy, sad, or indifferent smiley face, as
an indication of the quality of the player’s move.
The rating is implemented by a feedback module
using a set of simple heuristics based on our game
experience. This module takes into account the
position of the player in the current trick (first
through fourth), the actual cards already on the
table, and the cards remaining in the game.
Using this information, a subset of the players’
cards is computed containing cards which are

remove bad suit

reset to lowest yes

non-trumps

©1Q

Fig. 3. Cut-out of the feedback decision tree: if the card just played is in the calculated set, then the first smiley is displayed,

otherwise the second one.

Smart Playing Cards: A Ubiquitous Computing Game




considered good to play. Depending on whether
or not the played card is contained in this subset,
an according smiley is displayed.

More formally, operation of the feedback
module can be described by a decision tree, part
of which is shown in Fig. 3. It consists of filters
(squares) and branches (diamonds). Evaluation
starts with a set of ‘good’ cards G equal to the
remaining cards of the player. Each filter
modifies this set in some way. Branches evaluate
some condition. The following list explains the
filters and branches in Figure 3 in more detail:

o last card? Does only one card remain in G?

e pos 17 Is the player in the lead position in the
current trick?

e any cards? Is G non-empty?

e any trumps? Are there any trump cards left in
the game?

o keep highest cards. Keep only the highest cards
in G.

o reset to lowest non-trumps. Since G is empty at
this point, set G to the lowest non-trump
cards of the player.

e remove bad suit. Remove the suit from G the
player played last time the trick was lost due
to an opponent playing a trump.

The pairs of smilies in Fig. 3 indicate what should
be displayed on the PDA. The left hand side
smiley is displayed if the played card is in G.
Otherwise the right hand side smiley is displayed.
Figure 4 shows the prototype system in action.

2.3. Further ideas

On the hardware side we intend to replace the
desktop PC with a small embedded computer
that runs the RFID driver software and main
Smart Playing Cards application.

In the Smart-Its project [5] we develop such
small-scale devices capable of wireless commu-
nication via Bluetooth. Note that the used iPAQ
PDAs also support Bluetooth.

Since, compared to playing cards, current
PDAs are somewhat clumsy due to their form
factor (see Fig. 4), we decided for a separate
common large display, thus making the use of
the PDA optional. However, if the PDA can be
replaced by a dedicated information appliance
with a more appropriate form factor, all the
information could be displayed on this appliance,
and a separate display is no longer needed.

Kay Rémer and Svetlana Domnitcheva

Fig. 4. Smart Playing Cards in action.

On the software side we intend to improve
the playing hints. The current version of the
prototype implements a simple rating of the
players’ moves. For learning the game it would be
helpful if the system would additionally suggest a
set of good moves. Note that the decision tree-
based approach sketched above does already
provide the information (i.e. the set of ‘good’
cards to play) necessary to implement this
feature. On the other hand, the decision tree-
based approach is clearly only a proof-of-
concept, which was chosen for its simplicity.
Future versions need improvements in this
respect.

Another important area for improvements is
supporting players in learning and remembering
the rules of the game. For Whist this might not
be an issue, since the rules of the game are
reasonably simple. However, there are many
games with a huge set of rather complicated
rules. The supporting application could, for
example, indicate the actions still possible in
the current game situation.

2.4. User experiences

Due to the early version of the prototype, we did
not conduct a broad study to gain experience
from users. However, we had already demon-
strated the prototype to some technical and non-
technical people. During those demonstrations,
we just started to play the game without
explaining the technical setting at first. The
first reaction was always a great surprise on the
part of the spectators, since it is not obvious how
the actions on the display are technically linked
to the physical game play.



Some of the spectators also played with the
system. Although many of them did not know or
only roughly knew the rules of Whist, they
quickly learned how to play the game by
exploiting the cheat alarm, which turned out
to be helpful in teaching players the rules by trial
and error.

Players did not like to be forced by the system
to play the game in a way they are not used to.
For example, forcing the players to take off the
cards from the table before dealing out the next
round of cards (see Sect. 2.1) was already an
annoyance to some people. A similar problem
was caused by a delay (due to ‘flickering’, see
Sect. 4) of about one second between removing
cards from the table and the display reflecting
the change, which confused players a lot.

Our observations led us to the conclusion that
people basically seem to like the idea of
augmented everyday objects in this special
setting. However, when making artefacts smart
without visibly changing them, people expect to
find the exact behaviour of the ‘dumb’ artefact
also in the smart version. Already very subtle
changes in the behaviour known from the ‘dumb’
artefact can cause a lot of confusion. On the
other hand, it seems possible to introduce new
functionality in the smart artefact without
confusing people, as long as this does not conflict
with the classical behaviour of the artefact.

A further lesson we learned during demon-
strations is that people are very creative in using
the functionality of a system in unforeseen ways.
Although the cheat alarm was not intended for
this purpose, players used it as an aid in learning
the rules of the game.

Note that the statements in this section are
rather preliminary, since we did not perform a
true user survey. For this we want to wait until
the more elaborate features (playing hints, rule
teacher) are fully implemented, which will
provide a real advantage of Smart Playing
Cards over the classical game.

3. Technical Issues

As mentioned above, we use the Philips [-Code
RFID system and an antenna with a size of about
70x50cm. The detection range of such an
antenna is about a sphere with a diameter of
the length of the antenna as depicted in the left-
hand side of Fig. 5. This gives us a reasonable
area on the table where cards are detected, but
players have to take care to keep the cards in
their hands out of the detection range. There-
fore, we would prefer a large but flat detection
area, which can be achieved with an array of
smaller antennas as shown in the right-hand side
of Fig. 5. Experiments showed that overlapping
electro-magnetic fields of multiple readers do not
cause serious problems. Tags located in over-
lapping regions are detected by both readers,
which does no harm.

To further reduce ambiguities with ‘almost
played’ cards, a proximity sensor could be used.
Quantum research [6] has developed capacitive
proximity sensors which can detect the presence
of a hand at a distance of up to 5cm.

A different problem arises when placing two
or more tags exactly on top of each other. The
RFID system we use is then no longer able to
detect any of the tags. Experiments with our
prototype system showed that this happens
sometimes if one does not take care when
placing the cards on the table. A possible
solution to this problem is to place two or
more tags randomly on each card as depicted
in Fig. 6, so that it is very unlikely if not
impossible to place cards on the table so that
all the tags on one card are ‘shadowed’ by
other tags.

4. Infrastructure Support

Although we implemented the game prototype
from scratch without using a software infrastruc-
ture, during the development it quickly became

Fig. 5. Detection range of one large antenna vs. an array of small antennas.

Smart Playing Cards: A Ubiquitous Computing Game




clear that there are several reasonably complex
tasks that will likely show up in other applica-
tions as well. Therefore the developer of RFID-
based ‘smart applications’ should be supported by
a software infrastructure to handle these tasks. In
this section we want to point out some of these
tasks.

First, event-based programming is an ade-
quate approach to realise the Smart Playing
Cards and other ubiquitous computing applica-
tions that are based on detecting real-world
events in the physical environment (e.g. a
playing card has been put on the table / has
been removed from the table), as pointed out in
Roémer and Schoch [7].

To support distributed applications like the
Smart Playing Cards application, where a PDA is
connected to the RFID reader via wireless short
range radio communication, the infrastructure
should support ad hoc networking and distrib-
uted delivery of events from event generating
entities (e.g. the RFID reader) to event consum-
ing entities (e.g. the Smart Playing Cards
application running on a PDA).

Since players may want to leave the table for
a short time while taking the PDA along without
stopping the game; the infrastructure should
provide support for intermittent disconnects, so
that the PDA shows what happened in between,
upon return to the table.

A natural way to handle the presence and
absence of playing cards in an event-based
programming model is to generate entry and
exit events for each card. However, the RFID
reader can only periodically scan for tags and
return a list of IDs of detected tags. Therefore,
scan lists have to be converted to corresponding
entry and exit events. While this seems a simple
task at first, it is complicated by the fact that,
typically, the RFID reader does not detect all

. A

tags present in each scan, an effect that is at least
partially due to the anti-collision algorithm,
which enables the reader to distinguish and
detect multiple tags at a time [8]. Even without
changing the physical setting, the list of detected
tags is typically changing with each scan. To
handle this problem, the infrastructure should
provide some means of event filtering, enabling
the programmer to remove all leave events
followed by an entry event for the same card
within a certain small amount of time, thus
avoiding ‘flickering’. Generation of entry and exit
events becomes even more complicated with the
introduction of an array of antennas as pointed
out in Sect. 3. In this case, duplicate detections
of the same card by different RFID readers have
to be removed, and causal ordering of detections
by different readers has to be ensured.

On the application level, we need infrastruc-
ture support for composite event detection in
order to detect certain game situations, e.g. the
completion of one round of the game when four
cards are on the table. This task is complicated
by the fact that a player is allowed to change his
mind and take back a card he almost put on the
table, replacing it by a different card (Note that
‘almost played’ cards might already be detected
slightly above the table.)

Although there are many event distribution
services [9,10], none of them provides appro-
priate support for ad hoc networks, and inter-
mittent disconnects. Likewise, there are systems
for composite event detection [11], but the
detection languages they provide are too simple
to accomplish the tasks pointed out in this
section. We are therefore working on an
infrastructure for ubiquitous computing applica-
tions that supports, among other things, all the
requirements pointed out above [7].

Fig. 6. Single tag vs. Randomly placed multiple tags on one playing card.

Kay Rémer and Svetlana Domnitcheva



5. Related Work

Many of the documented ubiquitous computing
gaming projects have developed new game ideas
based on the possibilities of available technology.
Examples include Pirates! [12], which uses
location and proximity as new game elements,
and the MIND-WARPING game system [2],
which explores aspects of wearable computing
and augmented reality.

On the other hand, our approach is to
augment or transform existing games according
to the abilities of available technology, as
exemplified by Smart Playing Cards. Another
example of this genre is PingPongPlus [13], a
ping pong table equipped with ball location and
overhead projection systems.

Little focus has been put so far on the
distributed computing software infrastructure
needed for development and deployment of
ubiquitous computing games, although ubiqui-
tous computing games present some interesting
challenges for such infrastructure as pointed out
in Sect. 4. The WARPING system [2] provides
an infrastructure for developing personal, intel-
ligent, networked games, but does not focus on
distributed computing issues. MEX [14] aims at
providing an infrastructure for wearable comput-
ing, but does not address many of the require-
ments pointed out in Sect. 4.

6. Conclusion and Outlook

We presented Smart Playing Cards, a ubiquitous
computing game which augments the card game
Whist with an unobtrusive smart environment
providing functionality like score counting,
winner determination, cheating alarm, and
playing hints while retaining the look and feel
and social interactions of the classical game. We
also discussed some technical issues related to
the detection of cards using an RFID system, and
highlighted requirements on supporting software
infrastructure.

Further research will focus on new function-
ality of the smart gaming environment and on
studying whether our approach can be general-
ised to other card games and classical games.
However, the major topic of our research is the
development of a software infrastructure for
ubiquitous computing applications in general.

Acknowledgments

We would like to thank Friedemann Mattern for
the initial idea, Vlad Coroama for initial
discussions about Smart Playing Cards, as well
as Philip Graf and Martin Hinz for help with

implementing first prototypes of the system.

References

1. Weiser MD. The computer for the 21st century. Sci Am
1991; 94-104

2. Starner T, Leibe B, Singletary B, Pair J. MIND-
WARPING: Towards creating a compelling collabora-
tive augmented reality game. Intelligent User Interfaces
(IUI 2000), New Orleans, LA, January 2000

3. The Game of Whist. www.pagat.com/whist/whist.html

4. The Philips [—Code System. www-us2.semiconductor-
s.philips.com/identification/products/icode

5. Smart-Its Project. www.smart-its.org
6. Quantum Research. www.qprox.com

7. Romer K, Schoch T. Infrastructure concepts for tag-
based ubiquitous computing applications. Workshop on
Concepts and Models for Ubiquitous Computing,
Ubicomp 2002, Goteborg, Sweden, September 2002

8. Vogt H. Efficient object identification with passive RFID
tags. Pervasive 2002, Zurich, Switzerland, August 2002;
98-113

9. Carzaniga A, Rosenblum DS, Wolf AL. Achieving
scalability and expressiveness in an Internet-scale event
notification service. Nineteenth Annual ACM Sympo-
sium on Principles of Distributed Computing, Portland,
OR, July 2000

10. Sutton P, Arkins R, Segall B. Supporting disconnected-
ness — transparent information delivery for mobile and
invisible computing. IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 01), Brisbane,
Australia, May 2001

11. Mansouri-Samani M, Sloman M. GEM — A Generalised
Event Monitoring language for distributed systems. IEE/
IOP/BCS Distributed Syst Eng ] 1997; 4(25)

12. Bjork S, Falk J, Hansson R, Ljungstrand P. Pirates! Using
the physical world as a game board. IFIP Conference on
Human-Computer Interaction (Interact 01), Tokyo,
Japan, July 2001

13. Ishii H, Wisneski C, Orbanes ], Chun B, Paradiso J.
PingPongPlus: Design of an athletic-tangible interface for
computer-supported cooperative play. ACM Conference
on Human Factors in Computing Systems (CHI 99),
Pittsburgh, PA, May 1999

14. Lehikoinen J, Holopainen ], Salimaa M, Aldro-Vandi A.
MEX: A distributed software architecture for wearable

computers. Third International Symposium on Wearable
Computers (ISWC 99), Victoria, Canada, June 1999

Correspondence to: Nr K. Romer or Ms S. Domnitcheva,
Department of Computer Science, ETH Ziirich, 8092 Ziirich,
Switzerland. Email: roemer@inf.ethz.ch, or domnitch@

inf.ethz.ch

Smart Playing Cards: A Ubiquitous Computing Game




